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Abstract

Atmospheric aerosols exist as complex mixtures containing three or more compounds. Ternary
aerosol mixtures composed of organic/organic/inorganic can undergo liquid-liquid phase
separation (LLPS) under supersaturated conditions, affecting phase morphology and water uptake
propensity. Phase separation and water uptake in ternary systems has previously been
parameterized by oxygen to carbon (O:C) ratio; however, nitrogen containing organics, such as
amino acid aerosols, also exist within complex mixtures. Yet, amino acid mixture CCN activity is
poorly understood. In this study, we study the supersaturated hygroscopicity of three systems of
internal mixtures containing ammonium sulfate (AS), 2-methylglutaric acid (2-MGA) and an
amino acid. The three systems are AS/2-MGA/proline (Pro), AS/2-MGA/valine (Val), and AS/2-
MGA/leucine (Leu). The amino acids are similar in O:C ratios but vary in solubility. Water-uptake,
across a range of aerosol compositions in the ternary space, is measured using a cloud condensation
nuclei counter (CCNC) from 0.4 to 1.7% supersaturation (SS). The single hygroscopicity
parameter, x, was calculated from CCNC measurements.

All three systems exhibit two regions; one of these regions is phase separated mixtures when the
composition is dominated by AS and 2-MGA; 2-MGA partitions to the droplet surface due to its
surface-active nature and has a negligible contribution to water uptake. The second region is a
homogeneous aerosol mixture, where all three compounds contribute to hygroscopicity. However,
well mixed aerosol hygroscopicity is dependent on the solubility of the amino acid. Mixed Pro
aerosols are the most hygroscopic while Leu aerosols are the least hygroscopic. Theoretical x
values were calculated using established models, including traditional x-Kohler, O:C solubility
and O:C-LLPS models. To account for the possible influence of polar N-C bonds on solubility and
water uptake, the X:C parameterization is introduced through the X:C solubility and X:C-LLPS
models; X:C is obtained from the ratio of oxygen and nitrogen to carbon. The study demonstrates
competing organic-inorganic interactions driven by salting out effects in the presence of AS.
Traditional methods cannot further encapsulate the non-ideal thermodynamic interactions within
nitrogen-containing organic aerosol mixtures thus predictions of LLPS and hygroscopicity in
nitrogen containing ternary systems should incorporate surface activity, O-C, N-C bonds, and
salting out effects.



1. Introduction

Atmospheric aerosols are solid or liquid particles suspended in the air and can modify cloud
properties. For example, an increase in aerosol particle concentration can increase cloud lifetime
and reflectivity.! Aerosol ability to form clouds, referred to as aerosol-cloud interactions, results
in an overall cooling effect on our climate. Cloud formation and lifetime are driven by an aerosol’s
ability to uptake water, or hygroscopicity, under supersaturated (RH > 100%) conditions.* In
particular, aerosols exposed to supersaturated water vapor in the atmosphere presents a surface for
water to condense onto; the composition of the aerosols present can influence cloud formation.*
However, cooling effects and subsequent radiative forcing projections from aerosol-cloud
interactions present a large degree of uncertainty.!3 Uncertainty in aerosol-cloud radiative forcing
models is attributed to the complexity of aerosol particle size and chemical composition affecting
water uptake ability.-5-8

Traditionally, droplet activation under supersaturated conditions and CCN activity of aerosols are
predicted using Kohler theory.®> In particular, several previous studies have estimated
supersaturated hygroscopicity assuming all aerosol solute components are dissolved within a well-
mixed, aqueous phase.”!'* Thus, water uptake of aerosols and its mixtures can be parameterized
by x-Kohler theory.!> Traditional x-Kohler theory predicts water uptake by assuming all
compounds instantaneously dissolve into the droplet bulk and contribute to hygroscopicity.'*> For
aerosol mixtures, « is based on the equal volume fraction contribution of individual solutes and is
calculated by the Zdanovskii—Stokes—Robinson (ZSR) mixing rule.!> The assumption of full
dissolution in supersaturated aerosol droplets is challenged by the presence of partially water-
soluble and insoluble compounds. Previous studies have described the effect of a solubility
distribution in the bulk; in particular, studies have shown that in the presence of partially water
soluble to insoluble compounds, x-hygroscopicity is overpredicted. '>2¢ Compounds with a
solubility of 0.1 — 100 g L' have been shown to have an effect on water uptake and CCN
activity.!® 18 x-Kohler theory can be modified by accounting for compound solubility and fraction
of solute dissolved in the bulk.!s: 27 If the compound is known, water solubility values can be
directly applied to hygroscopicity calculations.!® 28 However, atmospheric organic aerosol
composition is often unknown; readily available data from field studies provides elemental
composition of organic aerosols including number of oxygen (O), carbon (C), and hydrogen (H)
atoms.?*-3! Water solubility is driven by polarity and the presence of O-C bonds and can contribute
to compound solubility. To extend hygroscopicity models to unknown organic aerosols and field
measurements, solubility can be parameterized using oxygen to carbon (O:C) ratio; limited
solubility range of 0.1 — 100 g L'! corresponds to an O:C range of 0.2-0.7 !7-25.27.32

Parameterizations of solubility have been dependent on the presence of O-C bonds in compounds
due to their polarity. However, organic aerosols may be composed of compounds containing
elements other than O, C, and H; organics may also contain nitrogen (N) and N-C bonds. N-C
bonds are also considered highly polar due to nitrogen’s strong electronegativity. Nitrogen
containing compounds are also present within our atmosphere; in this study, we focus on amino
acids. Amino acids are composed of a carboxylic acid group and amino group; additionally, they
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are known as the building block of proteins and a source of nitrogen for organisms such as
phytoplankton and bacteria.’* 3* Previous field studies have detected the presence of amino acids;
furthermore, amino acids can act as ice nucleating particles (INPs) and CCN %737 A study
performed in Central Europe found amino acids composed up to 5% of atmospheric particulate
matter within the region.’® Similarly, a study in Beijing, China measured a total concentration of
1.86 + 1.29 pg m> during the 2014 Asia-Pacific Economic Cooperation (APEC) summit.?®
However, amino acids are primarily found in sea spray aerosols (SSA).** ° Ocean bubble bursting
emits SSA into the atmosphere; as a result, 11-18% of dissolved organics within submicron SSA
being composed of free amino acids.*” Previous studies have examined the water-uptake ability of
amino acids as well as amino acid/AS mixtures under subsaturated (<100% RH) conditions;
limited studies have evaluated amino acid hygroscopicity under supersaturated (>100% RH)
conditions 37414 In subsaturated conditions, the deliquescence and morphology of amino acid/AS
aerosol mixtures was dependent on the solubility of the amino acid; amino acid aerosols were
found to affect the phase state of ammonium sulfate and create a liquid state when the amino acid
sparingly soluble.** Similarly, a study by Kristensson et al., 2010 also found that solubility effects
prevailed in water uptake behavior of pure amino acids. Thus, amino acids are efficient CCN and
its intrinsic solubility can present complexity in aerosol water uptake. A few studies have focused
on select amino acids (e.g, aspartic acid, serine, glutamine), however supersaturated
hygroscopicity data is not readily available for many other amino acids present in aerosols.*>37- 3
40.4% For example, Leucine, Valine and Proline are three amino acids found within SSA and land
aerosol samples, yet CCN measurements are not readily available.>>3%4 The study of amino acids
and nitrogen containing organic aerosol presents an opportunity to expand our scientific
understanding of complex nitrogen containing aerosol species and their subsequent water-uptake.
Recent studies have highlighted the growing significance of studying organic nitrogen (ON)
containing aerosols due to its abundance in the atmosphere and making up a significant portion of
nitrogen present in the atmosphere.*->2 For example, a study by Yu et al., 2024 found that 17-31%
of nitrogen containing aerosols studied within several urban and rural sites in China were
composed of organic nitrogen.>* Amino acids are encapsulated in these measurements; a study by
Spitzy 1990 reported amino acid aerosol concentrations of 0.47-1.13 nM m™ over the Bay of
Bengal.*¢ Additionally, a study by Gorzelska and Galloway, 1990 identified free amino acid
aerosols in the range of 0.003 to 1.63 nM m™ over the North Atlantic Ocean.*’ Thus, the
characterization of amino acid hygroscopicity is important in further improving CCN activity
predictions and projections of aerosol-cloud interaction radiative forcing.

Furthermore, the presence of amino acids may influence the morphology of aerosol particles. Both
the chemical and physical (internal morphology) composition within inorganic/organic droplets
can affect hygroscopicity predictions®>7 Uncertainty in aerosol mixture hygroscopicity
predictions is attributed to organic aerosols (OA). Primary organic aerosols (POA) have the ability
to oxidize, react, age, and interact with other organic/inorganic compounds. 3% 38-¢0 Additionally,
volatile organic compounds (VOCs) present in the atmosphere can oxidize and condense onto the
surface of existing aerosols present; through these reaction mechanisms, secondary organic
aerosols (SOA) can be formed.’® ! OA are represented by a range of compound classes (e.g.,
carboxylic acids, alcohols) and have varied properties based on their composition; in particular, a
distribution of solubilities are present in OA. '8 2% 62 63 Fyrthermore, organics can result in
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complex phase morphology within organic/inorganic aerosol mixtures.?% %4-% In particular, aerosol
mixtures can present as an outer organic layer and inorganic core, also known as liquid-liquid
phase separated (LLPS) morphology. 26 6% 6568 Chemical composition, solubility and phase
morphology of organic aerosols present complexity in predictions of droplet formation and CCN
activity.2

Amino acid mixtures with inorganic compounds may further complicate solubility effects.
Inorganic compounds such as AS are able to reduce the solubility of organic compounds, known
as a “salting out” effect and is attributed to the presence of LLPS salting out strength is dependent
on the ions present within the salt.®> % The presence of salts (e.g., NaCl, AS) may further enhance
intrinsic properties of organics. For example, surface-active compounds (e.g., 2-MGA, malonic
acid) mixtures result in lowered surface tension depression; the salting out effect pushes organic
out of the aqueous bulk and forms an organic monolayer on the droplet surface.”” ’! Many protein
studies have also described the use of AS to precipitate out proteins containing amino acids; the
presence of AS can further reduce the partial water solubility of amino acids and as a result
promote phase separation.”>’> Therefore, in mixtures of higher order (three or more compounds),
there may be competing organic-inorganic interactions that affect CCN activity. To our
knowledge, there are no studies that examine the CCN activity of higher order amino acid mixtures
under supersaturated conditions.

