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Abstract—Deep learning has shown promising results for
multiple 3D point cloud registration datasets. However, in
the underwater domain, most registration of multibeam echo-
sounder (MBES) point cloud data are still performed using
classical methods in the iterative closest point (ICP) family.
In this work, we curate and release DotsonEast Dataset, a
semi-synthetic MBES registration dataset constructed from
an autonomous underwater vehicle in West Antarctica. Using
this dataset, we systematically benchmark the performance of
2 classical and 4 learning-based methods. The experimental
results show that the learning-based methods work well for
coarse alignment, and are better at recovering rough transforms
consistently at high overlap (20-50%). In comparison, GICP (a
variant of ICP) performs well for fine alignment and is better
across all metrics at extremely low overlap (10%). To the best
of our knowledge, this is the first work to benchmark both
learning-based and classical registration methods on an AUV-
based MBES dataset. To facilitate future research, both the
code and data are made available online.'

I. INTRODUCTION

Multibeam echo-sounder (MBES) is the de-facto sensor
for underwater surveys performed by surface vessels, au-
tonomous underwater vehicles (AUVs) and remote operating
vehicles (ROVs) [1]. When mounted on AUVs, MBES can
provide high resolution bathymetry data at inaccessible or
dangerous locations, such as under glaciers [2]. Since MBES
provides bathymetry as 3D point cloud, this sensor is also
useful for AUV localization [3], [4]. For MBES-based AUV
localization frameworks, loop closure detection and registra-
tion of MBES submaps is an integral component [5], [6].

Most existing MBES registration methods are based on
the iterative closest point (ICP) family, with errors measured
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Fig. 1.  Example MBES submap pair from the proposed DotsonEast
Dataset . Each row showcases the predicted transformations (left), the
consistency error of the map (middle) and the t-SNE [9] embedding of
the feature descriptors (right). For methods without feature descriptors, the
right column is left blank. The ground truth and null transforms are provided
for comparison. The right column on the ground truth row shows the point
cloud pair colored by depth. More details on the dataset and its metrics can
be found in section III.

using the root-mean-square (RMS) consistency error metric
introduced by Roman and Singh [7]. Despite the success of
ICP algorithms in MBES registration, this family of algo-
rithm is more suited for final adjustment of roughly aligned
point clouds, due to their sensitivity to initial transformations
[8]. Since many MBES registration methods use the dead-
reckoning pose as the initial alignment [3], [4], a large dead-
reckoning error will lead to erroneous registrations.

In recent years, learning-based approaches have shown
promising results for a variety of 3D point cloud datasets,
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including simulated CAD models [10], outdoor LiDAR data
[11] and RGBD indoor datasets [12]. However, the applica-
tion of learning based methods to bathymetric point clouds is
lacking, and so is a comprehensive dataset and framework for
systematic evaluation of various registration methods. This
can be attributed to two factors. Firstly, underwater MBES
data is costly to collect and often viewed as sensitive security
information of a nation. As such, the availability of open
sourced data is severely restricted. Secondly, underwater
datasets often lack ground truth, making the evaluation of
registration results difficult. This is particularly true for
MBES data, which requires a moving platform to collect.
As such, the groundtruth of each MBES swath depends
on the instantaneous pose. Due to this evaluation difficulty,
most MBES registration work rely on the RMS error for
quantitative evaluation and qualitatively demonstrate specific
features on the seafloor to showcase the improvement in
consistency [13], [3], [4].

In this work, we attempt to bridge the aformentioned gap
by curating a large MBES dataset from field data collected by
RAN, Gothenburg University’s Hugin AUV in West Antarc-
tica during the International Thwaites Glacier Collaboration
research cruise in 2022. From the raw data, a semi-synthetic
registration dataset is generated by sampling random trans-
formations to create pairs of submaps. This semi-synthetic
workflow allows us to obtain ground truth transformations,
which is often unavailable during real AUV bathymetry
missions. Using these ground truth labels, we train multiple
state-of-the-art deep learning models for MBES registration,
and evaluate both classical and learning-based models using
a diverse set of metrics. Figure 1 showcases an example
of MBES pair from our dataset, as well as the predicted
registration using the evaluated methods. The data and the
proposed benchmark metrics are available here.

