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Engineered moiré photonic and phononic 
superlattices
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Recent discoveries of Mott insulating and unconventional superconducting 

states in twisted bilayer graphene with moiré superlattices have not only 

reshaped the landscape of ‘twistronics’ but also sparked the rapidly growing 

fields of moiré photonic and phononic structures. These innovative moiré 

structures have opened new routes of exploration for classical wave physics, 

leading to intriguing phenomena and robust control of electromagnetic 

and mechanical waves. Drawing inspiration from the success of twisted 

bilayer graphene, this Perspective describes an overarching framework 

of the emerging moiré photonic and phononic structures that promise 

novel classical wave devices. We begin with the fundamentals of moiré 

superlattices, before highlighting recent studies that exploit twist angle and 

interlayer coupling as new ingredients with which to engineer and tailor the 

band structures and effective material properties of photonic and phononic 

structures. Finally, we discuss the future directions and prospects of this 

emerging area in materials science and wave physics.

Van der Waals heterostructures are two-dimensional (2D) atomic-layer 

heterostructures in which the interlayer binding is achieved through 

weak van der Waals interactions1. The study of how the relative twist 

angle between successive layers in van der Waals heterostructures 

can be used to manipulate the material’s electronic properties is often 

referred to as twistronics2. An increasingly important topic in twistron-

ics is twisted bilayer graphene (TBG), where two graphene sheets are 

arranged one on top of the other with a slight angle of misalignment3. 

Such a small twist results in a moiré superlattice at a much larger 

length scale than the underlying graphene lattice, radically changing 

the band structure of bilayer graphene with the more conventional 

AA-stacked or AB-stacked (Bernal) configurations, which in turn gives 

rise to unconventional electronic4,5, optical6,7 and thermal properties8 

of TBG. One of the most extraordinary features of TBG is the emergence 

of zero-energy-level flat bands at a series of so-called magic angles.

In 2011, Bistritzer and MacDonald reported that the Dirac-point 

velocity vanishes at some magic angles (the smallest being around 

1.05°)5, and that nearly flat bands emerge at the magic angle, which 

contributes a sharp peak to the Dirac-point density of states (DOS). 

This study marked an important milestone for theoretical work in 

twistronics. It was not until 2018 that magic-angle bilayer graphene 

was experimentally confirmed by the group of Jarillo-Herrero at Mas-

sachusetts Institute of Technology9,10. Their back-to-back papers in 

Nature reported two important discoveries pertaining to magic-angle 

bilayer graphene: correlated (or Mott) insulation9 and unconventional 

superconductivity at around 1.7 K (ref. 10). These two discoveries have 

generated a host of theoretical and experimental papers seeking to 

better understand and further explore the different phenomena associ-

ated with magic-angle TBG11–13.

Taking inspiration from TBG, researchers in classical waves have 

attempted to use the twist degree of freedom as a new dimension for 

expanding the design space of synthetic photonic and phononic struc-

tures, such as photonic crystals and phononic crystals. For example, 

stacking two photonic crystals or phononic crystals in a honeycomb 

lattice with a small twist angle (θ) between the two layers constitutes a 

simple analogue of TBG14–19. Using these bilayer twisted photonic and 

photonic structures, magic angles have been investigated for electro-

magnetic and mechanical waves, showing a new route for flat band 
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BOX 1

The moiré pattern
The moiré pattern is a well-known visual effect that can be observed 

when at least two planar periodic structures, such as grids or 

gratings, are superposed or overlaid close to each other with a 

misalignment such as an angular twist. The moiré pattern is often 

seen as an alternation of dark and bright areas, where the bright 

areas are created when the two layers largely overlap, while the dark 

areas are ones where the two layers overlap to a much lesser extent. 

The moiré pattern is highly sensitive to geometrical displacement 

and rotation of one layer with respect to the other, which renders 

the moiré-inspired system an extremely dynamic platform for a wide 

range of applications such as the measurement of displacement77 

and movement78. Moiré patterns have also been used historically 

for marine navigation in shoreside beacons known as ‘Inogon lights’ 

to indicate safe paths for ships and prevent them from running into 

underwater cables and pipelines.

In condensed matter physics, moiré patterns are typically created 

from angular misalignment between a pair of atomic monolayers. Of 

particular interest is TBG, largely due to the zero-energy-level flat 

bands at the magic angles. Here, we delineate the geometrical 

construction of the moiré superlattice from the twisting two 

monolayers of atoms. Let the periodicity of the first lattice be 

governed by two primitive lattice vectors a1 and a2. The position of 

each unit cell (atom) can be then described by the vector 

Ra = n1a1 + n2a2, where n1 and n2 are integers. Assuming that the second 

lattice is identical to the first one but rotated by an angle θ, each unit 

cell in the second lattice will be located at R
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the equality Ra′ = Ra is not necessarily valid for any set of integers n1, n2, 

m1 and m2, meaning that the resulting moiré patterns are not 

guaranteed to be perfectly periodic—they can be instead 

quasiperiodic. These twist-induced moiré patterns, however, can 

become perfectly periodic for discrete values of θ, which can be 

determined by the set of n1, n2, m1 and m2 that lead to Ra′ = Ra. These 

angles, known as commensurate angles, can be given by equation (1), 

as long as the solution is a real number59:
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A trivial solution would be m1 = n1 and m2 = n2, which corresponds to 

θ = 0.