Recent studies have used O:C to parameterize both limited solubility and the presence of LLPS.
Studies have described the presence of partially soluble compounds promoting the presence of
LLPS; in particular, compounds with fewer oxygen atoms (lower O:C ratio) are more likely to
phase separate in a mixture.!3 % LLPS within mixtures occurs when the Gibb’s free energy is lower
for a phase separated state as opposed to remaining in a homogeneous state.!? 26 6% 76 Previous
studies have predicted the presence or lack of LLPS by mixture O:C ratio.?% 57 %8 For example, in
mixtures containing ammonium sulfate (AS), LLPS is predicted when the mixture O:C ratio <
0.56; depending on the composition mixture and properties, LLPS may exist for AS mixtures of
0:C 0.56-0.8.5% %% In studies by Ott et al., 2020 and Malek et al., 2023, LLPS in mixtures of 2-
methylglutaric acid (2-MGA), AS, and sucrose was estimated to occur at O:C ratios < 0.72 and
0.75, respectively. As more sucrose (higher O:C compound) is added to the system and O:C
becomes greater than the threshold, the phase morphology shifts from phase separated to well
mixed.?® ¢7 Previous studies have assumed that salting out induced LLPS does not affect CCN
activity due to mixed aerosols undergoing full deliquescence occurring above 100% RH.”” Malek
et al., 2023 showed that phase separation does influence supersaturated hygroscopicity and
incorporating O:C LLPS threshold in a hygroscopicity model best predicts x.2° Instead, the less
soluble organic partitions to the surface However, the studies mentioned above do not account for
phase separation within nitrogen containing mixtures, such as amino acid mixtures, and the
possible influence of nitrogen on LLPS estimations.

In this study, we characterize the hygroscopicity of L-leucine (Leu), L-valine (Val), and L-proline
(Pro) within ternary systems containing 2-MGA and AS. Though all three amino acids have a
similar O:C ratio (Leu = 0.33, Val and Pro = 0.4), solubility is varied (Leu < Val < Pro). «-
hygroscopicity is first experimentally determined under supersaturated conditions for pure amino



acids and their mixtures. Experimental hygroscopicity values are then compared against predicted
hygroscopicity calculated from traditional x-Ko6hler theory. In order to assess if O:C is an effective
parameterization of solubility and LLPS for nitrogen containing organics, such as amino acids, the
O:C-Solubility model and O:C-LLPS model from Malek et al. 2023, are used to predict x. To date,
there have been no solubility and LLPS parameterizations that incorporate other polar bonds, such
as N-C, that can have an effect on water uptake. We introduce a new parameterization, X:C, to
incorporate the polarity of both O-C and N-C within the amino acid in order to estimate solubility,
LLPS and « via the X:C-Solubility, X:C-LLPS and weighted average models. Ferdousi-Rokib et
al., 2024 (in review) also studied 2-MGA/AS mixtures and found a surface tension depression
effect due to the salting out of 2-MGA; 2-MGA is an organic compound that has the ability to
partition the surface and reduce droplet surface tension, also referred to as being a surface-active
organic. To account for surface activity, the Modified Monolayer Surface Coverage model is also
incorporated into the O:C-LLPS, X:C-LLPS and weighted average models. We discuss each
model’s efficacy in predicting water uptake within the three amino acid ternary systems as well as
the organic-inorganic interactions driving phase separation and CCN activity.

2. Experimental Methods
2.1. Chemicals

For this study, all chemicals were purchased and used without further modifications: ammonium
sulfate (AS, (NH4)2SOs4; Thermo Fisher Scientific, >99.0%), 2-methylglutaric acid (2-MGA,
CsH1004; Sigma Aldrich®, 98%), L-proline (Pro, CsHoNO,; Sigma Aldrich®, > 99%), L-valine
(Val, CsH11NO2; Sigma Aldrich®, > 98%), and L-leucine (Leu, C¢H13NO»; Sigma Aldrich®, >
98%). Compound chemical properties are listed in Table S1.

2.2 Solution Preparation

Three ternary systems, the Pro system (AS, 2-MGA, and Pro), the Val system (AS, 2-MGA, and
Val), and the Leu system (AS, 2-MGA, and Leu) were prepared at different weight percent
compositions (Figures S1-S3 and Tables S2-4). For each ternary system, the three chemical
compounds were weighed and dissolved in ultra purified Millipore water (18 MQ cm). Mixtures
range in O:C values (Tables S2-S4) to include experiments where LLPS is present and where
LLPS is not present. The phase transition from LLPS to well mixed (LLPS threshold) is estimated
based on the O:C LLPS model from Malek et al.?® The model predicts the O:C threshold to be
0.50, 0.48 and 0.43 for the Pro, Val and Leu systems, respectively. To determine the effect of
LLPS on cloud condensation nuclei (CCN) activity of amino acid mixtures, supersaturated
hygroscopicity measurements were performed. All CCN experiment solutions are provided in
Table S5-S7.

2.3. Cloud Condensation Nuclei Measurements

Hygroscopicity of pure amino acids and their respective ternary systems under supersaturated (SS)
conditions (>100% RH) was estimated using a Cloud Condensation Nuclei Counter (CCNC,
Droplet Measurement Technologies). The theory of the CCNC has been described in previous
literature.>% 7% 7 Solutions were passed through a constant output Collision Nebulizer (Atomizer,



TSI 3076) to generate polydisperse aerosols. Wet aerosols were dried (< 5% RH) using two silica
gel dryers in series.

Dried polydisperse aerosols are passed through an electrostatic classifier (TSI 3080) in scanning
mode from 8 nm to 352 nm for 135 seconds. The aerosol sample flow rate is 0.8 L min'! and the
aerosol to sheath flow rate is 1:10. The monodisperse size-selected particles were then sampled by
a condensation particle counter (CPC, TSI 3776) and CCNC in parallel. The CPC and CCNC
operated at 0.3 L min™! and 0.5 L min!, respectively. The CPC counted the number concentration
of dry particles (condensation nuclei, CN) at a selected size. The particles are then exposed to 0.42
to 1.72% SS within the CCNC and the concentration of particles activated (CCN) were measured.
The experimental set up was calibrated using ammonium sulfate.’® Calibration data and the
experimental set up are provided in Table S8 and Figure S4.

Python-based CCN Analysis Toolkit (PyCAT 1.0) analyzed all CCNC ternary and calibration data.
The open-source code is available on GitHub for public use.®’ Briefly described here, PyCAT uses
the scanning mobility CCN analysis (SMCA) of Moore et al., 2010 in Python;?! the activation ratio
of CCN to CN was calculated for each dry particle size using PyCAT.3? A sigmoid was fit through
the data to find the critical diameter (Djp,s0) where ~50% of the dry particles form cloud droplets.
A charge correction is applied in PyCAT using the multi-charge correction algorithm described in
Wiedensohler 1988.%% 3% For each supersaturation, the critical diameters were found and used to
calculate supersaturated single-hygroscopicity parameter, xccn.

3. Theory

Traditionally, the water uptake of aerosol mixtures can be calculated using Kohler theory.
However, Kohler theory assumes full solute dissolution and equal volume-weighted solute
contributions to hygroscopicity. Previous studies have shown that hygroscopicity can be estimated
for known mixtures containing partially to insoluble organic compounds.!® 182885 For known and
unknown compounds, limited solubility has been parameterized by the oxygen to carbon (O:C)
ratio and applied to hygroscopicity estimates.'® 17-2% 26 For this study, traditional Kohler theory
will be compared against the four models that account for both solubility and internal particle
morphology, O:C solubility model, X:C solubility model, O:C-LLPS model and X:C-LLPS model.
The theory and assumptions of each model are described in the following sections.

3.1 Traditional Kohler Theory

Kohler theory describes the process of water vapor condensation on particles and droplet growth
by considering aerosol physicochemical properties > 5. To describe droplet growth, traditional
Kohler theory accounts for the Kelvin effect and Raoult (solute) effect. The Kelvin effect accounts
for the increase of water vapor saturation due to the curvature of the droplet. The solute effect
accounts for the decrease in vapor pressure due to the presence of a soluble substance in the
solvent; the solute effects contribute to the water activity term, aw.* 8 For compounds fully

dissolved in water, aw can be parameterized using the single hygroscopicity parameter x as'> 87
=14k (1)



where Vs and V', are the volume of dry solute and water, respectively. The x parameter describes
aerosol propensity to uptake water when it is assumed that the solute instantaneously dissolves.!>

Combining both effects, the saturation ratio, S, over the droplet and the vapor pressure can
described as:
-1

S = (1 + KDwﬁf;s) exp (%) )

where, R is the universal gas constant, 7 is the temperature, pw is the density of water, My is the
molecular weight of water, Dy, is the wet droplet diameter and Dy is the dry particle diameter.

The x parameter be calculated from the intrinsic properties of chemically known water-soluble
aerosols as follows®’ :

Vs Ps M,
Ko = 20, 3)

where vs is the van’t Hoff factor, ps is the density, and M; is the molecular weight of the solute. To
estimate x for aerosols composed of more than one compound, the Zdanovskii, Stokes, and
Robinson (ZSR) assumption can be applied via the mixing rule!>:

Kzsr = Li €Kiy “4)
where ¢; is the volume fraction of the individual component, i.

k can also be derived directly from experimental hygroscopicity measurements, such as from a
CCNC. For supersaturated conditions, kcen can be described as follows!:
(405 /aMw)3

RTpw
KeeN = = 5 5
CCN ™ 27D3; In2ss )

In traditional x-Kohler theory, the volume fraction of all compounds fully contributes to overall
hygroscopicity (Eq. 4). However, previous studies suggests that organic solubility distribution
influences both phase morphology and aerosol hygroscopicity.!®!® Subsequent models modify
traditional x-Kd&hler theory to account for both organic solubility and phase morphology.

3.2 Parameterized Solubility Models

In the presence of partially water-soluble (0.1 — 100 g L) and effectively insoluble organic
compounds, thermodynamically ideal water-interactions are complicated and not captured in
traditional x-Kohler theory. '3 1325 For known compositions, the partial water solubility can be
directly applied to x-hygroscopicity predictions.!® 2* However, solubility limitations can be
parameterized using oxygen to carbon (O:C) ratio to extend theory to unknown organic
compounds. 27 Volume based solubility, &, can be parameterized by O:C ratio via Eq. 6!