In summary, the contributions of this paper is as follows:

1) We propose a method to construct a semi-synthetic regis-
tration dataset from raw MBES survey data, and a frame-
work to systematically evaluate registration methods.

2) We open source DotsonEast Dataset, a large scale semi-
synthetic MBES point cloud registration dataset from
AUV field data collected in front of Dotson Ice Shelf
in West Antarctica.

3) We evaluate multiple state-of-the-art registration methods
on our dataset, including both classical and learning-
based methods, and highlight the unique challenges of
MBES registration.

To the best of our knowledge, this is the first published work
to benchmark both classical and learning-based methods
specifically for MBES point clouds.

II. RELATED WORK

This section starts with a brief summary of existing
families of point cloud registration methods. We then delve
deeper into the registration methods for MBES point clouds.
Finally, we highlight the importance of open source datasets
for algorithmic developments in point cloud registration.

A. Point Cloud Registration

Point cloud registration refers to the task of recovering the
real-world transformation between two partially overlapping
point clouds with unknown correspondences [14]. Existing
methods can be divided into feature-free and feature-based
methods, both with hand-crafted and learning based variants.
Whilst feature-free methods return a transformation directly,
feature-based methods require outlier rejection methods to
estimate a final robust transformation. More comprehensive
surveys can be found in [15] and [16].

1) Feature-Free Methods: The feature-free methods pro-
vide an estimate of rigid transformation directly from the
point cloud, without the extra step of feature correspondence
matching. Traditionally, iterative closest point (ICP) [17] is
the de-facto algorithm for direct registration. However, the
success of ICP relies on good initial alignment and relatively
low noise point clouds with few outlier correspondences,
limiting its usefulness to fine alignment of point clouds with
initial coarse alignment provided by other methods. There is
an abundance of research addressing the short comings of
ICP, see [18] for a more comprehensive review.

2) Feature-Based Methods: Feature based methods gen-
erally follows a two-step process. In the first step, descrip-
tive and robust feature descriptors are generated from both
point clouds. Correspondences of these descriptors are then
computed and a robust estimator such as RANSAC [19] is
used to estimate a rigid transformation. Many handcrafted
descriptors have been designed for 3D point clouds, most
of which try to summarize local surface signatures such as
point distribution [20], surface curvatures [21] and normals
[22] into histograms. A more comprehensive survey on
handcrafted features is found in [23].

In recent years, learning based methods have surpassed
handcrafted descriptors in multiple benchmarks such as Mod-
elNet [10], 3DMatch [12] and KITTI [11] datasets. These
methods can roughly be divided keypoint free dense methods
and keypoint-based methods. The keypoint free methods
compute descriptors on the entire (often downsampled) point
cloud. Notably, the fully convolutional geometric feature
(FCGF) [24] is the first method that densely extract point
cloud features using sparse convolution [25] based fully
convolutional networks.

The keypoint-based methods aim to extract distinguish-
able, repeatable and matchable keypoints from 3D point
clouds. For instance, Predator [26] focuses on detecting
matchable keypoints in overlapping regions, with a two-
stream encoder-decoder network coupled with a graph neural
network based overlap attention module for inter-stream
information propagation, allowing for successful registration
of point cloud pairs with low overlap ratio (< 30%).

3) Outlier Rejection Methods: RANSAC [19] is the most
commonly used outlier rejection method for robust estima-
tion of point cloud registration, and has been demonstrated
to work well with both classical and learning-based feature
descriptors. However, RANSAC suffers from slow conver-
gence and low accuracy at high outlier ratios, motivating the
development of robust estimators that have higher tolerance
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to outliers [27], [28], as well as learning-based inlier/outlier
rejection methods such as Deep Global Registration (DGR)
[29], [30], [31].

