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Abstract. Text-to-Image (T2I) and multimodal large language models
(MLLMs) have been adopted in solutions for several computer vision and
multimodal learning tasks. However, it has been found that such vision-
language models lack the ability to correctly reason over spatial relation-
ships. To tackle this shortcoming, we develop the REVISION framework
which improves spatial fidelity in vision-language models. REVISION is
a 3D rendering based pipeline that generates spatially accurate synthetic
images, given a textual prompt. REVISION is an extendable framework,
which currently supports 100+ 3D assets, 11 spatial relationships, all
with diverse camera perspectives and backgrounds. Leveraging images
from REVISION as additional guidance in a training-free manner con-
sistently improves the spatial consistency of T2I models across all spatial
relationships, achieving competitive performance on the VISOR and T2I-
CompBench benchmarks. We also design RevQA, a question-answering
benchmark to evaluate the spatial reasoning abilities of MLLMs, and find
that state-of-the-art models are not robust to complex spatial reasoning
under adversarial settings. Our results and findings indicate that utiliz-
ing rendering-based frameworks is an effective approach for developing
spatially-aware generative models. Code and data available at : https://
github.com/agneet42 /revision.

Keywords: Text to Image - Spatial Relationships - Rendering
Graphics

1 Introduction

Generative vision-language models [36,44] represent a significant step towards
developing multimodal systems that bridge the gap between computer vision
and natural language processing. Text-to-image (T2I) models [5,38] convert
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Fig. 1. Text-to-Image models struggle to generate images that faithfully represent the
spatial relationships mentioned in the input prompt. We develop REVISION; an effi-
cient rendering pipeline that enables a training-free and guidance-based mechanism to
address this shortcoming. Our method results in improvements in spatial reasoning for
T2I models for three dimensional relationships demonstrated by consistently higher
scores on VISOR and T2I-CompBench benchmarks.

text prompts to high-quality images, while multimodal large language models
(MLLMSs) [25,48] process images as inputs, and generate rich and coherent nat-
ural language outputs in response. As a result, these models have found diverse
applications in robotics [45], image editing [17], image-to-image translation [31],
and more. However, recent studies [20] and benchmarks such as DALL-Eval
[8], VISOR [15], and T2I-CompBench [18] have found that generative vision-
language models suffer from a common mode of failure — their inability to cor-
rectly reason over spatial relationships.

We postulate that the lack of spatial understanding in generative vision-
language models is a result of the lack of guidance from image-text datasets.
Compared to T2I models, graphics rendering tools such as Blender allow deter-
ministic and accurate object placement, but are limited by their lower visual
detail and photorealism and do not have intuitive workflows such as T2I models
where users can generate images by simply typing a sentence. To get the best
of both worlds, in this work, we develop REVISION, a Blender-based image
rendering pipeline which enables the synthesis of images with 101 3-dimensional
object (assets), 11 spatial relationships, diverse backgrounds, camera perspec-
tives, and lighting conditions. REVISION parses an input text prompt into assets
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and relationships and synthesizes the scene using Blender to exactly match the
input prompt in terms of both objects and their spatial arrangement.

In a training-free manner, we leverage images from REVISION as additional
guidance for existing T2I methods to their ability to generate spatially accurate
images, and demonstrate improved performance on VISOR and T2I-CompBench
benchmarks. We evaluate (i) the impact of utilizing diverse backgrounds from
REVISION, (ii) the trade-off between controllability and photo-realism and (iii)
the added generalization to complex prompts achieved by leveraging REVISION.
For a holistic study, we introduce an extension to the VISOR benchmark, to
include evaluation of depth relationships (in front of/behind).

To assess the spatial and relational reasoning abilities of MLLMs, we also
create the RevQA benchmark. We construct 16 diverse question types and their
adversarial variations consisting of negations, conjunctions, and disjunctions. We
perform holistic evaluations on 5 state-of-the-art MLLMs and discover significant
shortcomings in their ability to accurately address complex spatial reasoning
questions. These models also demonstrate a lack of robustness to adversarial
perturbations, leading to a substantial decline in their performance.