In¢ =20 [(%)0'402 - 1]. (6)



Limited solubility is incorporated into x-hygroscopicity by calculated the dissolved fraction of
organic solute in the droplet, x;;, through the following definitions’:

Gr*-1)¢;
Xij = %, (7)
_ xi’j, xi,j <1
H(x;;) = {1, Y (8)

where Gr is growth factor calculated from Dyw/Dg and H(x; ) is the scaling factor based on x;; . The
overall parameterized O:C solubility hygroscopicity, xo.c, can be defined as:

Ko.c = i 2 &k jH (xi ;) 9)

where ¢;; and «;; are the volume fraction and hygroscopicity of each respective compound within
the aerosol sample. All compound solubilities are listed in Table S1. Pure Leu and Val solubilities
fall within the partially soluble range as defined by Petters and Kreidenweis!®; Pro is categorized
as fully soluble.!®

Previous studies have used O:C ratio to parameterize solubility due to the polarity of O-C bonds
and its influence on water solubility.!” However, this parameterization is mainly based on organic
compounds composed of O, C and H; this does not account for organic compounds containing
nitrogen (N), such as amino acids. For example, amino acids contain polar amino groups that can
also influence solubility. The O:C solubility parameterization presented in Eq. 6, based on the
work of Kuwata et al, correlated several known organic compound O:C to ¢ to find the best fit
parameterization.!” To incorporate possible nitrogen effects on solubility, a new parameterization
X:C is introduced where X is defined as the number of nucleophilic atoms; here, explicitly they
are oxygen and nitrogen. The X:C of a mixture is defined as:

. __ Xrmolespx(X:C)y
X:Chix = P — (10)
where k represents each individual organic compound. Volume based solubility of nitrogen
containing organic compounds of commonly found amino acids in nature can be correlated to their

respective X:C ratios (Table S9)*%%; & can be parameterized by X:C ratio using Eq. 10:
Ey.c = 0.06ln (%) + 0.064. (11)

The newly introduced X:C solubility parameterization can then be used in Eq. 7-9 to obtain xx.c.
3.3 Parameterized Solubility — LLPS Models

Previous aerosol studies have demonstrated the influence of solubility on both water uptake and
droplet phase morphology.?® %7 In particular, Ott et al., 2020 found that transitions from phase
separated to well mixed aerosols can be attributed by average mixture O:C ratio; the O:C ratio
where phase separation ceases to exist is considered the O:C threshold.®’ For a ternary system
containing 2-MGA, AS and sucrose the experimental O:C threshold was 0.72.%7 In Malek et al.,
2023, liquid-liquid phase separation (LLPS) was parameterized by O:C ratio for the 2-
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MGA/AS/sucrose ternary system and applied to x-hygroscopicity predictions using the O:C-LLPS
model.

In the O:C-LLPS model, it is assumed the organic compound with the lowest O:C (i.e., the lowest
solubility) will partition to the surface of the aqueous phase when phase separation is present; it is
assumed that the most soluble organic compound is well-mixed with AS in the bulk.?® For this
study, the three amino acids have lower O:C values than 2-MGA. However, 2-MGA has surface-
active properties, especially when mixed with AS.?6 In this study, 2-MGA is assumed surface-
active and when LLPS is present, 2-MGA likely moves to the surface and the contribution to bulk
hygroscopicity of AS and the amino acid is negligible (€2-mca = 0).

The O:C-LLPS model uses bootstrap sampling method to estimate the O:C threshold of a ternary
system. Briefly described here, the model simulates 100,000 possible O:C thresholds within a
range to find the most probable occurrence of phase separation. The range is determined by the
minimum and maximum O:C values; for the Leu system the O:C ratio range is 0.33-0.67 while for

Histogram of Proline Ternary Kappa Threshold (0:C) 0-C Threshald vs. Kappa Threshold (Proline)
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Figure 1. O:C-LLPS threshold prediction results, where (A) xuresh frequency distribution after iterating
100,000 and the most frequent bin (kumresn) Shown by a red dashed line and (B) O:Cinwesh VS. Kinresh , Where
the most frequent xunresn and its corresponding O:Cinresh Value are shown by the blue dotted lines. The
corresponding O:Ciesn Value is the O:C threshold of the system, where the phase separation limit is
most probable and the thermodynamically favorable.

the Val and Pro systems the O:C ratio range is 0.4-0.67. At activation, the solubility of the solute
depends on Dy. Wet droplet diameter is estimated by using instrument SS, D, 50 = Dg and xcen from
Eq. 5 and Eq. 2; solubility is parameterized using Eq. 6. For each possible O:C threshold, xo.c (Eq.
9) is calculated based on two conditions:

(1) O:Cnmix < O:Cinresh : only Leu/Pro/Val and AS contribute to hygroscopicity within respective
systems (€2-mGa = 0)

(2) O:Chix > O:Cinresh: all compounds contribute to hygroscopicity
O:C thresholds are tested at random across the range. For each threshold, a set of theoretical xo.c

values are calculated; for each set the geometric mean is calculated and is referred to as Kinresh; Kinresh

11



represents the potential average x of the ternary system based on the presence of LLPS at the tested
O:Cinresh. To effectively determine the true LLPS threshold, the mean xinresh is determined as this
represents the most likely phase separated ternary system and O:Ciresh. The frequency of #inresn
values are plotted as a Poisson distribution, where the mean #insn bin is determined; the Poisson
distribution represents the discrete distribution of an event’s frequency count when the event
randomly occurs. In this study, the Poisson distribution is used to represent the frequency of a
mean Kinresh to occur when the O:Cinresh 1 tested at random. In other words, xinresn 1S the most probably
hygroscopicity, driven by the composition and morphology that is most favorable for interactions
with water. For example, the mean xusn Of the Pro system based on the Poisson distribution was
found to be ~0.39 (red line, Fig 1A). kumresn 1S then plotted against their O:C threshold (O:Cinresh)
value and a curve fit is generated. An example of the Kinresnh Vs. O:Cihresh 1s shown for the Pro system
in Fig 1B. The curve fit and mean xiusn are used to determine its corresponding O:Cinresn (blue
lines, Fig 1B). The corresponding O:C threshold to the most frequent xuresh is considered the most
probable O:C threshold. The mean of the Poisson distribution indicates the most favored aerosol
state where the thermodynamic limit is lowest. Using the mean O:Ciuresh, Ko:c 1S calculated using
the previous two conditions; the hygroscopicity values are referred to as xo.c..es. The Poisson
distribution and corresponding Kinresn vs. O:Cinresh results for the Val and Leu systems are shown in
Fig S7-8.

LLPS in all three amino acid ternary systems can also be parameterized with the newly introduced
X:C ratio. The X:C-LLPS model follows the methodology described above for the O:C-LLPS
model with the exception of solubility parameterization; Eq. 11 is used to parameterize volume-
based solubility. The X:C bootstrap range is 0.5-0.67 for the Leu system and 0.6-0.67 for both Val
and Pro systems. X:Ciresh 1S calculated for each system using mean of #inesn distributions and
corresponding X:Curesh Value, shown in Figures S9-11. The calculated hygroscopicity values of the
X:C-LLPS model are xx.c-Lips.

3.6 Predictions

Once the phase separation threshold is determined, one can predict the hygroscopicity of aerosols
in ternary space. However, the influence of surface-active compounds such as 2-MGA, must be
accounted for. Previous studies by Malek et. al, 2023 and Ferdousi-Rokib et al., 2024 (in review)
found that 2-MGA favors partitioning to the surface in mixtures with AS. Thus, the Modified
Monolayer Surface Coverage (MMSC) model from Ferdousi-Rokib et al., 2024 (in review) was
incorporated to only model 2-MGA/AS binary mixtures. Several studies have observed the
presence of a monolayer influencing both droplet surface tension and water uptake.®®“° However,
a previous study by Bain et al., 2023 describes how surface-active organic concentration of < 100
mM can create a monolayer but droplet surface tension was reflective of more dilute organic
concentrations; however, surface tension values can be as much as > 40 mN m™!' higher than
measured surface tension values from macroscopic solutions of the same concentration.”® Thus,
the MMSC model accounts for the probability of monolayer formation under dilute conditions as
surface-active organic (2-MGA) composition increases by calculating average droplet surface
tension, Tg,, as:

Oy. = (1 — )0, + 905 mea, (12)

12



where ¢ is modified monolayer formation probability , o, and 0, _yga are average experimental
surface tension values of water and 2-MGA, respectively. Hygroscopicity is calculated by
categorizing mixtures into three categories: (1) full dissolution (2) probability of monolayer
formation and (3) excess dissolution of surface-active organic into the bulk. For all systems, it is
assumed that total AS mass dissolves into the bulk. In Category 1 (p~0), 2-MGA mass enters the
bulk and hygroscopicity can be calculated using Eq. 9. As 0<¢p<1/, 2-MGA no longer contributes
to the bulk and the remaining 2-MGA mass partitions to the surface and presents a negligible
contribution to hygroscopicity. Therefore, the 2-MGA bulk mass is limited to bulk mass where ¢
was formally ~0. Finally, the monolayer becomes saturated (p~1) and the remaining organic mass
enters the bulk. The modified monolayer formation probability ¢ is obtained from the dilute
surface tension measurements of 2-MGA and 2-MGA/AS mixtures. For further details on the
MMSC model, see Ferdousi-Rokib et al.,2024 (in review). Hygroscopicity for 2-MGA/AS
mixtures are calculated as:

KaMGA/AS = Di D) Sil?jKi,jH(xi,j)' (13)

To determine if the MMSC model must be applied for amino acid/AS systems, surface tension
measurements were taken for Pro, Val, and Leu. The three amino acids were found to be less
surface-active than 2-MGA; for dilute concentrations, all three amino acids have a surface tension
value ~ 71 N m™! (water), while 2-MGA still presents depressed surface tension (Tables S10-12,
Figures S12-S13). Therefore, it is assumed 2-MGA is the only organic partitioning to the surface
within LLPS aerosols due to its surface activity. Surface tension measurements predictions of the
ternary aerosol hygroscopicity account for varying O:C and N:C bonds that influence solubility,
hygroscopicity, and phase separation.

4. Results
4.1 Experimental Results of Ternary Systems

The water uptake of the Pro, Val and Leu ternary systems were measured under supersaturated
conditions (0.42, 0.61,0.78,0.99, 1.21, 1.57 and 1.72% SS) using a CCNC. Each system contained
mixtures of varied compositions and O:C ratios (Table S2-S4). Average experimental
supersaturated hygroscopicity values were calculated for all mixtures across the supersaturated
conditions and are reported as xcen; the kcen and standard deviation for all mixtures are reported in
Tables S13-S15. AS and 2-MGA «ccn were obtained from Ferdousi-Rokib et al., 2024 (in review).
kcen of pure Pro, Val and Leu were 0.43+0.09, 0.06+£0.02 and 0.01£0.00, respectively. xcen values
of each compound are consistent with amino acid solubility, with Pro being most
soluble/hygroscopic and Leu being least soluble/ hygroscopic. Val is observed to have similar
water uptake as Leu although Val has the same O:C ratio as Pro; this is consistent with Val and
Leu being partially soluble (88.5 and 22.4 g L', respectively). Previous studies have emphasized
the influence of solubility distribution on x-hygroscopicity. For moderately soluble compounds
(>100 g L'!) such as Pro, the solute instantaneously dissolves and xcen is driven by molar volume;
for partially soluble compounds (0.1-100 g L"), such as Val and Leu, hygroscopicity is limited by

the dissolved fraction of organic solute in the droplet, x;;, and lowers overall hygroscopicity.!'® 17
27,43, 80
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Limited studies have investigated amino acid hygroscopicity; for example, Raymond and Pandis
investigated Leu supersaturated hygroscopicity and observed a xcen of ~0.02, similar to
experimental results of this study.!> °* However, to our knowledge, no prior studies have
investigated hygroscopicity of Pro and Val as well as ternary mixtures containing amino acids
under supersaturated conditions. xccn values were also calculated for all ternary systems and
evaluated against six hygroscopicity models — traditional Kéhler model, O:C solubility model, X:C
solubility model, O:C-LLPS model, X:C-LLPS model and a weighted average model.