B. Multibeam Point Cloud Registration

As briefly mentioned in section I, the registration of
multibeam bathymetric point cloud has challenges unique
to the sensor domain. Firstly, bathymetric data often lacks
well-defined landmarks such as man-made structures [5], [3],
making detection of repeatable keypoints difficult. Secondly,
when mounted on AUVs, the multibeam data lacks registra-
tion ground truth, making the results difficult to evaluate.
As such, the multibeam registration problem is normally
presented as part of a AUV localization or SLAM problem,
and seldom taken apart to be studied on its own. Most
existing work focus on handcrafted methods, with many
employing the feature-free ICP family algorithms [3], [32],
[4], and a few studies utilizing feature based methods [33],
[34]. Some studies also model the terrain directly using
Gaussian processes [35], [36]. Amongst the ICP family
methods, Torroba et al. [5] found generalized ICP (GICP)
to achieve the most consistent result for bathymetric point
cloud registration.

Although learning based methods have largely replaced
handcrafted methods in other point cloud registration tasks,
the usage of learning based methods in bathymetric point
cloud registration is lacking. The most notable work is
by Tan et al. [6], where a neural network was designed
and trained for keypoint selection and feature extraction of
multibeam point clouds, and evaluated on loop closure and
coarse registration tasks using data from an AUV mission in
Thwaites Glacier in West Antarctica.

C. Point Cloud Registration Datasets

The existence of structured, open source datasets allows
for easier benchmarking of algorithms and has been benefi-
cial for communities such as computer vision [37]. Early
learning-based methods focused on the ModelNet40 [10]
dataset, consisting of synthetically generated CAD models of
40 object categories. In recent years, however, this synthetic
dataset is found to be overly simplistic. To prove their
generalizability and real world usability, newer methods also
evaluate on 3DMatch [12] - an indoor RGBD dataset and
KITTI [11] - an outdoor Lidar scan dataset.

The DotsonEast Dataset we propose here is a semi-
synthetic one. By using real bathymetric point clouds col-
lected by an AUV, we maintain aspects such as noisy
measurements and non-homogeneous point distributions that
exist in real underwater surveys. However, in order to obtain
ground truth registration, we crop point clouds and synthesize
rigid transformations using a procedure inspired by Yew and
Lee [14] (See details in subsection III-B). A natural future
extension to this work would be to replace the synthesized
transformation with real ones using the recently released
multibeam datasets with GPS ground truth [38], [39].

Fig. 2. Kongsberg’s Hugin AUV (orange) during the recovery of a survey
in West Antarctica.

III. MULTIBEAM BENCHMARK
A. Raw Data Description and Processing

The data presented in this paper was collected using RAN
- Gothenburg University’s Kongsberg Hugin AUV equipped
with a Kongsberg EM2040 multibeam echo sounder during
the 2022 ITGC cruise. The survey site was close to the east-
ern side of Dotson ice shelf in West Antarctica (see Figure 2).
The vehicle trajectory estimated by the onboard inertial
navigation system (INS) is shown in Figure 3. Throughout
most of the survey, the AUV was set to keep an altitude
of 100m above the seafloor. The sound velocity recorded by
the multibeam receiver is used for data processing. Table I
presents the details of the survey and sensor settings.

The original data was stored in Kongsberg’s .all format.
The offshore EIVA software NaviEdit Pro was used to syn-
chronize multibeam measurements with the INS positioning
system and to convert the data into the correct UTM coor-
dinate system. The exported files were then converted into
numpy arrays with the dimension of no.pings x no.beams x 3
(x,y,z hits of each beam) to allow for easier manipulation.
In order to retain the noisy measurements typical in a
bathymetric survey, no data cleaning was performed.

TABLE 1
SURVEY DETAILS AND SENSOR SETTINGS

Details Specifications
Vehicle speed 2 m/s
Vehicle altitude ~ 100 m
Survey length ~ 138 km
Survey duration ~ 19 h
Sonar frequency 400 kHz

Ping rate
Beam forming
Total number of pings

2.5 Hz (~ 0.4 s/ping)
400 beams across 120°
188 844 pings

B. Multibeam Dataset

To construct a registration dataset from the collected
data, short sections of consecutive MBES pings are grouped
together into submaps [5], [40]. In submap-based multibeam
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Fig. 3. AUV trajectory throughout the mission, as reported by the onboard
INS system. The color of the trajectory represents the vehicle depth. The red
rectangle highlights the test data segment, which is chosen to be physically
furthest away from the training data.