The key contributions and findings are summarized below:

— We develop the REVISION framework, a 3D rendering pipeline that is
guaranteed to generate spatially accurate synthetic images, given an input
text prompt. An extendable framework, REVISION currently accommodates
100+ assets across 11 spatial relationships and 3 diverse backgrounds, and
support for multiple lighting conditions, camera perspectives, and shadows.

— We present an approach that utilizes images from REVISION in an effi-
cient training-free manner, which results in improved spatial reasoning across
multiple benchmarks. Controlled experiments, ablations, and human studies
reveal consistent improvements in generating images corresponding to the
spatial relationships in the input prompt (as shown in Fig.1).

— We introduce the RevQA question-answering benchmark to evaluate spatial
reasoning abilities of multimodal large language models. Our experiments
reveal the shortcomings of state-of-the-art MLLMs in reasoning over complex
spatial questions and their vulnerability to adversarial perturbations.

2 Related Work

Generative Models for Image Synthesis. Image generation and synthesis
methods have advanced rapidly, progressing from early approaches such as gen-
erative adversarial networks (GAN) [16], variational auto-encoders (VAE) [42],
and auto-regressive models (ARM) [6], to contemporary text-to-image models
including Stable Diffusion [38] and DALL-E [35]. GLIDE [30] adopts classifier-
free guidance in T2I and explores the efficacy of CLIP [34] as a text encoder.
Compared to GLIDE, Imagen [39] adopts a frozen language model as the text
encoder, reducing computational overhead, allowing for usage of large text-only
corpus. Multiple variants of T2l models have been developed by leveraging
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T5-based text encoder [5], T2I priors [32,37], reward-based fine-tuning [18] and
developing refiner models [33] for improved image-text alignment.

Controllable Image Generation for Spatial Fidelity. To achieve better
control over diffusion-based image synthesis, multiple methods have been pro-
posed. ReCo [49], GLIGEN [21], Control-GPT [53], Composable Diffusion [26]
and ConPreDiff [47] all develop training-based methods to provide additional
conditioning for T2I models. SPRIGHT [3] introduces a spatially-focused large-
scale dataset, by re-captioning 6 million images from existing vision datasets
and demonstrate performance gains through an efficient training methodology.
Test-time adaptations have also been proposed - (i) Layout Guidance [7] restricts
specific objects to their bounding box location through the modification of cross-
attention maps; however it relies on bounding box annotations, (ii) LayoutGPT
[12] and LLM-grounded Diffusion [23] leverage large language models (LLMs)
to generate layouts and bounding box co-ordinates and, (iii) RealCompo [54]
combines multiple generative models for better spatial control. By developing
an annotation-free cost-efficient framework we overcome the shortcomings of
existing methods through REVISION.

Synthetic Images for Vision and Language. The flexibility and control pro-
vided during creation of synthetic images has led to various visuo-linguistic evalu-
ation benchmarks using rendering tools. CLEVR [19] pioneered the utilization of
synthetic objects in simulated scenes for visual compositionality reasoning. Many
variants of CLEVR such as CLEVR-Hans [43], CLEVR-Hyp [41], Super-CLEVR
[22], and CLEVRER [50] probe multiple facets of multimodal understanding
with synthetic images and videos. PaintSkills introduced in DALL-EVAL [§] is
an evaluation dataset that measures multiple aspects of a T2I model, which
includes spatial reasoning, image-text alignment and social biases.

Evaluation of Multimodal LLMs. Multiple benchmarks have been proposed
that evaluate reasoning capabilities of MLLMs. MMBench [27] evaluates mod-
els across 20 different dimensions, for a total of 2974 evaluation instances. The
distinctive abilities of MLLMS to differentiate between coarse and fine-grained
vision tasks is explored by MME [13] with images sourced from COCO. A lim-
itation across all these benchmarks is that they collect instances from common
VL datasets, increasing risk of data leakage and do not evaluate spatial relation-
ships at scale. RevQA fills this gap by developing a diverse set of synthetic and
scalable image-question pairs for a holistic evaluation.