For the case of triangular, honeycomb and kagome lattices, the 

periodicity can be defined by the set of vectors a1 = a(1, 0) and 

a

2

= a (1/2,

√
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, where a is equal to p, √3p or 2p for the triangular, 

honeycomb or kagome lattice, respectively, and p is the distance 

between closest atoms. Subsequently, equation (1) becomes
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However, in the case of twisted bilayer square lattices, equation (1) 

becomes,
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for triangular, honeycomb and kagome lattices, whereas this relation 

becomes m2
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 for the case of the square lattice. Apart 

from the trivial solution, one can consider the solution m1 = n2 and 

m2 = n1 that gives the commensurate angles of the twisted bilayer 

lattices. Panel a shows the discrete commensurate angles as a 

function of these integers for twisted bilayers with triangular, 

honeycomb and kagome lattices (top) and the square lattice (bottom). 
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engineering in synthetic moiré photonic and phononic structures. 

Some of the moiré photonic and phononic bilayer designs go beyond 

merely mimicking magic-angle bilayer graphene. One example in this 

regard is the demonstration of polariton topological transition in bilay-

ers of α-phase molybdenum trioxide (α-MoO3)20, where the polariton 

dispersion can be precisely controlled by the twist angle and shows 

a transition point at a fundamentally different magic angle from the 

one in TBG. This work exemplifies how researchers can draw inspira-

tion from TBG to introduce new design models for enabling optical 

and acoustic properties that are unavailable in monolayer synthetic 

photonic and phononic structures.

In this Perspective, we showcase recent developments in the 

field of moiré classical wave structures. Specifically, we introduce the 

moiré pattern and its underlying mathematics (Box 1). We provide 

a general guideline for the design of photonic and phononic moiré 

structures (Box 2), followed by a detailed examination of these two 

types of structure. Our discussion examines the construction of moiré 

superlattices, the characterization of their wave dispersion behaviour, 

and the customization of their twist angle and interlayer coupling 

strength to realize unique wave phenomena for both electromagnetic 

and mechanical waves. Moreover, we also address the challenges and 

routes for applications in this field, and conclude by highlighting the 

future directions for the development of photonic and phononic moiré 

structures. We would highlight that there is a recent review paper on 

moiré photonics and optoelectronics21. Our paper, in turn, offers a 

complementary perspective to further illuminate the emerging field 

of moiré physics.

Moiré photonic structures
The generalized concept of homogeneous crystals is considered 

valid when the behaviour of a crystal can be modelled using effective 

medium theory. For photonics (or phononics), such a concept goes 

hand in hand with the long wavelength approximation, under which 

the crystal can be greatly simplified by taking its average electromag-

netic (or mechanical) response—a process known as homogenization. 

For instance, certain natural crystals (for example, black phospho-

rus22, α-MoO3 (refs. 20,23,24) and WTe2 (ref. 25)) and nanostructured 

crystals with deep subwavelength periodicity (for example, graphene 

and hexagonal boron nitride nanoribbon arrays26,27) can be treated as 

homogeneous crystals, where an anisotropic surface conductivity 

tensor can be used to characterize these low-dimensional materials 

for manipulating light7. Owing to dispersion, the imaginary part of the 

surface conductivity tensor can have opposite signs in the two orthogo-

nal directions within a certain frequency range, where the crystal will 

behave like a strongly anisotropic 2D material known as a hyperbolic 

metasurface. When two such hyperbolic metasurfaces are stacked, a 

moiré metasurface is created (Fig. 1a). The isofrequency contour of the 

moiré metasurface lies somewhere between those of the two individual 

metasurfaces due to the coupling effect (Fig. 1b). The isofrequency 

contour can be analytically derived by first choosing plane waves as 

the basis for the three domains created by the two metasurfaces (that 

is, the domain above the top metasurface, the domain in between and 

the domain below the bottom metasurface) and then matching the 

boundary conditions of the two metasurfaces that are determined 

by the surface conductivity tensor. By tuning the twist angle between 

the two hyperbolic metasurfaces, the isofrequency contour evolves 

from being hyperbolic to elliptical, which is analogous to the Lifshitz 

transition in electronics20,28,29. The isofrequency contour flattens at 

a photonic magic angle where the transition from a hyperbolic to an 

elliptical contour occurs. The self-collimation phenomenon can be 

detected at the magic angle as the group velocity direction is fixed due 

to the flattened isofrequency contour (Fig. 1c)20,30.

In addition to the electrical surface conductivity, chiral surface 

conductivity was also discovered in photonic TBG metasurfaces when 

retrieving the effective electromagnetic parameters31–34. The opposite 

chirality can be created simply via the relative rotation of the two layers 

which have mirror symmetry. Note that although graphene can also 

be considered an optical metasurface, the optical properties of TBG 

are beyond the scope of this Perspective and the reader is referred to a 

review paper for a more in-depth discussion on this topic35.

