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Abstract

Zero-shot inference, where pre-trained mod-
els perform tasks without specific training data,
is an exciting emergent ability of large mod-
els like CLIP. Although there has been con-
siderable exploration into enhancing zero-shot
abilities in image captioning (IC) for popular
datasets such as MSCOCO and Flickr8k, these
approaches fall short with fine-grained datasets
like CUB, FLO, UCM-Captions, and Sydney-
Captions. These datasets require captions to
discern between visually and semantically sim-
ilar classes, focusing on detailed object parts
and their attributes. To overcome this challenge,
we introduce TRaining-Free Object-Part En-
hancement (TROPE). TROPE enriches a base
caption with additional object-part details using
object detector proposals and Natural Language
Processing techniques. It complements rather
than alters the base caption, allowing seamless
integration with other captioning methods and
offering users enhanced flexibility. Our eval-
uations show that TROPE consistently boosts
performance across all tested zero-shot IC ap-
proaches and achieves state-of-the-art results
on fine-grained IC datasets'.

1 Introduction

Object parts and their attributes have been shown
to play a critical role in distinguishing between
classes in tasks like fine-grained classification (Liu
et al., 2024; Zhang and Feng, 2023; Feinglass et al.,
2024). Despite their importance, previous works in
image captioning (IC) have instead focused primar-
ily on objects, their attributes, and their interactions,
as seen in by common utilized semantic structures
like scene graphs (Zhao et al., 2020; Zhang et al.,
2022; Chen et al., 2020). This focus is partly be-
cause IC is often applied to general domain datasets

'TROPE source codes and data: https://github.com/
JoshuaFeinglass/TROPE.
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Figure 1: An example differentiating TROPE from prior
work in image caption enhancement, which substitute
existing words in the sentence with more contextually
appropriate alternatives. TROPE instead inserts supple-
mental information after key objects by mapping nouns
to a region of the image and constructing semantic part
proposals based on object parts and attributes found
within this region.

like MSCOCO (Lin et al., 2014) and Flickr8k (Ho-
dosh et al., 2013), where images typically contain
various object classes, and captions provide a high-
level scene description.

Existing training-free Zero-Shot methods, such
as ZeroCap (Tewel et al., 2022) and ConZIC
(Zeng et al., 2023), enhance captions by substi-
tuting words in a base caption with more a con-
textually appropriate ones, utilizing scores from
CLIP (Radford et al., 2021) and a Large Language
Model (LLM). However, since these models are
pre-trained on general domain data, the resulting
captions often lack fine-grained detail. This is es-
pecially problematic for fine-grained datasets, such
as bird species in CUB (Welinder et al., 2010),
flower species in FLO (Welinder et al., 2010), or
aerial scenes in UCM-Captions (Yang and Newsam,
2010) and Sydney-Captions (Yang and Newsam,
2010), which require distinguishing between visu-
ally and semantically similar classes. Ren et al.
(2023) showed that that visual and semantic feature
representations from these fine-grained datasets
differ significantly from those of general domain

3644

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 3644-3655
November 12-16, 2024 ©2024 Association for Computational Linguistics


https://github.com/JoshuaFeinglass/TROPE
https://github.com/JoshuaFeinglass/TROPE

datasets, leading to poor performance in domain
generalization benchmarks due to task misalign-
ment (Feinglass and Yang, 2024).

We conjecture that effective zero-shot IC in fine-
grained contexts necessitates robust primitives that
are consistent across both the training and test
domains. Following this line of reasoning, we
proposed TRaining-free Object-Part Enhancement
(TROPE), which adapts pre-trained models to fine-
grained datasets by supplementing captions with
object part information. TROPE effectively aug-
ments the base captions of existing zero-shot IC
methods with fine-grained details as shown in Fig-
ure 1. Our evaluations demonstrate that adding
information from object part semantic proposals
consistently enhances IC performance across all
tested methods, datasets, and metrics. Precision-
recall curves indicate that TROPE significantly im-
proves recall with a minimal impact on precision,
particularly in datasets where there is substantial
overlap between the object detector’s vocabulary
and the terms commonly used by human annotators.
We also present examples of TROPE’s application
to an enterprise captioner, GPT4, and discuss two
failure cases: one involving a lack of recognizable
objects and another featuring redundant or incor-
rect part information.

