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Abstract—Standard ML relies on training using a centrally
collected dataset, while collaborative learning techniques such
as Federated Learning (FL) enable data to remain decentral-
ized at client locations. In FL, a central server coordinates
the training process, reducing computation and communication
expenses for clients. However, this centralization can lead to
server congestion and heightened risk of malicious activity or
data privacy breaches. In contrast, Peer-to-Peer Learning (P2PL)
is a fully decentralized system where nodes manage both local
training and aggregation tasks. While P2PL promotes privacy
by eliminating the need to trust a single node, it also results
in increased computation and communication costs, along with
potential difficulties in achieving consensus among nodes. To
address the limitations of both FL and P2PL, we propose a hybrid
approach called Hubs-and-Spokes Learning (HSL). In HSL,
hubs function similarly to FL servers, maintaining consensus
but exerting less control over spokes. This paper argues that
HSL’s design allows for greater availability and privacy than FL,
while reducing computation and communication costs compared
to P2PL. Additionally, HSL maintains consensus and integrity in
the learning process.

Index Terms—federated-learning, peer-to-peer-learning, con-
sensus, privacy, availability, communication-cost

I. INTRODUCTION
A. Federated Learning (FL)
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Fig. 1: Left: Federated Learning (FL) network; Right: Peer-to-Peer
Learning (P2PL) network. In FL, clients receive a global model, train it
locally, and send model gradients to the server for aggregation and global
model updates. In P2PL, clients exchange trained models with neighbors

and independently aggregate received models.

An FL system, as shown in Figure 1, consists of a server
that communicates periodically with n client nodes. The server
initiates training by distributing the same model to all clients.
Clients (all or a subset) train the model locally on their
private data and periodically share model updates with the
server, which aggregates them and returns the global model.
This iterative process optimizes the global objective function
% ;L fi(x), where f; represents the expectation of client ¢’s
local objective, averaged over data batches in its dataset D;,
using the model x received from the server. The server ensures
exact consensus among all nodes at the synchronization points
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by sharing the updated global model to all clients. The
FedSGD algorithm optimizes FL in its most basic form [1].
Since its introduction in 2017 [1], FL has attracted re-
search interest in various areas, such as theoretical ML [2],
systems [3], and security [4]. The learning community has
studied different learning objectives [5] and optimizers [6] to
improve the convergence of the learning process. Computer
systems studies have also proposed multiple aggregation algo-
rithms [7], [8] to handle heterogeneous clients in asynchronous
systems. A large portion of the literature is also devoted to the
study of FL systems under defined threat models [9]-[11].

B. Peer-to-peer Learning (P2PL)

P2PL is a fully decentralized system where the nodes
communicate as peers without the need for a central server,
as illustrated in Figure 1. This eliminates the need for a single
point of trust in the system, enabling greater personal control
and transparency at the nodes. As edge devices become
increasingly computationally powerful, model aggregation
can be delegated to the learning nodes themselves rather than
being restricted to a single server. The Decentralized-SGD
(D-SGD) [12] algorithm optimizes vanilla P2PL. In each
learning round, connected node pairs gossip, exchange
models, and update their models to the average of the
received models, including their own. Gossip averaging helps
maintain approximate consensus among nodes, achieving
exact consensus only when every pair of nodes is connected.
However, Assran et al. [13] demonstrated that exact consensus
is not necessary, and nodes can collaboratively learn with
differing models. To avoid chaos, consensus distance among
nodes must be bounded, ensuring that local models are
relatively similar and in approximate agreement on the
learning trajectory. Kong et al. [14] recommends controlling
consensus by incorporating multiple gossip averaging steps
in each communication round. This ensures that consensus
remains within calculated bounds for different phases of
training.

a) Mixing matrix W for gossip learning: - In gossip
learning, nodes exchange and combine their model information
with others. A “mixing matrix” (W) helps determine how
much importance a node gives to each received model. The
mixing weights in the matrix add up to 1, ensuring that
the combined model maintains the appropriate scale. The
mixing weights for node i are placed in the i** row of a
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matrix, forming the mixing matrix W. If X is a matrix
where row ¢ represents the model weights of node ¢, the
updated model weights after a single gossip round can be
represented by the matrix W .X. When nodes participate in
multiple gossip rounds, the mixing matrix is raised to the
power of the number of rounds (g). (Two rounds of gossip
would result in W(W X) = W2X.) As the number of rounds
increases, the matrix becomes denser, leading to better mixing
of local models. This helps nodes maintain an approximate
agreement, even when they do not have the exact same model
information [14].

