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Abstract. One of the key shortcomings in current text-to-image (T2I)
models is their inability to consistently generate images which faith-
fully follow the spatial relationships specified in the text prompt. In
this paper, we offer a comprehensive investigation of this limitation,
while also developing datasets and methods that support algorithmic
solutions to improve spatial reasoning in T2I models. We find that spa-
tial relationships are under-represented in the image descriptions found
in current vision-language datasets. To alleviate this data bottleneck,
we create SPRIGHT, the first spatially focused, large-scale dataset, by
re-captioning 6 million images from 4 widely used vision datasets and
through a 3-fold evaluation and analysis pipeline, show that SPRIGHT
improves the proportion of spatial relationships in existing datasets. We
show the efficacy of SPRIGHT data by showing that using only ∼0.25%
of SPRIGHT results in a 22% improvement in generating spatially accu-
rate images while also improving FID and CMMD scores. We also find
that training on images containing a larger number of objects leads to
substantial improvements in spatial consistency, including state-of-the-
art results on T2I-CompBench with a spatial score of 0.2133, by fine-
tuning on <500 images. Through a set of controlled experiments and
ablations, we document additional findings that could support future
work that seeks to understand factors that affect spatial consistency in
text-to-image models. Project page: https://spright-t2i.github.io/.

Keywords: Text to Image Generation · Spatial Relationships

A. Chatterjee and G. B. M. Stan—Equal contribution.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-72670-5 12.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
A. Leonardis et al. (Eds.): ECCV 2024, LNCS 15080, pp. 204–222, 2025.
https://doi.org/10.1007/978-3-031-72670-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72670-5_12&domain=pdf
http://orcid.org/0000-0002-0961-9569
http://orcid.org/0000-0001-6893-6647
http://orcid.org/0009-0009-2860-6198
http://orcid.org/0000-0003-0217-0778
http://orcid.org/0000-0002-8518-2696
http://orcid.org/0000-0002-5593-2804
http://orcid.org/0000-0002-1055-6657
http://orcid.org/0000-0002-5907-9898
http://orcid.org/0000-0002-7549-723X
http://orcid.org/0000-0003-0126-8976
https://spright-t2i.github.io/
https://doi.org/10.1007/978-3-031-72670-5_12
https://doi.org/10.1007/978-3-031-72670-5_12


Getting it Right : Improving Spatial Consistency in Text-to-Image Models 205

1 Introduction

The development of text-to-image (T2I) diffusion models such as Stable Diffusion
[49] and DALL-E 3 [39] has led to the growth of image synthesis frameworks that
are able to generate high resolution photo-realistic images. These models have
been adopted widely in downstream applications such as video generation [54],
image editing [20], robotics [15], and more. Multiple variations of T2I models
have also been developed, which vary according to their text encoder [5], priors
[47], and inference efficiency [36]. However, a common bottleneck that affects all
of these methods is their inability to generate spatially consistent images: that
is, given a natural language prompt that describes a spatial relationship, these
models are unable to generate images that faithfully adhere to it.

In this paper, we present a holistic approach towards investigating and mit-
igating this shortcoming through diverse lenses. We develop datasets, efficient
training techniques, and explore multiple ablations and analyses to understand
the behaviour of T2I models towards prompts that contain spatial relationships.

An older man standing on top of a
snow covered slope.

In the image, a man is standing in
front of a snowy mountain range,
taking a picture of the mountains

with his cell phone. The mountains
are in the background, and they are
quite large, towering over the man

and the surrounding landscape. The
man is relatively small in

comparison to the mountains,
emphasizing the vastness of the

mountain range.

A bathroom that has recently been
tiled and grouted

The image shows a bathroom with a
toilet and a bucket on the floor. The

toilet is located on the left side of the
bathroom, and the bucket is on the
right side, closer to the center. The
bathroom is small, and the toilet is

relatively large compared to the
bucket, which is smaller in size.

The Ferris wheel is located near a
bridge and a large building, with the
Ferris wheel being the tallest object
in the scene. The Ferris wheel is also

situated next to a river, with a boat
visible on the water. The city skyline

can be seen in the background,
with the Ferris wheel towering over

the other buildings."

A ferris wheel water buildings boats
and lights

Two cats are eating out of different
bowls.

In the image, two cats are standing
in front of a bookshelf, with one cat
being larger and occupying a larger
portion of the frame, while the other
cat is smaller and positioned to the
right of the larger cat. The bookshelf
is filled with various books, and a TV
is located above the bookshelf. The
cats are standing on the floor, and
they are eating from their bowls,

which are placed on the floor as well.