To further explore the bias of general domain
datasets, we conducted an analytical study on
the frequency of terms in human-annotated and
machine-generated texts across both general do-
main and fine-grained datasets. We found that se-
mantic indicator words, such as "with", "has", and
"have", which introduce object part descriptions,
are much more common in fine-grained datasets.
This finding underscores the strong relationship be-
tween the semantic structure of images and the cap-
tions used to describe them, reinforcing the need to
adapt models trained on general domain datasets to
fine-grained settings using techniques like TROPE.
Contributions: Our work introduces the setting of
fine-grained zero-shot captioning, extending zero-
shot capabilities to four fine-grained captioning
datasets. Our analyses reveal that existing zero-
shot benchmarks cater predominantly to general
domains and fail to meet the specific needs of fine-
grained settings. We propose TROPE as a solution
to enhance zero-shot captioning performance by in-
corporating detailed information from a pre-trained
object detector, consistently enriching caption de-
tail and improving performance across all methods,
evaluation metrics, and datasets.

2 Related Work

The detection of objects and attributes, facilitated
by large datasets of human-labeled regions (Kr-
ishna et al., 2017; Ramanathan et al., 2023), has
historically been a cornerstone for various vision-
language tasks (Zhang et al., 2021). Previous works
have integrated this object and attribute information
into training (Zhang et al., 2021), labels (Anderson
et al., 2018), and text generation (Li et al., 2020).
TROPE builds on this foundation by extracting hi-
erarchical object relationships to improve the detail
of image captions.

Enhancing the level of detail presented in im-
age captions is a popular and multi-faceted topic.
Entity-aware captioning seeks to replace generic
nouns with context-specific entities from Wiki text
based either on a base (template) caption (Lu et al.,
2018; Biten et al., 2019; Jing et al., 2020) or op-
timized generation (Hu et al., 2020; Tran et al.,
2020). Similarly, stylized captioning is also per-
formed by either modifying a base caption (Zhao
et al., 2020) or optimized generation (Yang and
Jin, 2023). Lastly, scene graphs have been used to
either enhance a base caption (Zhao et al., 2020) or
as an additional feature for optimized generation
(Zhang et al., 2022; Chen et al., 2020).

Zero-shot captioning presents distinct chal-
lenges, as it operates without direct access to image-
text pairs for training, relying instead on the intrin-
sic capabilities of pre-trained models like CLIP
(Radford et al., 2021) and SimCTG (Su et al.,
2022b). Several works have tried to enhance zero-
shot performance using training-free (Li et al.,
2023a; Zeng et al., 2023) methods or text-only
training (Su et al., 2022a; Li et al., 2023b; Tu et al.,
2023; Nukrai et al., 2022; Fei et al., 2023) strate-
gies that assume access to target dataset captions.
Ren et al. (2023) introduced a domain general-
ization IC benchmark spanning general and fine-
grained datasets, where a large gap in performance
on general datasets and fine-grained datasets could
be observed. TROPE aims to bridge the gap be-
tween general and fine-grained datasets by adding
detailed object descriptions without requiring ad-
ditional training data, improving the applicability
and effectiveness of zero-shot captioning methods
in more challenging environments.
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3 Preliminaries

3.1 Image Captioning Task

The image captioning (IC) task involves an image
captioner that takes an image as input and outputs a
caption, typically a single sentence, that describes
the image. The process begins with a vision module
V that extracts features w from the image as a pre-
processing step. This is followed by a cross-modal
understanding module VL, which integrates the
pre-processed image information to generate the
caption y as shown

w=V(image), y=VL(w). (1)

