nature materials

Perspective

Engineered moiré photonic and phononic
superlattices

https://doi.org/10.1038/s41563-024-01950-9

Received: 25 August 2022 Mourad Oudich®'?, Xianghong Kong?, Tan Zhang ®3, Chengwei Qiu®3 < &

Yun Jing®'

Accepted: 13 June 2024

Published online: 30 August 2024

Recent discoveries of Mott insulating and unconventional superconducting
states in twisted bilayer graphene with moiré superlattices have not only
reshaped the landscape of ‘twistronics’ but also sparked the rapidly growing
fields of moiré photonic and phononic structures. These innovative moiré
structures have opened new routes of exploration for classical wave physics,
leading to intriguing phenomena and robust control of electromagnetic
and mechanical waves. Drawing inspiration from the success of twisted
bilayer graphene, this Perspective describes an overarching framework

of the emerging moiré photonic and phononic structures that promise
novel classical wave devices. We begin with the fundamentals of moiré
superlattices, before highlighting recent studies that exploit twist angle and
interlayer coupling as new ingredients with which to engineer and tailor the
band structures and effective material properties of photonic and phononic

W Check for updates

structures. Finally, we discuss the future directions and prospects of this
emerging areain materials science and wave physics.

Van der Waals heterostructures are two-dimensional (2D) atomic-layer
heterostructures in which the interlayer binding is achieved through
weak van der Waals interactions'. The study of how the relative twist
angle between successive layers in van der Waals heterostructures
canbeused to manipulate the material’s electronic propertiesis often
referred to as twistronics®. Anincreasingly important topicin twistron-
icsis twisted bilayer graphene (TBG), where two graphene sheets are
arranged one on top of the other with aslight angle of misalignment’.
Such a small twist results in a moiré superlattice at a much larger
length scale than the underlying graphene lattice, radically changing
the band structure of bilayer graphene with the more conventional
AA-stacked or AB-stacked (Bernal) configurations, whichin turngives
rise to unconventional electronic*’, optical®’ and thermal properties®
of TBG. One of the most extraordinary features of TBGis the emergence
of zero-energy-level flat bands at a series of so-called magic angles.
In 2011, Bistritzer and MacDonald reported that the Dirac-point
velocity vanishes at some magic angles (the smallest being around
1.05°)°, and that nearly flat bands emerge at the magic angle, which
contributes a sharp peak to the Dirac-point density of states (DOS).

This study marked an important milestone for theoretical work in
twistronics. It was not until 2018 that magic-angle bilayer graphene
was experimentally confirmed by the group of Jarillo-Herrero at Mas-
sachusetts Institute of Technology®'°. Their back-to-back papers in
Naturereported twoimportant discoveries pertaining to magic-angle
bilayer graphene: correlated (or Mott) insulation’ and unconventional
superconductivity ataround 1.7 K (ref.10). These two discoveries have
generated a host of theoretical and experimental papers seeking to
better understand and further explore the different phenomenaassoci-
ated with magic-angle TBG" .

Taking inspiration from TBG, researchers in classical waves have
attempted to use the twist degree of freedom as a new dimension for
expanding the design space of synthetic photonic and phononic struc-
tures, such as photonic crystals and phononic crystals. For example,
stacking two photonic crystals or phononic crystals in a honeycomb
lattice with asmall twist angle (6) between the two layers constitutesa
simple analogue of TBG" . Using these bilayer twisted photonic and
photonicstructures, magic angles have been investigated for electro-
magnetic and mechanical waves, showing a new route for flat band
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BOX1

The moiré pattern

The moiré pattern is a well-known visual effect that can be observed
when at least two planar periodic structures, such as grids or
gratings, are superposed or overlaid close to each other with a
misalignment such as an angular twist. The moiré pattern is often
seen as an alternation of dark and bright areas, where the bright
areas are created when the two layers largely overlap, while the dark
areas are ones where the two layers overlap to a much lesser extent.
The moiré pattern is highly sensitive to geometrical displacement
and rotation of one layer with respect to the other, which renders
the moiré-inspired system an extremely dynamic platform for a wide
range of applications such as the measurement of displacement’’
and movement’®. Moiré patterns have also been used historically

for marine navigation in shoreside beacons known as ‘Inogon lights’
to indicate safe paths for ships and prevent them from running into
underwater cables and pipelines.

