
1 
 

Main Manuscript for 

Salting Out and Nitrogen Effects on Cloud-Nucleating Ability  
of Amino Acid Aerosol Mixtures 

 

Nahin Ferdousi-Rokib1, Kotiba A. Malek1, Kanishk Gohil1, Kiran R. Pitta2, Dabrina D. 
Dutcher3,4, Timothy M. Raymond3, Miriam Arak Freedman2,5, Akua A. Asa-Awuku1 

 
1Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, 
MD 20742, United States  
2Department of Chemistry, Pennsylvania State University, University Park, PA 16802, United 
States 
3Department of Chemical Engineering, Bucknell University, Lewisburg, PA 17837, United 
States 
4 Department of Chemistry, Bucknell University, Lewisburg, PA 17837, United States 
5Department of Meteorology and Atmospheric Science, Pennsylvania State University, 
University Park, PA 16802, United States 

Keywords: Hygroscopicity, Organic Aerosols, Particle Morphology, Phase Separation 

Correspondence to: Akua A. Asa-Awuku (asaawuku@umd.edu) 

 

Author Contributions: NF designed, collected, analyzed CCN experimental data, produced and 
analyzed theoretical models. KM contributed to design and collection of CCN experimental data. 
KG contributed to production and analysis of theoretical models. All authors contributed to the 
writing and preparation of the manuscript.  

 

Competing Interest Statement: The authors have no competing interests to declare  

 

 

 

 

 

 

 



2 
 

  



3 
 

Abstract 

Atmospheric aerosols exist as complex mixtures containing three or more compounds. Ternary 
aerosol mixtures composed of organic/organic/inorganic can undergo liquid-liquid phase 
separation (LLPS) under supersaturated conditions, affecting phase morphology and water uptake 
propensity. Phase separation and water uptake in ternary systems has previously been 
parameterized by oxygen to carbon (O:C) ratio; however, nitrogen containing organics, such as 
amino acid aerosols, also exist within complex mixtures. Yet, amino acid mixture CCN activity is 
poorly understood. In this study, we study the supersaturated hygroscopicity of three systems of 
internal mixtures containing ammonium sulfate (AS), 2-methylglutaric acid (2-MGA) and an 
amino acid. The three systems are AS/2-MGA/proline (Pro), AS/2-MGA/valine (Val), and AS/2-
MGA/leucine (Leu). The amino acids are similar in O:C ratios but vary in solubility. Water-uptake, 
across a range of aerosol compositions in the ternary space, is measured using a cloud condensation 
nuclei counter (CCNC) from 0.4 to 1.7% supersaturation (SS). The single hygroscopicity 
parameter, κ, was calculated from CCNC measurements.  

All three systems exhibit two regions; one of these regions is phase separated mixtures when the 
composition is dominated by AS and 2-MGA; 2-MGA partitions to the droplet surface due to its 
surface-active nature and has a negligible contribution to water uptake. The second region is a 
homogeneous aerosol mixture, where all three compounds contribute to hygroscopicity. However, 
well mixed aerosol hygroscopicity is dependent on the solubility of the amino acid. Mixed Pro 
aerosols are the most hygroscopic while Leu aerosols are the least hygroscopic. Theoretical κ 
values were calculated using established models, including traditional κ-Köhler, O:C solubility 
and O:C-LLPS models. To account for the possible influence of polar N-C bonds on solubility and 
water uptake, the X:C parameterization is introduced through the X:C solubility and X:C-LLPS 
models; X:C is obtained from the ratio of oxygen and nitrogen to carbon. The study demonstrates 
competing organic-inorganic interactions driven by salting out effects in the presence of AS. 
Traditional methods cannot further encapsulate the non-ideal thermodynamic interactions within 
nitrogen-containing organic aerosol mixtures thus predictions of LLPS and hygroscopicity in 
nitrogen containing ternary systems should incorporate surface activity, O-C, N-C bonds, and 
salting out effects. 
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1. Introduction 

Atmospheric aerosols are solid or liquid particles suspended in the air and can modify cloud 
properties. For example, an increase in aerosol particle concentration can increase cloud lifetime 
and reflectivity.1-3 Aerosol ability to form clouds, referred to as aerosol-cloud interactions, results 
in an overall cooling effect on our climate. Cloud formation and lifetime are driven by an aerosol’s 
ability to uptake water, or hygroscopicity, under supersaturated (RH > 100%) conditions.4 In 
particular, aerosols exposed to supersaturated water vapor in the atmosphere presents a surface for 
water to condense onto; the composition of the aerosols present can influence cloud formation.4, 5 
However, cooling effects and subsequent radiative forcing projections from aerosol-cloud 
interactions present a large degree of uncertainty.1-3 Uncertainty in aerosol-cloud radiative forcing 
models is attributed to the complexity of aerosol particle size and chemical composition affecting 
water uptake ability. 6-8  

Traditionally, droplet activation under supersaturated conditions and CCN activity of aerosols are 
predicted using Köhler theory.5 In particular, several previous studies have estimated 
supersaturated hygroscopicity assuming all aerosol solute components are dissolved within a well-
mixed, aqueous phase.9-14   Thus, water uptake of aerosols and its mixtures can be parameterized 
by κ-Köhler theory.15 Traditional κ-Köhler theory predicts water uptake by assuming all 
compounds instantaneously dissolve into the droplet bulk and contribute to hygroscopicity.15 For 
aerosol mixtures, κ is based on the equal volume fraction contribution of individual solutes and is 
calculated by the Zdanovskii−Stokes−Robinson (ZSR) mixing rule.15 The assumption of full 
dissolution in supersaturated aerosol droplets is challenged by the presence of partially water-
soluble and insoluble compounds. Previous studies have described the effect of a solubility 
distribution in the bulk; in particular, studies have shown that in the presence of partially water 
soluble to insoluble compounds, κ-hygroscopicity is overpredicted. 15-26 Compounds with a 
solubility of 0.1 – 100 g L-1  have been shown to have an effect on water uptake and CCN 
activity.16, 18  κ-Köhler theory can be modified by accounting for compound solubility and fraction 
of solute dissolved in the bulk.16, 27 If the compound is known, water solubility values can be 
directly applied to hygroscopicity calculations.16, 28 However, atmospheric  organic aerosol 
composition is often unknown;  readily available data from field studies provides elemental 
composition of organic aerosols including number of oxygen (O), carbon (C), and hydrogen (H) 
atoms.29-31 Water solubility is driven by polarity and the presence of O-C bonds and can contribute 
to compound solubility. To extend hygroscopicity models to unknown organic aerosols and field 
measurements, solubility can be parameterized using oxygen to carbon (O:C) ratio; limited 
solubility range of  0.1 – 100 g L-1 corresponds to an O:C range of 0.2-0.7 17, 25, 27, 32 

Parameterizations of solubility have been dependent on the presence of O-C bonds in compounds 
due to their polarity. However, organic aerosols may be composed of compounds containing 
elements other than O, C, and H; organics may also contain nitrogen (N) and N-C bonds. N-C 
bonds are also considered highly polar due to nitrogen’s strong electronegativity. Nitrogen 
containing compounds are also present within our atmosphere; in this study, we focus on amino 
acids. Amino acids are composed of a carboxylic acid group and amino group; additionally, they 
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are known as the building block of proteins and a source of nitrogen for organisms such as 
phytoplankton and bacteria.33, 34 Previous field studies have detected the presence of amino acids; 
furthermore, amino acids can act as ice nucleating particles (INPs) and CCN 35-37 A study 
performed in Central Europe found amino acids composed up to 5% of atmospheric particulate 
matter within the region.38 Similarly, a study in Beijing, China measured a total concentration of 
1.86 ± 1.29 μg m-3 during the 2014 Asia-Pacific Economic Cooperation (APEC) summit.35 
However, amino acids are primarily found in sea spray aerosols (SSA).39, 40 Ocean bubble bursting 
emits SSA into the atmosphere; as a result, 11-18% of dissolved organics within submicron SSA 
being composed of free amino acids.39 Previous studies have examined the water-uptake ability of 
amino acids as well as amino acid/AS mixtures under subsaturated (<100% RH) conditions; 
limited studies have evaluated amino acid hygroscopicity under supersaturated (>100% RH) 
conditions 37, 41-44 In subsaturated conditions, the deliquescence and morphology of amino acid/AS 
aerosol mixtures was dependent on the solubility of the amino acid; amino acid aerosols were 
found to affect the phase state of ammonium sulfate and create a liquid state when the amino acid 
sparingly soluble.44 Similarly, a study by Kristensson et al., 2010 also found that solubility effects 
prevailed in water uptake behavior of pure amino acids. Thus, amino acids are efficient CCN and 
its intrinsic solubility can present complexity in aerosol water uptake. A few studies have focused 
on select amino acids (e.g, aspartic acid, serine, glutamine), however supersaturated 
hygroscopicity data is not readily available for many other amino acids present in aerosols.35, 37, 39, 
40, 44 For example, Leucine, Valine and Proline are three amino acids found within SSA and land 
aerosol samples, yet CCN measurements are not readily available.35, 39, 45  The study of amino acids 
and nitrogen containing organic aerosol presents an opportunity to expand our scientific 
understanding of complex nitrogen containing aerosol species and their subsequent water-uptake. 
Recent studies have highlighted the growing significance of studying organic nitrogen (ON) 
containing aerosols due to its abundance in the atmosphere and making up a significant portion of 
nitrogen present in the atmosphere.45-52 For example, a study by Yu et al., 2024 found that 17-31% 
of nitrogen containing aerosols studied within several urban and rural sites in China were 
composed of organic nitrogen.53 Amino acids are encapsulated in these measurements; a study by 
Spitzy 1990 reported amino acid aerosol concentrations of 0.47-1.13 nM m-3 over the Bay of 
Bengal.46 Additionally, a study by Gorzelska and Galloway, 1990 identified free amino acid 
aerosols in the range of 0.003 to 1.63 nM m-3 over the North Atlantic Ocean.47 Thus, the 
characterization of amino acid hygroscopicity is important in further improving CCN activity 
predictions and projections of aerosol-cloud interaction radiative forcing. 

Furthermore, the presence of amino acids may influence the morphology of aerosol particles. Both 
the chemical and physical (internal morphology) composition within inorganic/organic droplets 
can affect hygroscopicity predictions54-57 Uncertainty in aerosol mixture hygroscopicity 
predictions is attributed to organic aerosols (OA). Primary organic aerosols (POA) have the ability 
to oxidize, react, age, and interact with other organic/inorganic compounds. 32, 58-60 Additionally, 
volatile organic compounds (VOCs) present in the atmosphere can oxidize and condense onto the 
surface of existing aerosols present; through these reaction mechanisms, secondary organic 
aerosols (SOA) can be formed.58, 61 OA are represented by a range of compound classes (e.g., 
carboxylic acids, alcohols) and have varied properties based on their composition; in particular, a 
distribution of solubilities are present in OA. 18, 29, 62, 63  Furthermore, organics can result in 
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complex phase morphology within organic/inorganic aerosol mixtures.26, 64-68 In particular, aerosol 
mixtures can present as an outer organic layer and inorganic core, also known as liquid-liquid 
phase separated (LLPS) morphology. 26, 64, 66-68 Chemical composition, solubility and phase 
morphology of organic aerosols present complexity in predictions of droplet formation and CCN 
activity.26  

Amino acid mixtures with inorganic compounds may further complicate solubility effects. 
Inorganic compounds such as AS are able to reduce the solubility of organic compounds, known 
as a “salting out” effect and is attributed to the presence of LLPS salting out strength is dependent 
on the ions present within the salt.65, 69 The presence of salts (e.g., NaCl, AS) may further enhance 
intrinsic properties of organics. For example, surface-active compounds (e.g., 2-MGA, malonic 
acid) mixtures result in lowered surface tension depression; the salting out effect pushes organic 
out of  the aqueous bulk and forms an organic monolayer on the droplet surface.70, 71 Many protein 
studies have also described the use of AS to precipitate out proteins containing amino acids; the 
presence of AS can further reduce the partial water solubility of amino acids and as a result 
promote phase separation.72-75 Therefore, in mixtures of higher order (three or more compounds), 
there may be competing organic-inorganic interactions that affect CCN activity. To our 
knowledge, there are no studies that examine the CCN activity of higher order amino acid mixtures 
under supersaturated conditions.  