3.2 Object Detectors in Image Captioning

n Vision-Language (VL) tasks such as IC, object
detectors play a crucial role. These detectors are
specialized to not only identify objects within an
image but also provide detailed labels and attributes
for these objects (Anderson et al., 2018; Zhang
et al., 2021). The information about specific re-
gions provided by these detectors is essential for
many IC methods. For instance, Oscar (Li et al.,
2020) model utilizes this detailed, region-specific
data to facilitate cross-modal understanding when
generating captions. Our work utilizes the object
detector VinVL (Zhang et al., 2021), which pro-
vides bounding boxes b, regional features 6,., ob-
ject labels [2, and attribute labels [ (the most con-
fident attribute label for an object) for all proposed
regions of interest 7 € R of an image

{by,0,,12,12}cr = VinVL(image).

Ty Yry Uy

2

The integration of VinVL with the Oscar model is
one of the approaches used in our work to gener-
ate base captions. We also select VinVL to serve
as the source of object part information used by
TROPE to enhance base captions because of its
extremely large vocabulary of 1848, which encom-
passes objects present in all of the fine-grained
datasets included in our benchmark.

3.3 Measures of Object Proposal Similarity

In assessing object proposals from VINVL, we fo-
cus on the spatial relationships and characteristics
of the regions outlined by the bounding boxes. Op-
erations such as intersection and union are used to
evaluate the overlap between different bounding
boxes, while the area of individual bounding boxes
is calculated to assess their size. These measures
help in determining the similarity and relevance of
object proposals.
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Figure 2: A high-level visualization of the TROPE
methodology expanded upon in Algorithm 1. Detailed
descriptions of each TROPE function block can be
found in their corresponding sections.

4 Structured Enhancement

4.1 Overview

As depicted in Figure 2 and outlined in Algorithm
1, TROPE leverages raw object data from an object
detector (VinVL) to enhance a base caption y with
supplemental text to form y*. The additions to
the base caption include semantic part proposals
consisting of an article (if the object is singular),
part attributes, and a part descriptor (e.g., "pink and
white petals"). These proposals are associated with
objects mentioned in the base caption (e.g., birds or
flowers) and are integrated using punctuation and
connective phrases such as ",", "and", "with", and
"in addition to".

4.2 Extract Key Objects from Base Caption
(h)

Initially, key objects in the caption are identified.
This involves extracting nouns and their corre-
sponding caption indices from the base caption
using tokenization and Parts-of-Speech (POS) tag-
ging (Honnibal et al., 2020). For possessive phrases
marked by "’s" or "of", only the possessing noun
is considered, and the insertion index is set to the
end of the phrase. As object detectors primarily
recognize unigrams, compound nouns with space
separation are not extracted. The identified nouns
and indices are then matched with object labels and
bounding boxes from VinVL, with plural nouns
reverted to their singular form using Inflect (Paul
Dyson, 2024) to ensure consistent matching. The
bounding box with the highest confidence is used
for singular nouns, and the smallest box encom-
passing all relevant bounding boxes is used for
plural nouns, resulting in bounding boxes R® and
and corresponding caption indices I© for all key
objects.
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4.3 Generate Semantic Proposals (g)

The next process involves assigning smaller objects
(indexed by 7 in Algorithm 1) as parts of the larger
key objects (indexed by k). Objects are sorted by
the area of their bounding boxes, from smallest to
largest, to prioritize smaller key objects and avoid
assigning everything to large background objects
like the "sky". Object proposals that overlap (de-
fined as area(by N b,)/area(by) in Algorithm 1)
significantly with a key object (exceeding a pre-
defined threshold 7' = 0.5 based on Table 4) are
assigned as parts. If multiple parts share the same
label and attribute, the label is pluralized using In-
flect. Semantic part proposals P are created by
appending the attribute and part labels, prefacing
with an article if the part is singular. Proposals in
the list for an object Sy, are then ranked by adding
overlap percentage and detector confidence (based
on the ablation in Table 2), determining their inclu-
sion order.