When the working wavelength is comparable with the unit cell of 

the crystal, homogenization is no longer valid, and Bloch’s theorem can 

be applied to analyse the photonic crystal’s electromagnetic response. 

The periodicity of the moiré pattern at a commensurate angle is usually 

much larger than the size of the unit cell of the monolayer. However, in 

the case of a honeycomb lattice, when the twist angle is 0° (AA stack-

ing) or 60° (AB stacking), the periodicity of the moiré pattern reaches 

its minimum, which is the same as that of the monolayer (Fig. 1d)16. In 

addition, narrow solitons appear between AB and BA domains, and 

high local optical conductivity can be observed at the AA domains via 

Each line of connected dots corresponds to a value of n2 that varies 

from n1 + 1 (grey) to n1 + 8 (blue). These plots suggest that the 

distribution of commensurate angles in the case of triangular, 

hexagonal or kagome lattices is slightly denser in comparison with 

that of the twisted bilayer square lattice. In addition, panel b shows 

examples of unit cells of the moiré superlattices for one small (top 

row) and one large (bottom row) commensurate twist angle. The 

number of atoms per unit cell is greater for the twisted bilayer kagome 

lattice than for the honeycomb and triangular lattices. Note that the 

superlattices are drawn in a way that they have the identical size for 

different cases, resulting in the atoms appearing to have varying sizes.

Among these four types of twisted bilayer lattice, the most 

frequently studied one is TBG (honeycomb lattice) with the 

exploration of its electronic5,9–12,79, optical6,7,80–82 and thermal 

properties8,83,84. Meanwhile, fewer studies have explored the 

electronic dispersion of twisted bilayer triangular lattices using WSe2 

(ref. 85), MoSe2/WSe2 (ref. 86), WSe2/WS2 (ref. 87) and transition metal 

dichalcogenides88, whereas other studies have investigated twisted 

bilayer kagome lattices89,90 and square lattices43,45,91,92.

Moiré patterns can also be created by considering two  

lattices with a mismatch in their periodicities along a specific 

direction. Consider a 1D periodic lattice with a period of a and 

a second lattice with a period of a′ = a + δa, where 0 < δ < 1; then, 

stacking the two lattices will yield a 1D moiré pattern. This pattern 

is generally quasiperiodic but can also be perfectly periodic 

for discrete values of δ, which can be found using the equation 

na = ma′, where n and m are integers. This leads to the relation 

δ = (n − m)/m with the condition of 1 < n/m < 2. Panel c shows the 

values of δ as a function of n and m (the number indicated for each 

line of connected dots is the value of the integer m), whereas panel 

d presents examples of a 1D moiré superlattice created from two  

1D lattices (left) and a 1D moiré superlattice created from two  

layers of triangular lattices with a periodicity mismatch in the 

horizontal direction (right). These bilayer 1D moiré patterns in 

classical waves have been studied less extensively than 2D moiré 

patterns, and the relevant studies have been focused mainly on 

optics50,51. Finally, the mismatch in periodicity can also be created  

in both spatial directions93.

(continued from previous page)
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nano-imaging experiments6,36. By creating effective potential wells 

centred around the AA-stacked region, the intrinsic localized states 

are obtained, leading to the superflat bands in a wide and continu-

ous parameter space37. Hence, a detailed investigation of AA and AB 

stacking is crucial for understanding the underlying physics of moiré 

patterns16. Figure 1d shows an example in which a photonic crystal 

layer comprising a metallic plate that features a hexagonal lattice of 

metallic pillars facilitates the propagation of spoof surface plasmons 

(SSPs)38. The band structure of the SSP that results from such a lattice 

mimics that of the graphene, with a Dirac cone appearing at the K point 

of the reciprocal lattice39. The stacking of two of these photonic crystal 

lattices at an appropriate separation distance enables the SSPs from 

the two layers to interact, leading to a dispersion behaviour that is 

strikingly similar to that of bilayer graphene16. Furthermore, the tight 

binding model developed in bilayer graphene can be readily used to 

describe the dispersion of the bilayer photonic crystal in the vicinity of 

the Dirac frequency with properly fitted parameters16 (Fig. 1d).

In addition, different quantitative analyses have been applied 

to the photonic analogy of TBG19,40. A silicon disk was used as the 

photonic counterpart of the carbon atom in graphene (Fig. 1e left)19. 