Mixtures of the three systems, Pro/2-MGA/AS, Val/2-MGA/AS and Leu/2-MGA/AS were
investigated. xccn was calculated for each ternary system via Eq. 5 and is shown in Figure 2 (data
provided in Tables S13-S15). All xccn values are then presented on a contour ternary plot, where
pure AS is represented on the bottom left vertex, 2-MGA on the bottom right vertex and amino
acid on the top vertex. Hygroscopicity is presented as a color scale, ranging from dark purple (most
hygroscopic, AS) to light yellow (least hygroscopic organic). Experimental xccn values were used
to extrapolate hygroscopicity values across the ternary contour plots (Figure 2, Table S13-S15).

For all ternary plots, xccn range from 0.01 (pure Leucine) to 0.61 (pure AS). The overall Pro system
is moderately hygroscopic, with xcen values ranging between 0.14 (pure 2-MGA) — 0.61 as seen
in Figure 2A. The ternary contour plot presents a darker purple (hygroscopic) region in the
predominantly AS/2-MGA region, behaving closer to pure AS; a similar highly hygroscopic region
is observed in Malek et al for AS/2-MGA/sucrose ternary mixtures.?® The AS-dominated
hygroscopic region is highlighted with a dash-white line (Figure 2A-C). The hygroscopic region
is attributed to surface partitioning of 2-MGA due to surface activity as well as salting out in the
presence of AS.%¢ (Ferdousi-Rokib et al., 2024, in review) .

Therefore, 2-MGA is depleted from the droplet bulk and AS drives hygroscopicity within this
region; this region is considered the LLPS region. Above this region, hygroscopicity presents a
direct, almost linear, correlation with organic composition, reflecting full hygroscopic contribution
of all compounds; as organic mass is increasing within the mixture, xccn is decreasing. xcen in the
region above the dashed white line are moderately hygroscopic and range from ~0.1 to 0.5. This
trend has previously been observed in LLPS aerosol hygroscopicity and reflects the presence of
both LLPS and well mixed regions.!? 1526
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Figure 2. Experimentally derived xccen results for (A) Pro ternary system (B) Val ternary system
and (C) Leu ternary system, presented on ternary contour plots. The ternary plot vertices represent
pure compounds (bottom left vertex = AS, bottom right vertex = 2-MGA, and top vertex =
Pro/Val/Leu). Experimental mixtures for this study are represented by blue dots in each ternary
figure. k-hygroscopicity is represented as a color gradient where purple is most hygroscopic and
light yellow is least hygroscopic. The LLPS region is outlined by a white, dashed line. LLPS is
present within the purple region and above the dash line, solutes are well mixed.

The Val ternary system presented similar water uptake behavior to the Pro ternary system. xcen
values range from 0.06 (pure Val) to 0.61 (pure AS); pure Val is presented as yellow in the ternary
contour plot, shown in Figure 2B. The Val ternary system is also the most hygroscopic in the
predominantly 2-MGA/AS (LLPS) region. The most hygroscopic region suggests that 2-MGA
continues to partition to the surface and drive LLPS in both ternary systems. However, xcen in the
well-mixed region (above the dashed white-line) is lower for Val than the Pro system although Pro
and Val have the same O:C ratio. This phenomenon is likely due to their solubilities, with Pro
being more soluble than Val. As a result, the Val ternary system is less CCN active than the Pro
system and the LLPS region is more apparent.

CCN activity of the ternary Leu system is shown in Figure 2C. Pure Leu xcen 1s represented as
light yellow and experimental xcen values ranged from 0.01 (pure Leu) to 0.61 (pure AS). The Leu
ternary system presented the same LLPS and hygroscopicity trends as the Pro and Val systems.
However, the well-mixed region (outside of LLPS, Figure 2C) is the least hygroscopic of all three
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ternary systems. The CCN activity of all systems correlate with amino acid solubility; Leu is the
least water soluble and as a result, mixed Leu aerosols are less likely to uptake water than Pro and
Val aerosol mixtures. All three ternary systems present similar water uptake trends but the overall
k-hygroscopicity range is dependent on pure amino acid solubility.

4.2. Modeling Results and Comparisons
4.2.1 Traditional x-Kohler Predictions

Experimental xcen values for the amino acid ternary systems were compared to hygroscopicity
prediction models. Traditionally, x-hygroscopicity values are calculated using the Kohler/ZSR
method, which assumes full dissolution and hygroscopic contributions of all compounds.
Theoretical x-hygroscopicity values, xzsr, were calculated using Eq. 3-4 and is referred to as the
traditional x-K6hler model; the model results for all systems are listed in Tables S16-18. xzsr was
plotted on ternary contour plots and compared against the experimental contour for each ternary
system (Figure 3).

Figure 3 shows that for all three ternary systems, the traditional x-Kohler model (Fig 3D-F)
predicts a linear relationship between organic composition and hygroscopicity as mixtures become
predominantly 2-MGA. The linear relationship does not include a phase separated hygroscopic
region, as observed in experimental data (Fig. 3A-C). Previous studies have noted that traditional
k-Kohler theory is inadequate for explaining CCN activity of phase-separated or partitioned
aerosols. This limitation may be due to solubility or surface activity.?% 7!- 88,89, 91,9598 Therefore,
traditional x-Kohler is unable to predict the surface partitioning of 2-MGA due to its assumption
that all compounds fully dissolve and contribute to the bulk droplet. As a result, the traditional #-
Kohler is ineffective in predicting xcen of all three ternary systems.

4.2.2. O:C and X:C Parameterized Solubility Predictions

The deviation from traditional hygroscopicity predictions and experimental data has been
attributed to the limited solubility distribution of organic compounds. To determine if organic
solubility can effectively predict hygroscopicity of the ternary systems, we evaluate solubility for
known compounds and as parameterized by O:C solubility (Eq. 6). The solubility
parameterizations were then used to calculate theoretical xo.c using Eq. 7-9; xo.c was then plotted
on ternary contour plots and are shown in Figures 3G-I and Tables S16-18, respectively. O:C
solubility predicts lower x values for all mixtures. O:C solubility predicts pure Pro and pure Val x
~ 0.02; pure Leu « is predicted to be ~ 0.004. Pure Leu and pure Val are better predicted by O:C
solubility than pure Pro. For mixtures, O:C solubility predicts similar theoretical x for Pro and Val
mixtures; for Leu mixtures, Leu dominant mixtures (> 80 wt% Leu) are predicted to be less
hygroscopic. All organics and their aerosol mixtures have O:C values within 0.2-0.7. Previous
studies show that the O:C solubility parameterization can be applied to organic aerosol with an
O:C range of 0.2-0.7.'7-25- 27 However, pure Pro is known to be fully water-soluble (365 g L™,
above the solubility limitation range of 0.1-100 g L!)!® and the O:C solubility parametrization is
inadequate for Pro and incorrectly predicts hygroscopicity. At the same time, the O:C solubility
model still predicts a linear relationship between hygroscopicity and organic volume similar to
traditional x-Kohler model; the model is unable to predict the 2-MGA/AS dominated LLPS region.
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2-MGA is predicted to be fully water-soluble by O:C solubility (x« ~ 0.16) but additionally
partitions to the droplet surface. The LLPS region is likely dominated by surface-active 2-MGA
partitioning; however, phase separation is not accounted for in the O:C solubility model.
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Figure 3. Experimental kccn results for Pro, Val and Leu (A-C) compared to kzsr results (D-F),
Ko:c results (G-I), and kx.c results (J-L) . All k values are presented on ternary contour plots. The
ternary plot vertices represent pure compounds where bottom left vertex = AS, bottom right
vertex = 2-MGA, and top vertex = Pro/Val/Leu. k-hygroscopicity is represented as a color
gradient where purple is most hygroscopic and light yellow is least hygroscopic.

Previous studies use O:C to parameterize solubility due to the polarity of O-C bonds driving water
solubility and uptake. However, N-C bonds also present polarity that may affect solubility and
water uptake properties. The X:C solubility model uses a newly introduced solubility
parameterization, X:C, based on both O-C and N-C bonds (Eq. 10-11). #x. is then calculated
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using Eq. 7-9 (Tables S16-18). The model predicts overall xx.c values greater than overall xo.c for
all three ternary systems respectively (Figures 3J-L). This is attributed to the X:C parameterization
predicting a higher solubility than the O:C parameterization due to the presence of N-C bonds. As
a result, full dissolution is predicted (H(x;;) = 1) and the X:C solubility model presents a linear
trend for all systems. Both solubility models do not estimate regions of LLPS driven
hygroscopicity due to the assumption that all compounds still contribute to x across the ternary
mixture space.

4.2.3 O:C and X:C Parameterized Solubility & LLPS Model Predictions

Previous studies have observed complex morphologies in aerosol inorganic-organic and inorganic-
organic-organic mixtures; these morphologies can influence water uptake.?® ¢ 66-68 Studies have
parameterized LLPS by using O:C ratio.?® 63676899100 Tg model xcen and account for LLPS, the
O:C-LLPS model, previously introduced in Malek et al., 2023 was used. The model predicts an
O:C threshold, or O:C mixture where LLPS reaches a thermodynamic limit. Above the threshold,
aerosols are considered well mixed and xo.c.eies 1S calculated using Eq. 9. Below the threshold,
aerosols are considered phase separated and xs.mca is set to 0. The predicted O:C thresholds are
0.49, 0.51, and 0.47 for the Pro, Val, and Leu systems, respectively (Table 1). For 2-MGA/AS
mixtures, the MMSC model is used to calculate theoretical x (Eq. 12-13). xo.c.Lips ternary contour
plots are shown in Figures 4D-F (Tables S16-18).

Compared to Traditional Kohler, O:C solubility, and X:C solubility models, the O:C-LLPS model
successfully estimates a hygroscopic LLPS region for all three systems. The model accounts for
2-MGA partitioning due to salting out and surface activity; 2-MGA partitioning is the main driver
of LLPS in the amino acid ternary systems. Therefore, calculating water uptake based on a
threshold value effectively predicts phase separation in all three systems and aligns with previous
studies.?® 6567, 68.99. 100 However, the model is limited in predicting x-hygroscopicity of well-mixed
aerosols (above the white-dash line regions). For mixtures > O:Cinresh, Ko:c-LLps = Ko:c. As a result,
ko.c-.ues underpredicts water uptake for the Pro ternary system; the model continues to underpredict
Pro x as the O:C parameterization is unable to reflect Pro solubility. The O:C-LLPS model also
underpredicts « for a portion of the Val ternary system, shown on the Val/2-MGA axis (right side).
For Val/2-MGA mixtures with > 50 wt% Val, the O:C-LLPS model predicts xo.c.eps of 0.02.
However, xccn reflects moderate water uptake properties and ranges from 0.06-0.16. The model
best predicts x for the Leu ternary system, especially for the Leu/2-MGA mixtures; this is
represented by the light-yellow region in both Figures 4C and 4F. O:C parameterization is best
able to reflect the limited solubility of Leu and as a result, the O:C-LLPS model is able to predict
CCN activity for both the LLPS and non-LLPS mixtures.
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Figure 4. Experimental xcen results for Pro, Val and Leu (A-C) compared against xo.c..ies results
(D-F), xx.c.Lies results (G-I), and xwa results (J-L) . All k values are presented on ternary contour
plots. The ternary plot vertices represent pure compounds where bottom left vertex = AS, bottom
right vertex = 2-MGA, and top vertex = Pro/Val/Leu. k-hygroscopicity is represented as a color
gradient where purple is most hygroscopic and light yellow is least hygroscopic.