b) Column stochasticity of W: - The sum of column
7 in the mixing matrix W represents node j’s contribution
in a single gossip round, based on the weights assigned to
7’s model by all nodes. Recent works [12], [14] recommend
constraining W to be doubly stochastic. This means that
both the row and column sums of matrix W should equal
1, ensuring fairness and balance in the gossip learning pro-
cess. By requiring both row and column sums to equal 1,
the doubly stochastic constraint guarantees that: Each node’s
updated model is an equal combination of the received models,
ensuring that no single model dominates the learning process.
Each node’s contribution to the system is equal, preventing any
node from disproportionately influencing the overall learning
process. Further, this constraint of column stochasticity makes
it simpler to mathematically analyze the complex learning
process in a decentralized setting, even when the network
topologies are changing [12]. Specifically, a doubly stochastic
W has the property that 17w = 17, where 1 is a column
vector of one with the same dinension as the number of rows in
W. The operator 17" is useful in analyzing sum-like functions
such that the average model weights after gossiping can be
expressed as %ITWX = %ITX . If W is column stochastic,
the operator eliminates W.

Although column stochasticity is useful in analyzing con-
vergence in simplified cases, it is not a necessary condition
for a P2PL system’s convergence, as evident from practical
experiments. This is significant because imposing column
stochasticity means constraining the contribution of every node
to be equal, which would involve artificially increasing the
contribution of less popular nodes and limiting that of more
popular nodes. In a malicious setting or a non-IID setting, it
is not advisable to require equal contributions from all nodes,
as this may not be the most optimal approach.

II. ENLARGED ATTACK SURFACE OF P2PL

Here we first describe the fundamental reasons that enable
attacks on an FL system, and then move forward to describe
how it is even more difficult to maintain security in P2PL
because of inexact consensus. Table I summarizes the features
of FL and P2PL and compare them with HSL.

a) FL availability: - Federated Learning (FL) systems
have a critical vulnerability in that the server node repre-
sents a single point of failure in the network topology. To
reduce congestion and prevent failure, servers use intelligent
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Low — Server is the
critical node

Availability

High — Server
trusted to be
honest and
byzantine-robust

Integrity

Low — Server is
capable of data
reconstruction
attacks

Privacy

Consensus High — Server

High — Depends on
the graph
connectivity

Low — Depends on
the malicious node
distribution among
the nodes
Medium - Difficult
to maintain both
privacy and
consensus
simultaneously

Depends — on the

Can be controlled
by the number of
hubs

Medium — Depends
on the malicious
node distribution

High — Mixing
weights can be kept
private without
increasing
dissensus

Can be controlled

enforces exact via the hubs
consensus among

clients

mixing matrix

Can be controlled
as per the capacity

Communication
cost

Low — Every client
communicates with
the global server
only

High — Ensuring
model mixing
requires high graph
connectivity

TABLE I: A comparison of Federated Learning (FL), Peer-to-Peer
Learning (P2PL), and the proposed HSL Hubs-and-Spokes Learning
(HSL) architecture for collaborative learning. FL provides high integrity
but limited privacy and availability assurances. P2PL delivers high
availability and privacy but incurs high communication costs and
challenges in c e. HSL allows configurable levels of
availability, consensus, and communication cost while preserving privacy
and integrity.

us mai

client selection algorithms [15]. While necessary for system
availability, this approach can negatively impact the speed of
convergence.

b) FL integrity: - The server also holds a high level
of trust relative to the client nodes with clients that do not
trust one another, resulting in communication solely with the
server. Clients must trust the server to be both benign and
capable of maintaining byzantine-robustness in the face of
malicious client nodes. If a server succumbs to a poisoning
attack [16], it could disseminate the infected model to all
clients, potentially derailing the entire training process. Cur-
rent research focuses on maintaining byzantine-robust model
aggregation algorithms, ensuring the integrity of the global
model at the server. State-of-the-art defense techniques [4],
[11] defend against directed deviation attacks [16], [17], which
are the most advanced model poisoning attacks. While FL
system integrity is currently considered a solved problem, the
ongoing cycle of attack and defense may require increasingly
robust aggregation techniques in the future.

¢) FL privacy: - Privacy risks arise when clients train
the server-provided model on their local data, as a curious
server could attempt to reconstruct a client’s local data,
breaching privacy. Such attacks are possible when an entity,
like the server, has knowledge of a client’s initial and final
model states during local training. In the case of FL, this
is directly accessible to the server since the initial model is
sent by the server and the update is also sent back to the
server. Optimization-based data reconstruction attacks [18]-
[20] can recover data samples during the FedSGD process,
while analytic data reconstruction attacks [21]-[23] can work
in the FedAvg setting and under secure aggregation [24].
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Adding random noise [25] can help obscure reconstruction
but degrades utility. Homomorphic encryption techniques [26]
can also enhance privacy but are limited to mean aggregation,
which is not byzantine-resilient.

