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Abstract. Randomized subspace approximation with “matrix sketching” is an effective approach
for constructing approximate partial singular value decompositions (SVDs) of large matrices. The
performance of such techniques has been extensively analyzed, and very precise estimates on the
distribution of the residual errors have been derived. However, our understanding of the accuracy
of the computed singular vectors (measured in terms of the canonical angles between the spaces
spanned by the exact and the computed singular vectors, respectively) remains relatively limited. In
this work, we present practical bounds and estimates for canonical angles of randomized subspace
approximation that can be computed efficiently either a priori or a posteriori, without assuming
prior knowledge of the true singular subspaces. Under moderate oversampling in the randomized
SVD, our prior probabilistic bounds are asymptotically tight and can be computed efficiently, while
bringing a clear insight into the balance between oversampling and power iterations given a fixed
budget on the number of matrix-vector multiplications. The numerical experiments demonstrate the
empirical effectiveness of these canonical angle bounds and estimates on different matrices under
various algorithmic choices for the randomized SVD.
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1. Introduction. In light of the ubiquity of high-dimensional data in modern
computation, dimension reduction tools like low-rank matrix approximations are be-
coming indispensable tools for managing large data sets. In general, the goal of low-
rank matrix approximation is to identify bases of proper low-dimensional subspaces
that well encapsulate the dominant components in the original column and row spa-
ces. As one of the most well-established forms of matrix decompositions, the trun-
cated singular value decomposition (SVD) is known to achieve the optimal low-rank
approximation errors for any given ranks [9]. Moreover, the corresponding left and
right leading singular subspaces can be broadly leveraged for problems like princi-
pal component analysis, canonical correlation analysis, spectral clustering [3], and
leverage score sampling for matrix skeleton selection [8, 17, 7].

However, for large matrices, the computational cost of classical algorithms for
computing the SVD (cf. [30, Lec. 31] or [12, sec. 8.6.3]) quickly becomes prohibitive.
Fortunately, a randomization framework known as “matrix sketching” [14, 37] pro-
vides a simple yet effective remedy for this challenge by projecting large matrices to
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random low-dimensional subspaces where the classical SVD algorithms can be exe-
cuted efficiently.

Concretely, for an input matrix A € C™*™ and a target rank k¥ < min(m,n),
the basic version of the randomized SVD [14, Alg. 4.1] starts by drawing a Gaussian
random matrix Q € C**! for a sample size | that is slightly larger than k so that
k <l < min(m,n). Then through a matrix-matrix multiplication X = A€ with
O(mnl) complexity, the n-dimensional row space of A is projected to a random I-
dimensional subspace. With the low-dimensional range approximation X, a rank-
randomized SVD Al = UZEZV* can be constructed efficiently by computing the QR
and SVD of small matrices in O((m + n)I?) time. When the spectral decay in A is
slow, a few power iterations X = (AA*)7AQ (usually ¢ = 1,2) can be incorporated
to enhance the accuracy; cf. [14, Algorithms 4.3 and 4.4].

Let A=UXV*! denote the (unknown) full SVD of A. In this work, we explore
the alignment between the true leading rank-k singular subspaces Uy, Vi, and their re-
spective rank-/ approximations Uy, V; in terms of the canonical angles Z(Uy,U;) and
Z(V, V;). We introduce prior statistical guarantees and unbiased estimates for these
angles with respect to 3, as well as posterior deterministic bounds with additional
dependence on Al UlElVl In particular, we are interested in practical bounds and
estimates that can be computed efficiently, without assuming prior knowledge of the
true singular subspaces.

1.1. Our contributions.

Prior probabilistic bounds and estimates with insight on oversampling-power it-
eration balance. Evaluating the randomized SVD with a fixed budget on the num-
ber of matrix-vector multiplications, the computational resource can be leveraged in
two ways—oversampling (characterized by [ — k) and power iterations (characterized
by ¢). A natural question is how can we distribute the computation between oversam-
pling and power iterations for better subspace approzimations?

Answers to this question are problem-dependent: when aiming to minimize the
canonical angles between the true and approximated leading singular subspaces, the
prior probabilistic bounds and estimates on the canonical angles provide primary
insights. To be precise, with isotropic random subspace embeddings and sufficient
oversampling, the accuracy of subspace approximations depends jointly on the spectra
of the target matrices, oversampling, and the number of power iterations. In this work,
we present a set of prior probabilistic bounds that precisely quantify the relative
benefits of oversampling versus power iterations. Specifically, the canonical angle
bounds in Theorem 1

(i) provide statistical guarantees that are asymptotically tight under sufficient

oversampling (i.e., I = (k)),

(ii) unveil a clear balance between oversampling and power iterations for random
subspace approximations with given spectra,

(iii) can be evaluated in O(rank(A)) time given access to the (true/estimated)
spectra while providing valuable estimations for canonical angles in practice
with moderate oversampling (e.g., [ > 1.6k).

Further, inspired by the derivation of the prior probabilistic bounds, we propose
unbiased estimates for the canonical angles with respect to given spectra that admit
efficient evaluation and concentrate well empirically.

THere U€ C™*", V€ C"*", and & € C"*". ¥ is a diagonal matrix with positive nonincreasing
diagonal entries, and r < min(m,n).
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Posterior residual-based guarantees. Alongside the prior probabilistic bounds, we
present two sets of posterior canonical angle bounds that hold in the deterministic
sense and can be approximated efficiently based on the residuals and the spectrum
of A.

Numerical comparisons. With numerical comparisons among different canoni-
cal angle bounds on a variety of data matrices, we aim to explore the question on
how the spectral decay and different algorithmic choices of randomized SVD affect
the empirical effectiveness of different canonical angle bounds. Our numerical ex-
periments suggest that, for matrices with subexponential spectral decay, the prior
probabilistic bounds usually provide tighter (statistical) guarantees than the (deter-
ministic) guarantees from the posterior residual-based bounds, especially with power
iterations. By contrast, for matrices with exponential spectral decay, the poste-
rior residual-based bounds can be as tight as the prior probabilistic bounds, espe-
cially with large oversampling. The code for numerical comparisons is available at
https://github.com/dyjdongyijun/Randomized _Subspace_Approximation.

1.2. Related work. The randomized SVD algorithm (with power iterations)
[19, 14] has been extensively analyzed as a low-rank approximation problem where
the accuracy is usually measured in terms of residual norms, as well as the dis-
crepancy between the approximated and true spectra [14, 13, 18, 20]. For instance,
[14, Thm. 10.7, Thm. 10.8] shows that for a given target rank k (usually k < min (m,n)
for the randomized acceleration to be useful), a small constant oversampling [ > 1.1k
is sufficient to guarantee that the residual norm of the resulting rank-/ approximation
is close to the optimal rank-k approximation (i.e., the rank-k truncated SVD) error
with high probability. Alternatively, [13] investigates the accuracy of the individual
approximated singular values &; and provides upper and lower bounds for each o;
with respect to the true singular value o;.

In addition to providing accurate low-rank approximations, the randomized
SVD algorithm also produces estimates of the leading left and right singular sub-
spaces corresponding to the top singular values. When coupled with power iterations
[14, Algorithms 4.3 and 4.4], such randomized subspace approximations are commonly
known as randomized power (subspace) iterations. Their accuracy is explored in terms
of canonical angles that measure differences between the unknown true subspaces and
their random approximations [3, 27, 24]. Generally, upper bounds on the canonical
angles can be categorized into two types:

(i) probabilistic bounds that establish prior statistical guarantees by exploring
the concentration of the alignment between random subspace embeddings and
the unknown true subspace, and

(ii) residual-based bounds that can be computed a posteriori from the residual of
the resulting approximation.