Recent studies have used O:C to parameterize both limited solubility and the presence of LLPS. 
Studies have described the presence of partially soluble compounds promoting the presence of 
LLPS; in particular, compounds with fewer oxygen atoms (lower O:C ratio) are more likely to 
phase separate in a mixture.13, 65 LLPS within mixtures occurs when the Gibb’s free energy is lower 
for a phase separated state as opposed to remaining in a homogeneous state.12, 26, 65, 76 Previous 
studies have predicted the presence or lack of LLPS by mixture O:C ratio.26, 67, 68 For example, in 
mixtures containing ammonium sulfate (AS), LLPS is predicted when the mixture O:C ratio < 
0.56; depending on the composition mixture and properties, LLPS may exist for AS mixtures of 
O:C 0.56-0.8.65, 68 In studies by Ott et al., 2020 and Malek et al., 2023, LLPS in mixtures of 2-
methylglutaric acid (2-MGA), AS, and sucrose was estimated to occur at O:C ratios < 0.72 and 
0.75, respectively. As more sucrose (higher O:C compound) is added to the system and O:C 
becomes greater than the threshold, the phase morphology shifts from phase separated to well 
mixed.26, 67 Previous studies have assumed that salting out induced LLPS does not affect CCN 
activity due to mixed aerosols undergoing full deliquescence occurring above 100% RH.77 Malek 
et al., 2023 showed that phase separation does influence supersaturated hygroscopicity and  
incorporating  O:C LLPS threshold  in a hygroscopicity model best predicts κ.26 Instead, the less 
soluble organic partitions to the surface  However, the studies mentioned above do not account for 
phase separation within nitrogen containing mixtures, such as amino acid mixtures, and the 
possible influence of nitrogen on LLPS estimations. 

In this study, we characterize the hygroscopicity of L-leucine (Leu), L-valine (Val), and L-proline 
(Pro) within ternary systems containing 2-MGA and AS. Though all three amino acids have a 
similar O:C ratio (Leu = 0.33, Val and Pro = 0.4), solubility is varied (Leu < Val < Pro). κ-
hygroscopicity is first experimentally determined under supersaturated conditions for pure amino 
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acids and their mixtures. Experimental hygroscopicity values are then compared against predicted 
hygroscopicity calculated from traditional κ-Köhler theory. In order to assess if O:C is an effective 
parameterization of solubility and LLPS for nitrogen containing organics, such as amino acids, the 
O:C-Solubility model and O:C-LLPS model from Malek et al. 2023, are used to predict κ. To date, 
there have been no solubility and LLPS parameterizations that incorporate other polar bonds, such 
as N-C, that can have an effect on water uptake. We introduce a new parameterization, X:C, to 
incorporate the polarity of both O-C and N-C within the amino acid in order to estimate solubility, 
LLPS and κ via the X:C-Solubility, X:C-LLPS and weighted average models. Ferdousi-Rokib et 
al., 2024 (in review) also studied 2-MGA/AS mixtures and found a surface tension depression 
effect due to the salting out of 2-MGA; 2-MGA is an organic compound that has the ability to 
partition the surface and reduce droplet surface tension, also referred to as being a surface-active 
organic. To account for surface activity, the Modified Monolayer Surface Coverage model is also 
incorporated into the O:C-LLPS, X:C-LLPS and weighted average models. We discuss each 
model’s efficacy in predicting water uptake within the three amino acid ternary systems as well as 
the organic-inorganic interactions driving phase separation and CCN activity. 

2. Experimental Methods 

2.1. Chemicals 

For this study, all chemicals were purchased and used without further modifications: ammonium 
sulfate (AS, (NH4)2SO4; Thermo Fisher Scientific, >99.0%), 2-methylglutaric acid (2-MGA, 
C6H10O4; Sigma Aldrich®, 98%), L-proline (Pro, C5H9NO2; Sigma Aldrich®, ≥ 99%), L-valine 
(Val, C5H11NO2; Sigma Aldrich®, ≥ 98%), and L-leucine (Leu, C6H13NO2; Sigma Aldrich®, ≥ 
98%). Compound  chemical properties are listed in Table S1. 

2.2 Solution Preparation 

Three ternary systems, the Pro system (AS, 2-MGA, and Pro), the Val system (AS, 2-MGA, and 
Val), and the Leu system (AS, 2-MGA, and Leu) were prepared at different weight percent 
compositions (Figures S1-S3 and Tables S2-4). For each ternary system, the three chemical 
compounds were weighed and dissolved in ultra purified Millipore water (18 MΩ cm). Mixtures 
range in O:C values (Tables S2-S4) to include experiments where LLPS is present and where 
LLPS is not present. The phase transition from LLPS to well mixed (LLPS threshold) is estimated 
based on the O:C LLPS model from Malek et al.26  The model predicts the O:C threshold to be 
0.50, 0.48 and 0.43 for the Pro, Val and Leu systems, respectively. To determine the effect of 
LLPS on cloud condensation nuclei (CCN) activity of amino acid mixtures, supersaturated 
hygroscopicity measurements were performed.  All CCN experiment solutions are provided in 
Table S5-S7. 

2.3. Cloud Condensation Nuclei Measurements 

Hygroscopicity of pure amino acids and their respective ternary systems under supersaturated (SS) 
conditions (>100% RH) was estimated using a Cloud Condensation Nuclei Counter (CCNC, 
Droplet Measurement Technologies). The theory of the CCNC has been described in previous 
literature.56, 78, 79 Solutions were passed through a constant output Collision Nebulizer (Atomizer, 
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TSI 3076) to generate polydisperse aerosols. Wet aerosols were dried (< 5% RH) using two silica 
gel dryers in series.  

Dried polydisperse aerosols are passed through an electrostatic classifier (TSI 3080) in scanning 
mode from 8 nm to 352 nm for 135 seconds. The aerosol sample flow rate is 0.8 L min-1 and the 
aerosol to sheath flow rate is 1:10. The monodisperse size-selected particles were then sampled by 
a condensation particle counter (CPC, TSI 3776) and CCNC in parallel. The CPC and CCNC 
operated at 0.3 L min-1 and 0.5 L min-1, respectively. The CPC counted the number concentration 
of dry particles (condensation nuclei, CN) at a selected size. The particles are then exposed to 0.42  
to 1.72% SS within the CCNC and the concentration of particles activated (CCN) were measured. 
The experimental set up was calibrated using ammonium sulfate.56 Calibration data and the 
experimental set up are provided in Table S8 and Figure S4.  

Python-based CCN Analysis Toolkit (PyCAT 1.0) analyzed all CCNC ternary and calibration data. 
The open-source code is available on GitHub for public use.80 Briefly described here, PyCAT uses 
the scanning mobility CCN analysis (SMCA) of Moore et al., 2010 in Python;81 the activation ratio 
of CCN to CN was calculated for each dry particle size using PyCAT.82 A sigmoid was fit through 
the data to find the critical diameter (Dp,50) where ~50% of the dry particles form cloud droplets. 
A charge correction is applied in PyCAT using the multi-charge correction algorithm described in 
Wiedensohler 1988.83, 84 For each supersaturation, the critical diameters were found and used to 
calculate supersaturated single-hygroscopicity parameter, κCCN. 

3. Theory 

Traditionally, the water uptake of aerosol mixtures can be calculated using Köhler theory. 
However, Köhler theory assumes full solute dissolution and equal volume-weighted solute 
contributions to hygroscopicity. Previous studies have shown that hygroscopicity can be estimated 
for known mixtures containing partially to insoluble organic compounds.16, 18, 28, 85 For known and 
unknown compounds, limited solubility has been parameterized by the oxygen to carbon (O:C) 
ratio and applied to hygroscopicity estimates.16, 17, 25, 26 For this study, traditional Köhler theory 
will be compared against the four models that account for both solubility and internal particle 
morphology, O:C solubility model, X:C solubility model, O:C-LLPS model and X:C-LLPS model. 
The theory and assumptions of each model are described in the following sections. 

3.1 Traditional Köhler Theory 

Köhler theory describes the process of water vapor condensation on particles and droplet growth 
by considering aerosol physicochemical properties 5, 15. To describe droplet growth, traditional 
Köhler theory accounts for the Kelvin effect and Raoult (solute) effect. The Kelvin effect accounts 
for the increase of water vapor saturation due to the curvature of the droplet. The solute effect 
accounts for the decrease in vapor pressure due to the presence of a soluble substance in the 
solvent; the solute effects contribute to the water activity term, aw.4, 86 For compounds fully 
dissolved in water, aw can be parameterized using the single hygroscopicity parameter κ as15, 87: 

!
"w
= 1 + 𝜅 #s

#w
,      (1) 
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where Vs and Vw are the volume of dry solute and water, respectively. The κ parameter describes 
aerosol propensity to uptake water when it is assumed that the solute instantaneously dissolves.15 

Combining both effects, the saturation ratio, S, over the droplet and the vapor pressure can 
described as: 

𝑆 = 	'1 + 𝜅 $#$

$w$%$d$
(
%!
𝑒𝑥𝑝 '&'s/a(w

)*+w$w
(.	   (2) 

where, R is the universal gas constant, T is the temperature, ρw is the density of water, Mw is the 
molecular weight of water, Dw is the wet droplet diameter and Dd is the dry particle diameter.  

The κ parameter be calculated from the intrinsic properties of chemically known water-soluble 
aerosols as follows87 : 

κint =
νsρsMw
ρwMs

,      (3) 

where νs is the van’t Hoff factor, ρs is the density, and Ms is the molecular weight of the solute. To 
estimate κ for aerosols composed of more than one compound, the Zdanovskii, Stokes, and 
Robinson (ZSR) assumption can be applied via the mixing rule15: 

 
𝜅ZSR = ∑ 𝜀5𝜅5 ,5      (4) 

where εi is the volume fraction of the individual component, i.  

κ can also be derived directly from experimental hygroscopicity measurements, such as from a 
CCNC. For supersaturated conditions, κCCN can be described as follows15: 

𝜅CCN =
&8
()s/a*w
+,-w

9
$

:;$p,50
$ <=2>>

.     (5) 

In traditional κ-Köhler theory, the volume fraction of all compounds fully contributes to overall 
hygroscopicity (Eq. 4). However, previous studies suggests that organic solubility distribution 
influences both phase morphology and aerosol hygroscopicity.16-18 Subsequent models modify 
traditional κ-Köhler theory to account for both organic solubility and phase morphology. 