Coupled mode theory was applied to describe the coupling between 

nearest-neighbour disks. For simplicity, a continuum model of the 

interlayer coupling strength was considered to replace the discrete 

coupling between two disks. Compared with the continuum model for 

the homogeneous crystals29 mentioned above, the interlayer coupling 

strength in coupled mode theory is periodic and has the same periodic-

ity as the moiré pattern. The band diagram and DOS calculated using 

the continuum model show local flat bands at the photonic magic 

angles (Fig. 1e right). Similar photonic properties of twisted bilayer 

photonic honeycomb lattices have also been demonstrated18, where the 

band structure was engineered by adjusting the device geometry and a 

larger band asymmetry was shown in the photonic system. While these 

two studies18,19 numerically demonstrated the magic angles in twisted 

bilayer photonic graphene at the optical frequency, magic angles and 

topological corner modes were also demonstrated in twisted bilayer 

photonic graphene at the microwave frequency16. Furthermore, these 

studies16,18,19 explored the interlayer coupling strength as a degree of 

freedom to tune the magic angle. Besides the magic-angle flat band 

hosted by moiré structures, other unusual optical states can also be 

reached by tuning the angle between two photonic graphene layers. 

Very recently, evidence for quasi-bound states in the continuum was 

shown theoretically in a moiré photonic crystal at the terahertz fre-

quency41. In addition to the honeycomb lattice, the photonic dispersion 

of the twisted bilayer square lattice photonic slab was investigated 

through a high-dimensional plane wave expansion method40,42 (Fig. 1f). 

Instead of choosing plane waves as the basis, as mentioned earlier in 

effective medium theory, Bloch waves were first chosen as the basis of 

the two slabs and plane waves were used as the basis of the surround-

ing space. Bloch waves in the slabs were then decomposed into plane 

waves, and the boundary conditions with the plane waves in the sur-

rounding spaces were matched to collectively give rise to the analytical 

solution. Strongly tunable resonance properties and chiral behaviour 

were discovered by observing the transmission under incident light 

with different frequencies and twist angles. The same types of twisted 

bilayer photonic crystal slab were also demonstrated to be a tunable 

narrow stop-band frequency filter43. Topological flat bands can be 

sustained in moiré photonic structures, where topological edge modes 

deform into higher-order topological corner modes after breaking the 

reflection symmetry of the boundary of the superlattice44.

When the twist angle is incommensurate, the photonic moiré pat-

tern becomes aperiodic without translational periodicity although the 

rotational symmetry still persists45–47. Instead of using a bilayer system 

to generate the moiré pattern, the moiré patterns were projected on 

to a single surface using optical induction and the weight of the ‘two 

layers’ can be tuned during the projection process to generate different 

moiré patterns45. The localization–delocalization transition of light 

by altering the patterns from incommensurable to commensurable 

was experimentally demonstrated. As a particular case of the incom-

mensurate lattice, the quasilattice refers to the case when the lattice 

vectors have an equiangular offset between them and are of equal 

magnitude46. The 45° twist angle in a square lattice or 30° twist angle 

in a hexagonal lattice can form a quasilattice, which has eight-fold and 

12-fold rotational symmetry, respectively (Fig. 1h). Quasilattice pat-

terns with rotational symmetries as high as 36-fold were developed via 

moiré nanolithography on silver plasmonic crystals47, and an increased 

BOX 2

Moiré lattices in classical waves
The design of moiré photonic/phononic structures requires 

multidisciplinary knowledge in materials science, optics, acoustics 

and engineering. The choice of materials, the periodicity of the 

moiré pattern, the coupling between the two layers, the band 

structures of the moiré structure and tunability using external 

stimuli are important aspects to be considered. In addition, 

although the differences between photonic and phononic 

structures in terms of the wave types and the frequency ranges 

determine the choice of the constituent materials in their design, 

the general guidelines for designing the moiré photonic and 

phononic structures are similar. A moiré photonic (phononic) 

structure is generally created by stacking two layers of photonic 

(phononic) lattices in a way that facilitates the interaction between 

the waves supported by each layer. In this case of mimicking TBG, 

where the interlayer hopping is crucial, the stacking of two photonic 

(phononic) layers is designed to ensure the interaction between 

the propagating electromagnetic (mechanical) waves between the 

two layers. This interaction is usually enabled either by coupling the 

evanescent wave fields14,16,19,94 or by introducing a coupling medium 

between the two layers18,55. The strength of the interlayer coupling 

can be controlled by adjusting the separation distance or the 

thickness and property of the coupling medium between the layers. 

The photonic (phononic) dispersion of the moiré structure can be 

further tailored by the twist of one layer with respect to the other. 

This design strategy has enabled the observation of band dispersion 

of classical waves, analogous to the electronic dispersion in 

TBG for different stacking configurations such as AA and AB14,16–

18,55,60. Moreover, it has shown the emergence of flat bands for 

electromagnetic16–19,94 and mechanical waves14,15,17 at specific angles. 