3 The REVISION Framework

REVISION (Fig. 2) is a rendering-based framework for generating spatially accu-
rate images from an input prompt. Given a prompt, we generate an image in
Blender, where the two object 3D models and the camera view are situated
according to the spatial relationship derived from the prompt. The components
of REVISION are described below.
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Fig. 2. REVISION parses a prompt into assets (objects) and the spatial relationship
between them and synthesizes a symbolic image in Blender, placing the respective
object assets at coordinates corresponding to the parsed spatial relationship.

Table 1. Spatial relationships in REVISION and their rules for the Coordinate Gen-
erator. The objects are positioned from the camera’s perspective.

Relation |Spatial Phrases Coordinate Constraints Distance (m)
Horizontal/to the left, to the right X and Z are 0. [1, 1.5]
Vertical |above, below, top, bottom |X and Y are 0. [0.75, 1]
Near near, next to, on the side of Z is 0. [0.75, 1]
Depth in front of, behind Z is 0. Xopj1=-Xopj2- |[1, 1.5]

The Asset Library includes a large human-inspected collection of 3D mod-
els of realistic objects with variations in texture and shape. Given an object
name, the Asset Library randomly selects a matching asset rescaled to fit into
a 1lm cube to ensure that they are sufficiently visible in the final output. The
Asset Library features 101 distinct classes of objects, 80 of which are from MS-
COCO [24]. Each object class is associated with 3 to 5 royalty-free 3D model
assets from sketchfab.com, with a total of 410 3D models. REVISION includes 3
background panoramas (Indoor, Outdoor, and White) from polyhaven.com and
a corresponding textured floor asset from Sketchfab.

The Coordinate Generator deterministically generates 3D coordinates for
the objects and the camera, given the names of the objects and the spatial
relation extracted from the prompt. As shown in Table 1, REVISION supports
four categories of spatial relationships between objects. In our coordinate frame,
the X-, Y-, and Z-axis represent depth, horizontal, and vertical relationships
respectively. To ensure that the objects are visible and the spatial relationship
is obvious from the camera’s view, the coordinate values for the objects on all
three axes are confined within the range of [—1m, 1 m]. The camera is placed at
x = 5m with its view always facing the origin point. The camera is at z = 2.5
for depth relationships and at z = 1.5m otherwise.

The Scene Synthesizer assembles a 3D scene consisting of six main com-
ponents: a camera, a light source, background, floor, and two objects. The two
object assets and the camera are placed at their respective coordinates deter-
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an apple above a car an apple to the leftacar  an apple nearacar an apple in front of a car

Fig. 3. Outputs from the REVISION rendering pipeline for 4 spatial relationships
types for identical assets, with (bottom) and without a floor (top).

mined by the Coordinate Generator. Then the background asset, which is a
360-degree panorama image (modeled as a large sphere), is centered at the ori-
gin. The light source is added to a random position sufficiently higher than all
objects in the scene. To prevent objects from appearing to float, the floor asset,
a textured hyperplane orthogonal to the Z-axis, is positioned beneath the object
asset with the lowest vertical coordinate. This floor placement also enables the
object assets to cast shadows, enhancing the realism of the rendered image.
The Position Diversifier (Fig.3) ensures diversity in object orientations,
background, and the camera angles every time REVISION is invoked. The back-
ground is rotated along the Z-axis, giving us a large number of static background
options. In order to further diversify the perspective sizes and tilts of the object
assets within the camera’s view, we add random jitter to the position and orien-
tation of the camera. We also add random small rotations to the objects along
the Z-axis and vary the distance between the objects so that they are not always
symmetric around the origin. See Supplementary Materials for more details.