3.2 Parameterized Solubility Models 

In the presence of partially water-soluble (0.1 – 100 g L-1) and effectively insoluble organic 
compounds, thermodynamically ideal water-interactions are complicated and not captured in 
traditional κ-Köhler theory. 15, 18-25 For known compositions, the partial water solubility can be 
directly applied to κ-hygroscopicity predictions.16, 28 However, solubility limitations can be 
parameterized using oxygen to carbon (O:C) ratio to extend theory to unknown organic 
compounds. 17, 27 Volume based solubility, ξ, can be parameterized by O:C ratio via Eq. 617: 

𝑙𝑛 𝜁 =20 6'?
@
(
A.&A:

− 18.     (6) 
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Limited solubility is incorporated into κ-hygroscopicity by calculated the dissolved fraction of 
organic solute in the droplet, xi,j, through the following definitions27: 

𝑥5,D =
EFF$%!GH4

I4,5
,      (7) 

𝐻:𝑥5,D; = <
𝑥5,D ,									𝑥5,D < 1
1, 												𝑥5,D ≥ 1,     (8) 

where GF is growth factor calculated from Dw/Dd and H(xi,j) is the scaling factor based on xi,j . The 
overall parameterized O:C solubility hygroscopicity, κO:C, can be defined as: 

𝜅O:C = ∑ ∑ 𝜀5,D𝜅5,D𝐻:𝑥5,D;D5 ,     (9) 

where εi,j and κi,j are the volume fraction and hygroscopicity of each respective compound within 
the aerosol sample. All compound solubilities are listed in Table S1. Pure Leu and Val solubilities 
fall within the partially soluble range as defined by Petters and Kreidenweis16; Pro is categorized 
as fully soluble.16 

Previous studies have used O:C ratio to parameterize solubility due to the polarity of O-C bonds 
and its influence on water solubility.17 However, this parameterization is mainly based on organic 
compounds composed of O, C and H; this does not account for organic compounds containing 
nitrogen (N), such as amino acids. For example, amino acids contain polar amino groups that can 
also influence solubility. The O:C solubility parameterization presented in Eq. 6, based on the 
work of Kuwata et al, correlated several known organic compound O:C to ξ to find the best fit 
parameterization.17 To incorporate possible nitrogen effects on solubility, a new parameterization 
X:C is introduced where X is defined as the number of nucleophilic atoms;  here, explicitly they 
are oxygen and nitrogen. The X:C of a mixture is defined as: 

X:Cmix =
∑ OP<QR6∗(U:@)66

∑ OP<QR66
,     (10) 

where k represents each individual organic compound. Volume based solubility of nitrogen 
containing organic compounds of commonly found amino acids in nature can be correlated to their 
respective X:C ratios (Table S9)39, 45; ξ can be parameterized by X:C ratio using Eq. 10: 

𝜉U:@ = 0.06𝑙𝑛 'U
@
( + 0.064.     (11) 

The newly introduced X:C solubility parameterization can then be used in Eq. 7-9 to obtain κX:C. 

3.3 Parameterized Solubility – LLPS Models 

Previous aerosol studies have demonstrated the influence of solubility on both water uptake and 
droplet phase morphology.26, 67  In particular, Ott et al., 2020 found that transitions from phase 
separated to well mixed aerosols can be attributed by average mixture O:C ratio; the O:C ratio 
where phase separation ceases to exist is considered the O:C threshold.67 For a ternary system 
containing 2-MGA, AS and sucrose the experimental O:C threshold was 0.72.67 In Malek et al., 
2023, liquid-liquid phase separation (LLPS) was parameterized by O:C ratio for the 2-
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MGA/AS/sucrose ternary system and applied to κ-hygroscopicity predictions using the O:C-LLPS 
model. 

In the O:C-LLPS model, it is assumed the organic compound with the lowest O:C (i.e., the lowest 
solubility) will partition to the surface of the aqueous phase when phase separation is present; it is 
assumed that the most soluble organic compound is well-mixed with AS in the bulk.26 For this 
study, the three amino acids have lower O:C values than 2-MGA. However, 2-MGA has surface-
active properties, especially when mixed with AS.26 In this study, 2-MGA is assumed surface-
active and when LLPS is present, 2-MGA likely moves to the surface and the contribution to bulk 
hygroscopicity of AS and the amino acid is negligible (𝜀2-MGA = 0).  

The O:C-LLPS model uses bootstrap sampling method to estimate the O:C threshold of a ternary 
system. Briefly described here, the model simulates 100,000 possible O:C thresholds within a 
range to find the most probable occurrence of phase separation. The range is determined by the 
minimum and maximum O:C values; for the Leu system the O:C ratio range is 0.33-0.67 while for  

 
the Val and Pro systems the O:C ratio range is 0.4-0.67. At activation, the solubility of the solute 
depends on Dw. Wet droplet diameter is estimated by using instrument SS, Dp,50 = Dd and κCCN from 
Eq. 5 and Eq. 2; solubility is parameterized using Eq. 6. For each possible O:C threshold, κO:C (Eq. 
9) is calculated based on two conditions:  

(1) O:Cmix < O:Cthresh : only Leu/Pro/Val and AS contribute to hygroscopicity within respective 
systems (𝜀2-MGA = 0) 

(2) O:Cmix  ≥ O:Cthresh: all compounds contribute to hygroscopicity 

O:C thresholds are tested at random across the range. For each threshold, a set of theoretical κO:C 
values are calculated; for each set the geometric mean is calculated and is referred to as κthresh; κthresh 

Figure 1. O:C-LLPS threshold prediction results, where (A) κthresh frequency distribution after iterating 
100,000 and the most frequent bin (κthresh) shown by a red dashed line and (B) O:Cthresh vs. κthresh , where 
the most frequent κthresh and its corresponding O:Cthresh value are shown by the blue dotted lines. The 
corresponding O:Cthresh value is the O:C threshold of the system, where the phase separation limit is 
most probable and the thermodynamically favorable. 

(A) (B) 
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represents the potential average κ of the ternary system based on the presence of LLPS at the tested 
O:Cthresh. To effectively determine the true LLPS threshold, the mean κthresh is determined as this 
represents the most likely phase separated ternary system and O:Cthresh.  The frequency of κthresh 
values are plotted as a Poisson distribution, where the mean κthresh bin is determined; the Poisson 
distribution represents the discrete distribution of an event’s frequency count when the event 
randomly occurs. In this study, the Poisson distribution is used to represent the frequency of a 
mean κthresh to occur when the  O:Cthresh is tested at random. In other words, κthresh is the most probably 
hygroscopicity, driven by the composition and morphology that is most favorable for interactions 
with water. For example, the mean κthresh  of the Pro system based on the Poisson distribution was 
found to be ~0.39 (red line, Fig 1A). κthresh  is then plotted against their O:C threshold (O:Cthresh) 
value and a curve fit is generated. An example of the κthresh vs. O:Cthresh is shown for the Pro system 
in Fig 1B. The curve fit and mean κthresh are used to determine its corresponding O:Cthresh (blue 
lines, Fig 1B).  The corresponding O:C threshold to the most frequent κthresh is considered the most 
probable O:C threshold. The mean of the Poisson distribution indicates the most favored aerosol 
state where the thermodynamic limit is lowest. Using the mean O:Cthresh, κO:C is calculated using 
the previous two conditions; the hygroscopicity values are referred to as κO:C-LLPS.The Poisson 
distribution and corresponding κthresh vs. O:Cthresh results for the Val and Leu systems are shown in 
Fig S7-8. 

LLPS in all three amino acid ternary systems can also be parameterized with the newly introduced 
X:C ratio. The X:C-LLPS model follows the methodology described above for the O:C-LLPS 
model with the exception of solubility parameterization; Eq. 11 is used to parameterize volume-
based solubility. The X:C bootstrap range is 0.5-0.67 for the Leu system and 0.6-0.67 for both Val 
and Pro systems. X:Cthresh is calculated for each system using mean of  κthresh distributions and 
corresponding X:Cthresh value, shown in Figures S9-11. The calculated hygroscopicity values of the 
X:C-LLPS model are κX:C-LLPS. 

3.6 Predictions 

Once the phase separation threshold is determined, one can predict the hygroscopicity of aerosols 
in ternary space. However, the influence of surface-active compounds such as 2-MGA, must be 
accounted for. Previous studies by Malek et. al, 2023 and Ferdousi-Rokib et al., 2024 (in review) 
found that 2-MGA favors partitioning to the surface in mixtures with AS. Thus, the Modified 
Monolayer Surface Coverage (MMSC) model from Ferdousi-Rokib et al., 2024 (in review) was 
incorporated to only model 2-MGA/AS binary mixtures. Several studies have observed the 
presence of a monolayer influencing both droplet surface tension and water uptake.88-93 However, 
a previous study by Bain et al., 2023 describes how surface-active organic concentration of < 100 
mM can create a monolayer but droplet surface tension was reflective of more dilute organic 
concentrations; however, surface tension values can be as much as > 40 mN m-1 higher than 
measured surface tension values from macroscopic solutions of the same concentration.93 Thus, 
the MMSC model accounts for the probability of monolayer formation under dilute conditions as 
surface-active organic (2-MGA) composition increases by calculating average droplet surface 
tension, 𝜎!/#""""", as: 

𝜎s/a""""" = (1 − 𝜑)𝜎w""" + 𝜑𝜎2-MGA"""""""",     (12) 
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where φ is modified monolayer formation probability , 𝜎WFFFF and 𝜎:%XYZFFFFFFFFFF are average experimental 
surface tension values of water and 2-MGA, respectively. Hygroscopicity is calculated by 
categorizing mixtures into three categories: (1) full dissolution (2) probability of monolayer 
formation and (3) excess dissolution of surface-active organic into the bulk. For all systems, it is 
assumed that total AS mass dissolves into the bulk. In Category 1 (φ~0), 2-MGA mass enters the 
bulk and hygroscopicity can be calculated using Eq. 9. As 0<φ<1, 2-MGA no longer contributes 
to the bulk and the remaining 2-MGA mass partitions to the surface and presents a negligible 
contribution to hygroscopicity. Therefore, the 2-MGA bulk mass is limited to bulk mass where φ 
was formally ~0. Finally, the monolayer becomes saturated (φ~1) and the remaining organic mass 
enters the bulk. The modified monolayer formation probability φ is obtained from the dilute 
surface tension measurements of 2-MGA and 2-MGA/AS mixtures.  For further details on the 
MMSC model, see Ferdousi-Rokib et al.,2024 (in review). Hygroscopicity for 2-MGA/AS 
mixtures are calculated as:  

𝜅2-MGA/AS = ∑ ∑ 𝜀5,D[ 𝜅5,D𝐻:𝑥5,D;.D5      (13) 

To determine if the MMSC model must be applied for amino acid/AS systems, surface tension 
measurements were taken for Pro, Val, and Leu. The three amino acids were found to be less 
surface-active than 2-MGA; for dilute concentrations, all three amino acids have a surface tension 
value ~ 71 N m-1 (water), while 2-MGA still presents depressed surface tension (Tables S10-12, 
Figures S12-S13). Therefore, it is assumed 2-MGA is the only organic partitioning to the surface 
within LLPS aerosols due to its surface activity. Surface tension measurements predictions of the 
ternary aerosol hygroscopicity account for varying O:C and N:C bonds that influence solubility, 
hygroscopicity, and phase separation.   