Beyond mimicking the electronic band dispersion of TBG, other 

photonic (phononic) moiré designs have been developed to enable 

intriguing phenomena for classical waves. Those moiré platforms 

were constructed either by stacking periodic lattices20,26,40,45,50, 

not necessarily graphene-like, or by moiré patterning the effective 

properties of the photonic/phononic structure46,61,95. In many of 

these studies, it is not necessarily the interlayer coupling that 

dictates the wave behaviour. For example, a single layer of moiré 

pattern has been shown to also support topological transitions 

in the isofrequency contours for mechanical waves61. The choice 

of the constituent material for the moiré photonic/phononic 

structure also holds substantial importance, except in the case of 

acoustic structure. Particularly for airborne sound, the constituent 

material’s role in the acoustic crystal/metamaterial is relatively of 

little importance. This is because most materials can be treated 

as acoustically hard compared with air, and therefore their sole 

purpose is to provide rigid surfaces for channelling the sound.

http://www.nature.com/naturematerials
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number of surface plasmon polariton modes have been discovered 

in quasilattices47. In a recent study, a theoretical approach based on 

combining supercell calculation and band unfolding techniques was 

constructed to globally characterize the photonic dispersion of a 2D 

quasiperiodic moiré superlattice48. Compared with typical near-field 

moiré photonic crystals, most recently, far-field coupling between 

moiré photonic architectures has been experimentally observed, where 

twist-angle-controlled directional lasing emissions were achieved49.

In addition to the twist between two monolayer crystals, moiré 

patterns due to mismatched lattice constants have been studied50–52. 

For instance, two parallel hexagonal lattice metallic ring metasurfaces 

with a lattice constant mismatch in one direction were introduced to 

form a moiré bilayer system (Fig. 1g)50. As the periodicity of the moiré 

pattern is much larger than the unit cell, the supercell was decomposed 

into unit cells with different shifts between the two layers, and the rela-

tive shift in the unit cell was treated as an effective gauge field created 

by an artificial magnetic field. The corresponding photonic Landau 

levels were observed experimentally. Similar results have also been 

found when overlapping two one-dimensional (1D) photonic crystal 

slabs with mismatched periods51–53, where the authors showed a high 

concentration of the Wannier function in a moiré cell. In a recent study, 

a 1D moiré silicon photonic nanowire was designed and fabricated to 

demonstrate a host of behaviours that include slow-light, high-Q-factor 

moire ́ resonators, multi-resonant filters, suppression of grating side-

bands, persistent versus extinguishable transmission, tunable Q factors 

and tunable group velocities54.

Moiré phononic structures
TBG not only sparked substantial interest in developing moiré photonic 

structures but also spawned the new field of moiré phononic structures 

for controlling acoustic14,17,55–58 and elastic waves15,59–62. A bilayer sonic 

structure was proposed, composed of two stacked phononic crystals, 

where each monolayer phononic crystal is made of a triangular lattice 

of rigid triangular units56 (Fig. 2a, left). A perforated rigid plate sepa-

rates the two phononic crystals, where the holes induce the interlayer 

coupling. The stacking was of the AA configuration, and the triangular 

units within each cell were rotated in both layers to give rise to differ-

ent dispersion behaviours in the vicinity of the Dirac point (Fig. 2a, 
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Fig. 1 | Examples of moiré photonic structures. a, The moiré hyperbolic 

metasurface composed of two coupled uniaxial metasurfaces with a certain 

twist angle26. b, Dispersion relations as a function of the twist angle. The 

grey (black) solid lines denote the dispersion of the first (second) individual 

metasurface whereas the coloured lines denote the dispersion of the moiré 

metasurface26. kx and ky are the x and y components of the wavevector and k0 is 

its norm. c, Near-field images of the fixed group velocity direction (red arrows) 

near the magic angle20. s3 is the experimentally measured near-field distribution. 

Fabricated seven edges ‘E’ and one point defect ‘PD’: E1 and E2 are parallel along 

the [100] crystal axis of the bottom layer, E3 and E4 are parallel along the [001] 

crystal axis of the top layer, E5 is along the [001] crystal axis of the bottom layer, 

and E6 and E7 along other directions. Inset: a scanning electron microscopy 

image of the sample tBL, twisted bilayer. d, AA-stacked (left) and AB-stacked 

(right) bilayer photonic crystals and their associated band structures16. h, air-gap 

thickness; f, frequency. e, Left: twisted bilayer photonic structure based on a 

honeycomb lattice of silicon nanodisks (disk a and disk b) and its comparison 

with TBG. d is the lattice constant. Right: dispersion curves and DOS with 

different twist angles showing the existence of local flat bands at certain angles19. 

f, Twisted bilayer photonic crystal with circular holes in a square lattice (left) and 

the transmission (denoted by the colour scale) as a function of the frequency 

and twist angle (right)40. c/a is the frequency unit, where c is the speed of light 

and a is the lattice constant. g, Moiré pattern formed using metallic rings with 

different periods in the top (red) and bottom (black) layers50. κ, deviation of the 

excitation dipole from the moiré pattern centre. h, Eight-fold quasilattice (left), 

12-fold quasilattice (middle) and a general incommensurate lattice formed by the 

overlap of square lattices from two layers (right)46. i is the number of exposures 

for a quasilattice. Panels reproduced with permission from: a,b, ref. 26, American 

Chemical Society; c, ref. 20, Springer Nature Ltd; d, ref. 16, APS; e, ref. 19, APS; 

f, ref. 40, APS. Panels adapted with permission from: g, ref. 50, APS; h, ref. 46, 

American Chemical Society.
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middle). The existence of two types of topological valley edge state 

was numerically and experimentally demonstrated, with interfaces 

that support either valley Hall states propagating in both layers or 

layer-valley Hall states that mainly propagate in a single layer. Topologi-

cal waveguiding with propagation from one layer to the other was also 

experimentally demonstrated (Fig. 2a, right). Although this work does 

not directly involve moiré patterns, it is one of the earliest studies that 

provide crucial insight into how interlayer coupling and rotation can 

be harnessed to engineer the dispersion of bilayer phononic crystals. 