SLAM problems, the submap size is chosen so that each
submap contains enough geometric variation for registration,
whilst being small enough to be viewed as drift-free [3],
[4]. In this work, we set each submap to contain 100
consecutive pings. To maximize data usage, the step size
is set to 20 pings, i.e. two consecutive submaps contain
80% data overlap. This overlap is by design, as it allows
for the construction of submap pairs with 20%, 40%, 60%,
80% and 100% overlap, facilitating a more diverse range
of evaluations. Using this schema, a total of 9415 submaps
are constructed. The dataset is further split into train/val/test
subsets, each with 7263/1206/946 submaps. The test set
location is highlighted by the orange box in Figure 3. The
large lawnmower survey data collected before the orange box
is used as the the training set, and the small section after the
orange box serves as the validation set. This dataset split
is chosen to maximize the physical distance between the
training and test subsets in order to prevent data leakage. For
all experiments, we use 1m voxel downsampling to achieve
uniform point density, then randomly sample maximum 10k
points for each submap.

To convert the submaps to suit registration tasks, we take
inspiration from a similar procedure outlined by [41], [14]
and [6], but modify the sampled transformations to better
suit our application domain. Specifically, given a pair of
multibeam submaps (X,Y), we first crop each of the submaps
independently to obtain (X,,Y;). Noting the 2.5D nature of
bathymetric point cloud, we sample a random vector in the
XY-plane instead of in the full 3D space, and shift this
vector to crop the submap such that approximately 70% of

the submap is retained. This means that after cropping, the
effective overlap ratio between (X, Y.) is the 0.7 x 0.7 = 50%
of the original overlap between (X,Y). For instance, an
original submap pair with 20% overlap has an effective
overlap ratio of 10% after cropping.

To synthesize submap pairs for registration, we then rotate,
translate and add noise to each submap individually. For
rotation, we sample Z-axis rotations in the range of [0, 10°],
whilst keeping the XY axis rotation intact. This is because
in AUV missions, the vehicle heading error is bounded by
the INS system, and rotation errors around XY axes are
mostly negligible. For translation, we sample the X- and Y-
axis translation in the range [-40, 40] meters independently,
simulating the potential dead reckoning drift in XY direc-
tions. For Z-axis, we sample a much smaller range of [-
2, 2] meters, since the Z values are normally provided by
pressure sensors and are less prone to accumulated drifts.
The sampled rotation and translation are combined into a
rigid transformation matrix T, and the task is to register the
transformed source submap X, = TY, to the original reference
submap Y,. Figure | provides an example of the final submap
pair used for registration.

C. Evaluation Metrics

Compared to previous work on multibeam registration,
such as [3], [4], [33], [40] and [6], the proposed DotsonEast
Dataset benefits from having the sampled ground truth trans-
formations, allowing for a more complete set of evaluation
metrics. We propose evaluating the registration results using
three sets of metrics, including the bathymetric specific con-
sistency error, transformation accuracy metrics and feature
correspondence metrics for feature-based methods.

Consistency error introduced by Roman and Singh [7]
is a point-based error metric designed to estimate bathy-
metric surface thickness and highlight wrongly registered
regions in point cloud data. This error metric circumvents
the problem of lack of ground truth transformation. As such,
it is frequently used in real AUV surveys to measure the
effectiveness of SLAM algorithms and resulting map quality
[5], [4], [6]. Computing consistency error requires gridding
the overlapping point clouds into a joint grid. For our dataset,
the resolution of the grid is set to 2m, twice the resolution of
the point cloud. This resolution is chosen to retain enough
details in the gridded map, whilst keeping the number of
unoccupied grids low. The consistency error is sometimes
hard to evaluate, since a small value can caused by both an
accurate ground truth transformation and a transformation
prediction that keep the two submaps almost disjoint. To
aid the analysis, we also report the predicted overlap (%),
defined as the percentage of grid cells receiving hits from
both submaps. To simulate real-life AUV missions where
ground truth transformation is unknown, consistency metrics
are computed for all successfully returned transformations,
regardless of their accuracy. The accuracy of transformations
are evaluated using metrics described below. A method
might fail to return a transformation at all due to failure
of convergence, too few correspondences, etc.
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Transformation accuracy metrics include relative ro-
tation error (RRE), relative translation error (RTE) and
registration recall (RR). They directly evaluate the accuracy
of predicted transformations and have been widely applied
to the KITTI dataset [24], [42], [29]. In our dataset, a trans-
formation is considered successfully recalled with RRE < 5°
and RTE < 10m.