4.4 Aggregate and Add Semantic Proposals to
Caption (m)

Redundant proposals, such as "white petals" and
"pink petals", are organized coherently. Matching
part labels with different attributes are combined us-
ing commas or "and" (e.g., "white and pink petals").
These semantic proposals are then inserted into the
base caption at the identified object indices I ko . The
number of proposals included per object is based
on a user-defined parameter N. Proposals are in-
troduced by "with", the most frequent semantic
indicator from our word frequency study in Sec-
tion 5.4. If an object’s description already includes
"with", "in addition to" is used to prepend the new
proposals, ensuring a cohesive augmentation of the
existing caption (e.g., "a flower with white and pink
petals in addition to green leaves").

5 Experiments

To validate the effectiveness of TROPE for enhanc-
ing the detail of generated image captions, we con-
duct experiments on our proposed fine-grained IC
benchmark in Section 5.3, where TROPE demon-
strates consistent improvement in fine-grained im-
age captioning performance for standard metrics.
To further motivate the use of TROPE, we then ex-
plore the bias of general domain datasets in a word
frequency study in Section 5.4.

Algorithm 1 High-Level TROPE Pseudocode
Input: , (b, 12, ¥ }rer,N
Output: y*
(RO, 19) = h(y)
for k < 1 to length(19) do
Sy 0
forr € (R — RY) do
Sk < {}
if [area(b, N b,)/area(by)] > T then
P+ g(12,1%) > Section 4.3
Sk.append(P)
end if
end for
end for
Sort 1€ in reverse order
Apply the same reordering to Sy,
yt ey
for k < 1 to length(19) do
if S # () then
yt «— m(Sk, IZ,y",N) > Section 4.4
end if
end for

> Enhanced caption
> Section 4.2

5.1 Datasets

CUB or the Caltech-UCSD Birds (Welinder et al.,
2010) dataset is a very popular benchmark for fine-
grained classification and contains 200 classes of
bird species (bobolink, cardinal, etc.). We use the
5,794 image test set with 10 captions for each im-
age annotated by Reed et al. (2016) for our bench-
mark.

FLO or the Oxford Flowers (Nilsback and Zis-
serman, 2008) is another popular benchmark for
fine-grained classification and contains 102 classes
of flower species (moon orchid, snapdragon, etc.).
We use the 6,149 image test set with 10 captions
for each image annotated by Reed et al. (2016) for
our benchmark.

SC or the Sydney Captions (Zhang et al., 2015)
dataset consists of 7 land-use classes (residential,
airport, etc.). We use the 58 image test set with
5 captions for each image annotated by Qu et al.
(2016) for our benchmark.