A bilayer phononic crystal consisting of rigid cylindrical rods in a hon-

eycomb lattice was designed where the two layers were separated by a 

thin vibrating membrane to ensure the interlayer coupling of acoustic 

waves55 (Fig. 2b, left). By choosing the appropriate interlayer coupling 

strength via changing the thickness and density of the membrane, 

the authors numerically showed that the acoustic dispersion of the 

bilayer can mimic the electronic dispersion of the classical bilayer 

graphene near the Dirac cone frequency for both AA and AB stacking 

configurations with two sets of crossing Dirac bands and quadratic 

dispersion, respectively (Fig. 2b, right). Shortly afterwards, the twist 

degree of freedom was considered in a sonic bilayer crystal where each 

layer is a rigid plate with a honeycomb lattice of cylindrical air cavi-

ties14 (Fig. 2c, left). Each phononic crystal plate supports spoof surface 

acoustic waves (SSAWs) propagating in the near field above the air cavi-

ties with evanescent decay in the direction perpendicular to the plate 

surface. By positioning the phononic plates to face each other with an 

air gap in between, the SSAWs supported by each plate can interact, 

mirroring the interlayer hopping in bilayer graphene. Moreover, twist-

ing one plate with respect to the other creates a moiré pattern, and it 

was numerically shown that at specific twist angles (magic angles), flat 

bands appear with confined acoustic intensity in the AA regions of the 

moiré superlattice (Fig. 2c, right).

The magic angle depends strongly on the interlayer coupling 

strength and can be tuned by varying the distance between the pho-

nonic crystals. A bilayer twisted acoustic metamaterial was designed 

using a vibrating polyethylene membrane as the coupling medium17 

(Fig. 2d, left). The authors also numerically showed the trapping of 

sound via the twist that is associated with the flattening of the Dirac 

bands at a magic angle of 1.12° (Fig. 2d, right). This magic angle can be 
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Fig. 2 | Examples of moiré phononic structures. a, Left: bilayer sonic crystal 

made of two phononic crystals with triangular lattices, and a rigid plate with 

holes separates the two phononic crystals to enable mode coupling56. ALH, 

acoustic layer-valley Hall; AVH, acoustic valley Hall; α and β, orientation angles 

of the triangular rods; a, lattice constant; hrod, thickness of the triangular rods; 

hplate, thickness of the plate; rhole, radius of the holes. Middle: band dispersion that 

shows crossing bands for AA stacking. Right: bilayer valley Hall transport from the 

upper layer to the lower layer. The colour scale represents the acoustic pressure 

amplitude. b, Left: bilayer metamaterial made of two acoustic lattices of rigid 

cylinders in air separated by a thin vibrating membrane to mimic the interlayer 

hoping55. Right: band dispersions for AA and AB stacking. c, Left: twisted bilayer 

sonic crystal consisting of two rigid plates with air cavities facing each other, 

where each plate supports the propagation of SSAWs14. Right: band structures 

at a fixed twist angle of 3.481° for different interlayer couplings via changing the 

air-gap thickness between the rigid plates. The acoustic intensity in the moiré 

supercell is plotted near the Γ point, for the bands marked in red.  

d, Left: acoustic bilayer structure created from stacking two sonic crystals, each 

made of connected cavities. The sonic crystals are separated by a vibrating 

membrane17. D, steel layer thickness; T, membrane thickness; a, cavity spacing; 

r, central cavity radius; w, channel width; R, is the cavity radius. Right: flat bands 

created at the magic angle with confined acoustic energy at the AA regions of 

the moiré supercell. e, Twisted elastic bilayer lattice made of two coupled plates 

decorated with honeycomb lattices of pillars (left), giving rise to flat bands at the 

magic angle (right)15. h, thickness of the plate; Δm, mass; W+ and W−, the flexural 

waves amplitude the for upper and lower layers, respectively; d, thickness of the 

coupling medium; Ω, normalized frequency; κ, coupling parameter. f, Moiré 

lattices made of a cluster of scatterers showing dipolar resonances at discrete 

values of the twist angle59. The colour scale represents the acoustic field pattern. 

Panels reproduced with permission from: a, ref. 56, APS; b, ref. 55, APS; c, ref. 14, 

APS; d, ref. 17, IOP; e, ref. 15, APS. Panel f adapted with permission from ref. 59, APS.
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tuned to higher values by changing the interlayer coupling strength 

through varying the thickness of the membrane. The dispersion of 

these phononic bilayers can be described in the vicinity of the Dirac fre-

quency by formulating the Hamiltonian from the tight binding model 

of bilayer graphene. Recently, an acoustic bilayer design was built at a 

large twist angle of 27.79°, consisting of connected cavities57. Strong 

interlayer coupling was used to generate a bandgap that harbours 

higher-order topological states.