A close up view of some food on a
plate.

The image features a plate with a
piece of chicken and a piece of

broccoli. The chicken is on the left
side of the plate, and the broccoli is

on the right side. The chicken is
larger than the broccoli, and the
broccoli is positioned above the

chicken.

A stuffed teddy bear is sitting on the
corner of a suitcase

A small teddy bear is sitting on top
of a suitcase, which is placed next to
another suitcase. The teddy bear is

positioned between the two
suitcases, with one suitcase being

larger and the other smaller.

A black cat taking a drink out of a
bright blue cup.

A black cat is eating out of a blue
bowl, which is held by a person's

hand. The cat is positioned behind
the bowl, and the person's hand is

on the left side of the image.

The stop light is green at an
intersection.

The traffic light is positioned on the
left side of the pole, and the bus sign

is located on the right side of the
pole.

A single glass of white win on a table
with a vase

A glass of wine is sitting on a table
next to a vase, which is taller than
the glass. The glass is in front of a

TV, which is located behind the
glass

The man is speaking at a meeting in
a conference room.

A man is sitting at a table with a cup
of coffee in front of him. The

microphone is placed in front of him,
and there is a chair behind him.

Fig. 1. We find that existing vision-language datasets do not capture spatial relation-
ships well. To alleviate this shortcoming, we synthetically re-caption ∼6M images with
a spatial focus, and create the SPRIGHT (SPatially RIGHT) dataset. Shown above
are samples from the COCO Validation Set, where text in red denotes ground-truth
captions and text in green are corresponding captions from SPRIGHT. (Color figure
online)
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Our first finding reveals that existing vision-language (VL) datasets lack suf-
ficient representation of spatial relationships. Although frequently used in the
English lexicon, we find that spatial words are scarcely found within image-
text pairs of the existing datasets. To alleviate this shortcoming, we create
the “SPRIGHT” (SPatially RIGHT) dataset, the first spatially-focused large
scale dataset. Specifically, we synthetically re-caption ∼6 million images sourced
from 4 widely used datasets, with a spatial focus (Sect. 3). As shown in Fig. 1,
SPRIGHT captions describe the fine-grained relational and spatial character-
istics of an image, whereas human-written ground truth captions fail to do
so. Through a 3-fold comprehensive evaluation and analysis of the generated
captions, we benchmark the quality of the generated captions and find that
SPRIGHT largely improves over existing datasets in its ability to capture spa-
tial relationships. Next, leveraging only ∼0.25% of our dataset, we achieve a
22% improvement on the T2I-CompBench [22] Spatial Score, and a 31.04% and
29.72% improvement in the FID [21] and CMMD scores [23], respectively.

Our second finding reveals that significant performance improvements in
spatial consistency of a T2I model can be achieved by fine-tuning on images
that contain a large number of objects. We achieve state-of-the-art performance,
and improve image fidelity, by fine-tuning on <500 image-caption pairs from
SPRIGHT; training only on images that have a large number of objects. As
investigated in VISOR [19], models often fail to generate the mentioned objects
in a spatial prompt; we posit that by optimizing the model over images which
have a large number of objects (and consequently, spatial relationships), we
teach it to generate a large number of objects, which positively impacts its spa-
tial consistency. In addition to improving spatial consistency, our model achieves
large gains in performance across all aspects of T2I generation; generating cor-
rect number of distinct objects, attribute binding and accurate generation in
response to complex prompts.

We further demonstrate the impact of SPRIGHT by benchmarking the trade-
offs achieved with long and short spatial captions, as well as spatially focused and
general captions. We take the first steps towards discovering layer-wise activation
patterns associated with spatial relationships, by examining the representation
space of CLIP [45] as a text encoder.

Our contributions and key findings are summarized below:

– We create SPRIGHT, the first spatially focused, large scale vision-language
dataset by re-captioning ∼6 million images from 4 widely used existing
datasets. To demonstrate the efficacy of SPRIGHT, we fine-tune baseline
Stable Diffusion models on a small subset of our data and achieve perfor-
mance gains across multiple spatial reasoning benchmarks while improving
the corresponding FID and CMMD scores.