4 Improving Spatial Fidelity in T2I Generation

4.1 Training-Free Image Generation with REVISION

Given an input prompt (T), we first generate a spatially accurate reference image
(2(9)) leveraging our REVISION pipeline. We then perform training-free image
synthesis to generate an image I, i.e. ¢(I|z(9), T), where ¢ is a T2I model. We re-
formulate the standard text-to-image pipeline into an image-to-image pipeline,
conditioned by text, as shown in Fig. 4.

Standard diffusion methods such as Stable Diffusion (SD) generate an image
by iteratively de-noising a Gaussian noise vector. Stochastic Differential Editing
(SDEdit) [28], on the other hand, starts from a guide image (29, in our case),
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Fig. 4. Given a user-provided input prompt 7', we generate a corresponding synthetic
image 9 using REVISION. With input prompt 7' and guidance =9, we perform
training-free image synthesis based on existing T2I pipelines such as Stable Diffusion
or ControlNet to obtain a spatially accurate image.

Table 2. The incorporation of REVISION as a guiding framework significantly
enhances the spatial reasoning performance of Stable Diffusion (SD) models. Results
highlighted in green represent scores achieved with images from REVISION.

VISOR (%)

Method ‘OA (%)‘

uncond cond‘ 1 2 3 4

SD 1.4 29.86| 18.81 62.98‘46.60‘20.11 6.89| 1.63
+ REVISION| 53.96] 52.71/97.6977.7961.02/44.9027.15

SD 1.5 28.43 17.51/61.5044.2718.12 6.28| 1.3
4+ REVISION  54.33 53.08/97.7278.07 61.27\45.44/27.55

SD 2.1 47.83) 30.25 63.24‘64.42‘35.74 16.13] 4.70
+ REVISION  48.26| 47.11/97.6176.07 55.7537.10/19.53

adds Gaussian noise to it, and denoises it to produce the synthesized image I. We
use SDEdit within our Stable Diffusion pipeline and perform image generation
guided by z(9). We also explore the ControlNet [51] backbone, which allows fine-
grained control over SD. Using ControlNet allows us to address two key points:
a) our reference images provide enough spatial information even when low-level
features are extracted from them and, b) we can mitigate any attribute-related
biases present in the assets.

4.2 Experimental Setup

We study the efficacy of REVISION on two widely accepted benchmarks for spa-
tial relationship, VISOR [15] and T2I-CompBench [18], which have 25,280 and
300 spatial prompts, respectively. For each evaluation prompt in the respective
benchmarks, we generate a corresponding image from our REVISION pipeline
and perform training-free image generation as described in Sect. 4.1.
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Fig. 5. Comparing the T2I-CompBench spatial scores of REVISION-based guidance
(green) with other leading T2I models and methods (blue). (Color figure online)

Table 3. Results on the VISOR Benchmark. With REVISION, we consistently
outperform existing T2I methods on the VISOR benchmark.

Method OA (%)|VISOR (%)

uncond|cond |1 2 3 4
GLIDE [30] 3.36 1.98 159.06 6.72 |1.02 0.17 |0.03
DALLE-mini [10] 27.10 |16.17 |59.67 (38.31 |17.50 |6.89 [1.96
DALLE-v2 [35] 63.93 |37.89 |59.27 (73.59 |47.23 23.26 |7.49
Layout Guidance [7] 40.01 38.80 (95.95 |- - - -
Control-GPT [53] 48.33  144.17 165.97 [69.80 (51.20 [35.67 20.48

Structured Diffusion [11] [28.65 [17.87 [62.36 |44.70 18.73 |6.57 |1.46
Attend-and-Excite [4] 42.07 25.75 |61.21 |49.29 19.33 |4.56 |0.08
SD 1.4 + REVISION 53.96 |52.71 |97.69 (77.79 61.02 |44.90 (27.15
SD 1.5 + REVISION 54.33 |53.08 |97.72|78.07 61.27 |45.44 |27.55
SD 2.1 + REVISION 48.26 |47.11 |97.61 |76.07 |55.75 [37.10 |19.53
ControlNet + REVISION|56.88 |55.48 97.54 |78.82/62.93/48.5831.59