4. Results 

4.1 Experimental Results of Ternary Systems 

The water uptake of the Pro, Val and Leu ternary systems were measured under supersaturated 
conditions (0.42, 0.61, 0.78, 0.99, 1.21, 1.57 and 1.72% SS) using a CCNC. Each system contained 
mixtures of varied compositions and O:C ratios (Table S2-S4). Average experimental 
supersaturated hygroscopicity values were calculated for all mixtures across the supersaturated 
conditions and are reported as κCCN; the κCCN and standard deviation for all mixtures are reported in 
Tables S13-S15. AS and 2-MGA κCCN were obtained from Ferdousi-Rokib et al., 2024 (in review). 
κCCN of pure Pro, Val and Leu were 0.43±0.09, 0.06±0.02 and 0.01±0.00, respectively. κCCN values 
of each compound are consistent with amino acid solubility, with Pro being most 
soluble/hygroscopic and Leu being least soluble/ hygroscopic. Val is observed to have similar 
water uptake as Leu although Val has the same O:C ratio as Pro; this is consistent with Val and 
Leu being partially soluble (88.5 and 22.4 g L-1, respectively). Previous studies have emphasized 
the influence of solubility distribution on κ-hygroscopicity. For moderately soluble compounds 
(>100 g L-1) such as Pro, the solute instantaneously dissolves and κCCN is driven by molar volume; 
for partially soluble compounds (0.1-100 g L-1), such as Val and Leu, hygroscopicity is limited by 
the dissolved fraction of organic solute in the droplet, xi,j, and lowers overall hygroscopicity.16, 17, 
27, 43, 80 
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Limited studies have investigated amino acid hygroscopicity; for example, Raymond and Pandis 
investigated Leu supersaturated hygroscopicity and observed a κCCN of ~0.02, similar to 
experimental results of this study.15, 94 However, to our knowledge, no prior studies have 
investigated hygroscopicity of Pro and Val as well as ternary mixtures containing amino acids 
under supersaturated conditions. κCCN values were also calculated for all ternary systems and 
evaluated against six hygroscopicity models – traditional Köhler model, O:C solubility model, X:C 
solubility model, O:C-LLPS model, X:C-LLPS model and a weighted average model.   

Mixtures of the three systems, Pro/2-MGA/AS, Val/2-MGA/AS and Leu/2-MGA/AS were 
investigated. κCCN was calculated for each ternary system via Eq. 5 and is shown in Figure 2 (data 
provided in Tables S13-S15). All κCCN values are then presented on a contour ternary plot, where 
pure AS is represented on the bottom left vertex, 2-MGA on the bottom right vertex and amino 
acid on the top vertex. Hygroscopicity is presented as a color scale, ranging from dark purple (most 
hygroscopic, AS) to light yellow (least hygroscopic organic). Experimental κCCN values were used 
to extrapolate hygroscopicity values across the ternary contour plots (Figure 2, Table S13-S15). 

For all ternary plots, κCCN range from 0.01 (pure Leucine) to 0.61 (pure AS). The overall Pro system 
is moderately hygroscopic, with  κCCN values ranging between 0.14 (pure 2-MGA) – 0.61 as seen 
in Figure 2A. The ternary contour plot presents a darker purple (hygroscopic) region in the 
predominantly AS/2-MGA region, behaving closer to pure AS; a similar highly hygroscopic region 
is observed in Malek et al for AS/2-MGA/sucrose ternary mixtures.26 The AS-dominated 
hygroscopic region is highlighted with a dash-white line (Figure 2A-C). The hygroscopic region 
is attributed to surface partitioning of 2-MGA due to surface activity as well as salting out in the 
presence of AS.26 (Ferdousi-Rokib et al., 2024, in review) . 

Therefore, 2-MGA is depleted from the droplet bulk and AS drives hygroscopicity within this 
region; this region is considered the LLPS region. Above this region, hygroscopicity presents a 
direct, almost linear, correlation with organic composition, reflecting full hygroscopic contribution 
of all compounds; as organic mass is increasing within the mixture, κCCN is decreasing. κCCN in the 
region above the dashed white line are moderately hygroscopic and  range from ~0.1 to 0.5. This 
trend has previously been observed in LLPS aerosol hygroscopicity and reflects the presence of 
both LLPS and well mixed regions.12, 15, 26  
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Figure 2. Experimentally derived κCCN results for (A) Pro ternary system (B) Val ternary system 
and (C) Leu ternary system, presented on ternary contour plots. The ternary plot vertices represent 
pure compounds (bottom left vertex = AS, bottom right vertex = 2-MGA, and top vertex = 
Pro/Val/Leu). Experimental mixtures for this study are represented by blue dots in each ternary 
figure. κ-hygroscopicity is represented as a color gradient where purple is most hygroscopic and 
light yellow is least hygroscopic. The LLPS region is outlined by a white, dashed line. LLPS is 
present within the purple region and above the dash line, solutes are well mixed. 

The Val ternary system presented similar water uptake behavior to the Pro ternary system. κCCN 
values range from 0.06 (pure Val) to 0.61 (pure AS); pure Val is presented as yellow in the ternary 
contour plot, shown in Figure 2B. The Val ternary system is also the most hygroscopic in the 
predominantly 2-MGA/AS (LLPS) region.  The most hygroscopic region suggests that 2-MGA 
continues to partition to the surface and drive LLPS in both ternary systems. However, κCCN in the 
well-mixed region (above the dashed white-line) is lower for Val than the Pro system although Pro 
and Val have the same O:C ratio. This phenomenon is likely due to their solubilities, with Pro 
being more soluble than Val. As a result, the Val ternary system is less CCN active than the Pro 
system and the LLPS region is more apparent. 

CCN activity of the ternary Leu system is shown in Figure 2C. Pure Leu κCCN is represented as 
light yellow and experimental κCCN values ranged from 0.01 (pure Leu) to 0.61 (pure AS). The Leu 
ternary system presented the same LLPS and hygroscopicity trends as the Pro and Val systems. 
However, the well-mixed region (outside of LLPS, Figure 2C) is the least hygroscopic of all three 
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ternary systems. The CCN activity of all systems correlate with amino acid solubility; Leu is the 
least water soluble and as a result, mixed Leu aerosols are less likely to uptake water than Pro and 
Val aerosol mixtures. All three ternary systems present similar water uptake trends but the overall 
κ-hygroscopicity range is dependent on pure amino acid solubility. 

4.2.  Modeling Results and Comparisons 

4.2.1 Traditional κ-Köhler Predictions 

Experimental κCCN values for the amino acid ternary systems were compared to hygroscopicity 
prediction models. Traditionally, κ-hygroscopicity values are calculated using the Köhler/ZSR 
method, which assumes full dissolution and hygroscopic contributions of all compounds. 
Theoretical κ-hygroscopicity values, κZSR, were calculated using Eq. 3-4 and is referred to as the 
traditional κ-Köhler model; the model results for all systems are listed in Tables S16-18. κZSR was 
plotted on ternary contour plots and compared against the experimental contour for each ternary 
system (Figure 3).  

Figure 3 shows that for all three ternary systems, the traditional κ-Köhler model (Fig 3D-F) 
predicts a linear relationship between organic composition and hygroscopicity as mixtures become 
predominantly 2-MGA. The linear relationship does not include a phase separated hygroscopic 
region, as observed in experimental data (Fig. 3A-C). Previous studies have noted that traditional 
κ-Köhler theory is inadequate for explaining CCN activity of phase-separated or partitioned 
aerosols. This limitation may be due to solubility or surface activity.26, 71, 88, 89, 91, 95-98 Therefore, 
traditional κ-Köhler is unable to predict the surface partitioning of 2-MGA due to its assumption 
that all compounds fully dissolve and contribute to the bulk droplet. As a result, the traditional κ-
Köhler is ineffective in predicting κCCN of all three ternary systems.  

4.2.2. O:C and X:C Parameterized Solubility Predictions 

The deviation from traditional hygroscopicity predictions and experimental data has been 
attributed to the limited solubility distribution of organic compounds. To determine if organic 
solubility can effectively predict hygroscopicity of the ternary systems, we evaluate solubility for 
known compounds and as parameterized by O:C solubility (Eq. 6). The solubility 
parameterizations were then used to calculate theoretical κO:C using Eq. 7-9; κO:C was then plotted 
on ternary contour plots and are shown in Figures 3G-I and Tables S16-18, respectively. O:C 
solubility predicts lower κ values for all mixtures. O:C solubility predicts pure Pro and pure Val κ 
~ 0.02; pure Leu κ is predicted to be ~ 0.004. Pure Leu and pure Val are better predicted by O:C 
solubility than pure Pro. For mixtures, O:C solubility predicts similar theoretical κ for Pro and Val 
mixtures; for Leu mixtures, Leu dominant mixtures (> 80 wt% Leu) are predicted to be less 
hygroscopic. All organics and their aerosol mixtures have O:C values within 0.2-0.7.  Previous 
studies show that the O:C solubility parameterization can be applied to organic aerosol with an 
O:C range of 0.2-0.7.17, 25, 27 However, pure Pro is known to be fully water-soluble (365 g L-1, 
above the solubility limitation range of 0.1-100 g L-1)16 and the O:C solubility parametrization is 
inadequate for Pro and incorrectly predicts hygroscopicity. At the same time, the O:C solubility 
model still predicts a linear relationship between hygroscopicity and organic volume similar to 
traditional κ-Köhler model; the model is unable to predict the 2-MGA/AS dominated LLPS region. 
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2-MGA is predicted to be fully water-soluble by O:C solubility (κ ~ 0.16) but additionally 
partitions to the droplet surface. The LLPS region is likely dominated by surface-active 2-MGA 
partitioning; however, phase separation is not accounted for in the O:C solubility model.  

Figure 3. Experimental κCCN results for Pro, Val and Leu (A-C) compared to κZSR results (D-F),  
κO:C results (G-I), and κX:C results (J-L) . All κ values are presented on ternary contour plots. The 
ternary plot vertices represent pure compounds where bottom left vertex = AS, bottom right 
vertex = 2-MGA, and top vertex = Pro/Val/Leu. κ-hygroscopicity is represented as a color 
gradient where purple is most hygroscopic and light yellow is least hygroscopic.  

Previous studies use O:C to parameterize solubility due to the polarity of O-C bonds driving water 
solubility and uptake. However, N-C bonds also present polarity that may affect solubility and 
water uptake properties. The X:C solubility model uses a newly introduced solubility 
parameterization, X:C, based on both O-C and N-C bonds (Eq. 10-11).  κX:C is then calculated 
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using Eq. 7-9 (Tables S16-18). The model predicts overall κX:C values greater than overall κO:C for 
all three ternary systems respectively (Figures 3J-L). This is attributed to the X:C parameterization 
predicting a higher solubility than the O:C parameterization due to the presence of N-C bonds. As 
a result, full dissolution is predicted (H(xi,j) = 1) and the X:C solubility model presents a linear 
trend for all systems. Both solubility models do not estimate regions of LLPS driven 
hygroscopicity due to the assumption that all compounds still contribute to κ across the ternary 
mixture space.  

4.2.3 O:C and X:C Parameterized Solubility & LLPS Model Predictions  

Previous studies have observed complex morphologies in aerosol inorganic-organic and inorganic-
organic-organic mixtures; these morphologies can influence water uptake.26, 64, 66-68 Studies have 
parameterized LLPS by using O:C ratio.26, 65, 67, 68, 99, 100 To model κCCN and account for LLPS, the 
O:C-LLPS model, previously introduced in Malek et al., 2023 was used. The model predicts an 
O:C threshold, or O:C mixture where LLPS reaches a thermodynamic limit. Above the threshold, 
aerosols are considered well mixed and κO:C-LLPS is calculated using Eq. 9. Below the threshold, 
aerosols are considered phase separated and κ2-MGA is set to 0. The predicted O:C thresholds are 
0.49, 0.51, and 0.47 for the Pro, Val, and Leu systems, respectively (Table 1). For 2-MGA/AS 
mixtures, the MMSC model is used to calculate theoretical κ (Eq. 12-13). κO:C-LLPS ternary contour 
plots are shown in Figures 4D-F (Tables S16-18).  