UCM or the UC Merced Land Use (Yang and
Newsam, 2010) dataset consists of 21 land-use
classes (agricultural, harbor, etc.). We use the 210
image test set with 5 captions for each image anno-
tated by Qu et al. (2016) for our benchmark.
MSCOCO or the Microsoft Common Objects
in Common Context (Lin et al., 2014) dataset
which is comprised of curated images containing
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CUB FLO UCM Sc
Method C M SP | SM C M SP | SM | C | M | SP | SM C M | SP | SM
g| UpDown | 370 | 7.99 | 1456 | - 9.04 | 807 | 1238 | - - - - - - - - -
O| AoANet | 4.84 | 858 | 1547 1029 | 7.61 | 11.92 - - - - -
E| M?Trans. | 7.78 | 8.68 | 15.17 11.12 | 828 | 13.95 - - - - -
g| EISNet 6.83 | 8.82 | 15.20 1138 | 8.62 | 12.52 - - - - -
A| LSML 9.60 | 1024 | 1572 | - [ 1435 ] 972 | 1523 | - - - - - - - - -
| ZeroCap | 033 | 475 | 025 | -LI4 | 047 [ 512 | 034 | -1.I3[0.59 [ 539 [ 1.84 | -1.I3 [ 0.32 | 431 [ 0.60 | -1.14
£[ ConZIC | 1030 | 10.17 | 202 | 041 | 1507 | 11.32 | 3.19 | 0.78 | 7.54 | 6.51 | 2.83 | -0.27 | 12.33 | 7.62 | 348 | -0.05
&[T part 1489 | 1234 | 327 | 050 | 23.83 | 1326 | 5.00 | 0.78 | 8.08 | 7.12 | 3.42 | -0.22 | 13.40 | 7.83 | 3.78 | 0.00
3| 5 parts 721 | 1431 | 580 | 058 | 1621 | 14.06 | 5.60 | 0.81 | 6.64 | 7.16 | 3.36 | -0.21 | 13.25 | 7.82 | 3.73 | 0.00
10 parts 573 | 14.10 | 6.56 | 055 | 16.16 | 14.05 | 5.62 | 0.81 | 6.64 | 7.15 | 3.35 | -0.21 | 13.25 | 7.82 | 3.73 | 0.00
Oscar 29.63 | 1552 | 640 | 0.26 | 41.56 | 15.15 | 7.67 | 0.32 | 7.95 | 7.31 | 485 | 0.83 | 5.12 | 6.19 | 2.62 | -0.82
T part 50.16 | 21.36 | 10.52 | 0.72 | 68.28 | 19.66 | 1259 | 0.84 | 7.67 | 8.08 | 5.39 | 073 | 6.71 | 7.06 | 2.78 | -0.72
5 parts 11.00 | 2547 | 17.39 | 1.00 | 44.16 | 21.26 | 14.03 | 0.99 | 431 | 8.54 | 555 | -0.58 | 555 | 7.69 | 4.01 | -0.41
10 parts 4.06 | 2478 | 19.44 | 095 | 44.00 | 21.24 | 14.02 | 099 | 4.30 | 8.53 | 553 | -0.58 | 5.55 | 7.68 | 4.08 | -0.38

Table 1: A fine-grained IC benchmark comparing the performance of domain generalization models from Ren et al.
(2023) including: Up-Down (Anderson et al., 2018), AoANet (Huang et al., 2019), M2Transformer (Cornia et al.,
2020), EISNet (Wang et al., 2020), and LSML (Ren et al., 2023), zero-shot IC methods including: ZeroCap (Tewel
et al., 2022), ConZIC (Zeng et al., 2023), and Oscar (Li et al., 2020), and TROPE based enhancements of select
zero-shot IC methods with varying numbers of semantic part proposals. Enhancements provided by TROPE are

denoted with ().

CUB FLO
Criteria M SP M SP
< Score 2142 | 1049 | 1941 | 12.20
= Overlap 2049 | 9.39 | 19.62 | 12.59
~| Score+Overlap | 21.36 | 10.52 | 19.66 | 12.59
Z Score 2532 | 17.08 | 21.24 | 14.01
g Overlap 2497 | 16.53 | 21.21 | 14.00
| Score+Overlap | 25.47 | 17.39 | 21.26 | 14.03

Table 2: An ablation study of the performance of differ-
ent criteria for selecting proposals. Adding the object
score (detector confidence) and overlap (from detector
bounding boxes) yields the best captioning results.

CUB FLO

Component M Sp M Sp
+| Descriptor 18.71 6.8 1625 | 7.72
& Part 17.74 | 931 | 1644 | 10.56
- Both 21.36 | 10.52 | 19.66 | 12.59
g| Descriptor | 22.82 | 7.03 | 18.37 | 8.11
8| Part 19.77 | 104 | 16.89 | 10.21
Lg) Both 2547 | 17.39 | 21.26 | 14.03

Table 3: An ablation study of the impact on performance
when including only the descriptor or part component
of the semantic proposal. The results suggest that ME-
TEOR is more sensitive to descriptors, while SPICE is
more sensitive to object parts.

80 common object classes (like ’human’ or ’truck’)
with 5 human annotated captions for each image.
Flickr8k (Hodosh et al., 2013) is a popular dataset
comprised of 8000 images with 5 human annotated
captions for each image. The images were crawled
from social media postings and like MS-COCO,
are primarily common objects.

