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Abstract—Standard ML relies on training using a centrally
collected dataset, while collaborative learning techniques such
as Federated Learning (FL) enable data to remain decentral-
ized at client locations. In FL, a central server coordinates
the training process, reducing computation and communication
expenses for clients. However, this centralization can lead to
server congestion and heightened risk of malicious activity or
data privacy breaches. In contrast, Peer-to-Peer Learning (P2PL)
is a fully decentralized system where nodes manage both local
training and aggregation tasks. While P2PL promotes privacy
by eliminating the need to trust a single node, it also results
in increased computation and communication costs, along with
potential difficulties in achieving consensus among nodes. To
address the limitations of both FL and P2PL, we propose a hybrid
approach called Hubs-and-Spokes Learning (HSL). In HSL,
hubs function similarly to FL servers, maintaining consensus
but exerting less control over spokes. This paper argues that
HSL’s design allows for greater availability and privacy than FL,
while reducing computation and communication costs compared
to P2PL. Additionally, HSL maintains consensus and integrity in
the learning process.

Index Terms—federated-learning, peer-to-peer-learning, con-
sensus, privacy, availability, communication-cost

I. INTRODUCTION

A. Federated Learning (FL)

Fig. 1: Left: Federated Learning (FL) network; Right: Peer-to-Peer
Learning (P2PL) network. In FL, clients receive a global model, train it

locally, and send model gradients to the server for aggregation and global
model updates. In P2PL, clients exchange trained models with neighbors

and independently aggregate received models.

An FL system, as shown in Figure 1, consists of a server

that communicates periodically with n client nodes. The server

initiates training by distributing the same model to all clients.

Clients (all or a subset) train the model locally on their

private data and periodically share model updates with the

server, which aggregates them and returns the global model.

This iterative process optimizes the global objective function
1

n

∑
n

i
fi(x), where fi represents the expectation of client i’s

local objective, averaged over data batches in its dataset Di,

using the model x received from the server. The server ensures

exact consensus among all nodes at the synchronization points

by sharing the updated global model to all clients. The

FedSGD algorithm optimizes FL in its most basic form [1].

Since its introduction in 2017 [1], FL has attracted re-

search interest in various areas, such as theoretical ML [2],

systems [3], and security [4]. The learning community has

studied different learning objectives [5] and optimizers [6] to

improve the convergence of the learning process. Computer

systems studies have also proposed multiple aggregation algo-

rithms [7], [8] to handle heterogeneous clients in asynchronous

systems. A large portion of the literature is also devoted to the

study of FL systems under defined threat models [9]–[11].

B. Peer-to-peer Learning (P2PL)

P2PL is a fully decentralized system where the nodes

communicate as peers without the need for a central server,

as illustrated in Figure 1. This eliminates the need for a single

point of trust in the system, enabling greater personal control

and transparency at the nodes. As edge devices become

increasingly computationally powerful, model aggregation

can be delegated to the learning nodes themselves rather than

being restricted to a single server. The Decentralized-SGD

(D-SGD) [12] algorithm optimizes vanilla P2PL. In each

learning round, connected node pairs gossip, exchange

models, and update their models to the average of the

received models, including their own. Gossip averaging helps

maintain approximate consensus among nodes, achieving

exact consensus only when every pair of nodes is connected.

However, Assran et al. [13] demonstrated that exact consensus

is not necessary, and nodes can collaboratively learn with

differing models. To avoid chaos, consensus distance among

nodes must be bounded, ensuring that local models are

relatively similar and in approximate agreement on the

learning trajectory. Kong et al. [14] recommends controlling

consensus by incorporating multiple gossip averaging steps

in each communication round. This ensures that consensus

remains within calculated bounds for different phases of

training.

a) Mixing matrix W for gossip learning: - In gossip

learning, nodes exchange and combine their model information

with others. A “mixing matrix” (W ) helps determine how

much importance a node gives to each received model. The

mixing weights in the matrix add up to 1, ensuring that

the combined model maintains the appropriate scale. The

mixing weights for node i are placed in the ith row of a
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matrix, forming the mixing matrix W . If X is a matrix

where row i represents the model weights of node i, the

updated model weights after a single gossip round can be

represented by the matrix WX . When nodes participate in

multiple gossip rounds, the mixing matrix is raised to the

power of the number of rounds (g). (Two rounds of gossip

would result in W (WX) = W 2X .) As the number of rounds

increases, the matrix becomes denser, leading to better mixing

of local models. This helps nodes maintain an approximate

agreement, even when they do not have the exact same model

information [14].

b) Column stochasticity of W : - The sum of column

j in the mixing matrix W represents node j’s contribution

in a single gossip round, based on the weights assigned to

j’s model by all nodes. Recent works [12], [14] recommend

constraining W to be doubly stochastic. This means that

both the row and column sums of matrix W should equal

1, ensuring fairness and balance in the gossip learning pro-

cess. By requiring both row and column sums to equal 1,

the doubly stochastic constraint guarantees that: Each node’s

updated model is an equal combination of the received models,

ensuring that no single model dominates the learning process.