– We achieve state-of-the-art performance on spatial relationships by develop-
ing an efficient training methodology; specifically, we optimize over a small
number (<500) of images which consists of a large number of objects, and
achieve a 41% improvement over our baseline model.
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– Through multiple ablations and analyses, we present our findings related to
spatial relationships: the impact of long captions, the trade-off between spatial
and general captions, layer-wise activations of the CLIP text encoder, effect
of training with negations and improvements over attention maps.

2 Related Work

Text-to-Image Generative Models. Since the initial release of Stable Dif-
fusion [49] and DALL-E [48], different classes of T2I models have been devel-
oped, all optimized to generate highly realistic images corresponding to complex
natural language prompts. Models such as PixArt-Alpha [5], Imagen [50], and
ParaDiffusion [55] move away from the CLIP text encoder, and explore tradi-
tional language models such as T5 [46] and LLaMA [53] to process text prompts.
unCLIP [47] based models have led to multiple methods [29,42] that leverage a
CLIP-based prior as part of their diffusion pipeline.

Spatial Relationships in T2I Models. Benchmarking the failures of T2I
models on spatial relationships has been well explored by VISOR [19], T2I-
CompBench [22], GenEval [16], and DALL-E Eval [8]. Both training-based and
test-time adaptations have been developed to specifically improve upon these
benchmarks. Control-GPT [61] finetunes a ControlNet [60] model by generating
TikZ code representations with GPT-4 and optimizing over grounding tokens to
generate images. SpaText [1], GLIGEN [30], and ReCo [57] are training-based
methods that introduce additional conditioning in their fine-tuning process to
achieve better spatial control for image generation. LLM-Grounded Diffusion
[31] is a test-time multi-step method that improves over layout generated LLMs
in an iterative manner. Layout Guidance [6] restricts objects to their annotated
bounding box locations through refinement of attention maps during inference.
LayoutGPT [14] creates an LLM guided initial layout in the form of CSS, and
then uses layout-to-image models to create indoor scenes.

Synthetic Captions for T2I Models. The efficacy of using descriptive and
detailed captions has recently been explored by DALL-E 3 [39], PixArt-Alpha
[5] and RECAP [52]. DALL-E 3 builds an image captioning module by jointly
optimizing over a CLIP and language modeling objective. RECAP fine-tunes an
image captioning model (PALI [7]) and reports the advantages of fine-tuning the
Stable Diffusion family of models on long, synthetic captions. PixArt-Alpha also
re-captions images from the LAION [51] and Segment Anything [25] datasets;
however their key focus is to develop descriptive image captions. On the contrary,
our goal is to develop captions that explicitly capture the spatial relationships
seen in the image.

3 The SPRIGHT Dataset

We find that current vision-language (VL) datasets do not contain “enough”
relational and spatial relationships. Despite being frequently used in the English
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vocabulary1, words like “left/right”, “above/behind” are scarce in existing VL
datasets. This holds for both annotator-provided captions, e.g., COCO [32], and
web-scraped alt-text captions, e.g., LAION [51]. We posit that the absence of
such phrases is one of the fundamental reasons for the lack of spatial consis-
tency in current text-to-image models. Furthermore, language guidance is now
being used to perform mid-level [56,59] and low-level [26,63] computer vision
tasks. This motivates us to create the SPRIGHT (SPatially RIGHT) dataset,
which explicitly encodes fine-grained relational and spatial information found in
images.

3.1 Creating the SPRIGHT Dataset

We re-caption approximately six million images from four existing vision-
language datasets, i.e.datasets containing images and their corresponding natu-
ral language descriptions:

– CC-12M [3]: We re-caption a total of 2.3 million images from the CC-12M
dataset, filtering out images of resolution less than 768 × 768.

– Segment Anything (SA) [25]: We select Segment Anything as most images
in it encapsulates a large number of objects; i.e. larger number of spatial
relationships can be captured from a given image. We re-caption 3.5 million
images as part of our re-captioning process. Since SA does not have ground-
truth captions, we generate its general captions using the CoCa [58] model.

– COCO [32]: We re-caption images (∼ 40,000) from the validation set.
– LAION-Aesthetics2: We used 50,000 images from LAION-Aesthetics.3

We use LLaVA-1.5-13B [33] with the following prompt to produce synthetic
spatial captions to create the SPRIGHT dataset:

Using 2 sentences, describe the spatial relationships seen in the image. You can use
words like left/right, above/below, front/behind, far/near/adjacent, inside/outside.
Also describe relative sizes of objects seen in the image.