The existing prior probabilistic bounds on canonical angles [3, 27, 21] mainly fo-
cus on the setting where the randomized SVD is evaluated without oversampling or
with a small constant oversampling. Concretely, [3] derives guarantees for the canon-
ical angles evaluated without oversampling (i.e., [ = k) in the context of spectral
clustering. Further, by taking a small constant oversampling (e.g., I > k + 2) into ac-
count, Saibaba [27] provides a comprehensive analysis for an assortment of canonical
angles between the true and approximated leading singular spaces. Compared with
our results (Theorem 1), in both no-oversampling and constant-oversampling regimes,
the basic forms of the existing prior probabilistic bounds (e.g., [27, Theorem 1]) gen-
erally depend on the unknown singular subspace V. Although such dependence is
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later lifted using the isotropicity and the concentration of the randomized subspace
embedding Q (e.g., [27, Theorem 6]), the separated consideration on the spectra
and the singular subspaces introduces unnecessary compromise to the upper bounds
(as we will discuss in Remark 2). In contrast, by allowing a more generous choice
of multiplicative oversampling [ = 2 (k), we present a set of space-agnostic bounds
(i.e., bounds that hold regardless of the singular vectors of A) based on an integrated
analysis of the spectra and the singular subspaces that appears to be tighter both
from derivation and in practice.

The classical Davis-Kahan sinf and tan6 theorems [5] for eigenvector perturba-
tion can be used to compute deterministic and computable bounds for the canonical
angles. These bounds have the advantage that they give strict bounds (up to the
estimation of the so-called gap) rather than estimates or bounds that hold with high
probability (although, as we argue below, the failure probability can be taken to be
negligibly low). The Davis—Kahan theorems have been extended to perturbation of
singular vectors by Wedin [36], and recent work [24] derives perturbation bounds for
singular vectors computed using a subspace projection method. In this work, we es-
tablish canonical angle bounds for the singular vectors in the context of (randomized)
subspace iterations. Our results indicate clearly that the accuracy of the right and left
singular vectors is usually not identical (i.e., V is more accurate with Algorithm 1).

As a roadmap, we formalize the problem setup in section 2, including a brief
review of the randomized SVD and canonical angles. In section 3, we present the
prior probabilistic space-agnostic bounds. Subsequently, in section 4, we describe a
set of unbiased canonical angle estimates that is closely related to the space-agnostic
bounds. Then in section 5, we introduce two sets of posterior residual-based bounds.
Finally, in section 6, we instantiate the insight cast by the space-agnostic bounds on
the balance between oversampling and power iterations and demonstrate the empir-
ical effectiveness of different canonical angle bounds and estimates with numerical
comparisons.

2. Problem setup. In this section, we first recapitulate the randomized SVD
algorithm (with power iterations) [14] for which we analyze the accuracy of the re-
sulting singular subspace approximations. Then, we review the notion of canonical
angles [12] that quantify the distance between two subspaces of the same Euclidean
space.

2.1. Notation. For any k € N, we denote [k] = {1,...,k}. We adapt the MAT-
LAB notation for matrix slicing and stacking throughout this work. In particular, for
any set of matrices {M; € C%*% | i € [n]}, we denote [My,...,M,, € C¥*(i=1d) a5
the horizontal concatenation.

We start by introducing notation for the SVD of a given matrix A € C™*"™ of
rank r:

o1 vy

A=U X V*:[ul ur} :

mXr rXr rXn N

or| | vy
For any 1 <k <r, we let Uy, £ [uy,...,u;] and Vi, £ [vy,..., V] denote the orthonor-
mal bases of the dimension-£ left and right singular subspaces of A corresponding to
the top-k singular values, while U, 2 [upy1,...,u,] and Vo 2 [Vpyt,..., Vv, are
orthonormal bases of the respective orthogonal complements. The diagonal submatri-
ces consisting of the spectrum, 3, = diag(oy,...,0%) and 3k 2 diag(ogr1,---,00),

follow analogously. We use ||-||2 to denote the spectral norm (largest singular value) of
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Algorithm 1 Randomized SVD (with power iterations) [14]

Require: A € C™*" power ¢ € {0,1,2,...}, oversampled rank | € N (I < r=
rank(A))
Ensure: U; € C™*!, V, e C"*L 5 € C¥! such that A; = U, 5, V;
1: Draw Q ~ P (C™*!) with Q;; ~N (0,17") iid. such that E[QQ*] =1,
2: X9 = (AA*)TAQ
3: Qx = ortho (X))
4: U, %, Vi] =svd (Q4A) (where U; € C¥1)
5: Ul = QxUl

a matrix, and ||- || denotes the Frobenius norm. Equations and inequalities involving
I Il hold for any (fixed) unitarily invariant norm.

Meanwhile, for the QR decomposition of an arbitrary matrix M € C?*! (d > [)
with full column rank rank(M) = I, we denote M = [Qm  Qu, 1| [BM] such that
Qm = ortho(M) € C™! and Qu, 1 € C4x(d=1 consist of orthonormal bases of the
subspace spanned by the columns of M and its orthogonal complement. Furthermore,
we denote the singular values of M by (M), a rank(IM) x rank(M) diagonal matrix
with singular values 01 (M) > -+ > 0yaniv) (M) >0 on the diagonal.

Throughout, it is helpful to have in mind the ordering k < <« r < min(m,n),
where k is the dimension of the subspace of interest, [ is the (oversampled) dimension
of subspace used in the algorithm, and r = rank(A) < min(m,n).

Given an arbitrary distribution P : C — [0,1], we denote Q ~ P(C"*!) as a
random matrix with i.i.d. entries Q;; ~ P for all ¢ € [n], j € [I].

We adapt the standard asymptotic notation as follows: for any functions f,g :
Ry — Ry, we write f = O(g) if there exists some constant C' > 0 such that f(z) <
Colz) for all 2 € R, ; f = 0(g) if g = O(f); f=6(g) if f = O(g) and f=g).

2.2. Randomized SVD and power iterations. As described in Algorithm
1, the randomized SVD provides a rank-l (I < min(m,n)) approximation of A €
C™*™ while granting provable acceleration to the truncated SVD computation—
O(mnl(2q + 1)) when € is chosen to be a Gaussian random matrix.? Such efficiency
improvement is achieved by first projecting the high-dimensional row (column) space
of A to a low-dimensional subspace via a Johnson-Lindenstrauss transform?® (JLT)
Q (known as “sketching”). Then, the SVD of the resulting column (row) sketch
X = A2 can be evaluated efficiently in O(ml?) time, and the rank-/ approximation
can be constructed accordingly.

The spectral decay in A has a significant impact on the accuracy of the re-
sulting low-rank approximation from Algorithm 1 (as suggested in [14, Thm. 10.7,
Thm. 10.8]). To remediate the performance of Algorithm 1 on matrices with flat spec-
tra, power iterations (Algorithm 1, Line 2) (¢ > 1) are usually incorporated to enhance

2 Asymptotically, there exist deterministic iterative algorithms for the truncated SVD (e.g., based
on Lanczos iterations [30, Algorithm 36.1]) that run in O (mnl) time. However, compared with these
inherently sequential iterative algorithms, the randomized SVD can be executed much more efficiently
in practice, even with power iterations (i.e., ¢ > 0), since the O (mnl(2q + 1)) computation bottleneck
in Algorithm 1 involves only matrix-matrix multiplications, which are easily parallelizable and highly
optimized.