Compared to Traditional Köhler, O:C solubility, and X:C solubility models,  the O:C-LLPS model 
successfully estimates a hygroscopic LLPS region for all three systems. The model accounts for 
2-MGA partitioning due to salting out and surface activity; 2-MGA partitioning is the main driver 
of LLPS in the amino acid ternary systems. Therefore, calculating water uptake based on a 
threshold value effectively predicts phase separation in all three systems and aligns with previous 
studies.26, 65, 67, 68, 99, 100 However, the model is limited in predicting κ-hygroscopicity of well-mixed 
aerosols (above the white-dash line regions). For mixtures ≥ O:Cthresh, κO:C-LLPS = κO:C. As a result, 
κO:C-LLPS underpredicts water uptake for the Pro ternary system; the model continues to underpredict 
Pro κ as the O:C parameterization is unable to reflect Pro solubility. The O:C-LLPS model also 
underpredicts κ for a portion of the Val ternary system, shown on the Val/2-MGA axis (right side). 
For Val/2-MGA mixtures with > 50 wt% Val, the O:C-LLPS model predicts κO:C-LLPS of 0.02. 
However, κCCN reflects moderate water uptake properties and ranges from 0.06-0.16. The model 
best predicts κ for the Leu ternary system, especially for the Leu/2-MGA mixtures; this is 
represented by the light-yellow region in both Figures 4C and 4F. O:C parameterization is best 
able to reflect the limited solubility of Leu and as a result, the O:C-LLPS model is able to predict 
CCN activity for both the LLPS and non-LLPS mixtures. 
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In addition to the O:C-LLPS model, the X:C-LLPS model was also used to predict theoretical κ to 
determine if both O-C and N-C bonds can effectively incorporate solubility, LLPS, and water 
uptake (Figure 4G-I). The model follows a similar approach to the previous parameterized-LLPS 
model; now solubility and phase separation are parameterized using X:C (Eq. 10-11). X:C 
thresholds were calculated for each ternary system and are 0.65, 0.64 and 0.63 for Pro, Val and 
Leu, respectively (Tables S16-18). The model is once again able to predict a hygroscopic phase 
separated region for predominantly 2-MGA/AS mixtures; the use of both a LLPS threshold and 
MMSC model are effective in calculating hygroscopicity in amino acid ternary systems. For non-

Figure 4. Experimental κCCN results for Pro, Val and Leu (A-C) compared against κO:C-LLPS results 
(D-F),  κX:C-LLPS results (G-I), and κWA results (J-L) . All κ values are presented on ternary contour 
plots. The ternary plot vertices represent pure compounds where bottom left vertex = AS, bottom 
right vertex = 2-MGA, and top vertex = Pro/Val/Leu. κ-hygroscopicity is represented as a color 
gradient where purple is most hygroscopic and light yellow is least hygroscopic. 
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LLPS mixtures, κX:C-LLPS = κX:C. The X:C parameterization predicts higher water uptake than O:C 
parameterization due to both O-C and N-C bonds contributing to polarity. The X:C-LLPS model 
is effective in predicting water uptake for the Pro system; X:C solubility parameterization is able 
to predict pure Pro’s higher solubility. However, the model overpredicts κ for both well mixed Val 
and Leu aerosol mixtures; the X:C parameterization overestimates solubility compared to O:C. 
The effectiveness of the O:C-LLPS and X:C-LLPS models for the different amino acid systems 
may be attributed to the varied influence of N-C on amino acid solubility, including in the presence 
of AS.73, 74, 101 

Table 1. Computationally derived thresholds for O:C-LLPS and X:C-LLPS models 
Ternary System O:C Threshold X:C Threshold 

Pro/AS/2-MGA 0.49 0.65 

Val/AS/2-MGA 0.51 0.64 

Leu/AS/2-MGA 0.47 0.63 

 

4.2.4 Best Fit and Least χ2 Fit Models 

The model that best agrees with the experimental ternary system data falls within the O:C LLPS 
and X:C LLPS models. To assess each model’s predictive ability and characterize N-C influence 
on water uptake, a χ2 analysis was performed to determine the best model for each system; a 
smaller χ2 value corresponds to a better fit model representative of the experimental data. χ2 values 
for all ternary system models are reported in Table S19. In addition to the previously mentioned 
models, an optimized weighted average of O:C-LLPS and X:C-LLPS model predictions assessed 
O:C and N:C contribution and determined the best fit model for all three systems. The weighted 
average of the two models was calculated as: 

𝜅WA = 𝑎 ∗ 𝜅O:C-LLPS + 𝑏 ∗	𝜅X:C-LLPS     (14) 

where coefficients a (O:C) and b (X:C) range from 0 (no contribution) to 1 (full contribution). 
Coefficients are calculated by simulating different values for a and b to find the least χ2 fit for κCCN 
of each system; the best fit models and corresponding χ2 values are listed in Table 2 and κWA values 
are listed in Tables S16-S18.  

Table 2. Best Fit and χ2 For Amino Acid Ternary Systems 
Ternary System Best Fit Model a b χ2 

Pro/AS/2-MGA X:C-LLPS 0 1 5.23 

Val/AS/2-MGA Weighted Avg 0.30 0.70 2.85 

Leu/AS/2-MGA Weighted Avg 0.89 0.11 2.30 
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For the Pro ternary system, the X:C-LLPS model was the best fit (a = 0 and b = 1). However, Val 
and Leu ternary systems experimental κ are best predicted by a weighted average model. The Val 
system is modeled by a weighted average of 0.3 κO:C-LLPS and 0.7 κX:C-LLPS; the optimal model for the 
Leu system is a 0.89 κO:C-LLPS and 0.11 κX:C-LLPS weighted model. Amino acid best fit models are 
shown in Figure 4J-L. Though all three amino acids have similar O:C ratios, O:C and N:C 
contribution vary between all three systems. Pro presents equal contribution of O-C and N-C 
bonds; Val and Leu have greater O-C influence than N-C, with Leu being most dependent on O-
C. Contributions of O-C and N-C to solubility and hygroscopicity in amino acid ternary systems 
is correlated with the structure of each amino acid.  

All three amino acids are categorized as nonpolar aliphatic; nonpolar aliphatic amino acids are 
defined by a carboxylic acid functional group and nonpolar, hydrophobic containing amino 
chain.72, 74, 102 Amino acid structures are listed in Table 3. Val and Leu are open chained whereas 
Pro is closed chained. Previous studies investigated nonpolar aliphatic amino acid solubility in the 
presence of salts, like AS.72-74 Salts such as AS and NaCl can reduce solubility (“salting out”) of 
organics due to its ionic behavior; salt ions disrupt organic molecule hydration because of its 
stronger affinity to interact with water molecules.72, 74 Furthermore, salting out has been readily 
observed to be most effective in solutions containing salt and proteins composed of amino acids.75 
AS’s anion, SO42-, is considered an effective salting out agent. 69  

Table 3. Amino Acid Formula and Structure 
Amino Acid Formula Structure Side Structure 

Pro C5H9NO2 
 

Close chain 

Val C5H11NO2 
 

Open chain 

Leu C6H13NO2 
 

Open chain 

 

Specifically, amino acid side chain structure dictates salting out effect in the presence of salt ions. 
Amino acids such as Val and Leu contain a nonpolar, open side chain that is considered 
hydrophobic. 72, 74, 102  Hydrophobicity of the side chain increases with additional CH2 groups; as 
a result, Leu has a more hydrophobic side chain than Val.69, 72, 74 When present in an aqueous 
solution, salt (AS) ions disrupt the hydration of the amino acid chain containing N-C bond, 
reducing amino acid solubility. 72, 74, 102 Salting out effects are greater for Leu than Val due to the 
additional -CH2.72, 74, 101 Amino acids also contain a polar, carboxylic acid functional group 
containing only O-C and O-H bonds. The disruption of amino side chain (N-C) interaction with 
water enhances the effect of O-C in Leu and Val solubility in mixtures.74 However, N-C still 
presents influence on solubility and water uptake. Val and Leu are best represented by a weighted 
average model with O-C given more weight, as shown by its least χ2 fit; the contribution of N-C 
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for the Leu system is less than the Val system (bLeu < bVal) and may be due to its longer chain 
enhancing salting out effects. However, Pro and its mixtures do not present salting out effects. Pro 
is also a nonpolar aliphatic amino acid but its side chain is cyclical (Table 3). Cyclic structures are 
more rigid and smaller; therefore, the compound efficiently dissolves in water and results in Pro 
having a higher solubility.103 Its small structure also limits salting out effects in the presence of AS 
and N-C contribution is not reduced.72 As a result, Pro is best modeled by the X:C-LLPS model 
alone; the X:C-LLPS model predicts equal contribution of O-C and N-C on solubility and water 
uptake.  

Modeling each amino acid ternary system based on LLPS, solubility and salting out effects best 
reflects hygroscopicity. The presence of nitrogen influences both solubility and water uptake 
behavior; to predict water uptake, contributions of O-C and N-C must be included. Contributions 
of the polar bonds are dependent on the structure of the amino acid; open chain amino acids (Leu, 
Val) have reduced N-C effects due to their propensity to salt out in the presence of salts. Amino 
acids with closed side chains, such as Pro, do not salt out and can therefore be modeled by an equal 
contribution of O-C and N-C bonds. Therefore, chemical structure can dictate CCN activity and 
should be considered in predicting water uptake of complex aerosol mixtures.104, 105  

2-MGA also salts out in the presence of AS and depresses surface tension. As a result, organic 
surface activity influences water activity of ternary mixtures by enhancing LLPS. Malek et al 
correlated 2-MGA partitioning to its O:C solubility; however, in this study, 2-MGA (the more 
soluble organic) partitioning is due to its surface activity. Accounting for both LLPS and surface 
activity by using parameterized LLPS and MMSC model improves water uptake prediction of 
amino acid ternary systems. Thus, solubility, surface activity, phase morphology and CCN activity 
in amino acid/2-MGA/AS systems are driven by the salting-out effects of AS. Previous studies 
have investigated salting out, solubility, surface activity, and phase morphology influence on CCN 
activity, separately. 15, 16, 19-25, 28, 88, 89, 92, 106-108  However, studies have not accounted for all factors 
having a collective effect on CCN activity and subsequent κ-hygroscopicity. This study accounts 
for all factors having a collective effect on hygroscopicity through the incorporation of solubility 
parameterization and surface tension possibly driven by salting out effects in κ-hygroscopicity 
models.  

Further work must investigate amino acids of different structures (e.g., longer/short side chain) 
and salts of lower order on the Hofmeister series (e.g., NaCl) to assess salting out and water uptake 
effects in nitrogen containing organic aerosol mixtures. Additionally, amino acids containing 
elements other than oxygen, nitrogen, carbon, and hydrogen exist. For example, methionine, 
cysteine and taurine each contain sulfur.109 Future work should study how these additional 
nucleophilic compounds may affect LLPS, salting out and hygroscopicity in mixtures. Organics 
of stronger surfactant strength can further complicate predictions of partitioning and LLPS by 
enhancing solubility and salting out effects.71, 89 Therefore, studies must be performed to evaluate 
influence of surface activity in amino acid mixtures. In order to effectively predict κ-
hygroscopicity for amino acid ternary mixtures, models must account for multiple factors (nitrogen 
effects on solubility, chemical structure, LLPS, surface activity), as shown by the X:C-LLPS and 
weighted average models. 
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5. Summary and Implications 

Three amino acid ternary aerosol mixtures were investigated for their water uptake properties.  
Mixtures were composed of ammonium sulfate, an inorganic salt, 2-methylglutaric acid, a surface-
active organic, and an amino acid; amino acids chosen for this study were proline (Pro), valine 
(Val), and leucine (Leu). The amino acids are similar in O:C ratios (Leu O:C = 0.33 and Pro/Val 
O:C = 0.4), but vary in solubility, with Pro > Val > Leu. Hygroscopicity was measured under 
supersaturated conditions using a CCNC. The CCNC determined the activation ratio of particles 
from 0.4 to 1.7% SS and an experimental κCCN was calculated. Results for all three systems showed 
the presence of both LLPS and well mixed aerosol across the range of mixtures in the ternary 
space. Mixtures with phase separated morphology are dominated by AS/2-MGA and is likely due 
to 2-MGA bulk-surface partitioning. For well mixed aerosol mixtures, κCCN presents a quasi-linear 
trend between organic composition and hygroscopicity. However, water uptake in the well mixed 
region parallels the solubility of the amino acid; well mixed Pro (most soluble) mixtures are the 
most hygroscopic while Leu (least soluble) mixtures are the least hygroscopic.  