3.2 Impact of SPRIGHT

Table 1 shows that SPRIGHT enhances the presence of spatial phrases across
all relationship types on all the datasets. For 11 relationships, while the ground-
truth captions of COCO and LAION only capture 21.05% and 6.03% of rela-
tionships, SPRIGHT captures 304.79% and 284.7%, respectively, i.e.each re-
captioned COCO image in SPRIGHT has ∼3 spatial phrases. This shows that
captions in VL datasets largely lack the presence of spatial relationships, and that

1 https://www.oxfordlearnersdictionaries.com/us/wordlists/oxford3000-5000.
2 https://laion.ai/blog/laion-aesthetics/.
3 The entire LAION-5B dataset has been recalled for safety review: https://laion.ai/

notes/laion-maintenance/. We will release our re-captioning outputs for these images
based on the conclusions of this safety review.

https://www.oxfordlearnersdictionaries.com/us/wordlists/oxford3000-5000
https://laion.ai/blog/laion-aesthetics/
https://laion.ai/notes/laion-maintenance/
https://laion.ai/notes/laion-maintenance/


Getting it Right : Improving Spatial Consistency in Text-to-Image Models 209

Table 1. Compared to ground truth annotations, SPRIGHT consistently improves the
presence of relational and spatial relationships captured in its captions, across diverse
images from different datasets.

Dataset % of Spatial Phrases

left right above below front behind next close far small large

COCO 0.16 0.47 0.61 0.15 3.39 1.09 6.17 1.39 0.19 3.28 4.15

+ SPRIGHT 26.80 23.48 21.25 5.93 41.68 21.13 36.98 15.85 1.34 48.55 61.80

CC-12M 0.61 1.45 0.40 0.19 1.40 0.43 0.54 0.94 1.07 1.44 1.44

+ SPRIGHT 24.53 22.36 20.42 6.48 41.23 14.37 22.59 12.9 1.10 43.49 66.74

LAION 0.27 0.75 0.16 0.05 0.83 0.11 0.24 0.67 0.91 1.03 1.01

+ SPRIGHT 24.36 21.7 14.27 4.07 42.92 16.38 26.93 13.05 1.16 49.59 70.27

Segment Anything 0.02 0.07 0.27 0.06 5.79 0.19 3.24 7.51 0.05 0.85 10.58

+ SPRIGHT 18.48 15.09 23.75 6.56 43.5 13.58 33.02 11.9 1.25 52.19 80.22

COCO Original Captions

SPRIGHT�Captions

Fig. 2. Compared to ground truth COCO captions, (Left) Word cloud representations
showing that SPRIGHT captions significantly amplify the presence of spatial relation-
ships. (Right) SPRIGHT captions also capture a higher number of object occurances.

SPRIGHT is able to improve upon this shortcoming by almost always capturing
spatial relationships in every sentence. Our captions offer several improvements
beyond the spatial aspects: (i) As depicted in Table 2 we improve the overall
linguistic quality compared to the original captions, and (ii) we identify more
objects and amplify their occurrences as illustrated in Fig. 2; where we plot the
top 10 objects present in the original COCO Captions and find that we signifi-
cantly upsample their corresponding presence in SPRIGHT.

3.3 Dataset Validation

We perform 3 levels of evaluation to validate the SPRIGHT captions:
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Table 2. In addition to improving the presence of spatial relationships, SPRIGHT
enhances linguistic diversity of captions in comparison to their original versions.

Dataset Average/caption

Nouns Adjectives Verbs Tokens

COCO → COCO+SPRIGHT 3.00 → 14.31 0.83 → 3.82 0.04 → 0.15 11.28 → 68.22

CC-12M → CC-12M+SPRIGHT 3.35 → 13.99 1.36 → 4.36 0.26 → 0.16 22.93 → 67.41

LAION → LAION+SPRIGHT 1.78 → 14.32 0.70 → 4.53 0.11 → 0.14 12.49 → 69.74

SA → SA+SPRIGHT 3.10 → 13.42 0.79 → 4.65 0.01 → 0.12 09.88 → 63.90

1. FAITHScore. Following [24], we leverage a large language model to decon-
struct generated captions into atomic (simple) claims that can be individually
and independently verified in a Visual Question Answering (VQA) format. We
randomly sample 40,000 image-generated caption pairs from our dataset, and
prompt GPT-3.5-Turbo to identify descriptive phrases (as opposed to subjective
analysis that cannot be verified from the image) and decompose the descriptions
into atomic statements. These atomic statements are then passed to LLaVA-
1.5-13B for verification, and correctness is aggregated over 5 categories: entity,
relation, colors, counting, and other attributes. We also measure correctness
on spatial-related atomic statements, i.e., those containing one of the keywords
left/right, above/below, near/far, large/small and background/foreground. The
captions are on average 88.9% correct, with spatially-focused relations, being
83.6% correct; with the detailed breakdown presented in the Supplementary
Materials. Since there is some uncertainty about bias induced by using LLaVA
to evaluate LLaVA-generated captions, we also verify the caption quality in other
ways, as described next.