3Throughout this work, we focus on Gaussian random matrices (Algorithm 1, Line 1) for the
sake of theoretical guarantees, i.e., 2 being isotropic and rotationally invariant.
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the spectral decay. However, without proper orthogonalization, plain power iterations
can be numerically unstable, especially for ill-conditioned matrices. For stable power
iterations, starting with X = A € C™*! of full column rank (which holds almost
surely for Gaussian random matrices), we incorporate orthogonalization in each power
iteration (or one can do so selectively [29, section 6.1]) via the reduced unpivoted QR
factorization (each with complexity O(ml?)). Let ortho(X) = Qx € C™*! be an or-
thonormal basis of X produced by the QR factorization. Then, the stable evaluation
of g power iterations (Algorithm 1, Line 2) can be expressed as

(2.1) X « ortho (A), X « ortho (A ortho (A*X(i_l))) Vi€l[q].

Notice that in Algorithm 1, with X = X (9, the approximated rank-l SVD of A
can be expressed as

(2.2) A =US, Vi =XY*, where Y=XA.

With Ul and Vl characterizing the approximated [-dimensional left and right leading
singular subspaces, let U'm\l e Cmx(m=1) and Vn\l e C"*(»=1 denote an arbitrary
pair of their respective orthogonal complements. For any 1 <k <[, we further denote
the partitions U, = [Uk, Ul\k} and V,; = [Vk, Vl\k] where Uy, € (Cka and V, € Crxk,
respectively.

2.3. Canonical angles. Now, we review the notion of canonical angles [12] that
measure distances between two subspaces U, V of an arbitrary Euclidean space C?.

DEFINITION 1 (canonical angles [12]). Given two subspaces U,V C C? with di-
mensions dim (U) =1 and dim (V) = k (assuming | > k without loss of generality),
the canonical angles, denoted by £ (U,V) = diag(01,...,0;), consist of k angles that
measure the alignment between U and V, defined recursively such that

A *
u;,v; = argmax u;v;
s.t.u; € (LI \ span {uL}f;D NS4t

€ (V\span{vb}i:) NSt
cost; =ulv; Vi=1,...;k, 0<6;<---<0p<m/2

For arbitrary full-rank matrices M € C4*! and N € Cdxk (assuming k£ <1 <d
without loss of generality), let 2/ (IM,N) £ / (span(M), span(N)) denote the canonical
angles between the corresponding spanning subspaces in C¢. For each i € [k], let
Z; (M,N) be the ith (smallest) canonical angle defined as cos Z; (M,N) = 0, (Q3,Qn)
such that sin Z; (IM,N) =0_i+1 (I— QmQps) Qn) (cf. [1, section 3]).

With the unknown true rank k truncated SVD Ay = UpX,V; and an approx-
imated rank-l SVD Al UlZ]lV* from Algorithm 1, in this work, we mainly focus
on prior and posterior guarantees for the canonical angles Z(Uk,Ul) and Z(Vk,Vl)
Meanwhile, in Theorem 4, we present a set of posterior residual-based upper bounds
for the canonical angles Z(Uy,Ug) and Z(Vy, Vi) as corollaries.

3. Space-agnostic bounds under sufficient oversampling. We start by
pointing out the intuition that, under sufficient oversampling, with Gaussian ran-
dom matrices whose distribution is orthogonally invariant, the alignment between the
approximated and true subspaces is independent of the unknown true subspaces; i.e.,
the canonical angles are space-agnostic, as reflected in the following theorem.
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THEOREM 1. For a rank-l randomized SVD (Algorithm 1) with a Gaussian em-
bedding 2 and q > 0 power iterations, when the oversampled rank | satisfies | =
Q(k) (where k is the target rank, k < | < r = rank(A)) and ¢ is reasonably small

r O_{HH»? 2
such that n = %4 satisfies n = Q (1), with high probability (at least

j=k+1
1—e OO0 e_g(l)), there exist distortion factors 0 < e1,e2 <1 such that

1
2

. g 1 - 61 l 4q+2
3.1 $n4(U'JJ)< 14 N ol
( ) k L] = 1 + €9 Z;:k+1 0_4_1q+2 7
1—¢€ l ~3
(3.2) stKVMVOS 142 gt
Lter Yo"

for all i € [k], where €1 = @(\/g) and ey = @(\/%) Furthermore, both bounds are
asymptotically tight:

=

=R '04q+2
(3.3) sinZ, (U U) = (140 g | |
2 jmkt19;
~ [ gttt B
(3.4) $n4(VbVJZ 140 —"% ,

r 4q+4
Zj:k+1 0,

where O (-) suppresses the distortion factors %5.

The main insights provided by Theorem 1 include

(i) improved statistical guarantees for canonical angles under sufficient oversam-
pling (i.e., I =Q(k)), as discussed later in Remark 2,

(ii) a clear view of the balance between oversampling and power iterations for
random subspace approximations with given spectra, as instantiated in sub-
section 6.3, and

(iii) affordable upper bounds that can be evaluated in O(rank (A)) time with ac-
cess to the (true/estimated) spectra and hold in practice with only moderate
oversampling (e.g., [ > 1.6k), as shown in subsection 6.2.

We also note that when the true singular values in Theorem 1 are unknown, they

may be replaced by the approximated singular values 3; from Algorithm 1 in practice;
cf. subsection 6.2.

4Notice that 1 <5 <r — k. To the extremes, =7 — k when the tail is flat and Okgtl1=-""=0r,
while n — 1 when oy41 > o for all j =k+2,...,r. In particular, with a relatively flat tail 3,
and a reasonably small g (recall that ¢ =1,2 is usually sufficient in practice), we have n=0 (r — k),
and the assumption can be simplified as r — k = Q (I). Although exponential tail decay can lead to
small n and may render the assumption infeasible in theory, in practice, simply taking r — k= Q (1),

1=Q(k), e1 = \/?, and ex = 4/ ﬁ is sufficient to ensure the validity of upper bounds when ¢ < 10
even for matrices with rapid tail decay, as shown in subsection 6.2.

5Despite the asymptotic tightness of Theorem 1 theoretically, in practice, we observe that the
empirical validity of lower bounds is more restrictive on oversampling than that of upper bounds.
In specific, the numerical observations in subsection 6.2 suggest that [ > 1.6k is usually sufficient for
the upper bounds to hold, whereas the empirical validity of lower bounds generally requires more
aggressive oversampling of at least | > 4k, also with slightly larger constants associated with €; and
€2, as demonstrated in Appendix B.
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Proof of Theorem 1. We show the derivation of (3.1) for left canonical angles
sin Z;(Ug,U;). The derivation for sin Z;(Vy,V;) in (3.2) follows directly by replac-
ing the exponent 4g + 2 in (3.1) with 4¢ +4 in (3.2). This slightly larger exponent
comes from the additional half power iteration associated with V; in Algorithm 1 (as
discussed in Remark 3), an observation made also in [27].

For rank-! randomized SVD with Gaussian embedding 2 € C**! and ¢ power
iterations, we denote 1 = VZQ and Qy £ V* \kQ as well as their weighted corre-

spondences Q2 22q+lﬂl and 5 2 »20F1 0, such that

r\k
2q+1Q ﬁ
* * *\q 1l ~1
X2U'X=U*(AA*)"AQ = Efi’ilﬂz &

Since span (Uy) C span (U) and span(X) C span (U), we have UU*U, = Uy, and
UU*X =X, respectively. Then for all i € [k],
7 (1~ 0:07) V).

((UU — 0,0 ) Uk)
(span(U;) = span(X) by (2.2)) =0, ((UU* - XX") Uy),
(UU*X =X) =0, (UU* (I, - XX') UU*Uy),
(U consists of orthonormal columns) = o; (U* (I, — XXT) Uuu*Uy),
(U*U -1, XIUu=(Uux) = XT) _ps ((I - XXT) {Iﬂ ) :

Since X is assumed to have full column rank, we have XX = X(X*X)~!X* (which
is an orthogonal projection), and

ol 1% [
S (I,, D (0 +230)  [o ﬁﬂ)m

2
~ ~ o~ ~ o~ -1 -
—L, -, (Q’{Ql + 9392) Q:

sin £y i1 (Uk7 U,

(UU*U, = Uy)
)
)
) =

e -1\ L
(Woodbury identity):(1k+91 (9292) m) .