In addition to the O:C-LLPS model, the X:C-LLPS model was also used to predict theoretical « to
determine if both O-C and N-C bonds can effectively incorporate solubility, LLPS, and water
uptake (Figure 4G-I). The model follows a similar approach to the previous parameterized-LLPS
model; now solubility and phase separation are parameterized using X:C (Eq. 10-11). X:C
thresholds were calculated for each ternary system and are 0.65, 0.64 and 0.63 for Pro, Val and
Leu, respectively (Tables S16-18). The model is once again able to predict a hygroscopic phase
separated region for predominantly 2-MGA/AS mixtures; the use of both a LLPS threshold and
MMSC model are effective in calculating hygroscopicity in amino acid ternary systems. For non-
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LLPS mixtures, xx.c..es = kx:.c. The X:C parameterization predicts higher water uptake than O:C
parameterization due to both O-C and N-C bonds contributing to polarity. The X:C-LLPS model
is effective in predicting water uptake for the Pro system; X:C solubility parameterization is able
to predict pure Pro’s higher solubility. However, the model overpredicts x for both well mixed Val
and Leu aerosol mixtures; the X:C parameterization overestimates solubility compared to O:C.
The effectiveness of the O:C-LLPS and X:C-LLPS models for the different amino acid systems
may be attributed to the varied influence of N-C on amino acid solubility, including in the presence
OfAS.73’ 74,101

Table 1. Computationally derived thresholds for O:C-LLPS and X:C-LLPS models
Ternary System O:C Threshold X:C Threshold

Pro/AS/2-MGA 0.49 0.65
Val/AS/2-MGA 0.51 0.64
Leuw/AS/2-MGA 0.47 0.63

4.2.4 Best Fit and Least y? Fit Models

The model that best agrees with the experimental ternary system data falls within the O:C LLPS
and X:C LLPS models. To assess each model’s predictive ability and characterize N-C influence
on water uptake, a y* analysis was performed to determine the best model for each system; a
smaller y? value corresponds to a better fit model representative of the experimental data. y* values
for all ternary system models are reported in Table S19. In addition to the previously mentioned
models, an optimized weighted average of O:C-LLPS and X:C-LLPS model predictions assessed
O:C and N:C contribution and determined the best fit model for all three systems. The weighted
average of the two models was calculated as:

Kwa = Q * Ko.c.LLps T b * Kx.c.LLps (14)

where coefficients a (O:C) and b (X:C) range from 0 (no contribution) to 1 (full contribution).
Coefficients are calculated by simulating different values for a and b to find the least y* fit for kcon

of each system; the best fit models and corresponding y* values are listed in Table 2 and kwa values
are listed in Tables S16-S18.

Table 2. Best Fit and %> For Amino Acid Ternary Systems

Ternary System Best Fit Model a b v

Pro/AS/2-MGA X:C-LLPS 0 1 5.23
Val/AS/2-MGA Weighted Avg 0.30 0.70 2.85
Leuw/AS/2-MGA Weighted Avg 0.89 0.11 2.30
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For the Pro ternary system, the X:C-LLPS model was the best fit (¢ = 0 and » = 1). However, Val
and Leu ternary systems experimental «x are best predicted by a weighted average model. The Val
system is modeled by a weighted average of 0.3 xo.c.ies and 0.7 xx.c.Lies; the optimal model for the
Leu system is a 0.89 xo.c.uies and 0.11 xx.c.ies weighted model. Amino acid best fit models are
shown in Figure 4J-L. Though all three amino acids have similar O:C ratios, O:C and N:C
contribution vary between all three systems. Pro presents equal contribution of O-C and N-C
bonds; Val and Leu have greater O-C influence than N-C, with Leu being most dependent on O-
C. Contributions of O-C and N-C to solubility and hygroscopicity in amino acid ternary systems
is correlated with the structure of each amino acid.

All three amino acids are categorized as nonpolar aliphatic; nonpolar aliphatic amino acids are
defined by a carboxylic acid functional group and nonpolar, hydrophobic containing amino
chain.’> 7 1922 Amino acid structures are listed in Table 3. Val and Leu are open chained whereas
Pro is closed chained. Previous studies investigated nonpolar aliphatic amino acid solubility in the
presence of salts, like AS.”" Salts such as AS and NaCl can reduce solubility (“salting out™) of
organics due to its ionic behavior; salt ions disrupt organic molecule hydration because of its
stronger affinity to interact with water molecules.”® 7 Furthermore, salting out has been readily
observed to be most effective in solutions containing salt and proteins composed of amino acids.”
AS’s anion, SO4%, is considered an effective salting out agent. ®

Table 3. Amino Acid Formula and Structure

Amino Acid Formula Structure Side Structure
0
Pro CsHoNO; CH Close chain
NH
CHy ©O

Val CsHi1INO» Hac)\)LOH Open chain
0]
Leu CsH13NO> NOH Open chain
NH

Specifically, amino acid side chain structure dictates salting out effect in the presence of salt ions.
Amino acids such as Val and Leu contain a nonpolar, open side chain that is considered
hydrophobic. 7> 7+ 192 Hydrophobicity of the side chain increases with additional CH> groups; as
a result, Leu has a more hydrophobic side chain than Val.®>- 7% 7% When present in an aqueous
solution, salt (AS) ions disrupt the hydration of the amino acid chain containing N-C bond,
reducing amino acid solubility. 7> 74 192 Salting out effects are greater for Leu than Val due to the
additional -CH».”> 7+ 191 Amino acids also contain a polar, carboxylic acid functional group
containing only O-C and O-H bonds. The disruption of amino side chain (N-C) interaction with
water enhances the effect of O-C in Leu and Val solubility in mixtures.”* However, N-C still
presents influence on solubility and water uptake. Val and Leu are best represented by a weighted
average model with O-C given more weight, as shown by its least ¥ fit; the contribution of N-C
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for the Leu system is less than the Val system (brLew < bva) and may be due to its longer chain
enhancing salting out effects. However, Pro and its mixtures do not present salting out effects. Pro
is also a nonpolar aliphatic amino acid but its side chain is cyclical (Table 3). Cyclic structures are
more rigid and smaller; therefore, the compound efficiently dissolves in water and results in Pro
having a higher solubility.! Its small structure also limits salting out effects in the presence of AS
and N-C contribution is not reduced.”? As a result, Pro is best modeled by the X:C-LLPS model
alone; the X:C-LLPS model predicts equal contribution of O-C and N-C on solubility and water
uptake.

Modeling each amino acid ternary system based on LLPS, solubility and salting out effects best
reflects hygroscopicity. The presence of nitrogen influences both solubility and water uptake
behavior; to predict water uptake, contributions of O-C and N-C must be included. Contributions
of the polar bonds are dependent on the structure of the amino acid; open chain amino acids (Leu,
Val) have reduced N-C effects due to their propensity to salt out in the presence of salts. Amino
acids with closed side chains, such as Pro, do not salt out and can therefore be modeled by an equal
contribution of O-C and N-C bonds. Therefore, chemical structure can dictate CCN activity and
should be considered in predicting water uptake of complex aerosol mixtures.'%4 105

2-MGA also salts out in the presence of AS and depresses surface tension. As a result, organic
surface activity influences water activity of ternary mixtures by enhancing LLPS. Malek et al
correlated 2-MGA partitioning to its O:C solubility; however, in this study, 2-MGA (the more
soluble organic) partitioning is due to its surface activity. Accounting for both LLPS and surface
activity by using parameterized LLPS and MMSC model improves water uptake prediction of
amino acid ternary systems. Thus, solubility, surface activity, phase morphology and CCN activity
in amino acid/2-MGA/AS systems are driven by the salting-out effects of AS. Previous studies
have investigated salting out, solubility, surface activity, and phase morphology influence on CCN
activity, separately. !> 16:19-25,28,88,89,92,106-108 However, studies have not accounted for all factors
having a collective effect on CCN activity and subsequent x-hygroscopicity. This study accounts
for all factors having a collective effect on hygroscopicity through the incorporation of solubility
parameterization and surface tension possibly driven by salting out effects in x-hygroscopicity
models.

Further work must investigate amino acids of different structures (e.g., longer/short side chain)
and salts of lower order on the Hofmeister series (e.g., NaCl) to assess salting out and water uptake
effects in nitrogen containing organic aerosol mixtures. Additionally, amino acids containing
elements other than oxygen, nitrogen, carbon, and hydrogen exist. For example, methionine,
cysteine and taurine each contain sulfur.!® Future work should study how these additional
nucleophilic compounds may affect LLPS, salting out and hygroscopicity in mixtures. Organics
of stronger surfactant strength can further complicate predictions of partitioning and LLPS by
enhancing solubility and salting out effects.”! 3% Therefore, studies must be performed to evaluate
influence of surface activity in amino acid mixtures. In order to effectively predict -
hygroscopicity for amino acid ternary mixtures, models must account for multiple factors (nitrogen
effects on solubility, chemical structure, LLPS, surface activity), as shown by the X:C-LLPS and
weighted average models.
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5. Summary and Implications

Three amino acid ternary aerosol mixtures were investigated for their water uptake properties.
Mixtures were composed of ammonium sulfate, an inorganic salt, 2-methylglutaric acid, a surface-
active organic, and an amino acid; amino acids chosen for this study were proline (Pro), valine
(Val), and leucine (Leu). The amino acids are similar in O:C ratios (Leu O:C = 0.33 and Pro/Val
O:C = 0.4), but vary in solubility, with Pro > Val > Leu. Hygroscopicity was measured under
supersaturated conditions using a CCNC. The CCNC determined the activation ratio of particles
from 0.4 to 1.7% SS and an experimental xccn was calculated. Results for all three systems showed
the presence of both LLPS and well mixed aerosol across the range of mixtures in the ternary
space. Mixtures with phase separated morphology are dominated by AS/2-MGA and is likely due
to 2-MGA bulk-surface partitioning. For well mixed aerosol mixtures, xcen presents a quasi-linear
trend between organic composition and hygroscopicity. However, water uptake in the well mixed
region parallels the solubility of the amino acid; well mixed Pro (most soluble) mixtures are the
most hygroscopic while Leu (least soluble) mixtures are the least hygroscopic.