In condensed matter physics, moiré patterns are typically created
from angular misalignment between a pair of atomic monolayers. Of
particular interest is TBG, largely due to the zero-energy-level flat
bands at the magic angles. Here, we delineate the geometrical
construction of the moiré superlattice from the twisting two
monolayers of atoms. Let the periodicity of the first lattice be
governed by two primitive lattice vectors a, and a,. The position of
each unit cell (atom) can be then described by the vector
R,=n;a,+n,a,, where n, and n, are integers. Assuming that the second
lattice is identical to the first one but rotated by an angle 6, each unit
cellin the second lattice will be located at Ry = mja; + m,a), where
m, and m, are integers and a; and ), are vectors after rotation of a
and a,. In the (x, y) plane, if we adopt the complex notation
ay=ay,tjay,, where a, , and a,, are the coordinates of the vector a, (k=1,
2), where the complex number j2=-1, then one can write a = age’t,
which leads to Ry = mya; + my@, = (mya; + m,a,)e’. In general
the equality R, =R, is not necessarlly valid for any set of integers n,, n,,
m, and m,, meaning that the resulting moiré patterns are not
guaranteed to be perfectly periodic—they can be instead
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quasiperiodic. These twist-induced moiré patterns, however, can
become perfectly periodic for discrete values of 8, which can be
determined by the set of n,, n,, m; and m, that lead to R, =R,. These
angles, known as commensurate angles, can be given by equation (1),
as long as the solution is a real number®*:

@

0 —jl < nlau +n2a2,x +j(n1a1y +n2a2y) )
My, + Myas . +j (Miagy + mya, )

A trivial solution would be m;=n, and m,=n,, which corresponds to
6=0.

For the case of triangular, honeycomb and kagome lattices, the
periodicity can be defined by the set of vectors a,=a(1, 0) and
a,=a (1/2, \/3/2), where a is equal to p, v3p or 2p for the triangular,
honeycomb or kagome lattice, respectively, and p is the distance
between closest atoms. Subsequently, equation (1) becomes

2 ,
6=jl (M) _ @)
2m1 +m, +jm2\/§
However, in the case of twisted bilayer square lattices, equation (1)
becomes,
n;+jn
0=j (‘—“) . )
m; +jm,

Then, 6 being real valued requires m} + m3 + mym, = ny + n3 + nyn,
for triangular, honeycomb and kagome lattices, whereas this relation
becomes m? + m% = n? + n’ for the case of the square lattice. Apart
from the trivial solution, one can consider the solution m;=n, and
m,=n, that gives the commensurate angles of the twisted bilayer
lattices. Panel a shows the discrete commensurate angles as a
function of these integers for twisted bilayers with triangular,
honeycomb and kagome lattices (top) and the square lattice (bottom).
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(continued from previous page)

Each line of connected dots corresponds to a value of n, that varies
from n,+1(grey) to n,+8 (blue). These plots suggest that the
distribution of commensurate angles in the case of triangular,
hexagonal or kagome lattices is slightly denser in comparison with
that of the twisted bilayer square lattice. In addition, panel b shows
examples of unit cells of the moiré superlattices for one small (top
row) and one large (bottom row) commensurate twist angle. The
number of atoms per unit cell is greater for the twisted bilayer kagome
lattice than for the honeycomb and triangular lattices. Note that the
superlattices are drawn in a way that they have the identical size for
different cases, resulting in the atoms appearing to have varying sizes.

Among these four types of twisted bilayer lattice, the most
frequently studied one is TBG (honeycomb lattice) with the
exploration of its electronic®®">”°, optical®/*°-*? and thermal
properties®**%, Meanwhile, fewer studies have explored the
electronic dispersion of twisted bilayer triangular lattices using WSe,
(ref. 85), MoSe,/WSe, (ref. 86), WSe,/WS, (ref. 87) and transition metal
dichalcogenides®, whereas other studies have investigated twisted
bilayer kagome lattices®®*° and square lattices*>*>°"2,

engineering in synthetic moiré photonic and phononic structures.
Some of the moiré photonic and phononicbilayer designs go beyond
merely mimicking magic-angle bilayer graphene. One examplein this
regard is the demonstration of polariton topological transition inbilay-
ers of a-phase molybdenum trioxide (a-M00,)*°, where the polariton
dispersion can be precisely controlled by the twist angle and shows
a transition point at a fundamentally different magic angle from the
one in TBG. This work exemplifies how researchers can draw inspira-
tion from TBG to introduce new design models for enabling optical
and acoustic properties that are unavailable in monolayer synthetic
photonic and phononic structures.

In this Perspective, we showcase recent developments in the
field of moiré classical wave structures. Specifically, we introduce the
moiré pattern and its underlying mathematics (Box 1). We provide
a general guideline for the design of photonic and phononic moiré
structures (Box 2), followed by a detailed examination of these two
types of structure. Our discussion examines the construction of moiré
superlattices, the characterization of their wave dispersion behaviour,
and the customization of their twist angle and interlayer coupling
strength torealize unique wave phenomena for both electromagnetic
and mechanical waves. Moreover, we also address the challenges and
routes for applications in this field, and conclude by highlighting the
future directions for the development of photonic and phononic moiré
structures. We would highlight that there is a recent review paper on
moiré photonics and optoelectronics®. Our paper, in turn, offers a
complementary perspective to further illuminate the emerging field
of moiré physics.