2. GPT-4 (V). Inspired by recent methods [39,64], we perform a small-scale
study on a split of 444 images from LAION and SA (from Sect. 4.2) to evaluate
our captions with GPT-4(V) Turbo [40]. We prompt GPT-4(V) to rate each
caption between a score of 1 to 10, especially focusing on the correctness of the
spatial relationships captured. Captions of images from LAION and SA had a
{mean, median} rating of {7.49,8} and {7.36,8}, respectively. We present the
prompt used in the Supplementary Materials.

3. Human Annotation. We also annotate a total of 3,000 images through a
crowd-sourced human study, where each participant annotates a maximum of 30
image-text pairs. As evidenced by the average number of tokens in Table 1, most
captions in SPRIGHT have >1 sentences. Therefore, for fine-grained evaluation,
we randomly select 1 sentence, from a caption in SPRIGHT, and evaluate its
correctness for a given image. Across 149 responses, we find the metrics to be:
correct=1840 and incorrect=928, yielding an accuracy of 66.57%.
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4 Improving Spatial Consistency

In this section, we leverage SPRIGHT in an effective and efficient manner, and
describe methodologies that significantly advance spatial reasoning in T2I mod-
els. We use Stable Diffusion v2.14 as the base model and our training and val-
idation set consists of 13,500 and 1,500 images respectively, randomly sampled
in a 50:50 split between LAION-Aesthetics and Segment Anything. Each image
is paired with a typical caption and a spatial caption (from SPRIGHT). During
fine-tuning, for each image, we randomly choose one of the given caption types
in a 50:50 ratio. We fine-tune the U-Net and the CLIP text encoder as part
of our training, both with a learning rate 5 × 10−6 optimized by AdamW [35]
and a global batch size of 128. While we train the U-Net for 15,000 steps, the
CLIP text encoder remains frozen during the first 10,000 steps. We develop our
code-base on top of the Diffusers library [43].

Table 3. Quantitative metrics across multiple spatial reasoning and image fidelity
metrics, demonstrating the effectiveness of high quality spatially-focused captions in
SPRIGHT. Green indicates results of the model fine-tuned on SPRIGHT. For FID, we
use cfg = 3.0 and 7.0 for the baseline and the fine-tuned model, respectively.

Method OA (%) (↑) VISOR (%) (↑) T2I-CompBench (↑) Spatial Score ZS-FID (↓) CMMD (↓)

uncond cond 1 2 3 4

SD 2.1 47.83 30.25 63.24 64.42 35.74 16.13 4.70 0.1507 21.646 0.703

+ SPRIGHT 53.59 36.00 67.16 66.09 44.02 24.15 9.13 0.1840 14.925 0.494

Table 4. Across all reported methods, we achieve state-of-the-art performance on the
T2I-CompBench Spatial Score. This is achieved by fine-tuning SD 2.1 on 444 image-
caption pairs from the SPRIGHT dataset; where each image has >18 objects.

# of Objects per Image <6 <11 11 >11 > 18

# of Training Images 444 1346 1346 1346 444

T2I-CompBench Spatial Score (↑) 0.1309 0.1468 0.1667 0.1613 0.2133

4.1 Improving upon Baseline Methods

We present results on the spatial relationship benchmarks (VISOR [19], T2I-
CompBench [22]) and image fidelity metrics in Table 3. To account for the
inconsistencies associated with FID [9,41], we also report results on CMMD
[23]. Across all metrics, our method significantly improves upon the base model
by fine-tuning on <15k images. We conclude that the dense, spatially focused
4 https://huggingface.co/stabilityai/stable-diffusion-2-1.

https://huggingface.co/stabilityai/stable-diffusion-2-1


212 A. Chatterjee et al.

captions in SPRIGHT provide effective spatial guidance to T2I models, and alle-
viate the need to scale up fine-tuning on a large number of images. As shown
in Fig. 3, the model captures complex spatial relationships (top right), relative
sizes (large) and patterns (swirling).