Mixtures were compared to already existing hygroscopicity models, such as traditional κ-Köhler, 
O:C solubility and the O:C-LLPS models. To account for the influence of nitrogen on amino acid 
solubility, a new parameter X:C was introduced through the X:C solubility and X:C-LLPS models. 
The traditional κ-Köhler, O:C solubility and X:C solubility models were unable to predict LLPS 
and hygroscopicity of the three amino acid ternary systems. The models predict a linear 
relationship between organic mass and hygroscopicity between all mixtures; this is due to the three 
models predicting full dissolution of 2-MGA. To account for LLPS and surface activity, the O:C-
LLPS (κO:C-LLPS), X:C-LLPS (κX:C-LLPS)  models, and weighted average models were used to predict 
theoretical κ-values. The X:C-LLPS model was identified as the best fit for the Pro ternary system. 
Val and Leu ternary systems were best modeled by weighted average models; the Val system had 
a weighted average of 0.3 κO:C-LLPS and 0.7 κX:C-LLPS while the Leu system was 0.89 κO:C-LLPS and 0.11 
κX:C-LLPS. The respective contributions of each model are attributed to the difference in amino acid 
side chain and subsequent salting out effects. Closed chain amino acids, such as Pro, are rigid and 
small and as a result, both O-C and N-C bonds contribute to solubility and the X:C-LLPS model 
performs the best for Pro. Val and Leu are open chained and salt out in the presence of AS, with 
salting out effects being more prominent with increased chain length (e.g; Leu chain > Val chain). 
Therefore, O-C bonds have more influence in Val and Leu ternary systems and are best reflected 
by a weighted average model dependent on their side chain length.  

AS/amino acid salting out are driven by amino acid chemical structure, which subsequently 
influences solubility and hygroscopicity, and indeed all thermodynamically driven processes. 
Previous studies utilize O:C parameterization for solubility, LLPS threshold, and κ- hygroscopicity 
predictions. However, O:C alone cannot fully encapsulate the non-ideal interactions within amino 
acid containing mixtures, and possibly complex nitrogen containing mixtures. The newly 
introduced X:C parameter is a better parameterization or can be used in addition with  O:C these 
mixtures; this emphasizes that regardless of the amino acid structure, nitrogen still presents a 
degree of influence on solubility, LLPS, and hygroscopicity. Ultimately, functional group location 
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and properties impact droplet activation as well and must be considered. Indeed, this study aligns 
with previous studies, such as Suda et al., 2014, that have also observed the influence of functional 
groups on aerosol properties, including hygroscopicity. Therefore, future work including cloud 
parcel-based modeling studies must put more emphasis on the presence of certain functional 
groups within aerosol mixtures, such as carbonyl and amino groups. By accounting for functional 
group and nucleophiles, this study shows that we can better encapsulate nonideal behavior (e.g., 
salting out, salting in) that can drive water uptake as well as chemical aging, aerosol surface-
activity, and other possible aerosol mechanisms. However, relevant organic aerosol compounds 
may contain not only oxygen and nitrogen, but also sulfur. For example, methionine, an amino 
acid containing sulfur, has previously been attributed to lead to ultrafine particle formation within 
the Arctic.110, 111 Future work must therefore further investigate how other additional elements 
such as sulfur may present an influence on cloud microphysics. 

Additionally, AS ability to drive organic partitioning demonstrates how salting out effects may 
further emphasize organic compound characteristics that may be traditionally overlooked when 
projecting aerosol-cloud interaction radiative forcing. The presence of AS enhanced solubility 
limitations within AS/amino dominant mixtures and enhanced surface-activity within AS/2-MGA, 
challenging the traditional assumption of well mixed aerosols with droplet surface tension 
equivalent to water. The results of this work may improve understanding of mixed nitrogen 
containing aerosol water uptake properties, subsequent predictions of CCN activity in larger scale 
models, and projections of aerosol-cloud interaction radiative forcing.   
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I. Chemicals and their Properties 

Table S1. Ternary System Chemicals and Properties 

Chemical Abbv. O:C X:C Solubility 
(in H2O) 

Molecular 
Weight Density 

Ammonium Sulfate AS 0 0 74.4 g/100 
ga 

132.14 
g/molc 

1.78 
g/cm3 d  

2-methylglutaric 
acid 2-MGA 0.67 0.67 40.6 g/Lb 146.14 

g/molb 
1.33 
g/cm3 e 

Proline Pro 0.4 0.6 365 g/Lb 115.13 
g/molc 

1.40 
g/cm3 e 

Valine Val 0.4 0.6 88.5 g/Lb 117.14 
g/molc 

1.23 
g/cm3 d  

Leucine Leu 0.33 0.5 22.4 g/Lb 131.18 
g/molc 

1.29 
g/cm3 d 

aCRC Handbook 
bhmdb.ca 
cNIST WebBook 
d PubChem, National Institute of Health  
eEMD Millipore 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



II. O:C and X:C ratios of Ternary Mixtures 

Proline System 

Figure S1. Weight percent ternary plots for Pro system. Each blue circle represents the solute 
chemical composition of each experiment. Purple squares are data points obtained from 
Ferdousi-Rokib et al (in prep). The red line represents the phase separation threshold, where the 
region below this line are expected to be phase separated while above the threshold are expected 
to be well mixed.  The estimated threshold (red-line) is derived from  the LLPS model in Malek 
et al.1  
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Table S2. Experimental Mixture Composition and O:C/X:C ratios for Pro System. 

Experiment AS 
(wt%) 

Proline 
(wt%) 

2-MGA 
(wt%) O:C X:C 

1 100 0 0 0.00 0.00 
2 0 100 0 0.40 0.60 
3# 0 0 100 0.67 0.67 
4 0 10 90 0.64 0.66 
5 0 25 75 0.59 0.65 
6 0 50 50 0.52 0.63 
7 0 75 25 0.46 0.61 
8 0 90 10 0.42 0.61 
9 10 90 0 0.40 0.60 
10 25 75 0 0.40 0.60 
11 50 50 0 0.40 0.60 
12 75 25 0 0.40 0.60 
13 90 10 0 0.40 0.60 
14# 95 0 5 0.67 0.67 
15# 90 0 10 0.67 0.67 
16# 75 0 25 0.67 0.67 
17# 50 0 50 0.67 0.67 
18# 25 0 75 0.67 0.67 
19# 10 0 90 0.67 0.67 
20 45 30 25 0.51 0.63 
21 75 10 15 0.55 0.64 
22 25 60 15 0.44 0.61 
23 60 35 5 0.43 0.61 
24 50 25 25 0.52 0.63 
25 30 25 45 0.56 0.64 
26 30 50 20 0.46 0.62 
27 10 75 15 0.44 0.61 
28 10 15 75 0.62 0.66 

#Data points from Ferdousi-Rokib et al (in review) 



Valine System 

Figure S2. Weight percent ternary plots for Val system. Each blue circle represents the chemical 
composition of each experiment. Purple squares are data points obtained from Ferdousi-Rokib et 
al (in prep). The red line represents the estimated phase separation threshold, where the region 
below this line are expected to be phase separated while above the threshold are expected to be 
well mixed. The estimated threshold (red-line) is derived from  the LLPS model in Malek et al.1  
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Table S3. Experimental Mixture Composition and O:C/X:C ratios for Val System 

Experiment AS 
(wt%) 

Valine 
(wt%) 

2-MGA 
(wt%) O:C X:C 

1 100 0 0 0.00 0.00 
2 0 100 0 0.40 0.60 
3# 0 0 100 0.67 0.67 
4 0 10 90 0.64 0.66 
5 0 25 75 0.59 0.65 
6 0 50 50 0.52 0.63 
7 0 75 25 0.46 0.61 
8 0 90 10 0.42 0.61 
9 10 90 0 0.40 0.60 
10 25 75 0 0.40 0.60 
11 50 50 0 0.40 0.60 
12 75 25 0 0.40 0.60 
13 90 10 0 0.40 0.60 
14# 95 0 5 0.67 0.67 
15# 90 0 10 0.67 0.67 
16# 75 0 25 0.67 0.67 
17# 50 0 50 0.67 0.67 
18# 25 0 75 0.67 0.67 
19# 10 0 90 0.67 0.67 
20 10 57.5 32.5 0.48 0.62 
21 50 37.5 12.5 0.49 0.62 
22 10 20 70 0.54 0.64 
23 75 10 15 0.43 0.61 
24 30 65 5 0.52 0.63 
25 60 35 5 0.56 0.64 
26 50 25 25 0.47 0.62 
27 35 35 30 0.62 0.66 
28 30 25 45 0.44 0.61 
29 30 10 60 0.00 0.00 
30 10 75 15 0.40 0.60 

#Data points from Ferdousi-Rokib et al (in review) 



Leucine System 

Figure S3. Weight percent ternary plots for Leu system. Each blue circle represents the chemical 
composition of each experiment. Purple squares are data points obtained from Ferdousi-Rokib et 
al (in prep). The red line represents the estimated phase separation threshold, where the region 
below this line are expected to be phase separated while above the threshold are expected to be 
well mixed. The estimated threshold (red-line) is derived from the LLPS model in Malek et al.1  
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Table S4. Experimental Mixture Composition and O:C/X:C ratios for Leu System 

Experiment AS 
(wt%) 

Leucine 
(wt%) 

2-MGA 
(wt%) O:C X:C 

1 100 0 0 0.00 0.00 
2 0 100 0 0.33 0.60 
3# 0 0 100 0.67 0.67 
4 0 10 90 0.63 0.66 
5 0 25 75 0.57 0.65 
6 0 50 50 0.48 0.63 
7 0 75 25 0.40 0.61 
8 0 90 10 0.36 0.61 
9 10 90 0 0.33 0.60 
10 25 75 0 0.33 0.60 
11 50 50 0 0.33 0.60 
12 75 25 0 0.33 0.60 
13 90 10 0 0.33 0.60 
14# 95 0 5 0.67 0.67 
15# 90 0 10 0.67 0.67 
16# 75 0 25 0.67 0.67 
17# 50 0 50 0.67 0.67 
18# 25 0 75 0.67 0.67 
19# 10 0 90 0.67 0.67 
20 10 60 30 0.43 0.62 
21 75 15 10 0.45 0.62 
22 65 15 20 0.50 0.64 
23 40 55 10 0.37 0.61 
24 50 25 25 0.48 0.63 
25 30 25 45 0.53 0.64 
26 30 50 20 0.41 0.62 
27 10 15 75 0.60 0.66 
28 10 75 15 0.38 0.61 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 

 



III. CCNC Experiments 

Table S5. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Pro 
System 

Experiment AS 
(mg) 

Proline 
 (mg) 

2-MGA 
(mg) 

1 20 0 0 
2 0 20 0 
3# 0 0 20 
4 0 2 18 
5 0 5 15 
6 0 10 10 
7 0 15 5 
8 0 18 2 
9 2 18 0 
10 5 15 0 
11 10 10 0 
12 15 5 0 
13 18 2 0 
14# 19 0 1 
15# 18 0 2 
16# 15 0 5 
17# 10 0 10 
18# 5 0 15 
19# 2 0 18 
20 9 6 5 
21 15 2 3 
22 5 12 3 
23 12 7 1 
24 10 5 5 
25 6 5 9 
26 6 10 4 
27 2 15 3 
28 2 3 15 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 