Moiré photonic structures

The generalized concept of homogeneous crystals is considered
valid when the behaviour of a crystal can be modelled using effective
medium theory. For photonics (or phononics), such a concept goes
hand in hand with the long wavelength approximation, under which
the crystal can be greatly simplified by taking its average electromag-
netic (or mechanical) response—a process known as homogenization.
For instance, certain natural crystals (for example, black phospho-
rus?, a-MoO; (refs. 20,23,24) and WTe, (ref. 25)) and nanostructured
crystals with deep subwavelength periodicity (forexample, graphene
and hexagonal boron nitride nanoribbon arrays®**’) can be treated as
homogeneous crystals, where an anisotropic surface conductivity

Moiré patterns can also be created by considering two
lattices with a mismatch in their periodicities along a specific
direction. Consider a 1D periodic lattice with a period of a and
a second lattice with a period of a'=a+da, where 0<8<1; then,
stacking the two lattices will yield a 1D moiré pattern. This pattern
is generally quasiperiodic but can also be perfectly periodic
for discrete values of 6, which can be found using the equation
na=ma’, where n and m are integers. This leads to the relation
&=(n-m)/m with the condition of 1<n/m<2. Panel ¢ shows the
values of & as a function of n and m (the number indicated for each
line of connected dots is the value of the integer m), whereas panel
d presents examples of a 1D moiré superlattice created from two
1D lattices (left) and a 1D moiré superlattice created from two
layers of triangular lattices with a periodicity mismatch in the
horizontal direction (right). These bilayer 1D moiré patterns in
classical waves have been studied less extensively than 2D moiré
patterns, and the relevant studies have been focused mainly on
optics®®?". Finally, the mismatch in periodicity can also be created
in both spatial directions®.

tensor can be used to characterize these low-dimensional materials
for manipulating light’. Owing to dispersion, theimaginary part of the
surface conductivity tensor can have opposite signs in the two orthogo-
nal directions within a certain frequency range, where the crystal will
behave like a strongly anisotropic 2D material known as a hyperbolic
metasurface. When two such hyperbolic metasurfaces are stacked, a
moiré metasurfaceis created (Fig. 1a). Theisofrequency contour of the
moiré metasurface lies somewhere between those of the two individual
metasurfaces due to the coupling effect (Fig. 1b). The isofrequency
contour can be analytically derived by first choosing plane waves as
the basis for the three domains created by the two metasurfaces (that
is, the domain above the top metasurface, the domaininbetweenand
the domain below the bottom metasurface) and then matching the
boundary conditions of the two metasurfaces that are determined
by the surface conductivity tensor. By tuning the twist angle between
the two hyperbolic metasurfaces, the isofrequency contour evolves
from being hyperbolic to elliptical, which is analogous to the Lifshitz
transition in electronics®®**?°, The isofrequency contour flattens at
a photonic magic angle where the transition from a hyperbolic to an
elliptical contour occurs. The self-collimation phenomenon can be
detected at the magic angle as the group velocity directionis fixed due
to the flattened isofrequency contour (Fig. 1¢)*>*°.

In addition to the electrical surface conductivity, chiral surface
conductivity was also discovered in photonic TBG metasurfaces when
retrieving the effective electromagnetic parameters®>*. The opposite
chirality canbe created simply via the relative rotation of the two layers
which have mirror symmetry. Note that although graphene can also
be considered an optical metasurface, the optical properties of TBG
arebeyond the scope of this Perspective and the readerisreferredtoa
review paper for amore in-depth discussion on this topic®.

When the working wavelength is comparable with the unit cell of
the crystal, homogenizationisnolonger valid, and Bloch’stheorem can
beapplied toanalyse the photoniccrystal’s electromagnetic response.
The periodicity of the moiré pattern atacommensurate angleis usually
much larger than the size of the unit cell of the monolayer. However, in
the case of a honeycomb lattice, when the twist angle is 0° (AA stack-
ing) or 60° (AB stacking), the periodicity of the moiré patternreaches
its minimum, which is the same as that of the monolayer (Fig. 1d)'. In
addition, narrow solitons appear between AB and BA domains, and
high local optical conductivity can be observed at the AA domains via
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BOX2

Moiré lattices in classical waves

The design of moiré photonic/phononic structures requires
multidisciplinary knowledge in materials science, optics, acoustics
and engineering. The choice of materials, the periodicity of the
moiré pattern, the coupling between the two layers, the band
structures of the moiré structure and tunability using external
stimuli are important aspects to be considered. In addition,
although the differences between photonic and phononic
structures in terms of the wave types and the frequency ranges
determine the choice of the constituent materials in their design,
the general guidelines for designing the moiré photonic and
phononic structures are similar. A moiré photonic (phononic)
structure is generally created by stacking two layers of photonic
(phononic) lattices in a way that facilitates the interaction between
the waves supported by each layer. In this case of mimicking TBG,
where the interlayer hopping is crucial, the stacking of two photonic
(phononic) layers is designed to ensure the interaction between

the propagating electromagnetic (mechanical) waves between the
two layers. This interaction is usually enabled either by coupling the
evanescent wave fields''®'*** or by introducing a coupling medium
between the two layers'®*®. The strength of the interlayer coupling
can be controlled by adjusting the separation distance or the
thickness and property of the coupling medium between the layers.
The photonic (phononic) dispersion of the moiré structure can be
further tailored by the twist of one layer with respect to the other.
This design strategy has enabled the observation of band dispersion
of classical waves, analogous to the electronic dispersion in