Mixtures were compared to already existing hygroscopicity models, such as traditional x-Kohler,
O:C solubility and the O:C-LLPS models. To account for the influence of nitrogen on amino acid
solubility, a new parameter X:C was introduced through the X:C solubility and X:C-LLPS models.
The traditional x-Kd&hler, O:C solubility and X:C solubility models were unable to predict LLPS
and hygroscopicity of the three amino acid ternary systems. The models predict a linear
relationship between organic mass and hygroscopicity between all mixtures; this is due to the three
models predicting full dissolution of 2-MGA. To account for LLPS and surface activity, the O:C-
LLPS (xo.c.ies), X:C-LLPS (xx.c.ues) models, and weighted average models were used to predict
theoretical x-values. The X:C-LLPS model was identified as the best fit for the Pro ternary system.
Val and Leu ternary systems were best modeled by weighted average models; the Val system had
a weighted average of 0.3 ko.c.ues and 0.7 xx.c.uies While the Leu system was 0.89 xo.c.uesand 0.11
kx.ctLps. The respective contributions of each model are attributed to the difference in amino acid
side chain and subsequent salting out effects. Closed chain amino acids, such as Pro, are rigid and
small and as a result, both O-C and N-C bonds contribute to solubility and the X:C-LLPS model
performs the best for Pro. Val and Leu are open chained and salt out in the presence of AS, with
salting out effects being more prominent with increased chain length (e.g; Leu chain > Val chain).
Therefore, O-C bonds have more influence in Val and Leu ternary systems and are best reflected
by a weighted average model dependent on their side chain length.

AS/amino acid salting out are driven by amino acid chemical structure, which subsequently
influences solubility and hygroscopicity, and indeed all thermodynamically driven processes.
Previous studies utilize O:C parameterization for solubility, LLPS threshold, and - hygroscopicity
predictions. However, O:C alone cannot fully encapsulate the non-ideal interactions within amino
acid containing mixtures, and possibly complex nitrogen containing mixtures. The newly
introduced X:C parameter is a better parameterization or can be used in addition with O:C these
mixtures; this emphasizes that regardless of the amino acid structure, nitrogen still presents a
degree of influence on solubility, LLPS, and hygroscopicity. Ultimately, functional group location
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and properties impact droplet activation as well and must be considered. Indeed, this study aligns
with previous studies, such as Suda et al., 2014, that have also observed the influence of functional
groups on aerosol properties, including hygroscopicity. Therefore, future work including cloud
parcel-based modeling studies must put more emphasis on the presence of certain functional
groups within aerosol mixtures, such as carbonyl and amino groups. By accounting for functional
group and nucleophiles, this study shows that we can better encapsulate nonideal behavior (e.g.,
salting out, salting in) that can drive water uptake as well as chemical aging, aerosol surface-
activity, and other possible aerosol mechanisms. However, relevant organic aerosol compounds
may contain not only oxygen and nitrogen, but also sulfur. For example, methionine, an amino
acid containing sulfur, has previously been attributed to lead to ultrafine particle formation within
the Arctic.!'% ! Future work must therefore further investigate how other additional elements
such as sulfur may present an influence on cloud microphysics.

Additionally, AS ability to drive organic partitioning demonstrates how salting out effects may
further emphasize organic compound characteristics that may be traditionally overlooked when
projecting aerosol-cloud interaction radiative forcing. The presence of AS enhanced solubility
limitations within AS/amino dominant mixtures and enhanced surface-activity within AS/2-MGA,
challenging the traditional assumption of well mixed aerosols with droplet surface tension
equivalent to water. The results of this work may improve understanding of mixed nitrogen
containing aerosol water uptake properties, subsequent predictions of CCN activity in larger scale
models, and projections of aerosol-cloud interaction radiative forcing.
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I. Chemicals and their Properties

Table S1. Ternary System Chemicals and Properties

Solubility

Molecular

Chemical Abbv. 0:C X:C (in H,0) Weight Density
Ammonium Sulfate  AS 0 0 744¢l100 13214 178
g g/mol® g/cm
2-methy1‘glutarlc > MGA 0.67 0.67 40.6 g/Lb 146.145 1.333
acid g/mol g/cm’ €
Proline Pro 0.4 0.6 365gre 313 140
g/mol g/cm
. 117.14 1.23
b
Valine Val 0.4 0.6 88.5 g/L g/mol¢ glom? ¢
: 131.18 1.29
b
Leucine Leu 0.33 0.5 224 g/L o/mol¢ glom? ¢
2CRC Handbook
®hmdb.ca
°NIST WebBook

4 PubChem, National Institute of Health
*EMD Millipore



I1. O:C and X:C ratios of Ternary Mixtures

Proline System

Proline (wt%)

0 — ~—

‘ " i — v ‘
AS Wt%) 100 90 80 70 60 50 40 30 20 10

Figure S1. Weight percent ternary plots for Pro system. Each blue circle represents the solute
chemical composition of each experiment. Purple squares are data points obtained from
Ferdousi-Rokib et al (in prep). The red line represents the phase separation threshold, where the
region below this line are expected to be phase separated while above the threshold are expected
to be well mixed. The estimated threshold (red-line) is derived from the LLPS model in Malek
etal.!



Table S2. Experimental Mixture Composition and O:C/X:C ratios for Pro System.

AS Proline 2-MGA

Experiment (Wt%) (WE%) (Wt%) 0:C X:C
1 100 0 0 0.00 0.00
2 0 100 0 0.40 0.60
3# 0 0 100 0.67 0.67
4 0 10 90 0.64 0.66
5 0 25 75 0.59 0.65
6 0 50 50 0.52 0.63
7 0 75 25 0.46 0.61
8 0 90 10 0.42 0.61
9 10 90 0 0.40 0.60
10 25 75 0 0.40 0.60
11 50 50 0 0.40 0.60
12 75 25 0 0.40 0.60
13 90 10 0 0.40 0.60
14% 95 0 5 0.67 0.67
15% 90 0 10 0.67 0.67
167 75 0 25 0.67 0.67
17% 50 0 50 0.67 0.67
18% 25 0 75 0.67 0.67
19% 10 0 90 0.67 0.67
20 45 30 25 0.51 0.63
21 75 10 15 0.55 0.64
22 25 60 15 0.44 0.61
23 60 35 5 0.43 0.61
24 50 25 25 0.52 0.63
25 30 25 45 0.56 0.64
26 30 50 20 0.46 0.62
27 10 75 15 0.44 0.61
28 10 15 75 0.62 0.66

*Data points from Ferdousi-Rokib et al (in review)



Valine System

Valine (wt%)
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Figure S2. Weight percent ternary plots for Val system. Each blue circle represents the chemical
composition of each experiment. Purple squares are data points obtained from Ferdousi-Rokib et
al (in prep). The red line represents the estimated phase separation threshold, where the region
below this line are expected to be phase separated while above the threshold are expected to be
well mixed. The estimated threshold (red-line) is derived from the LLPS model in Malek et al.!



Table S3. Experimental Mixture Composition and O:C/X:C ratios for Val System

AS Valine 2-MGA

Experiment (Wt%) (WE%) (Wt%) 0:C X:C
1 100 0 0 0.00 0.00
2 0 100 0 0.40 0.60
3# 0 0 100 0.67 0.67
4 0 10 90 0.64 0.66
5 0 25 75 0.59 0.65
6 0 50 50 0.52 0.63
7 0 75 25 0.46 0.61
8 0 90 10 0.42 0.61
9 10 90 0 0.40 0.60
10 25 75 0 0.40 0.60
11 50 50 0 0.40 0.60
12 75 25 0 0.40 0.60
13 90 10 0 0.40 0.60
14% 95 0 5 0.67 0.67
15% 90 0 10 0.67 0.67
167 75 0 25 0.67 0.67
17% 50 0 50 0.67 0.67
18% 25 0 75 0.67 0.67
19% 10 0 90 0.67 0.67
20 10 57.5 32.5 0.48 0.62
21 50 37.5 12.5 0.49 0.62
22 10 20 70 0.54 0.64
23 75 10 15 0.43 0.61
24 30 65 5 0.52 0.63
25 60 35 5 0.56 0.64
26 50 25 25 0.47 0.62
27 35 35 30 0.62 0.66
28 30 25 45 0.44 0.61
29 30 10 60 0.00 0.00
30 10 75 15 0.40 0.60

*Data points from Ferdousi-Rokib et al (in review)



Leucine System

Leucine (wt%)

AS (Wt%) 100 90 80 70 60 50 40 30 20 10 o2 MGAWE%)

Figure S3. Weight percent ternary plots for Leu system. Each blue circle represents the chemical
composition of each experiment. Purple squares are data points obtained from Ferdousi-Rokib et
al (in prep). The red line represents the estimated phase separation threshold, where the region
below this line are expected to be phase separated while above the threshold are expected to be
well mixed. The estimated threshold (red-line) is derived from the LLPS model in Malek et al.!



Table S4. Experimental Mixture Composition and O:C/X:C ratios for Leu System

AS Leucine 2-MGA

Experiment (Wt%) (WE%) (Wt%) 0:C X:C
1 100 0 0 0.00 0.00
2 0 100 0 0.33 0.60
3# 0 0 100 0.67 0.67
4 0 10 90 0.63 0.66
5 0 25 75 0.57 0.65
6 0 50 50 0.48 0.63
7 0 75 25 0.40 0.61
8 0 90 10 0.36 0.61
9 10 90 0 0.33 0.60
10 25 75 0 0.33 0.60
11 50 50 0 0.33 0.60
12 75 25 0 0.33 0.60
13 90 10 0 0.33 0.60
14% 95 0 5 0.67 0.67
15% 90 0 10 0.67 0.67
167 75 0 25 0.67 0.67
17% 50 0 50 0.67 0.67
18% 25 0 75 0.67 0.67
19% 10 0 90 0.67 0.67
20 10 60 30 0.43 0.62
21 75 15 10 0.45 0.62
22 65 15 20 0.50 0.64
23 40 55 10 0.37 0.61
24 50 25 25 0.48 0.63
25 30 25 45 0.53 0.64
26 30 50 20 0.41 0.62
27 10 15 75 0.60 0.66
28 10 75 15 0.38 0.61

*Data points from Ferdousi-Rokib et al (in review)



III. CCNC Experiments

Table S5. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Pro
System

Experiment AS Proline 2-MGA
(mg) (mg) (mg)
1 20 0 0
2 0 20 0
3 0 0 20
4 0 2 18
5 0 5 15
6 0 10 10
7 0 15 5
8 0 18 2
9 2 18 0
10 5 15 0
11 10 10 0
12 15 5 0
13 18 2 0
14% 19 0 1
15% 18 0 2
16* 15 0 5
17% 10 0 10
18% 5 0 15
19# 2 0 18
20 9 6 5
21 15 2 3
22 5 12 3
23 12 7 1
24 10 5 5
25 6 5 9
26 6 10 4
27 2 15 3
28 2 3 15