We leverage 3 variants of Stable Diffusion (SD), versions 1.4, 1.5, and 2.1 as
our baseline models. For ControlNet, we use the canny edge-conditioned SD
model. For holistic evaluations, we also report the Inception Score (IS) [40]
where applicable. For all subsequent tables, the bold values denote the best
performance while underlined values indicate the second-best performance.

4.3 Results and Analysis

Improvements over Baseline Models - We summarize our representa-
tive improvements over the baseline and existing methods, on the VISOR and
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Table 4. VISORona and Object Accuracy, split across relationship types. oyc and oo
denote the respective metric’s standard deviation w.r.t the relationships. Regardless of
the spatial relation, REVISION enables T2I models to consistently produce spatially
accurate images, a challenge faced by earlier approaches.

Method VISORonda (%) Object Accuracy (%)

left |right |above below |oy. [left |right |above |below |oga
GLIDE 57.78 |61.71 |60.32 |56.24 |2.46/3.10 (3.46 3.49 3.39 |0.18
DALLE-mini 57.89 160.16 63.75 |56.14 |3.29/22.29 |21.74 |33.62 |30.74 |5.99
DALLE-v2 56.47 |56.51 |60.99 63.24 |3.38/64.30/64.32/65.66/61.45|1.77
Control-GPT 72.50 70.28 |67.85 |65.70 |2.95/49.80 48.27 47.97 46.95 |1.18

SD 1.4 + REVISION 97.53 97.45 {98.09(97.66 |0.29/52.42 |52.11 |56.93 |54.38 |2.22
SD 1.5 + REVISION 97.57 197.53/98.05 97.70 10.24/52.99 |52.59 56.80 54.92 |1.94
SD 2.1 + REVISION 97.81/97.46 (97.91 |97.28 |0.30/46.70 |47.94 49.70 |48.71 |1.27
ControlNet + REVISION|97.51 (97.25 |97.65 |97.72(0.21/55.10 |55.14 |58.98 |58.29 |2.05

T2I-CompBench benchmarks in Table2 and Fig.5 respectively. The results in
Table 2 are shown with reference images on a white background and # of denois-
ing steps = 30. As shown in Table2, we improve on all aspects of spatial rela-
tionships compared to our baseline methods. On SD 1.5, we achieve a 91.1%
improvement in Object Accuracy (OA) and a 58.6% improvement on the con-
ditional score. Specifically, we generate objects more accurately and achieve a
high % of accuracy when spatially synthesizing them in the image. Interestingly,
through REVISION, we increase the likelihood of consistently generating spa-
tially correct images, as can be seen by the relatively high value of VISORj,.
On VISOR (Table3), REVISION enables baseline Stable Diffusion models to
consistently outperform existing methods, across all aspects. Compared to the
best open-source model, Control-GPT, we achieve a A improvement of 17.69%,
48.12%, and 25.6% on OA, VISORonq, and VISOR.,,,conq respectively.
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Fig. 8. Illustrative examples depicting the variation of generated images across the
three variants of backgrounds in REVISION. For each pair, the image on the left is
from REVISON and the image on the right is generated from the T2I model.

On T2I-CompBench (Fig. 5), we observe similar improvement trends across
diverse backgrounds, with baseline models guided by REVISION achieving con-
sistent performance gains on the benchmark. In addition to enhancing spatial
accuracy, REVISION improves prompt fidelity by ensuring that images contain
all objects mentioned in the input prompt (Fig.6).