4.2 Efficient Training Methodology

We devise an additional efficient training methodology, which achieves state-of-
the-art performance on the spatial aspect of the T2I-CompBench Benchmark.
We hypothesize that (a) images that capture a large number of objects inher-
ently also contain multiple spatial relationships; and (b) training on these kinds
of images will optimize the model to consistently generate a large number of
objects, given a prompt containing spatial relationships; a well-documented fail-
ure mode of current T2I models [19].

For our dataset of <15k images the median # of objects/image = 11. We
partition our dataset into multiple subsets based on the maximum number of
objects present in an image. This partitioning is automated using the open-
world image tagging model Recognize Anything [62]. We create five subsets, train
corresponding models on a single subset and benchmark them in Table 4. We

A vast, sandy desert stretches across the
scene, with a giant cactus towering on the left,

about twice the height of a nearby small,
abandoned wooden wagon on the right. A

vibrant sunset colors the sky in the
background.

In the foreground, a large, intricately detailed
grandfather clock towers over a small, antique

wooden chair to its right. The background
reveals a dimly lit library, shelves stocked with
books of varying sizes, some towering higher
than others, creating a maze of knowledge.

A vibrant coral reef occupies the bottom half of
the image, with a large sea turtle swimming above
it towards the right. In the distant background, a
small school of fish forms a swirling pattern, with

the sunlight filtering through the water from the top
left corner, illuminating the scene.

A cozy cabin nestled in the woods, with a stream
flowing in front and a fire burning in the fireplace

inside.

Within a mystical realm, a castle perches atop
a steep cliff. To the left of the castle, a winding
staircase leads down to a hidden beach, while
to the right, a dense forest stretches as far as

the eye can see. In front of the castle, a
drawbridge spans a deep chasm

A large, full moon dominates the top right
corner of the image, casting a soft glow on a
small, abandoned house below, situated in
the center of a barren field with a twisted,

gnarled tree in the foreground

On the left side of a tranquil meadow, a
towering oak tree casts its shade over a small
pond, while a family of deer grazes peacefully

nearby.

A person standing on a hill, with a rainbow
stretching across the sky behind them and a

valley spreading out below.�

Fig. 3. Generated images from our model, as described in Sect. 4.1, on prompts which
contain multiple objects and complex spatial relationships. We curate these prompts
from ChatGPT.
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keep the same hyper-parameters as before, only initiating training of the CLIP
Text Encoder from the beginning. With an increase in the # of objects/image,
iterative improvement in spatial fidelity is observed, with the best score for the
subset containing greater than 18 objects.

Table 5. Comparing baseline SD 2.1 with our state-of-the-art model, across multiple
spatial reasoning and image fidelity metrics, as described in Sect. 4.2. Green indicates
results from our model. For FID, we use cfg = 3.0 and 7.5 for the baseline model and
our model, respectively

Method OA (%) (↑) VISOR (%) (↑) T2I-CompBench (↑) Spatial Score ZS-FID (↓) CMMD (↓)

uncond cond 1 2 3 4

SD 2.1 47.83 30.25 63.24 64.42 35.74 16.13 4.70 0.1507 21.646 0.703

+ SPRIGHT
(<500 images)

60.68 43.23 71.24 71.78 51.88 33.09 16.15 0.2133 16.149 0.512

Our major finding is that, with 444 training images and spatial captions from
SPRIGHT, we achieve a 41% improvement over the baseline SD 2.1 and attain
state-of-the-art performance across all reported models on the T2I-CompBench
spatial score. In Table 5, compared to SD 2.1, we significantly improve all aspects
of the VISOR score, while also enhancing the ZS-FID and CMMD scores on
COCO-30K images by 25.39% and 27.16%, respectively. Our key findings on
VISOR (Table 6) include: (a) a 26.86% increase in the Object Accuracy (OA)
score, indicating substantial gains in generating objects mentioned in the input
prompt, and (b) a VISOR4 score of 16.15%, demonstrating our model’s consis-
tent generation of spatially accurate images.

Table 6. Results on the VISOR Benchmark. Our model outperforms existing
methods, on all aspects related to spatial relationships, consistently generating spatially
accurate images as shown by the high VISOR [1-4] values.