Therefore, for all i € [K],
sin Ly i1 (Uk,ﬁl) — 0, ([Ik 0] (IT _ 5(5(*) [ISD
~ e o~ n-1o N\t
— <(Ik 9, (9392) Q;‘) ) .

By the orthogonal invariance of the distribution of Gaussian embeddings €2 to-
gether with the orthonormality of Vi L V,\;, we see that Q; ~ P((Cle) and
Q, ~ P ((C(’"_k)”) are independent Gaussian random matrices with the same en-
trywise i.i.d. distribution A" (0,{7!) as €. Therefore, by Lemma 1, when | = Q(k),
with high probability (at least 1 — e~ ®®)),

1—e) TP 00 < (14 e) B

for some € = @(\/g)

(3.5)
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tr(zigzz)"’

— e = Q(1), with high probability (at least
r(Zr\,c )

Analogously, when r — k >n =
1—e 90,

1—e€ ~ = 14+€
(B L% < — 2 u (B L

for some €3 = @(\/%)
Therefore by the union bound, we have with high probability (at least 1—e

e=9W) that

-O(k) _

-1
—1

= (o N\t 1—e ! 4q+2
I +Q (QQ ) Q) <1 : . ,
<k+ 1 ol 1) k+1+€2 tr(24q+2) k
r\k
which leads to (3.1), while the tightness is implied by
-1
o e -1\t 1
(1k 0, (9;92) Q’{) S Al D T
L—e ¢ (24‘\1:2)

The proof of (3.2) follows analogously by replacing the exponents 2¢g+1 and 4¢+2
with 2q + 2 and 4q + 4, respectively. 0

Remark 2 (comparison with existing probabilistic bounds). With access to the
unknown right singular subspace V, let £; £ ViQ and Q, £ V;‘\kﬂ. Then, Saibaba
[27, Thm. 1] indicates that, for all ¢ € [k],

M

_ o2
(3.6) sin Z; (Uk,Ul) <fr+—Z |
2 |0
_1
_ ot i
(3.7) sin /Z; (Vk,Vl) <f1+—%
i ‘9291 H

Further, leveraging existing results on concentration properties of the independent and
isotropic Gaussian random matrices €2; and Qs (e.g., from the proof of [14, Theorem
10.8]), [27] shows that, when | > k + 2, for any ¢ € (0,1), with probability at least

1-34,
Hmn{”zg l_ek‘/il (?)ZH <m+\/l+\/210g(25> .

Without loss of generality, we consider the bounds on siné(Uk,ﬁl). Comparing
to the existing bound in (3.6), under multiplicative oversampling (I = Q(k), r =
Q()), (3.1) in Theorem 1 captures the spectral decay on the tail by replacing the
denominator term

2 l+e 1 « 1 <
4q+2 T . 2 2 4q+2 - 4q+2
i} Hﬂgﬂle with e, 1 E o, =0 B E o,
j=k+1 j=k+1
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We observe that 13" ikt a;lq+2 < =k a,‘i‘ﬂz, while Lemma 1 implies that, for in-

dependent Gau551an random matrices Ql ~ P (Cle) and Qy ~ P ((C(T_k)”) with
i.i.d. entries from N (0,171),

2
= | esol[| == [| (1) Eo. sl 0] ] = e, [finnn] ]
With nonnegligible spectral decay on the tail such that 1 ZJ ka1 ;L‘HQ < 7'7’“0:‘_1:{27
when 1+€2 1 k1 jq” < :ﬁQHQQQIHQ, (3.1) prov1des a tighter statistical

guarantee than (3 6), which is also confirmed by numerical observations in
subsection 6.2.

From the derivation perspective, such improvement is achieved by taking an in-
tegrated view on the concentration of 22q+192 (commonly used in analyzing ran-
domized low-rank approximation error [14 11, 10, 32]), instead of considering the
spectrum and the unknown singular subspace Separately.

4. Unbiased space-agnostic estimates. A natural corollary from the proof
of Theorem 4 is unbiased estimates for the canonical angles that hold for arbitrary
oversampling (i.e., for all [ > k). Further, we will subsequently see in section 6 that
such unbiased estimates also enjoy good empirical concentration.

PROPOSITION 1. For a rank-l randomized SVD (Algorithm 1) with the Gaussian
embedding € ~ P ((C”Xl) such that Q;; ~ N (O,lil) i.2.d. and g > 0 power iterations,
for all i € [K],

(4.1)

Eafin 2 (U1 00) =B o (0 (2w e) "eimien)
and analogously,

(4.2)

Eq [sinli (Vk,{/l)} =Eq; o [0;5 (Ik+2iq+2ﬂll (Q;* 43;:49/)* Ql 2q+2):| 7

where ) ~ P(CF*Y) and QY ~ P(CU=R*Y) gre independent Gaussian random ma-
trices with i.i.d. entries drawn from N(O l_l).

To calculate the unbiased estimate, for a modest mteger N we draw a set of
independent Gaussian random matrices {Q(J ~ P(CH*) 0 j ~ P(Cr=Rxly | 5 €
[N]} and evaluate

. ~ 1 2 20+10(7) (52a+100) AN
sméi(Uk,Ug)%OziZNZ L+o7 | 2,78y ( r\k Q5 ) ’

N _1
Sil’lli (Vk:avl) "&/‘ﬁl = % Z (1 + g; (22q+2Q(J) (2232‘29( ))T>) 2 ’
j=1

for all i € [k], which can be conducted efficiently in O(Nrl?) time. Algorithm 2
demonstrates the construction of unbiased estimates for E[sin Z;(Uy, Ul)] = «a;, while
the unbiased estimates for E[sin Z; (Vk,vl)] B; can be evaluated analogously by
replacing Line 4 with Q) = $27Q0)(1: k1), Q) = S22Q0) (ki +1:7,).
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Algorithm 2 Unbiased canonical angle estimates

Require: (Exact or estimated) singular values X, rank k, sample size [ > k,
number of power iterations ¢, number of trials NV
Ensure: Unbiased estimates E[sin Li(Uk,IAJ'l)] = q; for all i € [K]
1: Partition ¥ into Xy =X(1:%,1:k) and X\, =S(k+1:rk+1:7)
2: for j=1,...,N do
3 Draw QU) ~ P (€71 such that Q% ~ N (0,071) iid.

4 QY =301 k), ) = zfgzlﬂm(lsﬂ.r,.)
5: [Uﬁéﬂ ) Eﬁé{) ’Vﬁ(j)] = SVd(Q(j)7 “econ”)

6 W) :svd(ﬂmvwnszﬁu))

7 09 =1/y/1+ (Y92 for all i € [K]

8: end for
9: ;=4 YN 07 for all i € [K]

Experiments in section 6 show that the unbiased estimates concentrate well in
practice: a sample size as small as N = 3 is seen to be sufficient to provide good esti-
mates. Further, with independent Gaussian random matrices, the unbiased estimates
in Proposition 1 are space-agnostic; i.e., (4.1) and (4.2) only depend on the spectrum
3 but not on the unknown true singular subspaces U and V. As in Theorem 1,
the true singular values may be replaced by their approximations from Algorithm 1
(cf. subsection 6.2).