In the context of elastodynamics, the analogue of TBG for elastic 

waves was designed by considering two weakly coupled vibrating plates 

via a thin elastic medium, where each plate is attached with a honey-

comb lattice of point masses15 (Fig. 2e, left). The underlying physics 

of the interlayer coupling is the interaction of flexural waves hosted 

by the plates. The authors developed a theoretical model to describe 

their system based on Germain–Lagrange approximation from the 

equation of motion governing flexural waves in coupled plates. The 

twist angle comes into play when describing the mass distribution 

on both layers. They demonstrated the emergence of flat bands at a 

magic angle of 1.61° (rightmost panel of Fig. 2e, right). Meanwhile, 

Martí-Sabaté and Torrent59 conducted a theoretical study on the inter-

action of elastodynamic modes with a cluster of scatterers distributed 

in a moiré pattern over a thin plate. This study disclosed the emergence 

of dipolar resonances at specific discrete values of the twist angles 

(Fig. 2f). A plate decorated with a lattice of pillars was constructed 

with modulated heights in a moiré pattern61, and topological transition 

of the isofrequency contour from hyperbolic to elliptical dispersion 

was demonstrated, similar to what was observed in a previous study 

in photonics20. Very recently, a family of bilayer phononic crystals was 

presented, where both sides of a plate are decorated with a hexagonal 

lattice of pillars60. A plate with a sufficiently large thickness possesses 

a weak interlayer coupling between SAWs (surface acoustic waves) 

propagating on each side of the plate, representing a direct analogue 

of bilayer graphene. The authors also studied the twisted bilayer pho-

nonic crystal under a large commensurate angle of 38.213°, which 

creates a structure with an even sublattice exchange (SE) symmetry. 

Furthermore, by reducing the thickness of the plate, strong interlayer 

coupling can be introduced, which leads to substantial changes in the 

band structure and the possibility of bilayer valley Hall states under 

the even SE symmetry.

Outlook
As it currently stands, there are two different research directions for 

moiré photonic and phononic structures. The first is centred on iden-

tifying engineered artificial structures that control waves to emulate 

the electronic behaviours experimentally observed or theoretically 

predicted in TBG. The epitome of this effort is the finding of flat bands 

at magic angles in bilayer photonic16,19, sonic14,17 and elastodynamic15 

moiré structures. Whereas it is intriguing to show that the concept of 

the magic angle can be generalized to virtually all classical wave sys-

tems, this twist-induced behaviour (flat bands at the magic angle) has 

yet to be experimentally observed in a classical wave counterpart of 

TBG. This is largely because, at small twist angles, the unit cell becomes 

extremely large, especially for moiré phononic and microwave photonic 

crystals due to the large wavelength used. Challenges persist even in 

experiments involving relatively large twist angles. For instance, the 

observation of topological corner states in even-SE-symmetry TBG is 

one such challenge16. In addition, in acoustic lattices, the thermoviscous 

loss is a main limiting factor. Furthermore, in contrast to electronic 

systems, it is relatively easy to engineer flat bands or higher-order topo-

logical insulators using monolayer photonic and phononic crystals63. 

Therefore, it is crucial to elucidate the benefit of the twist-induced 

flat bands or topological corner modes in classical wave systems. 

Although moiré crystals are tunable in nature due to their twist degree 

of freedom, and the results produced from classical wave systems can 

advance research into TBG or twistronics in general by informing the 

discovery of new quantum materials, future work directions could 

leverage the engineering of flat bands and higher-order band topology 

for practical functionalities such as robust dynamic energy trapping 

via the twist, which could benefit the fields of nonlinear photonics 

and optomechanics.

The second direction entails a broader scope, and it seeks to 

expand the field of artificial photonic and phononic crystals by taking 

inspiration from TBG in that the twist degree of freedom and interlayer 

coupling, or simply the moiré pattern, are harnessed to give rise to 

new design paradigms of classical wave devices. This line of research 

often leads to results that represent an important departure from 

TBG in that these results find no counterparts in TBG20,45,60. Although 

notable progress has been made in the development of moiré crys-

tals, there remains a need to explore their integration into functional 

devices that can leverage twist and interlayer coupling for precise wave 

control. One potential application involves the use of moiré patterns 

in acoustofluidics to create customizable fluid-streaming patterns 

for the manipulation and trapping of microparticles. To achieve this 

goal, further research is needed to investigate the physics of acoustic 

streaming that is enabled by moiré patterns in fluids for the application 

of moiré phononic structures in fluid-flow manipulation.