TBG for different stacking configurations such as AA and AB™'%
185580 Moreover, it has shown the emergence of flat bands for
electromagnetic'®"*** and mechanical waves''®" at specific angles.
Beyond mimicking the electronic band dispersion of TBG, other
photonic (phononic) moiré designs have been developed to enable
intriguing phenomena for classical waves. Those moiré platforms
were constructed either by stacking periodic lattices?*?%40455°,

not necessarily graphene-like, or by moiré patterning the effective
properties of the photonic/phononic structure*®®"%, In many of
these studies, it is not necessarily the interlayer coupling that
dictates the wave behaviour. For example, a single layer of moiré
pattern has been shown to also support topological transitions

in the isofrequency contours for mechanical waves®'. The choice

of the constituent material for the moiré photonic/phononic
structure also holds substantial importance, except in the case of
acoustic structure. Particularly for airborne sound, the constituent
material’s role in the acoustic crystal/metamaterial is relatively of
little importance. This is because most materials can be treated

as acoustically hard compared with air, and therefore their sole
purpose is to provide rigid surfaces for channelling the sound.

nano-imaging experiments®*°. By creating effective potential wells
centred around the AA-stacked region, the intrinsic localized states
are obtained, leading to the superflat bands in a wide and continu-
ous parameter space”. Hence, a detailed investigation of AA and AB
stackingis crucial for understanding the underlying physics of moiré
patterns’. Figure 1d shows an example in which a photonic crystal
layer comprising a metallic plate that features a hexagonal lattice of
metallic pillars facilitates the propagation of spoof surface plasmons
(SSPs)*. The band structure of the SSP that results from such a lattice
mimics that ofthe graphene, with a Dirac cone appearing at the K point

ofthereciprocallattice®. The stacking of two of these photonic crystal
lattices at an appropriate separation distance enables the SSPs from
the two layers to interact, leading to a dispersion behaviour that is
strikingly similar to that of bilayer graphene'. Furthermore, the tight
binding model developed in bilayer graphene can be readily used to
describe the dispersion of the bilayer photonic crystal in the vicinity of
the Dirac frequency with properly fitted parameters' (Fig. 1d).

In addition, different quantitative analyses have been applied
to the photonic analogy of TBG"*°, A silicon disk was used as the
photonic counterpart of the carbon atom in graphene (Fig. 1e left)"”.
Coupled mode theory was applied to describe the coupling between
nearest-neighbour disks. For simplicity, a continuum model of the
interlayer coupling strength was considered to replace the discrete
coupling between two disks. Compared with the continuum model for
the homogeneous crystals® mentioned above, the interlayer coupling
strengthin coupled mode theory is periodic and has the same periodic-
ity as the moiré pattern. The band diagram and DOS calculated using
the continuum model show local flat bands at the photonic magic
angles (Fig. 1e right). Similar photonic properties of twisted bilayer
photonic honeycomb lattices have also been demonstrated', where the
band structure was engineered by adjusting the device geometry and a
larger band asymmetry was shownin the photonic system. While these
two studies®" numerically demonstrated the magic anglesin twisted
bilayer photonic graphene at the optical frequency, magic angles and
topological corner modes were also demonstrated in twisted bilayer
photonic graphene at the microwave frequency'. Furthermore, these
studies'®'®" explored the interlayer coupling strength as a degree of
freedom to tune the magic angle. Besides the magic-angle flat band
hosted by moiré structures, other unusual optical states can also be
reached by tuning the angle between two photonic graphene layers.
Very recently, evidence for quasi-bound states in the continuum was
shown theoretically in a moiré photonic crystal at the terahertz fre-
quency*. Inaddition to the honeycomb lattice, the photonic dispersion
of the twisted bilayer square lattice photonic slab was investigated
throughahigh-dimensional plane wave expansion method*** (Fig. 1f).
Instead of choosing plane waves as the basis, as mentioned earlier in
effective medium theory, Bloch waves were first chosen as the basis of
the two slabs and plane waves were used as the basis of the surround-
ing space. Bloch waves in the slabs were then decomposed into plane
waves, and the boundary conditions with the plane waves in the sur-
rounding spaces were matched to collectively giverise to the analytical
solution. Strongly tunable resonance properties and chiral behaviour
were discovered by observing the transmission under incident light
with different frequencies and twist angles. The same types of twisted
bilayer photonic crystal slab were also demonstrated to be a tunable
narrow stop-band frequency filter*. Topological flat bands can be
sustained in moiré photonic structures, where topological edge modes
deforminto higher-order topological corner modes after breaking the
reflection symmetry of the boundary of the superlattice**.