Table S6. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Val 
System 

Experiment AS 
(mg) 

Valine 
 (mg) 

2-MGA 
(mg) 

1 20 0 0 
2 0 20 0 
3# 0 0 20 
4 0 2 18 
5 0 5 15 
6 0 10 10 
7 0 15 5 
8 0 18 2 
9 2 18 0 
10 5 15 0 
11 10 10 0 
12 15 5 0 
13 18 2 0 
14# 19 0 1 
15# 18 0 2 
16# 15 0 5 
17# 10 0 10 
18# 5 0 15 
19# 2 0 18 
20 2 12 6 
21 15 3 2 
22 13 3 4 
23 8 11 2 
24 10 5 5 
25 6 5 9 
26 6 10 4 
27 2 3 15 
28 2 15 3 
29 20 0 0 
30 0 20 0 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 



Table S7. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Leu 
System 

Experiment AS 
(mg) 

Leucine 
(mg) 

2-MGA 
(mg) 

1 20 0 0 
2 0 20 0 
3# 0 0 20 
4 0 2 18 
5 0 5 15 
6 0 10 10 
7 0 15 5 
8 0 18 2 
9 2 18 0 
10 5 15 0 
11 10 10 0 
12 15 5 0 
13 18 2 0 
14# 19 0 1 
15# 18 0 2 
16# 15 0 5 
17# 10 0 10 
18# 5 0 15 
19# 2 0 18 
20 2 12 6 
21 15 3 2 
22 13 3 4 
23 8 11 2 
24 10 5 5 
25 6 5 9 
26 6 10 4 
27 2 3 15 
28 2 15 3 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 



IV. CCNC Measurement Setup 

Figure S4. Experimental set up for Cloud Condensation Nuclei (CCN) experiments; dry, 
polydisperse aerosols were passed through the SMPS at a 1:10 aerosol to sheath flow rate; 
aerosols were flowed into the CPC  and CCN at 0.3 L min-1  and 0.5 L min-1, respectively. 

V. Ammonium Sulfate CCN Calibration   

Table S8. Ammonium Sulfate Calibration Data for CCNC 

Calibrated Supersaturation 
(%) 

Activation Diameter 
(nm) 

0.42 ± 0.07 50.87 ± 4.47 

0.61 ± 0.09 39.84 ± 3.17 

0.78 ± 0.03 33.43 ± 0.86 

0.99 ± 0.08 28.71 ± 1.45 

1.21 ± 0.03 25.12 ± 0.42 

1.57 ± 0.16 21.19 ± 1.35 

1.72 ± 0.03 19.86 ± 0.21 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5. Ammonium sulfate (AS) CCNC instrument calibration results. Instrument 
supersaturation is set between 0.4 - 1.6% SS and corresponding corrected supersaturation is 
calculated using PyCAT analysis. Instrument supersaturation and corrected supersaturation are 
then plotted against each other to obtain R2 of a linear fit; R2 > 0.98 is considered a well 
calibrated CCNC within our study. 

 

 

 

 

 

 

 

 

 

 

 



VI. X:C Parameterizations 

Table S9. Commonly found amino acids with their X:C Ratio and Solubility 

Compound X:C Ratio Solubility (v/v)$ 
Glycine 1.50 0.155 
Alanine 1.00 0.117 

Glutamic acid 1.00 0.018 
Valine 0.60 0.056 

Isoleucine 0.50 0.018 
Proline 0.60 0.261 
dl-Leucine 0.50 0.014 
Aspartic Acid 1.25 0.003 
Tyrosine 0.44 0.0003 
Arginine 1.00 0.487 
Histidine 0.83 0.029 
Glutamine 1.00 0.017 
Serine 1.33 0.156 

Phenylalanine 0.33 0.010 
Tryptophan 0.36 0.011 
Asparagine 1.25 0.019 

$hmdb.ca 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Previous studies account for O:C ratio to parameterize solubility due to the polarity of 
O-C bonds, but organic compounds such as nitrogen containing organics (e.g.; amino acids) may 
present solubility influence from N-C bonds. Therefore, the X:C parameterization for solubility 
is developed for this study by fitting literature solubility values against its X:C ratio. X:C 
parameterization of solubility for nitrogen containing compounds where (a) X:C vs. solubility 
(v/v) from Table S9 and  (b) Actual solubility (v/v) vs. predicted solubility (v/v) for compounds 
listed in Table S9, with sold line noting a 1:1 fit and red dashed lines indicating a 10-fold 
difference from predicted values. Actual solubility (v/v) values are obtained from literature 
(hmdb.ca) and predicted solubility (v/v) are calculated from Eq. 11.  
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VII. O:C-LLPS Model Distribution  

  

Figure S7. (A) Histogram Distribution of κthresh for Val after 100,000 iterations and (B) O:C 
thresholds vs. κthresh and corresponding O:C threshold where LLPS is most probable 

 Figure S8. (A) Histogram Distribution of κthresh for Leu after 100,000 iterations and (B) O:C 
thresholds vs. κthresh and corresponding O:C threshold where LLPS is most probable 
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VIII. X:C-LLPS Model Distributions 

Figure S9. (A) Histogram Distribution of κthresh for Proafter 100,000 iterations and (B) X:C 
thresholds vs. κthresh and corresponding X:C threshold where LLPS is most probable 

 

Figure S10. (A) Histogram Distribution of κthresh for Val after 100,000 iterations and (B) X:C 
thresholds vs. κthresh and corresponding X:C threshold where LLPS is most probable 
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Figure S11. (A) Histogram Distribution of κthresh for Leu after 100,000 iterations and (B) X:C 
thresholds vs. κthresh and corresponding X:C threshold where LLPS is most probable 

IX. Surface Tension Measurements 

Surface tension measurements of the pure amino acids and binary mixture droplets were taken 
using a pendant drop goniometer (Biolin Scientific Attention Theta Flex). Solutions were prepared 
first at the solubility limits of the pure amino acids using Millipore ultra-pure water. The solution 
compositions are listed in Table S10. A mechanical micro syringe is used to generate a droplet of 
the solutions < 10 µL at the needle tip. Images were taken at 60 frames/second until the droplet 
fell. It is assumed as the value plateaus, the surface tension reaches an equilibrium value. The 
surface tension is determined from fitting the droplet to the Young-Laplace Equation.2-4 Average 
surface tension values of the amino acid droplets at its solubility limits are listed in Table S10. 

Table S10. Surface Tension of Pure Amino Acids at Solubility Limits and Water 

 

 

 

 

Leu and Val were found to have a surface tension value close to the value of pure water (71.3 mN 
m-1 as measured by the instrument) at its solubility limits. However, Pro is more surface active. 
Pure Pro is further diluted to assess its surface activity and pure amino acid surface tension is 

Amino Acid Water 
(mL) 

Concentration 
(M) 

Surface Tension 
(mN m-1) 

Leucine 40 0.171 66.90 ± 0.34 
Valine 15 0.569 69.00 ± 0.58 
Proline 1 8.686 57.39 ± 0.17 
Water   71.33 ± 0.19 

(A) (B) 



compared against measurements for 2-MGA from Ferdousi-Rokib et al., 2024 (in review) (Figure 
S12).  

To assess salting out effects and influence on surface tension, Pro/AS binary mixture surface 
tension were also measured at several dilutions. The solution concentrations and surface tension 
results are listed out in Tables S11-S12 and shown in Figure S13.  

Table S11. Concentrations of Pro/AS binary mixture dilutions for surface tension measurements 

System Water 
(mL) 

Proline 
(M)  AS  

(M) 
AS  
(M) 

AS  
(M) 

AS  
(M) 

AS  
(M) 

1 1 8.686  1:9$ 1:4$ 1:1$ 4:1$ 9:1$ 
 0.841 2.523    

         
2# 2 4.343  0.420 1.261    
3# 4 2.171  0.210 0.631 1.892   
4# 8 1.086  0.105 0.315 0.946 0.908  
5# 12 0.724  0.070 0.210 0.631 1.892  
6 20 0.434  0.042 0.126 0.378  3.405 

$ Stock solutions were prepared at 1:9, 1:4, 1:1, 4:1 and 9:1 mass weight ratios of Pro/AS, the subsequent 
molar concentrations of AS are presented in the table. 
#Stock solutions were prepared at 1:9, 1:4, 1:1, 4:1 and 9:1 mass weight ratios of Pro/AS in 1mL Millipore ultrapure 
water for System 1.  Then System 2 through 5 are then generated by diluting concentrations of System 1.  

Table S12. Pure Pro and Pro/AS binary mixture surface tension results 

Pro (wt%) AS (wt%) Water Pro (M) 
Surface 
Tension  
(mN m-1) 

Std Dev 

100 0 1 8.686 57.39 0.17 
90 10 1 8.686 58.91 0.69 
75 25 1 8.686 54.36 0.26 
100 0 2 4.343 60.72 0.07 
90 10 2 4.343 60.65 0.31 
75 25 2 4.343 58.80 0.21 
100 0 4 2.171 66.40 0.27 
90 10 4 2.171 65.75 0.36 
75 25 4 2.171 63.20 0.18 
50 50 4 2.171 62.58 0.54 
100 0 8 1.086 68.12 0.21 
90 10 8 1.086 66.86 0.23 
75 25 8 1.086 66.69 0.22 
50 50 8 1.086 65.71 0.65 
25 75 8 1.086 59.92 0.19 
100 0 12 0.724 68.55 0.26 
90 10 12 0.724 66.68 0.13 
75 25 12 0.724 66.98 0.14 
50 50 12 0.724 65.28 0.40 
25 75 12 0.724 62.01 0.52 
100 0 20 0.434 70.92 0.23 



90 10 20 0.434 71.24 0.38 
75 25 20 0.434 71.66 0.56 
50 50 20 0.434 68.99 0.36 
10 90 20 0.434 65.61 0.75 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S12. Surface tension measurements for pure amino acids (Leu, Val, Pro) and pure 2-MGA 
versus concentration. Pure 2-MGA surface tension results are from Ferdousi-Rokib et al., 2024 
(in review) 



 

 

 

 

 

 

 

 

 

 

 

 

Figure S13. Surface tension measurements for Pro/AS binary system vs. Pro concentration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X. Experimental κCCN Results 

Table S13. Experimental κCCN for Pro/AS/2-MGA System 

Experiment AS 
(wt%) Proline (wt%) 2-MGA 

(wt%) κCCN 

1 100 0 0 0.61 
2 0 100 0 0.43±0.09 
3# 0 0 100 0.14±0.02 
4 0 10 90 0.17±0.01 
5 0 25 75 0.20±0.02 
6 0 50 50 0.23±0.02 
7 0 75 25 0.25±0.02 
8 0 90 10 0.27±0.03 
9 10 90 0 0.25±0.02 
10 25 75 0 0.26±0.02 
11 50 50 0 0.34±0.03 
12 75 25 0 0.44±0.04 
13 90 10 0 0.54±0.04 
14# 95 0 5 0.62±0.03 
15# 90 0 10 0.60±0.02 
16# 75 0 25 0.60±0.03 
17# 50 0 50 0.50±0.02 
18# 25 0 75 0.40±0.03 
19# 10 0 90 0.24±0.02 
20 45 30 25 0.37±0.03 
21 75 10 15 0.52±0.04 
22 25 60 15 0.29±0.03 
23 60 35 5 0.38±0.03 
24 50 25 25 0.34±0.05 
25 30 25 45 0.34±0.04 
26 30 50 20 0.26±0.03 
27 10 75 15 0.24±0.04 
28 10 15 75 0.24±0.02 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 