5.2 Evaluation Metrics

We utilize the four rule-based caption evaluation
specific metrics which exhibit high agreement with

CUB FLO
Threshold ‘ M | sP ‘ M | spP
025 212 | 1035 | 19.72 | 1247
050 | 21.36 | 10.52 | 19.66 | 12.59
0.75 213 | 1043 | 1937 | 12.59

Table 4: An ablation study of the threshold 7" used to
assign parts to each object based on overlap for 1 part
proposal. Although TROPE’s performance does not
seem to be strongly impacted by changes to 7, a setting
of T' = 0.5 exhibits the highest performance the major-
ity of the time for the tested datasets and parameters.

human judgement across all commonly reported
benchmarks: CIDEr (C) (Vedantam et al., 2015),
METEOR (M) (Banerjee and Lavie, 2005), SPICE
(SP) (Anderson et al., 2016), and SMURF (SM)
(Feinglass and Yang, 2021). For all utilized met-
rics, a larger value indicators better performance
with all metrics aside from SMUREF varying within
the range 0 to 1. SMUREF is standardized to human
performance, meaning a value of O is on par with
human captions and negative or positive values in-
dicate worse or better performance than humans,
respectively. We exclude BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) since they exhibit
very poor agreement with human judgement in cap-
tion evaluation (Anderson et al., 2016; Feinglass
and Yang, 2021) and also do not consider metrics
like CLIPScore (Hessel et al., 2021) which are ex-
clusively referenceless since they are likely to be
sensitive to domain shift.

5.3 Fine-Grained Captioning Benchmark

Table 1 shows a comparison between base cap-
tioners enhanced using TROPE and relevant base-
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Figure 3: Precision-recall curves generated by sweeping the number of semantic proposals added to the base caption
from 1 to 10 for both the Oscar and ConZIC base captions. Horizontal lines represent the base caption precision
performance.

lines. Zero-shot IC methods ZeroCap (Tewel et al., 4 explore the impact of the proposal selection cri-
2022) and ConZIC (Zeng et al., 2023) utilizing  teria, semantic components, and overlap threshold
pre-trained models CLIP (Radford et al., 2021), T on captioning performance, respectively. To bet-
BERT (Devlin et al., 2019), and GPT2 (Radford ter show the trend of TROPE’s performance for
et al., 2019) as well as the Oscar (Li et al., 2020)  each additional proposal added to the base cap-
model utilizing VinVL (Zhang et al., 2021) features  tion, we derive a precision and recall metrics from
are included since they are publicly available and  the SPARCS (SMURF’s state-of-the-art semantic
achieve state-of-the-art results on MSCOCO (Lin  score) and use these metrics to generate precision
et al., 2014) and Flickr8k (Hodosh et al., 2013).  and recall curves for each dataset shown in Figure
Domain generalization model results reported by 3.

Ren et al. (2023) for CUB and FLO are also in- In general, the two state-of-the-art zero-shot IC
cluded in the benchmark because although they are ~ methods achieved poor results compared to the rest
not publicly available and train across four sepa-  of captioners. Zero-Cap in particular generated cap-
rate captioning sets, they still do not have access  tions with little diversity and almost no relevance
to target domain captions, making the setting zero-  to the images. ConZIC performed significantly
shot. The two most competitive and publicly avail-  better, especially on aerial images when compared
able base captioners, Oscar and ConZIC, are se-  with Oscar, achieving the highest base model score
lected for enhancement by TROPE. To aid in the =~ for SMURF on UCM and the highest base model
design of TROPE, ablation studies utilizing the  scores across all standard metrics on SC. Oscar
VinVL+Oscar pipeline shown in Tables 2, 3, and  achieved highly competitive results, especially on
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GPT4+TROPE: "Amidst the
vast expanse of the ocean, a
bird with a gray head, a
small eye, a black beak, a
gray body, and brown and
outstretched wings masters
the art of flight, soaring
effortlessly over the swirling
waters with small waves."

GPT4+TROPE: "A bird's
eye view of a remote
farmhouse, with winding
paths and scattered trees
with green grass, a green
and small building, a brown
box, a small house, and
square blocks shaping the
landscape."