Feature correspondence metrics measure the quality of
suggested feature matches and are thus only applicable to
feature-based methods such as FPFH [21] and FCGF [24].
Following standard metrics for the indoor 3DMatch dataset
[12], we report the feature match ratio (FMR), defined
as the percentage submap pairs that have enough (> 5%)
inlier matches under ground truth transformation, where
inlier threshold is set to 2m, twice the resolution of the
downsampled point clouds. The intermediate inlier ratio (IR)
for FMR computation is also recorded.

IV. EXPERIMENTS

A. Evaluated Methods

We evaluate state-of-the-art classical and learning-based
methods from each family of methods detailed in subsec-
tion II-A, including the following:

o For classical feature-free method, we choose General-
ized ICP (GICP) [43] due to its demonstrated advantage
in bathymetric point cloud registration [5].

o For classical feature-based method, we choose Fuast
Point Feature Histograms (FPFH) [21], a commonly
used hand-crafted point cloud descriptor [24], [29], [30].

o For learning-based dense feature descriptor, we choose
Fully Convolutional Geometric Features (FCGF) [24],
the first fully convolutional point cloud feature extractor.

e For learning-based keypoint descriptor, we choose
Predator [26], a method specialized at low overlap
point cloud registration, since low overlap is a common
condition for bathymetric survey data.

o For learning-based outlier rejection, we choose Deep
Global Registration (DGR) [29] coupled with features
learned by FCGF [24].

« Finally, we test BathyNN [6], a recent learning-based
architecture designed specifically for loop closure de-
tection of multibeam point clouds.

For feature-based methods, the predicted transformation is
obtained using RANSAC with 50k iterations. For the number
of points used during a RANSAC iteration, we found 3 to be
optimal for FPFH, whilst 4 yielded better performance for
learning-based descriptors. For learning-based methods, we
evaluate both pretrained models (KITTI pretrained models
for FCGF, DGR and Predator, and Antarctic 2019 dataset
for BathyNN) and models trained with our training set.
Specifically, we are interested in whether models pretrained
on similar metric scale data can be used off-the-shelf for
the DotsonEast Dataset. This experiment will help us better
evaluate the uniqueness and challenges of our dataset.

B. Implementation Details

All learning-based methods were trained using submap
pairs with all overlap ratios (20% — 100%), or effective over-
lap ratios (10% — 50%), resulting in a total number of 29046
training pairs. For each method, some hyperparameter search
around the original paper’s training setting was performed
using a small subset of the training data.

For FCGF, we finetuned from the KITTI pretrained model
for 100 epochs using the Adam optimizer [44] with a OneCy-
cle learning rate scheduler [45] with maximum learning rate
of 0.01. The batch size was set to 4, and hardest contrastive
loss with positive margin 0.4 and negative margin 3.0 was
used as the loss function. We then used this FCGF (trained)
model as feature extractor for DGR, and trained the inlier
classifier module in DGR. The DGR (trained) model was
trained for 20 epochs with a batch size of 8 using the ADAM
optimizer with an Exponential learning rate schedule. The
initial learning rate was 0.001, with a learning rate decay of
v=0.9. For Predator, we found finetuning from the KITTI
model to be infeasible, and instead trained it from random
initialization. Predator (trained) was trained for 10 epochs
with a batch size of 1 using the Stochastic Gradient Descent
(SGD). Exponential learning rate scheduler with an initial
learning rate of 0.05 and y = 0.95 was used for training.
This model has many dataset-specific hyperparameters. We
set the number of negative pairs in circle loss n, = 256, the
temperature factor y = 24, the voxel size V = 1m, the search
radius for positive pairs r, = 1.5m, safe rardius r, = 4.5m,
overlap radius r, = 2.0m and matchability radius r,, = 2.0m.
The rest of model configurations follow the pretrained KITTI
model. Finally, the BathyNN (trained) is finetuned from the
released Thwaites pretrained weights for 10 epochs, using
the same hyperparameters as the original paper.