The root cause of privacy attacks is the high level of trust
enjoyed by the server, which affords it sufficient power to
potentially extract privacy-sensitive information from clients.
P2PL provides an opportunity to remove this level of trust
from a single node and distribute it among multiple neighbor-
ing nodes, provided that neighbors do not collectively collude
maliciously.

d) P2PL availability: - P2PL systems inherently lack a
central server, eliminating a single point of failure. While the
graph formed by collaborating nodes may have critical edges,
P2PL generally offers higher availability than FL at the cost
of transferring the aggregation responsibility to participating
nodes, which communicate directly with each other.

e) P2PL integrity: - In P2PL, maintaining the integrity
of the local models is each node’s responsibility. Nodes can
opt to use byzantine-robust aggregations from the FL. domain,
but extending such aggregations to P2PL is non-trivial and
has not yet been explored in the literature. Some FL algo-
rithms [11], [27] preserve byzantine-robustness by assuming
an upper bound on the fraction f,,,, of potentially malicious
or compromised client nodes, beyond which no guarantees
can be made for model integrity. However, in the P2P setting,
the distribution of malicious nodes does not need to be
uniform. Given a non-uniform distribution of malicious nodes,
conservatively setting f,,,q, higher than the actual fraction of
malicious nodes in the entire collaborating population may
still leave some nodes unable to maintain byzantine-robustness
due to a higher concentration of malicious nodes in their
neighborhood. This problem is more easily addressed in FL,
where the server communicates with all other nodes. In P2PL,
collaborating nodes, limited by the number of connections they
can have, must cope with a variable fraction of malicious
nodes in each neighborhood. Other FL algorithms [4], [28]
solve the integrity problem by computing some anomaly
statistic for the nodes and detecting variable number of ma-
licious nodes based on certain rules. However, controlling
consensus in such systems is challenging. As shown in [11],
these algorithms can be overly conservative, leading to high
false positive malicious detection rates, reduced mixing, and
increased dissensus among nodes, which eventually classify
an increasing number of non-consensus nodes as malicious.

f) Freedom vs control in P2PL: - When a node cannot
trust any neighboring nodes, it requires freedom of choice in
assigning mixing weights. Such freedom requires relaxation of
at least the doubly stochastic constraint on the mixing matrix
W, which makes mathematical analysis complex. Unrestricted
freedom in selecting mixing weights can result in a W that ex-
acerbates dissensus and potentially leads to chaos. Maintaining
byzantine-robustness becomes even more difficult when each
node demands the freedom to choose weights. Further research
in P2PL is needed to identify the permissible properties matrix
W should possess for the system to be byzantine-robust
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and for benign nodes to achieve approximate consensus. To
summarize, maintaining consensus and byzantine-robustness
simultaneously in P2PL is difficult due to the absence of a
controlling structure. We use this argument to motivate a two-
layered HSL structure discussed later in the paper.

g) P2PL privacy: - P2PL offers a means to maintain
local data privacy at the nodes. Each node iteratively trains
the locally aggregated model on its data before gossiping with
neighbors. By not disclosing their mixing weights, nodes can
conceal their locally aggregated models after each gossiping
step. Although the final state of the model after local training
is still shared with neighbors, concealing the mixing weights
hides the initial model state, preventing data reconstruction
attacks and privacy breaches. However, this reintroduces the
challenge of guaranteeing consensus when nodes have unre-
stricted freedom to choose their mixing weights. The extent
of mixing occurring after each gossip round depends on the
matrix W, specifically its spectral gap [14]. Without oversight
on consensus or on W, it cannot be ensured that the models
for each node will not diverge and that they will mix well to
learn the same model. It is evident that diverging models are
negatively affected by collaboration unless sufficient mixing
happens. Thus, we understand that ensuring consensus is an
important aspect for maintaining both byzantine-robustness
and privacy in any form of collaborative learning. Bearing
these considerations in mind, we propose a promising direction
to address some of these challenges.

III. PROMISING SOLUTION DIRECTION

Fig. 2: This figure illustrates HSL’s Hubs-and-Spokes Learning (HSL)
topology for collaborative learning. Each spoke communicates with two or
more hubs, while hubs gossip with each other. Spokes do not directly
communicate with one another. Hubs receive locally trained models from
the spokes, engage in gossip for model mixing, and transmit aggregated
models to connected spokes.