Proof of Proposition 1. To show (4.1), we recall from the proof of Theorem 1
that, for the rank-l randomized SVD with a Gaussian embedding 2 ~ P ((C”Xl) and
g power iterations, Q; £ Vi and Q, = V:\kﬂ are independent Gaussian random

matrices with the same entrywise distribution as Q. Therefore, with rank (A) =r, for
all i € [K],

Eq [Sin Z; (Uk,ﬁl)] (Recall (3.5))

3 2q-+1 sar20 ) L greatt)
i | (TS (30%0,) o=}
“Ea ot (1w (asminn) e )|

1 ’
il s s s
1

:]EQ

The unbiased estimate in (4.2) follows analogously. |

As a side note, we point out that, compared with the probabilistic upper bounds
(3.1) and (3.2), the estimates (4.1) and (4.2) circumvent overestimation from the
operator-convexity of inversion o — o1,

o [ (04 m700) | - (s w7
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which implies that

Eq;

’ -1 7 -1
(Iﬁzi‘?“m (92*233229’2) Ql*ziqﬂ) ]

= Eq

’ -1 ’ -1
(Ik + ;2o (Egé [92*2;6‘\1;29;}) Ql*zi‘I“) ] .

5. Posterior residual-based bounds. In addition to the prior probabilistic
bounds and unbiased estimates, in this section, we introduce two sets of posterior
guarantees for the canonical angles that hold deterministically and can be evalu-
ated/ approximated efficiently based on the residual of the resulting low-rank approx-
imation A; =U;%; V] from Algorithm 1.

Remark 1 (generality of residual-based bounds). It is worth highlighting that
both the statements and the proofs of the posterior guarantees Theorems 2 and 4 to
be presented are algorithm-independent. In contrast to Theorem 1 and Proposition 1
whose derivation depends explicitly on the algorithm (e.g., assuming €2 being Gaussian
in Algorithm 1), the residual-based bounds in Theorems 2 and 4 hold for general
approximated low-rank SVDs, A ~ U, %, V7.

We start with the following proposition, which establishes relations between the
canonical angles, the residuals, and the true spectrum o (A).

THEOREM 2. Given any ﬁl e Cmxl andAvl e C*! with orthonormal columns
such that Range(U;) C Col(A) and Range(V;) C Row (A), we have, for each i =
1,...,k (k<1),

(5.1) sinZ; (Uk fjl) < min Ok—i+1 ((Im — ﬂlﬁl*) A) o1 ((Im — ﬁlﬁf) A)
’ N Ok ’ ;i ’

while

R Thmit (A (I,L - \71\77)) o1 (A (In - \71\77))
(5.2) sin/; (Vk,Vl) < min ,

Ok 0;

It is worth highlighting that (5.1) and (5.2) are independent of the unknown true
singular subspaces Uy and Vj but only depend on the singular values 3j (which
may be replaced with the approximations f]l from Algorithm 1; cf. subsection 6.2)
and approximated singular subspaces ﬂl and V. Therefore, these upper bounds can
be evaluated/ approximated efficiently based on the residual of the resulting low-rank
approximation A; =U;%; V7.

Remark 3 (left versus right singular subspaces). When ﬁl and \A/'l consist of
approximated left and right singular vectors from Algorithm 1, upper bounds on
sin Z;(Vy, Vi) tend to be smaller than those on sin Z;(Uy, U;). This is induced by
the algorithmic fact that, in Algorithm 1, V; is an orthonormal basis of A*Qx, while
U; and Qx are orthonormal bases of X = A€. That is, the evaluati/gn of V; is
enhanced by an additional half power iteration compared with that of U;, which is
also reflected by the differences in exponents on ¥ (i.e., 2¢ + 1 versus 2¢g + 2) in
Theorem 1 and Proposition 1. This difference can be important especially when ¢ is
small (e.g., ¢ = 0). When higher accuracy in the left singular subspace is desirable,
one can work with A*.
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Proof of Theorem 2. Starting with the leading left singular subspace, by definition,
for each i =1,...,k, we have

sin Z; (Uk,ﬁl> = Ohit1 ((Im - ﬁlﬁf) Uk)
—oiir1 (T = 00;) A (VET'ULY))

=it (((1n - 007 ) AV ) =)

Then, we observe that the following hold simultaneously:
or-it1 (((Tn = 007) AVL) 571 <1 (T~ OOF ) AV ) - oni (577,
or-itn (((Tn = 007 ) AVL) 571 S opciga (Lo = 007) AVL) - o (577,
where o1 (E;l) =1/0; and oy (E,;l) =1/0y. Finally by Lemma 2, we have

Thit1 ((Im - ﬁlﬁ;‘) AVk) < Opinn ((Im - ﬁlﬁ;k) A) .

Meanwhile, the upper bound for the leading right singular subspace can be derived
analogously by observing that

sin Z; (Vm{}z) =0k—it1 (VZ (In - \A/'l\Aff)) =Ok—it1 (EEIUZA (In - \7;\72‘)) -0

As a potential drawback, although the residuals (1, fﬁlﬁz*)A and A(I, 7{71\72‘)
in Theorem 2 can be evaluated efficiently in O(mn) and O(mnl) time,® respectively,
the exact evaluation of their full spectra can be unaffordable. A straightforward
remedy for this problem is to use only the second terms in the right-hand sides of
(5.1) and (5.2) while estimating ||(L,, — U;Uj)Al2 and ||A(L, — V,;V})||2 with the
randomized power method (cf. [16], [20, Algorithm 4]). Alternatively, we leverage the
analysis from [24, Theorem 6.1] and present the following posterior bounds based only
on norms of the residuals which can be estimated efficiently via sampling.

THEOREM 4. For any approzimated rank-l SVD A ~ UZElV (not necessarily
obtained by Algomthm 1), recall the notation that Ul [Uk,Ul\k] vV, = [Vk,Vl\k]
while Um\l,Un\l are the orthogonal complements of Ul,Vl, respectively. Then, with
E; & U* \AVk, E; £ U* \AVl\k, and Es3 = U* \lAVn\l, assuming ox > Ogt1
and oy, > ||Es3l|,, we define the spectral gaps

~ 2 2

AO’}%_U%H éaz_gkﬂ _01%*||E33H2 _Uz*HEBSHz

n=———, r=—x—-, h=—"—""">= DIi=——F7—=
Ok Ok+1 Ok ||E33||2

Then for an arbitrary unitarily invariant norm |||-|||,

[Eq1,E
sin2 (U, 0 )’H<H|31F7132””

(5.3) ‘

6For the O(mn) complexity of computing (I, — ﬂ'lﬁl*)A, we assume that 111 = ﬁlﬁl*A =
Glle\?l* is readily available from Algorithm 1. Otherwise (e.g., when Algorithm 1 returns
(U;,%,, V) but not A;), the evaluation of (I, UlU )JA will inevitably take O(mnl) as that
of A(L, — V,; V7).
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E31, Es||
2 (viow) | < el
sin k 1 Fg

(5.4) ’

and specifically for the spectral or Frobenius norm ||| (£=2,F),

||[E31,E32]H5 ||E32||2

(5.5) 1+

sin Z (Uk,ﬁk) H£ S

(5.6)

- E 7E E E
Siné(vkvvk)Hég Sy 82 HE\/| 32||2 [ 33||2

Furthermore, for all i € [k],

I[Es:, E
(5.7) sin Z; (UmUz) < 315 32]H27
Ok—i+1 Iy
(58) Sinli (Vk, ) < E31’E32]”2,
Ok— z+1 Fg
2
(5.9  sins (Uk,ﬁk) < NEs1 Bsallly [ <0k . |E?’2||2> ,
| - a Ok—it1 72

. E:; . E E 2 E 2
(5.10)  sin, (Vk,vk)gm 3 32]”2\/( LI 322) +<” 33”2> .
Iy Ok—it+1 9t o

In practice, norms of the residuals can be computed as
2o =54 (3.~ 0.07) ¥ | [ (- )
[Esz2(l, = Hﬁ:q\zA‘AfZ\kHz = H (A - Al) \A/l\k‘ .

|||E33|||2 - HUm\ZA{/n\l H = H (A - :&l) (In - vl{f;)

‘ - HA NAH N
2 2

where the construction of (A —A;)V;, (A — 111)\7]\;,3, and A — A\Afl\A/'l* takes O (mnl)
time, while the respective norms can be estimated efficiently via sampling (cf. [20
Algorithms 1-4], [23], etc.). With an unknown true spectrum in practice, replacing
the true singular values in Theorem 4 with their corresponding approximations from
Algorithm 1 usually yields similar upper bounds (cf. subsection 6.2).