GPT4+TSRE: "The
digital curtain falls with

& an error message, halting
the image's reveal."

Figure 4: Qualitative examples of TROPE applied to
captions generated by GPT4 (Achiam et al., 2023) with
N = 5 semantic part proposals. Minor failures can
be observed in the 2nd image caption with erroneous
attributes like "green" house and redundant parts like
"house" and "building". The 3rd caption is another
failure case where no supplemental information from
TROPE is added to the caption since the base caption
contains no key objects detected by VinVL.

CUB and FLO, where it was the highest performing
base model for all reported metrics except SMURF
and SPICE. Inference for both ConZIC and Zero-
Cap is extremely slow, taking more than a day to
generate captions for the benchmark compared to
the VinVL+Oscar pipeline which took a few hours.

Performance achieved by the Oscar and ConZIC
increased significantly across all standard metrics,
datasets, and tested models after adding 1 seman-
tic part proposal. This can be attributed to a large
jump in recall performance across all datasets in
Figure 3, which then increases less significantly
with each additional semantic part proposal added.
Conversely, precision typically changes slightly
with the first proposal, then decreases at an increas-
ing rate with each additional proposal, with SC as
a notable exception. These findings are discussed
further in Section 6. Although enterprise models
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Figure 5: Visualizations showcasing the unique char-
acteristics of fine-grained datasets. The top plot shows
the frequency of the 5 most common terms in our se-
lected fine-grained and general domain datasets. The
bottom plot shows the frequency of different semantic
indicators across our selected datasets for both human
annotations and available base captions from ConZIC.

like GPT4 (Achiam et al., 2023) are not included
in the benchmark due to cost and rate limitations,
we show 3 examples of TROPE integrated with
GPT4 in Figure 4, with 2 examples demonstrat-
ing improvements in caption detail and 1 example
demonstrating a failure case with no change to the
base caption.

5.4 Word Frequency Study

To explore the distinctive features of fine-grained
captions, we analyzed the word frequency statis-
tics of the training sets of our selected fine-grained
image captioning datasets alongside general do-
main datasets such as MSCOCO and Flickr8k. The
findings, illustrated in Figure 5, reveal distinct lin-
guistic patterns between these dataset categories.
Words that serve as semantic indicators of object-
to-object interactions, such as "on’ and ’in’, appear
with greater frequency in general domain datasets.
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In contrast, words that indicate object-part descrip-
tions, like *with’, “has’, and "have’, are more preva-
lent in fine-grained datasets.

This variation in word usage underscores the
unique requirements of fine-grained captioning,
which often necessitates detailed descriptions of
object parts and attributes. The state-of-the-art
zero-shot IC captioning method, ConZIC, exhibits
a notable deficiency in incorporating these seman-
tic indicators for object-part descriptions, which
likely contributes to its underperformance in fine-
grained tasks. This observation supports our hy-
pothesis that effective fine-grained captioning relies
heavily on the precise depiction of object parts and
attributes.

Moreover, the word frequencies highlight that
the granularity of fine-grained properties exists on a
spectrum. Datasets like CUB and FLO, which typi-
cally feature a single salient object such as a "bird"
or "flower", exhibit a high degree of specificity.
Aerial datasets like UCM and SC, however, oc-
cupy a middle ground between general domain and
fine-grained datasets. Although these datasets may
include dominant objects like "airport" or "ocean",
they lack the intense focus on singular objects char-
acteristic of the most fine-grained datasets. This
spectrum of granularity provides further context
for tailoring image captioning approaches to suit
the specific demands of different dataset types.