Each node’s contribution to the system is equal, preventing any

node from disproportionately influencing the overall learning

process. Further, this constraint of column stochasticity makes

it simpler to mathematically analyze the complex learning

process in a decentralized setting, even when the network

topologies are changing [12]. Specifically, a doubly stochastic

W has the property that 1TW = 1T , where 1 is a column

vector of one with the same dinension as the number of rows in

W . The operator 1T is useful in analyzing sum-like functions

such that the average model weights after gossiping can be

expressed as 1

n
1TWX = 1

n
1TX . If W is column stochastic,

the operator eliminates W .

Although column stochasticity is useful in analyzing con-

vergence in simplified cases, it is not a necessary condition

for a P2PL system’s convergence, as evident from practical

experiments. This is significant because imposing column

stochasticity means constraining the contribution of every node

to be equal, which would involve artificially increasing the

contribution of less popular nodes and limiting that of more

popular nodes. In a malicious setting or a non-IID setting, it

is not advisable to require equal contributions from all nodes,

as this may not be the most optimal approach.

II. ENLARGED ATTACK SURFACE OF P2PL

Here we first describe the fundamental reasons that enable

attacks on an FL system, and then move forward to describe

how it is even more difficult to maintain security in P2PL

because of inexact consensus. Table I summarizes the features

of FL and P2PL and compare them with HSL.

a) FL availability: - Federated Learning (FL) systems

have a critical vulnerability in that the server node repre-

sents a single point of failure in the network topology. To

reduce congestion and prevent failure, servers use intelligent

TABLE I: A comparison of Federated Learning (FL), Peer-to-Peer
Learning (P2PL), and the proposed HSL Hubs-and-Spokes Learning

(HSL) architecture for collaborative learning. FL provides high integrity
but limited privacy and availability assurances. P2PL delivers high
availability and privacy but incurs high communication costs and

challenges in consensus maintenance. HSL allows configurable levels of
availability, consensus, and communication cost while preserving privacy

and integrity.

client selection algorithms [15]. While necessary for system

availability, this approach can negatively impact the speed of

convergence.

b) FL integrity: - The server also holds a high level

of trust relative to the client nodes with clients that do not

trust one another, resulting in communication solely with the

server. Clients must trust the server to be both benign and

capable of maintaining byzantine-robustness in the face of

malicious client nodes. If a server succumbs to a poisoning

attack [16], it could disseminate the infected model to all

clients, potentially derailing the entire training process. Cur-

rent research focuses on maintaining byzantine-robust model

aggregation algorithms, ensuring the integrity of the global

model at the server. State-of-the-art defense techniques [4],

[11] defend against directed deviation attacks [16], [17], which

are the most advanced model poisoning attacks. While FL

system integrity is currently considered a solved problem, the

ongoing cycle of attack and defense may require increasingly

robust aggregation techniques in the future.

c) FL privacy: - Privacy risks arise when clients train

the server-provided model on their local data, as a curious

server could attempt to reconstruct a client’s local data,

breaching privacy. Such attacks are possible when an entity,

like the server, has knowledge of a client’s initial and final

model states during local training. In the case of FL, this

is directly accessible to the server since the initial model is

sent by the server and the update is also sent back to the

server. Optimization-based data reconstruction attacks [18]–

[20] can recover data samples during the FedSGD process,

while analytic data reconstruction attacks [21]–[23] can work

in the FedAvg setting and under secure aggregation [24].
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Adding random noise [25] can help obscure reconstruction

but degrades utility. Homomorphic encryption techniques [26]

can also enhance privacy but are limited to mean aggregation,

which is not byzantine-resilient.

The root cause of privacy attacks is the high level of trust

enjoyed by the server, which affords it sufficient power to

potentially extract privacy-sensitive information from clients.