Consistent Performance Across Relationship Types - Across all spatial
relationship types, REVISION achieve a consistently high performance score
across the VISOR metrics as shown in Table 4; a shortcoming prevalent in other
methods. For example, the largest deviation in VISOR .4 performance for Con-
trolNet + REVISION is 0.21% between left and below relationships; in compar-
ison Control-GPT deviates as much as 6.8% for the same.

4.4 Ablation Studies

Impact of Background - In Table5, we enumerate the impact of the back-
ground types in the images from the REVISION pipeline and the downstream
trade-off between VISOR performance and model diversity. Utilizing white back-
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Table 5. The impact of the 3 background types in the REVISION pipeline on the
VISOR benchmark. While best performance is achieved with a white background,
diverse outputs are attained with the outdoor background type.

Model Background|IS (1)|OA (%)[VISOR (%)

uncond|cond |1 2 3 4
SD 1.4/ White 16.16 [53.96 |52.71 |97.69 |77.79 |61.02 44.9 |27.15
Indoor 19.11 |48.53 |45.12 92.97 |74.82 |53.79 34.78 |17.09
Outdoor 20.16144.32 |41.80 |94.31 |69.79 |49.38 |31.86 (16.17
SD 1.5|White 16.27 |54.33 |53.08 (97.72/78.07/61.27/45.44/27.55
Indoor 19.11 |48.77 |45.28 92.85 |74.93 |53.96 34.77 |17.47
Outdoor 19.66 43.99 |41.51 |94.36 |69.48 |48.58 |31.46 |16.52
SD 2.1 White 12.79 148.26 |47.11 |97.61 |76.07 |55.75 37.10 |19.53
Indoor 11.52 (31.08 129.37 |94.50 |59.80 [33.96 |17.40 |6.34
Outdoor 10.51 [36.37 |34.67 95.34 |65.05 |41.23 |23.05 |9.36

ATV to the leftof a
horse

Acup belowa TV

Reference Image Generated Images

Fig. 9. lllustrative examples showing the trade-off between photo-realism and denoising
steps, while maintaining generating spatially accurate images using REVISION.

grounds that exclusively feature the two objects in question minimizes potential
distractions for the model. Conversely, when the model is presented with ini-
tial reference images incorporating indoor or outdoor backgrounds, it exhibits
the capacity to identify and leverage distractor objects, resulting in the genera-
tion of diverse images. As shown in Fig. 8, all generated images maintain spatial
accuracy, but noisier reference images result in greater diversity.

Controllability vs Photo-Realism - In this setup, we study the impact
of the # of denoising steps and its trade-off with photo-realism. As shown in
Fig. 7 that while the performance on VISOR deteriorates with additional # of
denoising steps, it improves the model’s ability to be more diverse and photo-
realistic. In Fig. 9, we demonstrate that by utilizing REVISION, baseline models
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Table 6. Comparing baseline methods against REVISION-guided image synthesis on
depth relationships. DS denotes the # of Denoising Steps.

Setting OA (%) VISOR (%)
uncond|1 2 3 4
SD 1.5 (baseline) 41.52 [27.15 60.12 |31.82 13.19 3.47

-+ REVISION (DS=30)/58.32 [29.62 (64.74 [34.53 |14.99 |4.22
+ REVISION (DS=35)52.05 |32.08 |68.11 37.92/17.514.78
+ REVISION (DS =40)47.43 |30.46 65.50 [35.99 (15.74 |4.64

can preserve their spatial coherency while iteratively demonstrating a higher
degree of photo-realism, through more # of denoising steps.

4.5 Extending VISOR for Depth Relationships

We further extend the VISOR benchmark for Depth relationships (in front
of/behind). We utilize Depth Anything [46] for generation of depth maps and
OWLv2 [29] for object detection. Given a T2I generated image I and its prompt
T that contain two objects 01,02, we obtain its depth map Ip using Depth
Anything. We then retrieve the centroids detected for the two objects ¢, , Co,
using OWLv2. At these centroid coordinates, we acquire the depth values for
the two objects from the depth map Ip(co,), Ip(co,). We check if the acquired
depth values match the spatial relationship in the prompt, and evaluate similar
to VISOR. As shown in Table 6, REVISION improves VISOR scores across all
metrics and across multiple denoising steps.