6 Discussion

Based on our results and the apparent spectrum of
fine-grained dataset characteristics, TROPE’s ef-
fectiveness appears widely applicable to numerous
image datasets. However, its performance varies
depending on each dataset’s structure. A significant
factor influencing TROPE’s success is the align-
ment between the common terminology used by
human captioners and the vocabulary of the object
detector employed. For instance, while VinVL ef-
fectively covers common terms related to bird parts
(e.g., head, tail, wing), flower parts (e.g., petal,
leaf), and aerial views (e.g., airplane, airport), it
lacks specialized terms frequently used in flower
descriptions (e.g., stamen, pistil, veins). This gap is
notable in our results: TROPE shows state-of-the-
art performance on CUB, UCM, and SC, but some-
what underperforms in the FLO dataset compared
to domain generalization techniques, particularly
as additional part proposals are integrated, which
dramatically affects precision.

Furthermore, as the precision of object detectors
improves, we anticipate that methods like TROPE
will yield even greater improvements in image cap-
tioning performance. TROPE's strength lies in sig-
nificantly boosting recall with minimal reductions
in precision. In cases of poor detector performance,
the typical outcome is no change to the base cap-
tion, whereas a mismatch between the detector’s
vocabulary and human captions can lead to redun-
dant or irrelevant descriptions, thereby decreasing
precision.

Our analysis also indicates that different cap-
tion evaluation metrics prioritize different aspects
of TROPE’s semantic components (see Table 3)
and precision-recall performance curve. METEOR,
SPICE, and SMUREF achieve their highest scores
with the incorporation of five additional parts per
object, suggesting a preference for detailed content.
Conversely, CIDEr peaks with just one additional
part, likely because it penalizes excessive wordi-
ness beyond the average reference caption length,
which may not suit fine-grained captioning settings
where detailed descriptions are crucial.

Considering these insights, the optimal number
of semantic part proposals to add to a base cap-
tion depends on the specific needs and goals of
the research. For applications requiring high accu-
racy, such as assistive technologies, we recommend
adding only a single proposal. Conversely, for pur-
poses like training generative models or enhancing
retrieval systems, incorporating multiple proposals
may be beneficial as it enhances the discrimina-
tive information available, despite the potential for
introducing irrelevant details. Researchers should
select evaluation metrics that best align with their
objectives and tailor their approach accordingly.

7 Conclusion and Broader Impact

We have introduced TROPE, a training-free method
for zero-shot captioning that enhances base cap-
tions by adding semantic part proposals to key ob-
ject instances. This approach has demonstrated
state-of-the-art performance in fine-grained zero-
shot image captioning (IC), consistently improv-
ing captions across all tested models, metrics, and
datasets. Given the foundational role of IC in a
variety of Vision-Language tasks, TROPE holds
potential for enhancing fine-grained performance
in applications such as text-to-image generation,
text-to-image retrieval, and image-to-text retrieval.
Future work could also focus on extending the prin-
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ciples underlying TROPE to other modalities, such
as audio or video. This would involve adapting
TROPE to work with relevant pre-trained models
tailored to these modalities, potentially opening
new avenues for multimodal integration and cap-
tioning enhancements.

8 Limitations

Because TROPE relies on inferences from pre-
trained IC models, domains where these pre-trained
models have little familiarity with the constituent
objects, parts, and terminology like medical im-
agery are likely to yield very poor zero-shot IC
results. These limitations are also applicable to
the other training-free baselines presented in this
work and could possibly be mitigated with domain-
specific human annotation as explored in few-shot
or text-based training methods. For high-risk appli-
cations, practitioners should examine the overlap
between the utilized detectors vocabulary and ob-
jects commonly present in the target domain. In
such applications, including more than a single se-
mantic part proposal should only be considered
if this overlap is high, which reduces the risk of
decreasing base caption precision.

9 Ethics Statement

Bias in pre-trained IC models (Rohrbach et al.,
2018; Mehrabi et al., 2019) is a concerning chal-
lenge for researchers that can potentially impact
gender and racial inclusion (Hendricks et al., 2018).
Zero-shot settings are especially susceptible to car-
rying over bias from the training dataset since no
test set data is available. The use of object detector-
based primitives in zero-shot settings could be a
promising avenue for mitigating bias in a concise
and explainable manner. TROPE has the potential
to improve the diversity of generated captions and
models trained using those captions. This in turn
could improve the inclusion of different genders
and races.
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