P2PL provides an opportunity to remove this level of trust

from a single node and distribute it among multiple neighbor-

ing nodes, provided that neighbors do not collectively collude

maliciously.

d) P2PL availability: - P2PL systems inherently lack a

central server, eliminating a single point of failure. While the

graph formed by collaborating nodes may have critical edges,

P2PL generally offers higher availability than FL at the cost

of transferring the aggregation responsibility to participating

nodes, which communicate directly with each other.

e) P2PL integrity: - In P2PL, maintaining the integrity

of the local models is each node’s responsibility. Nodes can

opt to use byzantine-robust aggregations from the FL domain,

but extending such aggregations to P2PL is non-trivial and

has not yet been explored in the literature. Some FL algo-

rithms [11], [27] preserve byzantine-robustness by assuming

an upper bound on the fraction fmax of potentially malicious

or compromised client nodes, beyond which no guarantees

can be made for model integrity. However, in the P2P setting,

the distribution of malicious nodes does not need to be

uniform. Given a non-uniform distribution of malicious nodes,

conservatively setting fmax higher than the actual fraction of

malicious nodes in the entire collaborating population may

still leave some nodes unable to maintain byzantine-robustness

due to a higher concentration of malicious nodes in their

neighborhood. This problem is more easily addressed in FL,

where the server communicates with all other nodes. In P2PL,

collaborating nodes, limited by the number of connections they

can have, must cope with a variable fraction of malicious

nodes in each neighborhood. Other FL algorithms [4], [28]

solve the integrity problem by computing some anomaly

statistic for the nodes and detecting variable number of ma-

licious nodes based on certain rules. However, controlling

consensus in such systems is challenging. As shown in [11],

these algorithms can be overly conservative, leading to high

false positive malicious detection rates, reduced mixing, and

increased dissensus among nodes, which eventually classify

an increasing number of non-consensus nodes as malicious.

f) Freedom vs control in P2PL: - When a node cannot

trust any neighboring nodes, it requires freedom of choice in

assigning mixing weights. Such freedom requires relaxation of

at least the doubly stochastic constraint on the mixing matrix

W , which makes mathematical analysis complex. Unrestricted

freedom in selecting mixing weights can result in a W that ex-

acerbates dissensus and potentially leads to chaos. Maintaining

byzantine-robustness becomes even more difficult when each

node demands the freedom to choose weights. Further research

in P2PL is needed to identify the permissible properties matrix

W should possess for the system to be byzantine-robust

and for benign nodes to achieve approximate consensus. To

summarize, maintaining consensus and byzantine-robustness

simultaneously in P2PL is difficult due to the absence of a

controlling structure. We use this argument to motivate a two-

layered HSL structure discussed later in the paper.

g) P2PL privacy: - P2PL offers a means to maintain

local data privacy at the nodes. Each node iteratively trains

the locally aggregated model on its data before gossiping with

neighbors. By not disclosing their mixing weights, nodes can

conceal their locally aggregated models after each gossiping

step. Although the final state of the model after local training

is still shared with neighbors, concealing the mixing weights

hides the initial model state, preventing data reconstruction

attacks and privacy breaches. However, this reintroduces the

challenge of guaranteeing consensus when nodes have unre-

stricted freedom to choose their mixing weights. The extent

of mixing occurring after each gossip round depends on the

matrix W , specifically its spectral gap [14]. Without oversight

on consensus or on W , it cannot be ensured that the models

for each node will not diverge and that they will mix well to

learn the same model. It is evident that diverging models are

negatively affected by collaboration unless sufficient mixing

happens. Thus, we understand that ensuring consensus is an

important aspect for maintaining both byzantine-robustness

and privacy in any form of collaborative learning. Bearing

these considerations in mind, we propose a promising direction

to address some of these challenges.

III. PROMISING SOLUTION DIRECTION

Fig. 2: This figure illustrates HSL’s Hubs-and-Spokes Learning (HSL)
topology for collaborative learning. Each spoke communicates with two or

more hubs, while hubs gossip with each other. Spokes do not directly
communicate with one another. Hubs receive locally trained models from
the spokes, engage in gossip for model mixing, and transmit aggregated

models to connected spokes.

We have now seen that FL and P2PL are two extreme forms

of collaborative learning, each with its own limitations. In FL,

a powerful server enforces exact consensus and Byzantine-

robustness. However, this same authority also heightens the

risk of breaching client privacy. On the other hand, the

completely decentralized network topology in P2PL makes

maintaining integrity and privacy challenging due to the non-

zero consensus distance among peer nodes.