Whenthe twist angle isincommensurate, the photonic moiré pat-
tern becomes aperiodic without translational periodicity althoughthe
rotational symmetry still persists* . Instead of using abilayer system
to generate the moiré pattern, the moiré patterns were projected on
to a single surface using optical induction and the weight of the ‘two
layers’ canbe tuned during the projection process to generate different
moiré patterns*®. The localization—-delocalization transition of light
by altering the patterns from incommensurable to commensurable
was experimentally demonstrated. As a particular case of the incom-
mensurate lattice, the quasilattice refers to the case when the lattice
vectors have an equiangular offset between them and are of equal
magnitude*. The 45° twist angle in a square lattice or 30° twist angle
inahexagonal lattice can forma quasilattice, which has eight-fold and
12-fold rotational symmetry, respectively (Fig. 1h). Quasilattice pat-
terns withrotational symmetries as high as 36-fold were developed via
moiré nanolithography onsilver plasmonic crystals*,and anincreased
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Fig.1| Examples of moiré photonic structures. a, The moiré hyperbolic
metasurface composed of two coupled uniaxial metasurfaces with a certain
twist angle. b, Dispersion relations as a function of the twist angle. The

grey (black) solid lines denote the dispersion of the first (second) individual
metasurface whereas the coloured lines denote the dispersion of the moiré
metasurface’. k.and k, are the xand y components of the wavevector and k, is
its norm. ¢, Near-field images of the fixed group velocity direction (red arrows)
near the magic angle®. s, is the experimentally measured near-field distribution.
Fabricated seven edges ‘E’ and one point defect ‘PD’: E1and E2 are parallel along
the [100] crystal axis of the bottom layer, E3 and E4 are parallel along the [001]
crystal axis of the top layer, ESis along the [001] crystal axis of the bottom layer,
and E6 and E7 along other directions. Inset: a scanning electron microscopy
image of the sample tBL, twisted bilayer. d, AA-stacked (left) and AB-stacked
(right) bilayer photonic crystals and their associated band structures'®. h, air-gap
thickness; f, frequency. e, Left: twisted bilayer photonic structure based on a
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Energy shift (meV)

0.70
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Twist angle (°)

. : 0‘ [ :o: Incommensurate
lattice
*®

i=6,12-fold

honeycomb lattice of silicon nanodisks (disk aand disk b) and its comparison
with TBG. dis the lattice constant. Right: dispersion curves and DOS with
different twist angles showing the existence of local flat bands at certain angles”.
f, Twisted bilayer photonic crystal with circular holes in a square lattice (left) and
the transmission (denoted by the colour scale) as a function of the frequency

and twist angle (right)*°. c/ais the frequency unit, where cis the speed of light
and ais the lattice constant. g, Moiré pattern formed using metallic rings with
different periods in the top (red) and bottom (black) layers*. k, deviation of the
excitation dipole from the moiré pattern centre. h, Eight-fold quasilattice (left),
12-fold quasilattice (middle) and a general incommensurate lattice formed by the
overlap of square lattices from two layers (right)*. iis the number of exposures
for a quasilattice. Panels reproduced with permission from: a,b, ref. 26, American
Chemical Society; ¢, ref. 20, Springer Nature Ltd; d, ref. 16, APS; e, ref. 19, APS;

f, ref. 40, APS. Panels adapted with permission from: g, ref. 50, APS; h, ref. 46,
American Chemical Society.

number of surface plasmon polariton modes have been discovered
in quasilattices”. In a recent study, a theoretical approach based on
combining supercell calculation and band unfolding techniques was
constructed to globally characterize the photonic dispersion of a 2D
quasiperiodic moiré superlattice*s. Compared with typical near-field
moiré photonic crystals, most recently, far-field coupling between
moiré photonicarchitectures has beenexperimentally observed, where
twist-angle-controlled directional lasing emissions were achieved®.
In addition to the twist between two monolayer crystals, moiré
patterns due to mismatched lattice constants have been studied****,
Forinstance, two parallel hexagonal lattice metallic ring metasurfaces
with a lattice constant mismatch in one direction were introduced to
form amoiré bilayer system (Fig. 1g)*°. As the periodicity of the moiré
patternis much larger than the unit cell, the supercell was decomposed
into unit cells with different shifts between the two layers, and the rela-
tive shiftin the unit cell was treated as an effective gauge field created
by an artificial magnetic field. The corresponding photonic Landau
levels were observed experimentally. Similar results have also been
found when overlapping two one-dimensional (1D) photonic crystal

slabs with mismatched periods®**, where the authors showed a high
concentration of the Wannier functioninamoiré cell. Inarecent study,
a 1D moiré silicon photonic nanowire was designed and fabricated to
demonstrate a host of behaviours thatinclude slow-light, high-Q-factor
moiré resonators, multi-resonant filters, suppression of grating side-
bands, persistent versus extinguishable transmission, tunable Qfactors
and tunable group velocities™.