We have now seen that FL. and P2PL are two extreme forms
of collaborative learning, each with its own limitations. In FL,
a powerful server enforces exact consensus and Byzantine-
robustness. However, this same authority also heightens the
risk of breaching client privacy. On the other hand, the
completely decentralized network topology in P2PL makes
maintaining integrity and privacy challenging due to the non-
zero consensus distance among peer nodes.

To overcome these challenges, we propose a hybrid Hubs-
and-Spokes-Learning (HSL), as shown in Figure 2. HSL is
composed of two layers: a layer of client-like nodes (spokes)
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and another of server-like nodes (hubs). This innovative ar-
chitecture fosters collaboration while maintaining privacy and
integrity.

a) Privacy in HSL: - In HSL, spokes communicate
exclusively with their parent hubs, while hubs can gossip
with one another. A many-to-many connection exists between
the hubs and spoke layers. Each spoke receives models from
its parent hubs (with a recommended minimum of two) and
locally aggregates them using private mixing weights. This
approach prevents a single hub from dictating its model to a
child spoke, which is the root cause of data leakage attacks. By
keeping mixing weights private, spokes can hide their model’s
initial state and share the final state after local training without
any privacy concerns. We assume that the hubs are not fully
connected, because an exact consensus among hubs will result
in identical models at all hubs, irrespective of the mixing
weights used by spokes.

Hubs, similar to FL servers, do not perform local training,
but are responsible for Byzantine-robust aggregation of models
received from spokes. Hubs primarily act as a conduit for
spokes to exchange information effectively. After aggregation,
hubs gossip among themselves to reach approximate consen-
sus.

b) Consensus control: - The collaborative HSL archi-
tecture can be viewed as multiple, interconnected FL systems,
where the number of hubs can be orders of magnitude smaller
than the number of spokes. The fundamental concept used in
our design is that consensus among spokes can be controlled
through consensus among hubs. As every spoke’s model is a
weighted mean of hub models, consensus among hubs bounds
the consensus among spokes without imposing constraints
on the spokes’ mixing weights. Achieving consensus through
repeated gossiping among a smaller population of nodes
(hubs)compared to a larger one (spokes) also significantly
lowers computation and communication costs.

Figure 3 demonstrates the improvement in collaborative
learning with HSL using 64 spokes and 5 hubs, with 5
edges among hubs and 128 edges between spokes and hubs
(satisfying the minimum requirement of 2 hubs per spoke)
compared to a P2PL system with 150 randomly sampled
edges. This improvement, observed with a 0.5 non-IID bias
and 1 gossip step per round on CIFAR-10, is attributable to
better consensus control in HSL.

¢) Availability and communication cost: - It is important
to note that HSL with a single hub is functionally equivalent
to FL, while HSL with n spokes and n hubs with one-to-one
connections functionally represents P2PL. HSL serves as a
more generalized framework that encompasses FL. and P2PL.
By adjusting the number of hubs, HSL can be configured to
meet specific availability and communication cost objectives,
given finite individual budgets.

d) Integrity in HSL: - HSL incorporates three levels
of Byzantine-robust aggregation. Although hubs may become
compromised if malicious spokes are concentrated in certain
neighborhoods, we propose a gossip mechanism that allows
hubs to provide feedback to each other. This mechanism
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enables hubs to increment their f,,, if they suspect a higher
number of malicious spokes. Failure to act on the feedback
could result in a hub being identified as malicious by its peer
hubs. In addition, the spokes have access to their own model as
a benign ground truth for robust aggregation. Since consensus
among hubs ensures consensus among spokes, the system is
less likely to spiral into chaos, unlike a P2PL system.
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Fig. 3: Comparison of the average performance of HSL (5 hubs, 133
edges) and P2PL (150 edges), illustrating test accuracy candles for 64
spokes training ResNet-18 on CIFAR-10 with a single gossip step per
round. HSL achieves significant improvement due to superior consensus,
even at a lower communication cost compared to P2PL.

IV. CoNcCLUSION

In this paper, we have highlighted the inherent structural
and functional vulnerabilities within the two most prevalent
forms of decentralized machine learning, Federated Learning
(FL) and Peer-to-Peer Learning (P2PL). We argue that these
two forms represent the extremes on a spectrum, motivating
our hybrid architecture as a potential resolution to these
existing challenges. We have discussed with logical arguments
how this proposed architecture addresses the current issues
in FL and P2PL. With this discussion, we aim to inspire
further research toward more pragmatic forms of collaborative
learning, steering away from the extremes. Further, we have
also emphasized the need and possibility for such solutions
to be secure in terms of privacy, integrity, and availability
for harnessing the potential of large volumes of data and
ubiquitous computing.
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