The proof of Theorem 4 is similar to that of [24, Thm. 6.1].

Proof of Theorem 4. Let 611 £ ﬁZUk, 621 £ ﬂ?‘\kUk, 631 £ ﬁ:‘n\lUk, and
\N/'H £ \A/',’;Vk, {}21 £ \A/l*\ka, and {}31 £ \A/T*L\le. We start by expressing the

canonical angles in terms of Uz; and Us;:
sin / (Uk,ﬁl) = ( m\lUk) (631) )

sin / (Vk,{/'l) =0 (\Af:\lvk =0 (\731) )
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By observing that for any rank-/ approximation in the SVD form A ~ ﬁlﬁl{ﬁk,

o o s o o][Vi
A=U3%V;+U,,U; A= [Uk Une Uny| | 0 X, 0 Y?\k ’
Bz Ez Es] | V7,
we left multiply by U* = [ﬁk,ﬁl\k,ﬁm\l}* € C™*™ and right multiply by Vi on
both sides and get

I:ju gk 0 0 i:/vll
(5.11) 921 Xr=10 El\k 0 Y21 )
Us, E3i Ez Esz] [Va

while left multiplying U and right multiplying V= [Vk,vl\k,vn\l} yield
o o S, 0 0

(5.12) >k [Vﬁ Vi V§1} = {UTl U3, U§1} 0 Zl\k 0
E;i Es» Egs

Bounding 0(Us;) and o(V3;). To bound o(Us;), we observe the following from
the third row of (5.11) and the third column of (5.12),

U315 =E31 Vi1 + Es2Var + Eg3Var,  Uj Egy =3, V3,
Noticing that [g“] = {\/'ka and ||\A77Vk||2 <1, we have
21
[0 <t 5734 5

Ess5 |l
< s Bl + 220 |55, |
k

for all 4 € [min (k,m — [)], which implies that

-1
~ Eaall? oy E
[0z < (1— ! 53"“) (Es1, Bl = o - WEsLEalll
Jk 1—\1
and leads to
3 [Es1, E
H’U?’I’H < — H‘U ) ‘H < M’
Iy
~ B E |
o <U31) HUglEkH Tk ”[ 31, Esa][|, vie k],
Tk—it+1 Ok—i+1 Iy

where the second line follows from Lemma 3. These lead to (5.3) and (5.7).
To bound ¢(Vs1), we use the relation U§1E33 = EkV:n,

[ < e ) < MEs o
Iy
S 1 1Esslly (& ok |I[Es, Esllly .
(Va1) < —0; (EfUsp ) < 1528025 (0, < : Vie k]
7 ( 31) _Uk.a ( 33 31) (X 7 ( 31) Ok—i+1 FQ ZE[ }

We therefore have upper bounds (5.4) and (5.8).
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Bounding 0(621) and a(vm). To bound 0(621), we leverage the second row of
(5.11) and the second column of (5.12),

U 3y = il\k{IZL Vi = 63121\1@ + U3 Es,.
Up to rearrangement, we observe that
[[ 22| = || (ST + 20 ) 22|

sz\k

. =
<ol =

oheso

|

)

which implies that

)

o 8I€+1 - 0k+1 \E32||
B < (-2 ) 22 | < - 122
k

|

and therefore, with Lemma 3, for all i € [k],

~ 1 |1~ E
!HUm\Hé*H\UmEk!H< Bl )|
o
E
7 (On) € o [Oame] < 2 122 [
Ok—it+1 Ok—i+1

Then, with the stronger inequality for the spectral or Frobenius norm |||, (§ =2, F),

U ~ 02 = 112 |~ E-. |2
Ol | <\ + B < |8 1+ 22k
Uz 3 13 13 b
< Balle [, Bl
- Iy 72

leads to (5.5). Meanwhile for (5.9), the individual canonical angles are upper bounded

by
U ~ ~ ~ ~
g; <[ 21]) — \/0'1', <U;1U21 +U§1U31)
Usy
~ 2 ~ 2
(Lemma 4) < HU31H +0; Ugl)
E
<o, oo (2 o)
Uk i+1 72

2
< IEs1.Bolll, [} ( Ok E32||2> .
Iy Ok—i+1 Y2

Analogously, by observing that

sz\kH

R [ o e e \ RN S e
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we have that, by Lemma 3, for all 7 € [k],

-1
~ ~ E
i

~ 1 s E
H\VQIWS*WVMW< H 32”2H\U
Ok
~ IE
(V) < g [P < 7 R B
—i+1 Ok—i+1

and therefore for the spectral or Frobenius norm ||-[|; ( =2.F),

V E | Ess]|>
%]l VT <ol T2 2
V31 Uk

- I[Es1, Bzl ||| n | E33]/3
B Iy 7 op
which leads to (5.6). Additionally for individual canonical angles i € [k],
~ N2 |~ |2
i QVD <o (Vo) + [V (Lemma )
V31 2
2 2
< B \/( o Buly)’ (Bl
2 Ok—i+1 71 Ok
2 2
< I[Es1, Eso]ll, < Ok E32||2> n <||E33|2) .
- Iy Ok—it1 M Tk

This yields (5.10) and completes the proof. d

6. Numerical experiments. First, we present numerical comparisons among
different canonical angle upper bounds and the unbiased estimates on the left and
right leading singular subspaces of various synthetic and real data matrices. We start
by describing the target matrices in subsection 6.1. In subsection 6.2, we discuss the
performance of the unbiased estimates, as well as the relative tightness of the canonical
angle bounds, for different algorithmic choices based on the numerical observations.
Second, in subsection 6.3, we present an illustrative example that provides insight into
the balance between oversampling and power iterations brought by the space-agnostic
bounds.

6.1. Target matrices. We consider several different classes of target matrices,
including some synthetic random matrices with different spectral patterns, as well as
an empirical dataset, as summarized below:

1. A random sparse nonnegative (SNN) matrix [28] A of size m x n takes the

form
min(m n)

(6.1) A =SNN(a,r) Z -x;y5 + Z fxzyz,
1=r1+1

where a > 1 and 7, < min (m,n) control the spectral decay, and x; € C™, y; €
C™ are random sparse vectors with nonnegative entries. In the experiments,
we test on two random SNN matrices of size 500 x 500 with r; = 20 and
a=1,100, respectively.
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2. Gaussian dense matrices with controlled spectral decay are randomly gen-
erated via a similar construction to the SNN matrix, with x; € S™~! and
y; €S""!in (6.1) replaced by uniformly random dense orthonormal vectors.
The generating procedures for A € C™*" with rank r < min(m,n) can be
summarized as follows:

(i) Draw Gaussian random matrices, G,, € C™*" and G,, € C"™*".
(ii) Compute U = ortho(G,,) € C"™*" V = ortho(G,,) € C"*" as orthonor-
mal bases.
(iii) Given the spectrum X = diag (o1,...,0,), we construct A =UXV™*,
In the experiments, we consider two types of spectral decay:
(i) slower decay with r; =20, 0; =1 for all ¢ € [r1], 0y =1/+/i —r; +1 for
alli=ry+1,...,7, and
(i) faster decay with ry =20, o; =1 for all i € [r1], o; = max(0.99°=",1073)
foralli=ri+1,...,7.