Going forwards, there is a plethora of directions that can be 

explored to bring the field of moiré photonic and phononic crystals 

to the next phase. For example, loss and gain can be added into the 

equation to enrich the physics of moiré photonic and phononic crys-

tals, where the interplay between loss and gain can be further com-

plemented by twist and interlayer coupling. It is noted that two recent 

papers have theoretically studied parity-time-symmetric AA- and 

AB-stacked bilayer photonic graphene64,65, and showed that parity-time 

symmetry induces band alteration in the vicinity of the Dirac point65 

as well as the existence of exceptional concentric rings with particular 

topological features64. Another direction is to leverage the unique 

strength of photonic and phononic crystals (or metasurfaces), where 

arbitrary 2D lattices other than the honeycomb lattice can be readily 

built, and their interaction with twist and interlayer coupling can be the-

oretically or even experimentally probed. In this spirit, bilayer square 

lattice photonic crystals and photonic moiré patterns resulting from 

square lattices have recently been studied40,45. However, other lattices, 

such as the kagome lattice, have largely been unexplored in classical 

waves. In addition, while in electronic materials the nearest-interlayer 

hopping is naturally the strongest, photonic and phononic crystals can 

be a robust platform to engineer interlayer coupling, where long-range 

interlayer hopping can be made stronger than nearest-interlayer hop-

ping. Recent studies have demonstrated that long-range hopping 

stronger than nearest-neighbour hopping can extend the topological 

order to a new topological class, giving rise to a greater number of topo-

logically protected states in a 2D monolayer crystal66. We expect that 

similar novel large-chiral-number topological states can be uncovered 

in the moiré system.

Another avenue of research that has recently come to light involves 

the exploration of bound states in the continuum (BICs) within twisted 

bilayer phononic and photonic crystals. BICs are localized modes 

that can be present in the continuous spectrum of propagating or 

radiating waves but cannot interact with any of these waves. A unique 

BIC has been observed in the continuum of a bilayer photonic crystal, 

emerging from the coupling between transverse electric and trans-

verse magnetic modes, arising from a broken symmetry in the bilayer 

structure67. In another study, twisted bilayer photonic crystal slabs 

were constructed to exhibit a quasi-BIC by manipulating the twist 

and interlayer coupling41. Very recently, a mirror-stacking approach 

was developed to construct symmetry-protected topological BICs68 

in acoustics. Such realizations provide further insights into the emer-

gence of BICs for efficient localization of light and sound in moiré pho-

tonic and phononic structures. On the same front of wave localization, 

an encouraging avenue worth exploring involves the introduction of 
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topological defects into moiré photonic and phononic structures. In 

these scenarios, the twist can alter the interaction among defect states 

between the layers, giving rise to new defect modes. This, in turn, could 

suggest potential applications for enhanced and loss-immune com-

munication, lasing and sensing.

Meanwhile, nonlinear optical responses of TBG have been inves-

tigated to demonstrate higher-order harmonic responses that are 

absent in monolayer or conventional bilayer graphene, spawning 

the field of optotwistronics69,70. Nonlinear optical waves have also 

been studied extensively in photonic crystals, leading to applications 

towards reduced-size multifunctional control of light, photonic circuits 

for optical communication and multiphoton absorption. In mechani-

cal waves, nonlinear dynamical behaviours have also been studied in 

phononic crystals to achieve subwavelength wave control71, acoustic 

nonreciprocity72, soft material lattices for nonlinear wave control73 and 

architected lattices for soliton manpulation74,75. However, nonlinear 

dynamic responses of twisted bilayer photonic and phononic crystals 

have yet to be explored. By incorporating the twist degree of freedom in 

conjunction with interlayer coupling, photonic and phononic crystals 

can achieve a whole new level of capability with highly customizable 

nonlinear dynamic behaviour, which has the potential to revolution-

ize photonics and acoustics, leading to remarkable technological 

breakthroughs.

Beyond passive moiré lattices, an exciting avenue of exploration 

involves designing bilayer lattices with controlled nonreciprocal inter-

actions between the layers, which would involve an active system76. The 

combination of the twist and nonreciprocal interlayer coupling has 

the potential to expand the capabilities of twister bilayer lattices for 

wave manipulation. In the same direction for active systems, instead of 

considering a static twist, it is worth exploring the dispersion of clas-

sical waves of a dynamic moiré lattice. This dynamic rotation induces 

a spacetime modulation of the periodicity and/or quasiperiodicity of 

the bilayer lattice, hence its effective properties, which could poten-

tially lead to exciting phenomena related to nonreciprocity. A bilayer 

structure with a rotating moiré pattern could offer a simple and effi-

cient method to achieve spatiotemporal modulation. This approach 

is expected to be more relevant for acoustic waves due to their lower 

frequencies, although the flow generated by the rotation could present 

challenges for the experiment.

Overall, as research in TBG continues to advance and the broader 

field of twistronics becomes increasingly multidisciplinary, we antici-

pate sustained growth in the subject of moiré photonic and phon-

onic structures throughout the coming decade. In addition to the 

aforementioned exploratory directions, with the rapid evolution of 

fabrication and characterization techniques, in the future we foresee 

the emergence of novel moiré platforms for classical waves. These plat-

forms may draw inspiration from advancements in twisted electronic 

heterostructures or involve the creation of innovative moiré structures 

beyond the equivalent of TBG for efficient wave control.
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