4.6 Human Evaluations

To verify the generalizability of REVISION-based guidance on T2I models, we
perform 2 distinct experiments and conduct human evaluations for validation.
For each experiment, we independently sample 200 generated images and take
the average scores across 4 workers. We also report unanimous (100%) and
majority (75%) agreements between the workers for each experiment.

Prompts of Multiple Objects and Relationships - In this experiment, we
generate reference images using prompts that include 2 spatial phrases and 3
objects, and use these images to guide T2I generation. Each generated image
is evaluated for accuracy based on the input spatial prompts. We achieve an
accuracy of 79.62% when at least 1 phrase is correctly represented in the image
and 46.5% when both phrases are correctly represented. The unanimous and
majority agreements among evaluators are 64.5% and 86.5%, respectively.

Out-of-Distribution Objects - We consider prompts containing exactly one
object not found in the REVISION Asset Library. Given a prompt that mentions
an OOD object, we find the semantically closest object (list in Supplementary



REVISION 351

Simple Spatial Is there an airplane above a chair? Yes
Opposite Spatial Is there a chair above an airplane? No
AND Is there a chair and an airplane? Yes
OR Is there a chair or an airplane? Yes
NOT Is there an airplane not above a chair? No

Double Negative Is there an airplane not below a chair? Yes

Random AND Is there an airplane and a hot dog? No

Random OR Is there an airplane or a hot dog? Yes

Random Spatial Is there an airplane above a hot dog? No

Random Combined AND Is there an airplane above a chair and is there an airplane above a hot dog? No

Random Combined OR Is there an airplane above a hot dog or is there an airplane above a chair? Yes

Adversarial AND Is there a helicopter and a chair? No

Adversarial OR Is there a helicopter or a chair? Yes

Adversarial Spatial Is there a helicopter above a chair? No

Adversarial Combined AND Is there a helicopter above a chair and is there is an airplane above a chair? No

An airplane above a chair | Adversarial Combined OR Is there a helicopter above a chair or is there is an airplane above a chair? Yes

Fig. 10. The RevQA Benchmark. Using the REVISION pipeline, we generate spa-
tially accurate images and formulate 16 question types from a given caption. We lever-
age these generated questions and image, benchmarking Multimodal Large Language
Models in their abilities to reason over spatial relationships.

Material) in our library and use their corresponding image as guidance. For
example, we generate an image of “a helicopter above a bicycle” by providing
a reference image of “an airplane above a bicycle”. An accuracy of 63.62% is
found with an unanimous and majority agreement of 67% and 90.5%, respec-
tively.

5 RevQA: A Spatial Reasoning Benchmark for MLLMs

We leverage the determinism of the REVISION pipeline to construct a new visual
question answering benchmark (RevQA) for evaluating the spatial reasoning
abilities of multimodal large language models.

Question Generation. The benchmark contains 16 types of yes-no questions
for a REVISION-generated image, consisting of negations, conjunctions, and
disjunctions, building on prior work on logic-based visual question answering
[14]. Each question type evaluates a combination of spatial and logical reasoning
abilities in multimodal large language models (MLLMs) (Fig. 10).

Among the 16 types, we incorporate Random and Adversarial types of ques-
tions to further evaluate the robustness and reliability of MLLMSs using simple
templated transformations. In Random types of questions, we replace an object
(visible in the image) in the question with another randomly picked object from
REVISION’s Asset Library. For the Adversarial set of questions, we replace one
of the objects with another that is semantically and visually close. In addition
to benchmarking their robustness, these questions allow simultaneous evaluation
of the fine-grained spatial perception and reasoning abilities of these models. To
alleviate any order bias in instances which contain multiple questions (see Com-
bined in Fig. 10), we randomly switch the order between them.