Moiré phononic structures

TBG notonly sparked substantial interest in developing moiré photonic
structures butalso spawned the new field of moiré phononicstructures
for controlling acoustic'"**** and elastic waves™*°"*%, A bilayer sonic
structure was proposed, composed of two stacked phononic crystals,
where eachmonolayer phononic crystalis made of atriangular lattice
of rigid triangular units® (Fig. 2a, left). A perforated rigid plate sepa-
ratesthe two phononiccrystals, where the holes induce the interlayer
coupling. The stacking was of the AA configuration, and the triangular
units within each cell were rotated in both layers to give rise to differ-
ent dispersion behaviours in the vicinity of the Dirac point (Fig. 2a,
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Fig. 2| Examples of moiré phononic structures. a, Left: bilayer sonic crystal
made of two phononic crystals with triangular lattices, and arigid plate with
holes separates the two phononic crystals to enable mode coupling®. ALH,
acoustic layer-valley Hall; AVH, acoustic valley Hall; « and 8, orientation angles
ofthe triangular rods; g, lattice constant; h,,, thickness of the triangular rods;
Ay, thickness of the plate; ry, radius of the holes. Middle: band dispersion that
shows crossing bands for AA stacking. Right: bilayer valley Hall transport from the
upper layer to the lower layer. The colour scale represents the acoustic pressure
amplitude. b, Left: bilayer metamaterial made of two acoustic lattices of rigid
cylindersinair separated by a thin vibrating membrane to mimic the interlayer
hoping®. Right: band dispersions for AA and AB stacking. ¢, Left: twisted bilayer
sonic crystal consisting of two rigid plates with air cavities facing each other,
where each plate supports the propagation of SSAWs'*, Right: band structures
atafixed twist angle of 3.481° for different interlayer couplings via changing the
air-gap thickness between the rigid plates. The acousticintensity in the moiré

supercellis plotted near the I point, for the bands marked in red.

d, Left: acoustic bilayer structure created from stacking two sonic crystals, each
made of connected cavities. The sonic crystals are separated by a vibrating
membrane”. D, steel layer thickness; T, membrane thickness; a, cavity spacing;
r,central cavity radius; w, channel width; R, is the cavity radius. Right: flat bands
created at the magic angle with confined acoustic energy at the AA regions of
the moiré supercell. e, Twisted elastic bilayer lattice made of two coupled plates
decorated withhoneycomb lattices of pillars (left), giving rise to flat bands at the
magicangle (right)®. h, thickness of the plate; Am, mass; W, and W_, the flexural
waves amplitude the for upper and lower layers, respectively; d, thickness of the
coupling medium; Q, normalized frequency; k, coupling parameter. f, Moiré
lattices made of a cluster of scatterers showing dipolar resonances at discrete
values of the twist angle*’. The colour scale represents the acoustic field pattern.
Panels reproduced with permission from: a, ref. 56, APS; b, ref. 55, APS; ¢, ref. 14,
APS; d, ref.17,10P; e, ref. 15, APS. Panel fadapted with permission from ref. 59, APS.

middle). The existence of two types of topological valley edge state
was numerically and experimentally demonstrated, with interfaces
that support either valley Hall states propagating in both layers or
layer-valley Hall states that mainly propagate in a single layer. Topologi-
calwaveguiding with propagation from one layer to the other was also
experimentally demonstrated (Fig. 2a, right). Although this work does
notdirectly involve moiré patterns, itis one of the earliest studies that
provide crucial insight into how interlayer coupling and rotation can
be harnessed to engineer the dispersion of bilayer phononic crystals.
Abilayer phononiccrystal consisting of rigid cylindrical rodsinahon-
eycomb lattice was designed where the two layers were separated by a
thinvibrating membrane to ensure the interlayer coupling of acoustic
waves® (Fig. 2b, left). By choosing the appropriate interlayer coupling
strength via changing the thickness and density of the membrane,
the authors numerically showed that the acoustic dispersion of the
bilayer can mimic the electronic dispersion of the classical bilayer
graphene near the Dirac cone frequency for both AA and AB stacking
configurations with two sets of crossing Dirac bands and quadratic
dispersion, respectively (Fig. 2b, right). Shortly afterwards, the twist

degree of freedom was considered inasonicbilayer crystal where each
layer is a rigid plate with a honeycomb lattice of cylindrical air cavi-
ties™ (Fig. 2c, left). Each phononic crystal plate supports spoof surface
acoustic waves (SSAWs) propagating in the near field above the air cavi-
ties with evanescent decay in the direction perpendicular to the plate
surface. By positioning the phononic plates to face each other withan
air gap in between, the SSAWs supported by each plate caninteract,
mirroring theinterlayer hoppinginbilayer graphene. Moreover, twist-
ing one plate with respect to the other creates a moiré pattern, and it
was numerically shown that at specific twist angles (magic angles), flat
bands appear with confined acousticintensity inthe AAregions of the
moiré superlattice (Fig. 2¢, right).

The magic angle depends strongly on the interlayer coupling
strength and can be tuned by varying the distance between the pho-
nonic crystals. A bilayer twisted acoustic metamaterial was designed
using a vibrating polyethylene membrane as the coupling medium"
(Fig. 2d, left). The authors also numerically showed the trapping of
sound via the twist that is associated with the flattening of the Dirac
bands at amagic angle of 1.12° (Fig. 2d, right). This magic angle can be
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tuned to higher values by changing the interlayer coupling strength
through varying the thickness of the membrane. The dispersion of
these phononic bilayers canbe described in the vicinity of the Dirac fre-
quency by formulating the Hamiltonian from the tight binding model
ofbilayer graphene. Recently, an acoustic bilayer design was builtata
large twist angle of 27.79°, consisting of connected cavities”’. Strong
interlayer coupling was used to generate a bandgap that harbours
higher-order topological states.