Method OA (%) VISOR (%)

uncond cond 1 2 3 4

GLIDE [38] 3.36 1.98 59.06 6.72 1.02 0.17 0.03

GLIDE + CDM [34] 10.17 6.43 63.21 20.07 4.69 0.83 0.11

CogView2 [11] 18.47 12.17 65.89 33.47 11.43 3.22 0.57

DALLE-mini [10] 27.10 16.17 59.67 38.31 17.50 6.89 1.96

DALLE-2 [47] 63.93 37.89 59.27 73.59 47.23 23.26 7.49

Structured Diffusion [13] 28.65 17.87 62.36 44.70 18.73 6.57 1.46

Attend-and-Excite [4] 42.07 25.75 61.21 49.29 19.33 4.56 0.08

Ours (<500 images) 60.68 43.23 71.24 71.78 51.88 33.09 16.15
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We also compare our model’s performance on the GenEval [16] benchmark
(Table 7), and find that in addition to improving spatial relationship (see Posi-
tion), our model shows improvement in generating 1 and 2 objects, along with
the correct number of objects. Throughout our experiments, our training app-
roach not only preserves but also enhances the non-spatial aspects associated
with a text-to-image model. Additional results and illustrations from VISOR
and T2I-CompBench are provided in the Supplementary Materials.

5 Ablation Studies and Analyses

To fully ascertain the impact of spatially-focused captions in SPRIGHT, we
experiment with multiple nuances of our dataset and the corresponding T2I
pipeline. Unless stated otherwise, the experimental setup identical to Sect. 4.

5.1 Optimal Ratio of Spatial Captions

To understand the impact of spatially focused captions in comparison to ground-
truth captions, we fine-tune different models by varying the % of spatial captions.
The results suggest that the model trained on 50% spatial captions achieves the
best spatial scores on T2I-CompBench (Table 8 (a)). The models trained on only

Table 7. Results on the GenEval Benchmark. In addition to spatial relationships,
we also improve model performance in generating the correct number of objects.

Method Overall Single object Two objects Counting Colors Position Attribute binding

CLIP retrieval [2] 0.35 0.89 0.22 0.37 0.62 0.03 0.00

minDALL-E [28] 0.23 0.73 0.11 0.12 0.37 0.02 0.01

SD 1.5 0.43 0.97 0.38 0.35 0.76 0.04 0.06

SD 2.1 0.50 0.98 0.51 0.44 0.85 0.07 0.17

SDXL [44] 0.55 0.98 0.74 0.39 0.85 0.15 0.23

PixArt-Alpha [5] 0.48 0.98 0.50 0.44 0.80 0.08 0.07

Ours (<500 images) 0.51 0.99 0.59 0.49 0.85 0.11 0.15

Table 8. Comparing (a) the effect the percentage of spatial captions and (b) the effect
of long and short spatial captions.
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25% of spatial captions suffer largely from incorrect spatial relationships whereas
the model trained only on spatial captions fails to generate the mentioned objects
in the input prompt. Figure 4 shows illustrative examples.

5.2 Impact of Long and Short Spatial Captions

We also compare the effect of fine-tuning with shorter and longer variants of spa-
tial captions. We create the shorter variants by randomly sampling 1 sentence
from the longer caption, and fine-tune multiple models, with different setups.
Across, all setups, (Table 8 (b)) longer captions perform better than their shorter
counterparts. In fact, CLIP fine-tuning hurts performance while using shorter
captions, but has a positive impact on longer captions. This potentially happens
because fine-tuning CLIP enables T2I models to generalize better to longer cap-
tions, which are out-of-distribution at the onset of training as they are initially
pre-trained on short(er) captions from datasets such as LAION.

A rabbit near a bicycle
A bee on the�left�of a

refridgerator
A cup on the right�of a bee A clock on the�top of a sheep A bowl on the bottom of a frog

25
50

75
10

0

Fig. 4. Illustrative comparisons between models trained on varying ratio of spatial
experiments. Models trained on 50% and 75% spatial captions are optimal.
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5.3 Investigating the CLIP Text Encoder

The CLIP Text Encoder enables semantic understanding of the input text
prompts in the Stable Diffusion model. As we fine-tune CLIP on the spatial
captions, we investigate the various nuances associated with it:

Centered Kernel Alignment (CKA) [27,37] compares layer-wise representa-
tions learned by two neural networks. Figure 5 illustrates different representa-
tions learned by baseline CLIP, compared against the one trained on SPRIGHT.
We compare layer activations across 50 simple and complex prompts and aggre-
gate representations from all the layers. Our findings reveal that the MLP and
output attention projection layers play a larger role in enhancing spatial com-
prehension, as opposed to layers such as the layer norm. This distinction is larger
with complex prompts, showing that the longer prompts from SPRIGHT indeed
lead to more diverse embeddings being learned within the CLIP space.