Evaluation Setup and Results. We sample 50k image-question pairs and
benchmark 5 open-source state-of-the-art MLLMs - LLaVA 1.5 [25], Fuyu-8B [2],
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Table 7. Performances of 5 MLLMs across the 16 types of questions in RevQA. Most
models perform worse than random (50%) when reasoning over Opposite Spatial rela-
tionships and Double Negative questions. All models have a significant drop in perfor-
mance with Random/Adversarial questions, in comparison to their simpler versions.

Question Type LLaVa 1.5|Fuyu-8B|InstructBLIP |[LLaMA-Adapter 2.1 |Qwen-VL Chat
Simple Spatial 0.942 0.702 0.834 0.579 0.940
Opposite Spatial 0.394 0.287 0.184 0.419 0.402
AND 0.935 0.887 0.957 0.858 0.889
OR 0.995 0.396 0.598 0.722 0.949
NOT 0.926 0.619 0.356 0.504 0.583
Double Negative 0.267 0.347 0.665 0.490 0.212
Random AND 0.934 0.308 0.675 0.616 0.978
Random OR 0.925 0.178 0.194 0.194 0.324
Random Spatial 0.925 0.370 0.686 0.790 0.919
Random Combined AND 0.116 0.502 0.627 0.800 0.567
Random Combined OR 0.968 0.536 0.414 0.003 0.506
Adversarial AND 0.661 0.184 0.542 0.641 0.789
Adversarial OR 0.921 0.188 0.443 0.156 0.685
Adversarial Spatial 0.559 0.335 0.777 0.893 0.615
Adversarial Combined AND|0.132 0.539 0.695 0.805 0.695
Adversarial Combined OR |0.953 0.456 0.386 0.003 0.254
Average 0.720 0.446 0.598 0.578 0.642

InstructBLIP [9], LLaMA-Adapter 2.1 [52] and Qwen-VL-Chat [1]. We instruct
all models to generate binary responses and set the temperature = 0, to remove
stochasticity in the generated responses.

We present our evaluation results in Table7 and find that all models have
a large gap in performance in reasoning over spatial relationships. While most
models reason well over simple spatial relationships, they have a large perfor-
mance drop when presented with the opposite spatial relationships. For example,
LLaVA-1.5, the best performing model, has a 58.17% decrease in performance
when probed with simple vs opposite spatial questions. This can be attributed to:
(a) insufficient training data for rare object relationships, such as less instances
of an “elephant above a person” than vice versa; b) the inability of vision
encoders like CLIP to capture subtle semantic differences. MLLMs also struggle
with negation, possibly because image captions do not capture enough negations;
e.g. COCO Captions only contain0.97% occurrences of ‘not’. All models sig-
nificantly suffer when presented with questions that consist of double negatives,
which evaluate the models’ ability to reason of negations and spatial relationships
in tandem. Furthermore, all models suffer under adversarial settings in compari-
son to their simpler counterparts; comparing LLaVA’s performance for AND and
Adversarial Combined AND questions, we find a 85.88% (0.935 — 0.132) drop
in performance. We also observe a larger decline in performance for Adversarial
questions than for the Random set of questions hinting that while models inde-
pendently perform well at object recognition and simple spatial relationships,
combining them adversarially significantly reduces performance.
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6 Conclusion

In this work, we introduce REVISION, a framework designed for training-free
enhancement of spatial relationships in Text-to-Image models and RevQA, a
benchmark to evaluate the spatial reasoning abilities of multimodal large lan-
guage models. Our results demonstrate the effectiveness of leveraging 3D render-
ing pipelines as a cost-efficient approach for developing generative models with
robust reasoning capabilities. REVISION is modular and can easily be extended
to incorporate additional features, assets, and relationships. We hope our method
inspires future research at the intersection of computer graphics and generative
Al enabling safe deployment of these systems in the real world.
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