3. MNIST training set consists of 60,000 images of hand-written digits from
0 to 9. Each image is of size 28 x 28. We form the target matrices by
uniformly sampling N = 800 images from the MNIST training set. The
images are flattened and normalized to form a full-rank matrix of size N x d
where d = 784 is the size of the flattened images, with entries bounded in
[0,1]. The nonzero entries take approximately 20% of the matrix for both the
training and the testing sets.

6.2. Canonical angle bounds and estimates. Now we present numerical
comparisons of the performance of the canonical angle bounds and the unbiased es-
timates under different algorithmic choices. Considering the scenario where the true
matrix spectra may not be available in practice, we calculate two sets of upper bounds,
one from the true spectra X € C"™*" and the other from the | approximated singu-
lar values from Algorithm 1. For the latter, we pad the approximated spectrum
3, =diag(oy,...,0;) with r — copies of 5; and evaluate the canonical angle bounds
and estimates with ¥ =diag(c4,...,0,...,0;) € C"™*".

From Figure 1 to Figure 11,

1. red lines and dashes (Thm1 w/ o and &) represent the space-agnostic proba-
bilistic bounds in Theorem 1 evaluated with the true (lines) and approximated
(dashes) singular values, 3, and X, respectively, where we simply ignore tail

decay and suppress constants for the distortion factors and set ¢; = % and
€2 =/t in (3.1) and (3.2);

2. blue lines and dashes (Propl w/ o and &) represent the unbiased space-
agnostic estimates in Proposition 1 (averages of N = 3 independent trials with

sin £(Uy, X), k=50, /=200, g=0 sin £(Vi, ¥), k=50, =200, g=0 sin £(Ux, X), k=50, I=200, g=1 sin Z(Vi, ¥), k=50, I=200, g=1
O 100

10 10°
10!
~ o
1072 107
10-! 102
10-% 107
1077
107 10 10-¢
107°
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
--%- Proplw/o --4- S2018 Thm 1w/ o --m- Thmlw/o - Thm2 w/o -4+ Thm3w/ g —— sinZ(Ux X)

—#— Proplw/o —4— 52018 Thm 1w/ o —a— Thml w/o —o— Thm2 w/ o —a— Thm3 w/ o

Fia. 1. Synthetic Gaussian with the slower spectral decay. k=50, | =200, ¢=0,1.
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sin £(Ui, X), k=50, /=80, q=0 sin Z{V, ¥), k=50, /=80, g=0 sin Z(Uj,X), k=50, [=80, g=1 sinZ(V, ¥), k=50, /=80, g=1

10!

10!

107

o 10 20 30 40 50 o 10 20 30 40 50 o 10 20 30 40 50

--%- Proplw/d -4 S2018 Thmlw/é -& Thmlw/é - Thm2w/é -4 Thm3w/é — sinfZ(UwX)
—w— Proplw/o —# S2018Thmlw/oc -—# Thmlw/oc - Thm2w/oc —— Thm3w/o

Fic. 2. Synthetic Gaussian with the slower spectral decay. k=50, 1 =80, ¢=0,1.

sin £(Uy, X), k=50, /=200, g=0 sin £(Vi, ¥), k=50, I=200, g=0 sin £(Ux, X), k=50, I=200, g=1 sin Z(Vi, ¥), k=50, /=200, g=1
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Fic. 3. Synthetic Gaussian with the faster spectral decay. k =150, | =200, ¢=0,1.

sin £(U, X), k=50, I=80, q=0 sin Z{Vy, ¥), k=50, I=80, g=0 sin Z(Ux,X), k=50, [=80, g=1 sinZ(Vi, Y¥). k=50, /=80, g=1
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Fic. 4. Synthetic Gaussian with the faster spectral decay. k =50, 1 =80, ¢=0,1.

sin £(Uy, X), k=50, /=200, g=0 sin £(Vi, ¥), k=50, =200, g=0 sin £(Ux, X), k=50, =200, g=1 sin Z(Vi, ¥), k=50, I=200, g=1
10° 10°
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FIG. 5. SNN with r, =20, a=1. k=50, [ =200, ¢=0,1.

blue shades marking the corresponding minima and maxima in the trials)
evaluated with the true (lines) and approximated (dashes) singular values, 3
and 3, respectively;

3. cyan lines and dashes (Thm2 w/ o and &) represent the posterior residual-
based bounds in Theorem 2 evaluated with the true (lines) and approximated
(dashes) singular values, 33, and X, respectively;
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sin £(Ux, X), k=50, /=80, =0 sinZ{Vy, ¥). k=50, =80, =0 sin £(U\,X), k=50, [=80, g=1 sin£(Vy, Y¥), k=50, /=80, g=1
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FIG. 6. SNN withry =20, a=1. k=50, [ =80, ¢=0, 1.

sin £(Uy, X), k=50, /=200, g=0 sin £(Vi, ¥), k=50, =200, g=0 sin Z{Uj, X), k=50, =200, g=1 sin Z(Vi, ¥), k=50, I=200, g=1
O
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Fic. 7. SNN with r1 =20, a =100. k=50, [ =200, ¢=0,1.
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Fic. 8. SNN with r1 =20, a=100. k=50, [=80, ¢=0,1.

sin Z(Vi, ¥), k=50, =200, g=1
o

sin £(Uy, X), k=50, =200, g=0 sin Z({V, Y), k=50, |=200, g=0
10° bt

sin £(Uy, X), k=50, =200, g=1
10° o 1

0

107! 102

1072
1072 10
104

107} 10°¢
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—#— Proplw/o —4— 52018 Thm 1w/ o —a— Thml w/o —o— Thm2 w/ o —a— Thm3 w/ o

Fic. 9. 800 randomly sampled images from the MNIST training set. k=150, l =200, ¢=0, 1.

4. green lines and dashes (Thm3 w/ o and &) represent the posterior residual-
based bounds (5.3) and (5.4) in Theorem 4 evaluated with the true (lines)
and approximated (dashes) singular values, 3, and X, respectively;

5. magenta lines and dashes (S2018 Thm1l w/ o and &) represent the upper
bounds in [27, Theorem 1] (i.e., (3.6) and (3.7)) evaluated with the true (lines)
and approximated (dashes) singular values, 3 and X, respectively, and the
unknown true singular subspace such that £2; = V;Q and Q2 = V:\ RV

6. black lines mark the true canonical angles sin Z(Uy, U;).
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sin (Ui, X), k=50, I=80, q=0 sin Z{Vi, ¥), k=50, /=80, =0 sin Z(U, X), k=50, [=80, g=1 sin £(Vk, Y) k=50, /=80, q=1
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Fic. 10. 800 randomly sampled images from the MNIST training set. k=150, =280, ¢=0,1.

sin (U, X), k=50, 1=80, g=5 sinZ(Vy, Y) k=50, I=80, g=5 sin £(Uk, X), k=50, /=80, gq=10 sin Z({V, Y), k=50, =80, q=10
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Fic. 11. 800 randomly sampled images from the MNIST training set. k=50, [ =80, ¢ =75, 10.

We recall from Remark 3 that, by the algorithmic construction of Algorithm 1, for
given ¢, canonical angles of the right singular spaces sin Z(Vy, V) are evaluated with
half more power iterations than those of the left singular spaces sin Z(Uy, U;). That is,
sin Z(Uy, Uy), sin Z(V, Vi) with ¢ =0,1 in Figures 1-10 can be viewed as canonical
angles of randomized subspace approximation with ¢ =0,0.5,1,1.5 power iterations,
respectively; while Figure 11 corresponds to randomized subspace approximations
constructed with ¢ =15,5.5,10,10.5 power iterations analogously.