Inthe context of elastodynamics, the analogue of TBG for elastic
waves was designed by considering two weakly coupled vibrating plates
via a thin elastic medium, where each plate is attached with a honey-
comb lattice of point masses® (Fig. 2e, left). The underlying physics
of the interlayer coupling is the interaction of flexural waves hosted
by the plates. The authors developed a theoretical model to describe
their system based on Germain-Lagrange approximation from the
equation of motion governing flexural waves in coupled plates. The
twist angle comes into play when describing the mass distribution
on both layers. They demonstrated the emergence of flat bands at a
magic angle of 1.61° (rightmost panel of Fig. 2e, right). Meanwhile,
Marti-Sabaté and Torrent™ conducted a theoretical study on the inter-
action of elastodynamic modes with a cluster of scatterers distributed
inamoiré patternover athin plate. This study disclosed the emergence
of dipolar resonances at specific discrete values of the twist angles
(Fig. 2f). A plate decorated with a lattice of pillars was constructed
with modulated heights inamoiré pattern®, and topological transition
of the isofrequency contour from hyperbolic to elliptical dispersion
was demonstrated, similar to what was observed in a previous study
in photonics®. Very recently, afamily of bilayer phononic crystals was
presented, whereboth sides of a plate are decorated with a hexagonal
lattice of pillars®. A plate with a sufficiently large thickness possesses
aweak interlayer coupling between SAWs (surface acoustic waves)
propagating on each side of the plate, representing a direct analogue
ofbilayer graphene. The authors also studied the twisted bilayer pho-
nonic crystal under a large commensurate angle of 38.213°, which
creates a structure with an even sublattice exchange (SE) symmetry.
Furthermore, by reducing the thickness of the plate, strong interlayer
coupling canbeintroduced, whichleads to substantial changesinthe
band structure and the possibility of bilayer valley Hall states under
the even SE symmetry.

Outlook

As it currently stands, there are two different research directions for
moiré photonicand phononicstructures. The firstis centred oniden-
tifying engineered artificial structures that control waves to emulate
the electronic behaviours experimentally observed or theoretically
predictedin TBG. The epitome of this effortis the finding of flat bands
at magic angles in bilayer photonic'®'’, sonic'*"” and elastodynamic®
moiré structures. Whereas it is intriguing to show that the concept of
the magic angle can be generalized to virtually all classical wave sys-
tems, this twist-induced behaviour (flat bands at the magic angle) has
yet to be experimentally observed in a classical wave counterpart of
TBG. Thisislargely because, at small twist angles, the unit cellbecomes
extremely large, especially for moiré phononic and microwave photonic
crystals due to the large wavelength used. Challenges persist even in
experiments involving relatively large twist angles. For instance, the
observation of topological corner states in even-SE-symmetry TBG is
onesuch challenge’. Inaddition, in acoustic lattices, the thermoviscous
loss is a main limiting factor. Furthermore, in contrast to electronic
systems, itis relatively easy to engineer flat bands or higher-order topo-
logical insulators using monolayer photonic and phononic crystals®.
Therefore, itis crucial to elucidate the benefit of the twist-induced
flat bands or topological corner modes in classical wave systems.
Although moiré crystals are tunable in nature due to their twist degree
of freedom, and the results produced from classical wave systems can
advance research into TBG or twistronics in general by informing the

discovery of new quantum materials, future work directions could
leverage the engineering of flat bands and higher-order band topology
for practical functionalities such as robust dynamic energy trapping
via the twist, which could benefit the fields of nonlinear photonics
and optomechanics.

The second direction entails a broader scope, and it seeks to
expand the field of artificial photonic and phononic crystals by taking
inspiration from TBGinthat the twist degree of freedom and interlayer
coupling, or simply the moiré pattern, are harnessed to give rise to
new design paradigms of classical wave devices. This line of research
often leads to results that represent an important departure from
TBG in that these results find no counterparts in TBG***>°°, Although
notable progress has been made in the development of moiré crys-
tals, there remains a need to explore their integration into functional
devicesthat canleverage twistandinterlayer coupling for precise wave
control. One potential application involves the use of moiré patterns
in acoustofluidics to create customizable fluid-streaming patterns
for the manipulation and trapping of microparticles. To achieve this
goal, further researchis needed to investigate the physics of acoustic
streaming thatis enabled by moiré patternsinfluids for the application
of moiré phononic structures in fluid-flow manipulation.