*Data points from Ferdousi-Rokib et al (in review)



Table S6. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Val
System

Experiment AS Valine 2-MGA
(mg) (mg) (mg)
1 20 0 0
2 0 20 0
37 0 0 20
4 0 2 18
5 0 5 15
6 0 10 10
7 0 15 5
8 0 18 2
9 2 18 0
10 5 15 0
11 10 10 0
12 15 5 0
13 18 2 0
14*# 19 0 1
15% 18 0 2
16* 15 0 5
17" 10 0 10
18" 5 0 15
19# 2 0 18
20 2 12 6
21 15 3 2
22 13 3 4
23 8 11 2
24 10 5 5
25 6 5 9
26 6 10 4
27 2 3 15
28 2 15 3
29 20 0 0
30 0 20 0

*Data points from Ferdousi-Rokib et al (in review)



Table S7. Weight of Chemical Compounds in 200mL Ultra purified Millipore Water for Leu
System

Experiment AS Leucine 2-MGA
(mg) (mg) (mg)
1 20 0 0
2 0 20 0
¥ 0 0 20
: 0 2 18
> 0 5 15
6 0 10 10
/ 0 15 5
8 0 18 2
9 2 18 0
10 5 15 0
11 10 10 0
12 15 5 0
13 18 2 0
14*# 19 0 X
15% 18 0 5
16* 15 0 5
17" 10 0 0
18 > 0 15
19" 2 0 18
20 2 12 P
21 15 3 5
22 13 3 4
23 8 11 5
24 10 5 s
25 6 5 9
26 6 10 4
27 2 3 15
28 2 15 3

*Data points from Ferdousi-Rokib et al (in review)



IV. CCNC Measurement Setup

Silica Gel Dryers

Atomizer

TSI DMA 3080

TSI CPC 3080

]

—
b 0.3 L min'!
Cloud Condensation
Nuclei Counter
0.5 L min’! (CCNO)

Temperature
Gradient

OPC

Figure S4. Experimental set up for Cloud Condensation Nuclei (CCN) experiments; dry,
polydisperse aerosols were passed through the SMPS at a 1:10 aerosol to sheath flow rate;
aerosols were flowed into the CPC and CCN at 0.3 L min! and 0.5 L min™!, respectively.

V. Ammonium Sulfate CCN Calibration

Table S8. Ammonium Sulfate Calibration Data for CCNC

Calibrated Supersaturation

Activation Diameter

(%) (nm)
0.42 +0.07 50.87 £4.47
0.61 +£0.09 39.84 +£3.17
0.78 £0.03 33.43+0.86
0.99 £ 0.08 28.71 £1.45
1.21 +£0.03 25.12+£0.42
1.57+0.16 21.19+1.35
1.72 £0.03 19.86 £ 0.21
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Figure S5. Ammonium sulfate (AS) CCNC instrument calibration results. Instrument

supersaturation is set between 0.4 - 1.6% SS and corresponding corrected supersaturation is
calculated using PyCAT analysis. Instrument supersaturation and corrected supersaturation are

then plotted against each other to obtain R? of a linear fit; R? > 0.98 is considered a well
calibrated CCNC within our study.




VI. X:C Parameterizations

Table S9. Commonly found amino acids with their X:C Ratio and Solubility

Compound X:C Ratio Solubility (v/v)®
Glycine 1.50 0.155
Alanine 1.00 0.117

Glutamic acid 1.00 0.018
Valine 0.60 0.056
Isoleucine 0.50 0.018
Proline 0.60 0.261
dl-Leucine 0.50 0.014
Aspartic Acid 1.25 0.003
Tyrosine 0.44 0.0003
Arginine 1.00 0.487
Histidine 0.83 0.029
Glutamine 1.00 0.017
Serine 1.33 0.156
Phenylalanine 0.33 0.010
Tryptophan 0.36 0.011
Asparagine 1.25 0.019

$Shmdb.ca
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Figure S6. Previous studies account for O:C ratio to parameterize solubility due to the polarity of
O-C bonds, but organic compounds such as nitrogen containing organics (e.g.; amino acids) may
present solubility influence from N-C bonds. Therefore, the X:C parameterization for solubility
is developed for this study by fitting literature solubility values against its X:C ratio. X:C
parameterization of solubility for nitrogen containing compounds where (a) X:C vs. solubility
(v/v) from Table S9 and (b) Actual solubility (v/v) vs. predicted solubility (v/v) for compounds
listed in Table S9, with sold line noting a 1:1 fit and red dashed lines indicating a 10-fold
difference from predicted values. Actual solubility (v/v) values are obtained from literature
(hmdb.ca) and predicted solubility (v/v) are calculated from Eq. 11.



VII. O:C-LLPS Model Distribution

Histogram of Valine Ternary Kappa Threshold (0:C)
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Figure S7. (A) Histogram Distribution of xinresh for Val after 100,000 iterations and (B) O:C
thresholds vs. xinresh and corresponding O:C threshold where LLPS is most probable
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Figure S8. (A) Histogram Distribution of xinresh for Leu after 100,000 iterations and (B) O:C
thresholds vs. xinresh and corresponding O:C threshold where LLPS is most probable




VIII. X:C-LLPS Model Distributions
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Figure S9. (A) Histogram Distribution of xmresh for Proafter 100,000 iterations and (B) X:C
thresholds vs. xinresh and corresponding X:C threshold where LLPS is most probable
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Figure S10. (A) Histogram Distribution of xmresh for Val after 100,000 iterations and (B) X:C
thresholds vs. xinresh and corresponding X:C threshold where LLPS is most probable
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Figure S11. (A) Histogram Distribution of xinresh for Leu after 100,000 iterations and (B) X:C
thresholds vs. xinresh and corresponding X:C threshold where LLPS is most probable

IX. Surface Tension Measurements

Surface tension measurements of the pure amino acids and binary mixture droplets were taken
using a pendant drop goniometer (Biolin Scientific Attention Theta Flex). Solutions were prepared
first at the solubility limits of the pure amino acids using Millipore ultra-pure water. The solution
compositions are listed in Table S10. A mechanical micro syringe is used to generate a droplet of
the solutions < 10 pL at the needle tip. Images were taken at 60 frames/second until the droplet
fell. It is assumed as the value plateaus, the surface tension reaches an equilibrium value. The
surface tension is determined from fitting the droplet to the Young-Laplace Equation.”* Average
surface tension values of the amino acid droplets at its solubility limits are listed in Table S10.

Table S10. Surface Tension of Pure Amino Acids at Solubility Limits and Water

Amino Acid Water Concentration Surface TelllSiOIl
(mL) ™M) (mN m™)
Leucine 40 0.171 66.90 £ 0.34
Valine 15 0.569 69.00 + 0.58
Proline 1 8.686 57.39+0.17
Water 71.33+£0.19

Leu and Val were found to have a surface tension value close to the value of pure water (71.3 mN
m! as measured by the instrument) at its solubility limits. However, Pro is more surface active.
Pure Pro is further diluted to assess its surface activity and pure amino acid surface tension is



compared against measurements for 2-MGA from Ferdousi-Rokib et al., 2024 (in review) (Figure
S12).

To assess salting out effects and influence on surface tension, Pro/AS binary mixture surface
tension were also measured at several dilutions. The solution concentrations and surface tension
results are listed out in Tables S11-S12 and shown in Figure S13.

Table S11. Concentrations of Pro/AS binary mixture dilutions for surface tension measurements

System Water Proline AS AS AS AS AS
(mL) ™M) (Mg (Mg (Mg (Mg (Mg
1:9 1:4 1:1 4:1 9:1
1 1 8.686 0841 2523
2 2 4.343 0.420 1.261
3* 4 2.171 0.210 0.631 1.892
4* 8 1.086 0.105 0.315 0.946 0.908
5" 12 0.724 0.070 0.210 0.631 1.892
6 20 0.434 0.042 0.126 0.378 3.405

$ Stock solutions were prepared at 1:9, 1:4, 1:1, 4:1 and 9:1 mass weight ratios of Pro/AS, the subsequent
molar concentrations of AS are presented in the table.

#Stock solutions were prepared at 1:9, 1:4, 1:1, 4:1 and 9:1 mass weight ratios of Pro/AS in 1mL Millipore ultrapure
water for System 1. Then System 2 through 5 are then generated by diluting concentrations of System 1.

Table S12. Pure Pro and Pro/AS binary mixture surface tension results

Surface
Pro (wt%) AS (Wt%) Water Pro (M) Tension Std Dev
(mN m™)
100 0 1 8.686 57.39 0.17
90 10 1 8.686 58.91 0.69
75 25 1 8.686 54.36 0.26
100 0 2 4.343 60.72 0.07
90 10 2 4.343 60.65 0.31
75 25 2 4.343 58.80 0.21
100 0 4 2.171 66.40 0.27
90 10 4 2.171 65.75 0.36
75 25 4 2.171 63.20 0.18
50 50 4 2.171 62.58 0.54
100 0 8 1.086 68.12 0.21
90 10 8 1.086 66.86 0.23
75 25 8 1.086 66.69 0.22
50 50 8 1.086 65.71 0.65
25 75 8 1.086 59.92 0.19
100 0 12 0.724 68.55 0.26
90 10 12 0.724 66.68 0.13
75 25 12 0.724 66.98 0.14
50 50 12 0.724 65.28 0.40
25 75 12 0.724 62.01 0.52
100 0 20 0.434 70.92 0.23



90 10 20 0.434 71.24 0.38
75 25 20 0.434 71.66 0.56
50 50 20 0.434 68.99 0.36
10 90 20 0.434 65.61 0.75
75
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Figure S12. Surface tension measurements for pure amino acids (Leu, Val, Pro) and pure 2-MGA
versus concentration. Pure 2-MGA surface tension results are from Ferdousi-Rokib et al., 2024
(in review)
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Figure S13. Surface tension measurements for Pro/AS binary system vs. Pro concentration



X. Experimental xccn Results

Table S13. Experimental xccn for Pro/AS/2-MGA System

Experiment (wé‘i) ) Proline (wt%) 2(—vlv\/tlo(/i ? Kcen

1 100 0 0 0.61

2 0 100 0 0.43+0.09
3 0 0 100 0.14+0.02
4 0 10 90 0.17+0.01
5 0 25 75 0.20+0.02
6 0 50 50 0.23+0.02
7 0 75 25 0.25+0.02
8 0 90 10 0.27+0.03
9 10 90 0 0.25+0.02
10 25 75 0 0.26+0.02
11 50 50 0 0.34+0.03
12 75 25 0 0.44+0.04
13 90 10 0 0.54+0.04
14% 95 0 5 0.62+0.03
15* 90 0 10 0.60:0.02
16" 75 0 25 0.60£0.03
17* 50 0 50 0.50:0.02
18" 25 0 75 0.40+0.03
19* 10 0 90 0.24+0.02
20 45 30 25 0.37+0.03
21 75 10 15 0.52+0.04
22 25 60 15 0.29+0.03
23 60 35 5 0.3840.03
24 50 25 25 0.34+0.05
25 30 25 45 0.34+0.04
26 30 50 20 0.26+0.03
27 10 75 15 0.24+0.04
28 10 15 75 0.24+0.02