Table S14. Experimental κCCN for Val/AS/2-MGA System 

Experiment AS 
(wt%) Valine (wt%) 2-MGA 

(wt%) κCCN 

1 100 0 0 0.61 
2 0 100 0 0.06±0.02 
3# 0 0 100 0.14±0.02 
4 0 10 90 0.18±0.01 
5 0 25 75 0.18±0.02 
6 0 50 50 0.16±0.02 
7 0 75 25 0.14±0.03 
8 0 90 10 0.07±0.04 
9 10 90 0 0.18±0.01 
10 25 75 0 0.23±0.02 
11 50 50 0 0.39±0.05 
12 75 25 0 0.50±0.03 
13 90 10 0 0.55±0.03 
14# 95 0 5 0.62±0.03 
15# 90 0 10 0.60±0.02 
16# 75 0 25 0.60±0.03 
17# 50 0 50 0.50±0.02 
18# 25 0 75 0.40±0.03 
19# 10 0 90 0.24±0.02 
20 10 57.5 32.5 0.22±0.02 
21 50 37.5 12.5 0.34±0.02 
22 10 20 70 0.22±0.02 
23 75 10 15 0.55±0.05 
24 30 65 5 0.25±0.02 
25 60 35 5 0.41±0.04 
26 50 25 25 0.53±0.05 
27 35 35 30 0.24±0.03 
28 30 25 45 0.23±0.03 
29 30 10 60 0.31±0.04 
30 10 75 15 0.14±0.01 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 



Table S15. Experimental κCCN for Leu/AS/2-MGA System 

Experiment AS 
(wt%) 

Leucine 
(wt%) 

2-MGA 
(wt%) κCCN 

1 100 0 0 0.61 
2 0 100 0 0.01±0.00 
3# 0 0 100 0.14±0.02 
4 0 10 90 0.09±0.02 
5 0 25 75 0.10±0.02 
6 0 50 50 0.03±0.01 
7 0 75 25 0.02±0.02 
8 0 90 10 0.02±0.02 
9 10 90 0 0.11±0.01 
10 25 75 0 0.14±0.01 
11 50 50 0 0.14±0.01 
12 75 25 0 0.47±0.03 
13 90 10 0 0.56±0.03 
14# 95 0 5 0.62±0.03 
15# 90 0 10 0.60±0.02 
16# 75 0 25 0.60±0.03 
17# 50 0 50 0.50±0.02 
18# 25 0 75 0.40±0.03 
19# 10 0 90 0.24±0.02 
20 10 60 30 0.12±0.01 
21 75 15 10 0.50±0.03 
22 65 15 20 0.50±0.03 
23 40 55 10 0.22±0.02 
24 50 25 25 0.42±0.05 
25 30 25 45 0.29±0.04 
26 30 50 20 0.19±0.03 
27 10 15 75 0.20±0.01 
28 10 75 15 0.15±0.03 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 

 



XI. Model Results 

Table S16. Predicted κ values for traditional Köhler, O:C Solubility, X:C Solubility, O:C-LLPS, 
X:C-LLPS Models for Proline/2-MGA/AS System 

Experiment AS 
(wt%) 

Proline 
(wt%) 

2-
MGA 
(wt%) 

κZSR κO:C κX:C κO:C-
LLPS 

κX:C-
LLPS 

1 100 0 0 0.61 0.61 0.61 0.61 0.61 
2 0 100 0 0.22 0.02 0.22 0.02 0.22 
3# 0 0 100 0.15 0.15 0.15 0.14 0.14 
4 0 10 90 0.15 0.16 0.16 0.15 0.22 
5 0 25 75 0.16 0.17 0.17 0.13 0.22 
6 0 50 50 0.18 0.19 0.19 0.10 0.22 
7 0 75 25 0.20 0.21 0.21 0.02 0.20 
8 0 90 10 0.21 0.21 0.21 0.02 0.21 
9 10 90 0 0.25 0.24 0.24 0.07 0.38 
10 25 75 0 0.30 0.29 0.29 0.15 0.41 
11 50 50 0 0.39 0.38 0.38 0.28 0.47 
12 75 25 0 0.49 0.49 0.49 0.44 0.54 
13 90 10 0 0.56 0.56 0.56 0.54 0.58 
14# 95 0 5 0.58 0.59 0.59 0.57 0.43 
15# 90 0 10 0.54 0.57 0.57 0.54 0.55 
16# 75 0 25 0.46 0.50 0.50 0.54 0.29 
17# 50 0 50 0.33 0.39 0.39 0.53 0.43 
18# 25 0 75 0.23 0.27 0.27 0.41 0.46 
19# 10 0 90 0.18 0.20 0.20 0.26 0.41 
20 45 30 25 0.34 0.36 0.36 0.29 0.30 
21 75 10 15 0.47 0.50 0.50 0.46 0.24 
22 25 60 15 0.29 0.28 0.28 0.17 0.35 
23 60 35 5 0.42 0.43 0.43 0.36 0.61 
24 50 25 25 0.36 0.39 0.39 0.32 0.22 
25 30 25 45 0.27 0.30 0.30 0.24 0.14 
26 30 50 20 0.30 0.30 0.30 0.21 0.22 
27 10 75 15 0.24 0.24 0.24 0.08 0.22 
28 10 15 75 0.19 0.61 0.20 0.18 0.22 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 



Table S17. Predicted κ values for traditional Köhler, O:C Solubility, X:C Solubility, O:C-LLPS, 
X:C-LLPS, and Weighted Average Models for Valine/2-MGA/AS System 

Experiment AS 
(wt%) 

Valine 
(wt%) 

2-
MGA 
(wt%) 

κZSR κO:C κX:C κO:C-
LLPS 

κX:C-
LLPS κWA 

1 100 0 0 0.61 0.61 0.61 0.61 0.61 0.61 
2 0 100 0 0.20 0.02 0.20 0.02 0.20 0.15 
3# 0 0 100 0.15 0.16 0.16 0.14 0.15 0.14 
4 0 10 90 0.15 0.17 0.17 0.15 0.20 0.18 
5 0 25 75 0.16 0.17 0.17 0.13 0.20 0.18 
6 0 50 50 0.17 0.18 0.18 0.09 0.20 0.17 
7 0 75 25 0.19 0.10 0.19 0.02 0.19 0.14 
8 0 90 10 0.20 0.06 0.20 0.02 0.20 0.14 
9 10 90 0 0.23 0.20 0.23 0.06 0.36 0.27 
10 25 75 0 0.28 0.28 0.29 0.13 0.39 0.31 
11 50 50 0 0.38 0.39 0.39 0.26 0.45 0.39 
12 75 25 0 0.48 0.50 0.50 0.42 0.52 0.49 
13 90 10 0 0.56 0.56 0.56 0.53 0.57 0.56 
14# 95 0 5 0.58 0.59 0.59 0.57 0.57 0.57 
15# 90 0 10 0.54 0.56 0.56 0.54 0.54 0.54 
16# 75 0 25 0.46 0.49 0.49 0.54 0.54 0.54 
17# 50 0 50 0.33 0.38 0.38 0.53 0.53 0.53 
18# 25 0 75 0.23 0.27 0.27 0.41 0.41 0.41 
19# 10 0 90 0.18 0.20 0.20 0.26 0.26 0.26 
20 10 57.5 32.5 0.21 0.22 0.22 0.08 0.22 0.18 
21 50 37.5 12.5 0.37 0.38 0.38 0.30 0.37 0.35 
22 10 20 70 0.19 0.21 0.21 0.17 0.30 0.26 
23 75 10 15 0.47 0.50 0.50 0.45 0.54 0.52 
24 30 65 5 0.30 0.30 0.30 0.16 0.29 0.25 
25 60 35 5 0.41 0.43 0.43 0.34 0.41 0.39 
26 50 25 25 0.36 0.38 0.38 0.31 0.44 0.40 
27 35 35 30 0.30 0.32 0.32 0.26 0.37 0.34 
28 30 25 45 0.27 0.29 0.29 0.23 0.39 0.34 
29 30 10 60 0.26 0.29 0.29 0.26 0.48 0.41 
30 10 75 15 0.22 0.23 0.23 0.07 0.22 0.18 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 



Table S18. Predicted κ values for traditional Köhler, O:C Solubility, X:C Solubility, O:C-LLPS, 
X:C-LLPS, and Weighted Average Models for Leucine/2-MGA/AS System 

Experiment AS 
(wt%) 

Leucine 
(wt%) 

2-
MGA 
(wt%) 

κZSR κO:C κX:C κO:C-
LLPS 

κX:C-
LLPS  κWA 

1 100 0 0 0.61 0.61 0.61 0.61 0.61 0.61 
2 0 100 0 0.16 0.004 0.16 0.004 0.16 0.02 
3# 0 0 100 0.15 0.16 0.16 0.14 0.12 0.14 
4 0 10 90 0.15 0.16 0.16 0.15 0.16 0.15 
5 0 25 75 0.15 0.16 0.16 0.12 0.16 0.13 
6 0 50 50 0.15 0.10 0.16 0.00 0.16 0.09 
7 0 75 25 0.16 0.03 0.16 0.00 0.16 0.02 
8 0 90 10 0.16 0.02 0.16 0.00 0.16 0.02 
9 10 90 0 0.19 0.12 0.21 0.05 0.32 0.08 
10 25 75 0 0.24 0.23 0.28 0.11 0.36 0.15 
11 50 50 0 0.34 0.38 0.39 0.25 0.43 0.28 
12 75 25 0 0.46 0.51 0.51 0.41 0.51 0.43 
13 90 10 0 0.55 0.57 0.57 0.52 0.57 0.53 
14# 95 0 5 0.58 0.59 0.59 0.56 0.56 0.56 
15# 90 0 10 0.54 0.56 0.56 0.56 0.56 0.56 
16# 75 0 25 0.46 0.49 0.49 0.54 0.54 0.54 
17# 50 0 50 0.33 0.38 0.38 0.44 0.44 0.44 
18# 25 0 75 0.23 0.27 0.27 0.26 0.26 0.26 
19# 10 0 90 0.18 0.20 0.20 0.19 0.19 0.19 
20 10 60 30 0.19 0.20 0.20 0.06 0.20 0.08 
21 75 15 10 0.46 0.50 0.50 0.47 0.51 0.48 
22 65 15 20 0.41 0.45 0.45 0.39 0.50 0.40 
23 40 55 10 0.29 0.34 0.34 0.20 0.30 0.22 
24 50 25 25 0.34 0.39 0.39 0.35 0.43 0.32 
25 30 25 45 0.25 0.29 0.29 0.22 0.37 0.24 
26 30 50 20 0.26 0.30 0.30 0.18 0.29 0.20 
27 10 15 75 0.18 0.20 0.20 0.17 0.30 0.19 
28 10 75 15 0.19 0.17 0.20 0.05 0.18 0.07 

#Data points from Ferdousi-Rokib et al (in review) 

 

 

 

 

 

 

 



Table S19. χ2 goodness fits for all models 

 χ2 
Ternary 
System Kohler O:C X:C O:C-

LLPS 
X:C- 
LLPS 

Weighted 
Average 

Best 
Fit 

Leucine 4.90E+11 8.19 4.90E+11 6.29 4.90E+11 2.3 2.3 

Valine 10.59 10.4 2.50E+11 19.11 19.12 2.85 2.85 

Proline 8.29 12.39 14.95 8.93 5.23  5.23 
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Figure S16. Comparison of predicted κ from hygroscopicity models to experimental κ results of 
:ei ternary mixture; a 1:1 correlation is represented by the black line, and 10% error is outlined in 
grey dashed lines.  
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