Going forwards, there is a plethora of directions that can be
explored to bring the field of moiré photonic and phononic crystals
to the next phase. For example, loss and gain can be added into the
equation to enrich the physics of moiré photonic and phononic crys-
tals, where the interplay between loss and gain can be further com-
plemented by twist and interlayer coupling. Itis noted that two recent
papers have theoretically studied parity-time-symmetric AA- and
AB-stacked bilayer photonic graphene®**, and showed that parity-time
symmetry induces band alteration in the vicinity of the Dirac point®
aswellasthe existence of exceptional concentric rings with particular
topological features®. Another direction is to leverage the unique
strength of photonic and phononic crystals (or metasurfaces), where
arbitrary 2D lattices other than the honeycomb lattice can be readily
built, and their interaction with twist and interlayer coupling can be the-
oretically or even experimentally probed. In this spirit, bilayer square
lattice photonic crystals and photonic moiré patterns resulting from
squarelattices have recently been studied*®*. However, other lattices,
such as the kagome lattice, have largely been unexplored in classical
waves. Inaddition, whilein electronic materials the nearest-interlayer
hoppingis naturally the strongest, photonic and phononic crystals can
bearobust platformto engineerinterlayer coupling, where long-range
interlayer hopping can be made stronger than nearest-interlayer hop-
ping. Recent studies have demonstrated that long-range hopping
stronger than nearest-neighbour hopping can extend the topological
ordertoanewtopological class, giving rise to agreater number of topo-
logically protected states in a 2D monolayer crystal®. We expect that
similar novel large-chiral-number topological states can be uncovered
inthe moiré system.

Anotheravenue of research that has recently come tolightinvolves
the exploration of bound states in the continuum (BICs) within twisted
bilayer phononic and photonic crystals. BICs are localized modes
that can be present in the continuous spectrum of propagating or
radiating waves but cannotinteract with any of these waves. Aunique
BIC has been observed in the continuum of a bilayer photonic crystal,
emerging from the coupling between transverse electric and trans-
verse magnetic modes, arising from abroken symmetry in the bilayer
structure®. In another study, twisted bilayer photonic crystal slabs
were constructed to exhibit a quasi-BIC by manipulating the twist
and interlayer coupling®. Very recently, a mirror-stacking approach
was developed to construct symmetry-protected topological BICs®®
inacoustics. Suchrealizations provide further insightsinto the emer-
gence of BICs for efficient localization of light and sound in moiré pho-
tonicand phononicstructures. Onthe same front of wave localization,
an encouraging avenue worth exploring involves the introduction of
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topological defects into moiré photonic and phononic structures. In
these scenarios, the twist canalter theinteraction among defect states
betweenthelayers, giving rise to new defect modes. This, in turn, could
suggest potential applications for enhanced and loss-immune com-
munication, lasing and sensing.

Meanwhile, nonlinear optical responses of TBG have been inves-
tigated to demonstrate higher-order harmonic responses that are
absent in monolayer or conventional bilayer graphene, spawning
the field of optotwistronics®®’°. Nonlinear optical waves have also
beenstudied extensively in photonic crystals, leading to applications
towards reduced-size multifunctional control of light, photonic circuits
for optical communication and multiphoton absorption. In mechani-
cal waves, nonlinear dynamical behaviours have also been studied in
phononic crystals to achieve subwavelength wave control”, acoustic
nonreciprocity’, soft material lattices for nonlinear wave control’ and
architected lattices for soliton manpulation™”. However, nonlinear
dynamicresponses of twisted bilayer photonic and phononic crystals
haveyetto be explored. By incorporating the twist degree of freedomin
conjunctionwithinterlayer coupling, photonic and phononic crystals
can achieve a whole new level of capability with highly customizable
nonlinear dynamic behaviour, which has the potential to revolution-
ize photonics and acoustics, leading to remarkable technological
breakthroughs.

Beyond passive moiré lattices, an exciting avenue of exploration
involves designing bilayer lattices with controlled nonreciprocal inter-
actions between the layers, whichwould involve an active system’™. The
combination of the twist and nonreciprocal interlayer coupling has
the potential to expand the capabilities of twister bilayer lattices for
wave manipulation. In the same direction for active systems, instead of
considering a static twist, it is worth exploring the dispersion of clas-
sical waves of adynamic moiré lattice. This dynamic rotation induces
aspacetime modulation of the periodicity and/or quasiperiodicity of
the bilayer lattice, hence its effective properties, which could poten-
tially lead to exciting phenomena related to nonreciprocity. A bilayer
structure with a rotating moiré pattern could offer a simple and effi-
cient method to achieve spatiotemporal modulation. This approach
is expected to be more relevant for acoustic waves due to their lower
frequencies, although the flow generated by the rotation could present
challenges for the experiment.

Overall, asresearchin TBG continues to advance and the broader
field of twistronics becomesincreasingly multidisciplinary, we antici-
pate sustained growth in the subject of moiré photonic and phon-
onic structures throughout the coming decade. In addition to the
aforementioned exploratory directions, with the rapid evolution of
fabrication and characterization techniques, in the future we foresee
the emergence of novel moiré platforms for classical waves. These plat-
forms may draw inspiration fromadvancementsin twisted electronic
heterostructures or involve the creation of innovative moiré structures
beyond the equivalent of TBG for efficient wave control.
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