C. Results

We evaluate all methods on the test set of DotsonEast
Dataset. Noting that real-life AUV bathymetric surveys often
generate data with low overlap, we separate the evaluation
into different effective overlap ratios. For consistency error
and transformation errors, we also report the values for
ground truth transformation and null transformation (iden-
tity).

1) Consistency Error: Looking at Figure 4, we see that
the KITTI models for FCGF and DGR can be readily
applied to our dataset at high-overlap (50%), though the
performance quickly deteriorates as the overlap decreases.
For the trained models, we see that Predator achieves a
reasonable consistency even with an exceptionally high suc-
cess rate. The trained FCGF and DGR trade a significant
amount of success for a somewhat better map consistency.
The BathyNN models specifically designed for MBES data
are outperformed by all other neural learning-based models
tested. GICP presents a reasonable out-of-the-box solution
with a reasonable success rate as well as a reasonable
consistency. In particular in low-overlap scenarios, GICP
presents a robust solution. In higher-overlap scenarios, the
deep learning methods can provide higher accuracy.
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Fig. 5. Registration error metrics given decreasing overlap ratios. Benefiting
from the synthetic ground truth transformation, the recall (%) here accounts
for the cases where the predicted transformation is has an RRE < 5° and
RTE < 10m. The RRE and RTE are only computed for the correctly recalled
pairs.

2) Transformation Accuracy Metrics: The registration er-
rors in Figure 5 reveal significant differences in the scale
at which the methods perform well. At high overlap ratios,
the neural network methods, and FCGF and Predator in
particular, have a high recall ratio compared to GICP. This
indicates an ability to recover a rough transform consistently.
However, when looking at the transformation errors in the
correctly recalled cases, it becomes apparent that GICP is
more adept at finding the precise transform. From the results,
it seems clear that GICP performs better across all metrics
in the scenarios with very low overlap.

Comparing the error metrics in Figure 5 and Figure 4, we

notice that a low consistency error does not necessarily imply
an accurate transformation. Specifically, at high overlap ratio
(50-20%), the trained FCGF and Predator models both have
lower consistency error than GICP, yet the correctly recalled
transformations from GICP have lower mean RRE and RTE
than both models. This could be explained by two factors.
Firstly, the consistency error is computed at 2m grid size,
or twice the point cloud resolution. As such, it is better at
identifying the rough correctness of the alignment, but might
not be able to signal whether the transformation is precise.
Secondly, MBES bathymetry data is often relatively flat, and
small errors in transformation might not significantly affect
the map quality.
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3) Feature Correspondence Metrics: From Figure 6, it
is clear models finetuned on our dataset outperforms those
trained purely on KITTI. This trend can also be observed
in Figure 4 and Figure 5. In fact, the best-performing
method across all overlaps, Predator, barely finds any correct
correspondences when trained only on KITTI. The signifi-
cant increase in performance provided by fine-tuning clearly
indicates the fundamental difference in registering Lidar data
as compared to bathymetric sonar data.

V. CONCLUSIONS

In this paper, we introduced DotsonEast Dataset - a large-
scale open source, semi-synthetic MBES registration dataset
with a set of benchmark metrics. We see this work as a
first step in constructing large scale MBES datasets that
allows for easier benchmarking of point cloud registration
methods. Using this dataset, we provide the first com-
prehensive evaluation of both classical and learning-based
registration methods on bathymetric point cloud data. In
general, we found learning-based methods, especially FCGF
and Predator, to work well for initial coarse registration due
to their high success rates. However, GICP provides the most
robust registration, yielding precise transformations even at
very low overlap (10%). One natural extension of this work is
thus applying a two-step registration for MBES-based SLAM
problem, using Predator for coarse registration, and GICP for
fine registration.
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