Improving Semantic Understanding: To evaluate semantic understanding
of the fine-tuned CLIP, we perform the following experiment: given a prompt
containing a spatial phrase and 2 objects, we modify the prompt by switching
the objects (e.g. “an airplane above an apple” → “an apple above an airplane”).

mlp_fc_1 attn_out_proj q_projection layer_norm_1

S
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rt 
P
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m
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Fig. 5. Comparison of layer-wise representations between Baseline CLIP (X-axis) and
fine-tuned CLIP on SPRIGHT (Y-axis). Spatial captions show distinct representations
in output attention projections and MLP layers, while layer norm layers are more
similar. The representation gap widens with long, complex prompts, suggesting spatial
prompts in SPRIGHT create diverse embeddings.

Table 9. CLIP fine-tuned on SPRIGHT is able to differentiate the spatial nuances
present in a textual prompt. While Baseline CLIP shows a high similarity for spatially
different prompts, SPRIGHT enables better fine-grained understanding.

“above” “below” “to the left of” “to the right of” “in front of” “behind”

Baseline CLIP 0.9225 0.9259 0.9229 0.9223 0.9231 0.9289

CLIP + SPRIGHT 0.8674 0.8673 0.8658 0.8528 0.8417 0.8713



Getting it Right : Improving Spatial Consistency in Text-to-Image Models 217

Although these sentences have the same words, the placement of the two nouns
relative to the preposition “above” completely changes the meaning of the sen-
tence. To evaluate if models can discern this spatial distinction, we compute the
cosine similarity between the pooled layer outputs of the original and modified
prompts, for ∼ 37k sentences. Table 9 shows that CLIP finetuned on SPRIGHT
is able to differentiate between the prompts better (i.e. lower cosine similarity)
than the baseline.

a house on the
right side of a long

road that
traverses through

the forest

a desk below a
bed

desk below bed house right road forest

Fig. 6. Visualising the cross-attention relevancy maps for baseline (top row) and fine-
tuned model (bottom row) on SPRIGHT. Images in red are from baseline model
while images in green are from our model. (Color figure online)

5.4 Improvement over Attention Maps

Inspired by methods like Attend-and-Excite [4], we visualize attention relevancy
maps for both simple and complex spatial prompts. Our model better generates
the expected objects and achieves improved spatial localization compared to
the baseline. For instance, the baseline models fails to generate objects like the
bed and house, which our model successfully generates. The relevancy map indi-
cates that high attention patches for missing words are spread across the image.
Additionally, our model correctly attends to spatial words in the image, unlike
the baseline. For example, in our model (Fig. 6, bottom row), below attends
to patches below the bed, and right attends to patches on the road’s right,
while Stable Diffusion 2.1 does not. We achieve these improvements across the
intermediate attention maps and the final generated images.

5.5 Training with Negation

Dealing with negation remains a challenge for multimodal models as reported by
previous findings on Visual Question Answering and Reasoning [12,17,18]. Thus,
in this section, we investigate the ability of T2I models to reason over spatial
relationships and negations, simultaneously. Specifically, we study the impact
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of training a model with ‘‘A man is not to the left of a dog’’ as a sub-
stitute to ‘‘A man is to the right of a dog’’. To create such captions, we
post-process our generated captions and randomly replace spatial occurrences
with their negation counter-parts, and ensure that the semantic meaning of the
sentence remains unchanged. Training on such a model, we find slight improve-
ments in the spatial score, both while evaluating on prompts containing only
negation (0.069 > 0.066 ) and those that contain a mix of negation and simple
statements (0.1427 > 0.1376 ). There is however, a significant drop in perfor-
mance, when evaluating on prompts that only contain negation; thus highlighting
a major scope of improvement in this regard.

6 Conclusion

In this work, we present findings and techniques that enable improvement of
spatial relationships in text-to-image models. We develop a large-scale dataset,
SPRIGHT that captures fine-grained spatial relationships across a diverse set
of images. Leveraging SPRIGHT, we develop efficient training techniques and
achieve state-of-the art performance in generating spatially accurate images. We
thoroughly explore various aspects concerning spatial relationships and evaluate
the range of diversity introduced by the SPRIGHT dataset. We leave further scal-
ing studies related to spatial consistency as future work. We believe our findings
and results facilitate a comprehensive understanding of the interplay between
spatial relationships and T2I models, and contribute to the future development
of robust vision-language models.
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