To overcome these challenges, we propose a hybrid Hubs-

and-Spokes-Learning (HSL), as shown in Figure 2. HSL is

composed of two layers: a layer of client-like nodes (spokes)
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and another of server-like nodes (hubs). This innovative ar-

chitecture fosters collaboration while maintaining privacy and

integrity.

a) Privacy in HSL: - In HSL, spokes communicate

exclusively with their parent hubs, while hubs can gossip

with one another. A many-to-many connection exists between

the hubs and spoke layers. Each spoke receives models from

its parent hubs (with a recommended minimum of two) and

locally aggregates them using private mixing weights. This

approach prevents a single hub from dictating its model to a

child spoke, which is the root cause of data leakage attacks. By

keeping mixing weights private, spokes can hide their model’s

initial state and share the final state after local training without

any privacy concerns. We assume that the hubs are not fully

connected, because an exact consensus among hubs will result

in identical models at all hubs, irrespective of the mixing

weights used by spokes.

Hubs, similar to FL servers, do not perform local training,

but are responsible for Byzantine-robust aggregation of models

received from spokes. Hubs primarily act as a conduit for

spokes to exchange information effectively. After aggregation,

hubs gossip among themselves to reach approximate consen-

sus.

b) Consensus control: - The collaborative HSL archi-

tecture can be viewed as multiple, interconnected FL systems,

where the number of hubs can be orders of magnitude smaller

than the number of spokes. The fundamental concept used in

our design is that consensus among spokes can be controlled

through consensus among hubs. As every spoke’s model is a

weighted mean of hub models, consensus among hubs bounds

the consensus among spokes without imposing constraints

on the spokes’ mixing weights. Achieving consensus through

repeated gossiping among a smaller population of nodes

(hubs)compared to a larger one (spokes) also significantly

lowers computation and communication costs.

Figure 3 demonstrates the improvement in collaborative

learning with HSL using 64 spokes and 5 hubs, with 5

edges among hubs and 128 edges between spokes and hubs

(satisfying the minimum requirement of 2 hubs per spoke)

compared to a P2PL system with 150 randomly sampled

edges. This improvement, observed with a 0.5 non-IID bias

and 1 gossip step per round on CIFAR-10, is attributable to

better consensus control in HSL.

c) Availability and communication cost: - It is important

to note that HSL with a single hub is functionally equivalent

to FL, while HSL with n spokes and n hubs with one-to-one

connections functionally represents P2PL. HSL serves as a

more generalized framework that encompasses FL and P2PL.

By adjusting the number of hubs, HSL can be configured to

meet specific availability and communication cost objectives,

given finite individual budgets.

d) Integrity in HSL: - HSL incorporates three levels

of Byzantine-robust aggregation. Although hubs may become

compromised if malicious spokes are concentrated in certain

neighborhoods, we propose a gossip mechanism that allows

hubs to provide feedback to each other. This mechanism

enables hubs to increment their fmax if they suspect a higher

number of malicious spokes. Failure to act on the feedback

could result in a hub being identified as malicious by its peer

hubs. In addition, the spokes have access to their own model as

a benign ground truth for robust aggregation. Since consensus

among hubs ensures consensus among spokes, the system is

less likely to spiral into chaos, unlike a P2PL system.

Fig. 3: Comparison of the average performance of HSL (5 hubs, 133
edges) and P2PL (150 edges), illustrating test accuracy candles for 64
spokes training ResNet-18 on CIFAR-10 with a single gossip step per

round. HSL achieves significant improvement due to superior consensus,
even at a lower communication cost compared to P2PL.

IV. CONCLUSION

In this paper, we have highlighted the inherent structural

and functional vulnerabilities within the two most prevalent

forms of decentralized machine learning, Federated Learning

(FL) and Peer-to-Peer Learning (P2PL). We argue that these

two forms represent the extremes on a spectrum, motivating

our hybrid architecture as a potential resolution to these

existing challenges. We have discussed with logical arguments

how this proposed architecture addresses the current issues

in FL and P2PL. With this discussion, we aim to inspire

further research toward more pragmatic forms of collaborative

learning, steering away from the extremes. Further, we have

also emphasized the need and possibility for such solutions

to be secure in terms of privacy, integrity, and availability

for harnessing the potential of large volumes of data and

ubiquitous computing.
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