“Data points from Ferdousi-Rokib et al (in review)



Table S14. Experimental xccn for Val/AS/2-MGA System

Experiment (wAﬁA) ) Valine (wt%) z(xoc/i ? KCCN

1 100 0 0 0.61

2 0 100 0 0.06+0.02
3 0 0 100 0.14+0.02
4 0 10 90 0.18+0.01
5 0 25 75 0.18+0.02
6 0 50 50 0.16+0.02
7 0 75 25 0.14+0.03
8 0 90 10 0.07+0.04
9 10 90 0 0.18+0.01
10 25 75 0 0.23+0.02
11 50 50 0 0.39+0.05
12 75 25 0 0.50+0.03
13 90 10 0 0.55+0.03
14% 95 0 5 0.62+0.03
15* 90 0 10 0.60:0.02
16" 75 0 25 0.600.03
17* 50 0 50 0.500.02
18" 25 0 75 0.40+0.03
19* 10 0 90 0.24+0.02
20 10 57.5 32.5 0.22+0.02
21 50 37.5 12.5 0.34+0.02
22 10 20 70 0.22+0.02
23 75 10 15 0.55+0.05
24 30 65 5 0.25+0.02
25 60 35 5 0.41+0.04
26 50 25 25 0.53+0.05
27 35 35 30 0.24+0.03
28 30 25 45 0.23+0.03
29 30 10 60 0.31+0.04
30 10 75 15 0.14+0.01

“Data points from Ferdousi-Rokib et al (in review)



Table S15. Experimental xcen for Leu/AS/2-MGA System

Experiment AS Leucine 2-MGA KeeN
(wt%) (wt%) (wt%)

1 100 0 0 0.61

2 0 100 0 0.01+0.00
3 0 0 100 0.14+0.02
4 0 10 90 0.09+0.02
5 0 25 75 0.10+0.02
6 0 50 50 0.03+0.01
7 0 75 25 0.02+0.02
8 0 90 10 0.02+0.02
9 10 90 0 0.11+0.01
10 25 75 0 0.14+0.01
11 50 50 0 0.1440.01
12 75 25 0 0.47+0.03
13 90 10 0 0.56+0.03
14% 95 0 5 0.62+0.03
15% 90 0 10 0.60+0.02
16" 75 0 25 0.60+0.03
17* 50 0 50 0.500.02
18% 25 0 75 0.40+0.03
19% 10 0 90 0.24+0.02
20 10 60 30 0.12+0.01
21 75 15 10 0.50+0.03
22 65 15 20 0.50+0.03
23 40 55 10 0.22+0.02
24 50 25 25 0.42+0.05
25 30 25 45 0.29+0.04
26 30 50 20 0.19+0.03
27 10 15 75 0.20+0.01
28 10 75 15 0.15+0.03

“Data points from Ferdousi-Rokib et al (in review)



XI. Model Results

Table S16. Predicted « values for traditional Kohler, O:C Solubility, X:C Solubility, O:C-LLPS,
X:C-LLPS Models for Proline/2-MGA/AS System

. AS Proline Ko:c- Kx:c-
Experiment wt%)  (wt%) é\\:t(jA;A) Fezsk ¥o:c fexic LLPS LLPS
1 100 0 0 0.61 0.61 0.61 0.61 0.61
2 0 100 0 0.22 0.02 0.22 0.02 0.22
3 0 0 100 0.15 0.15 0.15 0.14 0.14
4 0 10 90 0.15 0.16 0.16 0.15 0.22
5 0 25 75 0.16 0.17 0.17 0.13 0.22
6 0 50 50 0.18 0.19 0.19 0.10 0.22
7 0 75 25 0.20 0.21 0.21 0.02 0.20
8 0 90 10 0.21 0.21 0.21 0.02 0.21
9 10 90 0 0.25 0.24 0.24 0.07 0.38
10 25 75 0 0.30 0.29 0.29 0.15 0.41
11 50 50 0 0.39 0.38 0.38 0.28 0.47
12 75 25 0 0.49 0.49 0.49 0.44 0.54
13 90 10 0 0.56 0.56 0.56 0.54 0.58
14* 95 0 5 0.58 0.59 0.59 0.57 0.43
15% 90 0 10 0.54 0.57 0.57 0.54 0.55
16" 75 0 25 0.46 0.50 0.50 0.54 0.29
17% 50 0 50 0.33 0.39 0.39 0.53 0.43
18" 25 0 75 0.23 0.27 0.27 0.41 0.46
19% 10 0 90 0.18 0.20 0.20 0.26 0.41
20 45 30 25 0.34 0.36 0.36 0.29 0.30
21 75 10 15 0.47 0.50 0.50 0.46 0.24
22 25 60 15 0.29 0.28 0.28 0.17 0.35
23 60 35 5 0.42 043 043 0.36 0.61
24 50 25 25 0.36 0.39 0.39 0.32 0.22
25 30 25 45 0.27 0.30 0.30 0.24 0.14
26 30 50 20 0.30 0.30 0.30 0.21 0.22
27 10 75 15 0.24 0.24 0.24 0.08 0.22
28 10 15 75 0.19 0.61 0.20 0.18 0.22

“Data points from Ferdousi-Rokib et al (in review)



Table S17. Predicted « values for traditional Kohler, O:C Solubility, X:C Solubility, O:C-LLPS,
X:C-LLPS, and Weighted Average Models for Valine/2-MGA/AS System

AS Valine

Experiment WE%)  (WE%) (l\v/:t(jﬁ) Kzsk  Koc  Kxc ’z(L’P(; 'E’L‘P(; Kwa
1 100 0 0 0.61 0.61 0.61 0.61 0.61 0.61
2 0 100 0 0.20 0.02 0.20 0.02 0.20 0.15
3* 0 0 100 0.15 0.16 0.16 0.14 0.15 0.14
4 0 10 90 0.15 0.17 0.17 0.15 0.20 0.18
5 0 25 75 0.16 0.17 0.17 0.13 0.20 0.18
6 0 50 50 0.17 0.18 0.18 0.09 0.20 0.17
7 0 75 25 0.19 0.10 0.19 0.02 0.19 0.14
8 0 90 10 0.20 0.06 0.20 0.02 0.20 0.14
9 10 90 0 0.23 0.20 0.23 0.06 0.36 0.27
10 25 75 0 0.28 0.28 0.29 0.13 0.39 0.31
11 50 50 0 0.38 0.39 0.39 0.26 0.45 0.39
12 75 25 0 0.48 0.50 0.50 0.42 0.52 0.49
13 90 10 0 0.56 0.56 0.56 0.53 0.57 0.56

14* 95 0 5 0.58 0.59 0.59 0.57 0.57 0.57
15% 90 0 10 0.54 0.56 0.56 0.54 0.54 0.54
16* 75 0 25 0.46 0.49 0.49 0.54 0.54 0.54
17% 50 0 50 0.33 0.38 0.38 0.53 0.53 0.53
18* 25 0 75 0.23 0.27 0.27 0.41 0.41 0.41
19% 10 0 90 0.18 0.20 0.20 0.26 0.26 0.26
20 10 57.5 32.5 0.21 0.22 0.22 0.08 0.22 0.18
21 50 37.5 12.5 0.37 0.38 0.38 0.30 0.37 0.35
22 10 20 70 0.19 0.21 0.21 0.17 0.30 0.26
23 75 10 15 0.47 0.50 0.50 0.45 0.54 0.52
24 30 65 5 0.30 0.30 0.30 0.16 0.29 0.25
25 60 35 5 0.41 0.43 0.43 0.34 0.41 0.39
26 50 25 25 0.36 0.38 0.38 0.31 0.44 0.40
27 35 35 30 0.30 0.32 0.32 0.26 0.37 0.34
28 30 25 45 0.27 0.29 0.29 0.23 0.39 0.34
29 30 10 60 0.26 0.29 0.29 0.26 0.48 0.41
30 10 75 15 0.22 0.23 0.23 0.07 0.22 0.18

“Data points from Ferdousi-Rokib et al (in review)



Table S18. Predicted « values for traditional Kohler, O:C Solubility, X:C Solubility, O:C-LLPS,
X:C-LLPS, and Weighted Average Models for Leucine/2-MGA/AS System

Experiment (wé‘i) ) Ig;ﬁ;)n)e (l\v/:t(jﬁ) Kzsr Ko:c Kx:c ’z:p(; ’f:;; Kwa
1 100 0 0 0.61  0.61 0.61 0.61 0.61 0.61
2 0 100 0 0.16 0.004 0.16 0.004 0.16 0.02
3# 0 0 100 015 016 016 014 0.12 0.14
4 0 10 90 015 016 016 015 016 0.15
5 0 25 75 015 016 016 0.12 016 0.13
6 0 50 50 0.15 010 0.16 0.00 0.16 0.09
7 0 75 25 0.16  0.03 0.16 000 0.16 0.02
8 0 90 10 016 0.02 016 0.00 0.16 0.02
9 10 90 0 019 012  0.21 0.05 032 0.08
10 25 75 0 024  0.23 028  0.11 036  0.15
11 50 50 0 034 038 039 025 043 0.28
12 75 25 0 0.46  0.51 0.51 0.41 0.51 0.43
13 90 10 0 055 057 057 052 057 053
14* 95 0 5 058 059 059 056 056  0.56
15" 90 0 10 054 056 056 056 056  0.56
16" 75 0 25 046 049 049 054 054  0.54
17" 50 0 50 033 038 038 044 044 044
18" 25 0 75 023 027 027 026 026 0.26
19* 10 0 90 018 020 020 0.19 0.19 0.19
20 10 60 30 019 020 020 0.06 020  0.08
21 75 15 10 046 050 050 047 051 0.48
22 65 15 20 041 045 045 039 050 040
23 40 55 10 029 034 034 020 030 0.22
24 50 25 25 034 039 039 035 043 032
25 30 25 45 025 029 029 022 037 024
26 30 50 20 026 030 030 018 029 0.20
27 10 15 75 018 020 020 0.17 030 0.19
28 10 75 15 019 017 020 0.05 0.18 0.07

“Data points from Ferdousi-Rokib et al (in review)



Table S19. ? goodness fits for all models

2

X

Ternary 0O:C- X:C- Weighted Best

Kohler O:C X:C

System LLPS LLPS Average Fit
Leucine ﬁ 8.19 _ 6.29

Valine 10.59 10.4 2.50E+11 19.11 19.12
Proline 8.29 12.39 14.95 8.93 5.23
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Figure S16. Comparison of predicted x from hygroscopicity models to experimental x results of
:ei ternary mixture; a 1:1 correlation is represented by the black line, and 10% error is outlined in
grey dashed lines.
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