For each set of upper bounds/unbiased estimates, we observe the following.

1. The space-agnostic probabilistic bounds (Thm1l w/ o and &) in Theorem 1
provide tighter statistical guarantees for the canonical angles of all the tested
target matrices in comparison to those from [27, Theorem 1] (S2018 Thml
w/ o and &), as explained in Remark 2.

2. The unbiased estimators (Propl w/ o and &) in Proposition 1 yield ac-
curate approximations for the true canonical angles on all the tested target
matrices with as few as N = 3 trials, while enjoying good empirical con-
centrate. As a potential drawback, the accuracy of the unbiased estimates
may be compromised when approaching the machine epsilon (as observed in
Figure 7, sin £ (Vg,Y), ¢=1).

3. The posterior residual-based bounds (Thm2 w/ o and &) in Theorem 2
are relatively tighter among the compared bounds in the setting with larger
oversampling (I =4k), and no power iterations (sin Z(Uy, U;) with ¢ =0) or
exponential spectral decay (Figure 3)

4. The posterior residual-based bounds (5.3) and (5.4) (Thm3 w/ o and &)
in Theorem 4 have relative tightness similar to that of the posterior residual-
based bounds in Theorem 2 but are slightly more sensitive to power iterations.
As shown in Figure 3, on a target matrix with exponential spectral decay and
large oversampling (I = 4k), Theorem 4 gives tighter posterior guarantees
when ¢ > 0. However, with the additional assumptions oy > ox+1 and oy >
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|Es3|ly, Theorem 4 usually requires large oversampling (I = 4k) in order to
provide nontrivial (i.e., within the range [0,1]) bounds.

For target matrices with various patterns of spectral decay, with different com-
binations of oversampling (I = 1.6k, 4k) and power iterations (¢ =0,1), we make the
following observations on the relative tightness of upper bounds in Theorems 1, 2,
and 4.

1. For target matrices with subexponential spectral decay, the space-agnostic
bounds in Theorem 1 are relatively tighter in most tested settings, except
for the setting in Figure 3 with larger oversampling (I = 200) and no power
iterations (¢ =0).

2. For target matrices with exponential spectral decay (Figures 3 and 4), the
posterior residual-based bounds in Theorems 2 and 4 tend to be relatively
tighter, especially with large oversampling (Figure 3 with [ = 4k). Meanwhile,
with power iterations g > 0, Theorem 4 tends to be tighter than Theorem 2.

Furthermore, considering the scenario with an unknown true spectrum 3, we
plot estimations for the upper bounds in Theorems 1, 2, and 4, and the unbiased
estimates in Proposition 1, evaluated with a padded approximation of the spectrum
¥ =diag(oy,...,0,...,01), which leads to mild overestimations, as marked in dashes
from Figure 1 to Figure 11.

6.3. Balance between oversampling and power iterations. To illustrate
the insight cast by Theorem 1 on the balance between oversampling and power iter-
ations, we consider the following synthetic example.

Ezample 1. Given a target rank k € N, we consider a simple synthetic matrix
A € C™*" of size r = (1 + B)k, consisting of random singular subspaces (generated by
orthonormalizing Gaussian matrices) and a step spectrum:

o(A)=diag(o1,...,01,0k41y- -, Okt1)-
—_—— —,—

0i=01Vi<k o;=0p41 Vi>k+1

We fix a budget of N = ak matrix-vector multiplications with A in total. The goal is
to distribute the computational budget between the sample size [ and the number of
power iterations ¢ for the smaller canonical angles Z(Uyg, Uy).

Leveraging Theorem 1, we start by fixing v > 1 associated with the constants
61 = vWk/l and €5 = v4/1/(r — k) in (3.1) such that | > 7%k and 2¢ + 1 < a/2.
Characterized by =, the right-hand side of (3.1) under fixed budget N (i.e., N >
1(2¢+ 1)) is defined as

62 e@efieiza L ()"
' 74 14+e 11—k \ oK1

(14 - aet]) ( o >4q+2
B(2¢ +1) +vv/aB(2¢ + 1) \Ok+1

With the synthetic step spectrum, the dependence of (3.1) on o (A) is reduced to the
spectral gap o1/0k41 in (6.2).

As a synopsis, Table 1 summarizes the relevant parameters that characterize the
problem setup.

With k=10, « =32, 8 =64, and v € {1.05,2.00}, Figures 12 and 13 illustrate

(i) how the balance between oversampling and power iterations is affected by the

spectral gap o1/0k+1, and more importantly,

1
2

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/23/25 to 128.62.216.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2000 Y. DONG, P.-G. MARTINSSON, AND Y. NAKATSUKASA

TABLE 1
Given A € C™*" with a spectral gap o1/0k+1, a target rank k, and a budget of N matriz-vector
multiplications, we consider applying Algorithm 1 with a sample size | and q power iterations.

« budget parameter N =ak
B size parameter r=(1+p8)k
¥ oversampling parameter 1>~k and 2+ 1< %
a=16, =32, y=1.05 k=10, r=330, 01/0x+1=1.01 k=10, r=330, 01/0k+1=1.50
10 o—o—o—o ° g 33" .
— e
. 0.9 0.8
) LA AR
- _ 0.6 T S
E- 0.6 %D.S 2 A"‘“*-‘ A
- @ S 0alh ‘r‘
0.4 0.7 e "
L e e
0.2 0.6 W o
0.0
0 2 a 6 2 4 6 8 10 2 4 6 8 10
g power iterations canonical angle i canonical angle i
—8— 01/04+1=1.01, G=0 —4— /=160,qg=0 —4— I=12,q=6
—4— 01/0%+1=1.50, §=6 -4 [=22,q=3 -k 1=22,q=3
-4 I=12,9=6 -4~ 1=160,g=0

FiG. 12. For k = 10, a = 16, 8 = 32, v = 1.05, the left figure marks ¢~(q) (i.e.,
the right-hand side of (3.1) under the fized budget N) with two different spectral gaps (@ =
argming <o 1<q /2 ¢~(q)), while the middle and the right figures demonstrate how the relative

magnitudes of canonical angles sin Zi(Uk,[AJl) (i € [k]) under different configurations (i.e., choices
of (1,q), showing the averages and ranges of 5 trials) align with the trends in ¢~ (q).

(ii) how (6.2) unveils the trend in true canonical angles sin Zi(Uk7ﬁl) among
different configurations {(l,q) [1>~%k,2¢+1< a/’yQ}.

Concretely, both Figure 12 and Figure 13 imply that more oversampling (e.g.,

q =0) is preferred when the spectral gap is small (e.g., o1 /041 = 1.01), while more

power iterations (e.g., ¢ = LQMTMJ) are preferred when the spectral gap is large

(e.g., 01/0k41 = 1.5). Such trends are both observed in the true canonical angles

sin Z;(Ug, Uy) (i € [k]) and well reflected by ¢~ (¢).

7. Discussion, limitations, and future directions. We presented prior and
posterior bounds and estimates that can be computed efficiently for canonical angles
of the randomized subspace approximation. Under moderate multiplicative over-
sampling, our prior probabilistic bounds are space-agnostic (i.e., independent of the
unknown true subspaces) and asymptotically tight and can be computed in linear
(O(rank (A))) time, while casting a clear guidance on the balance between oversam-
pling and power iterations for a fixed budget of matrix-vector multiplications. As
corollaries of the prior probabilistic bounds, we introduce a set of unbiased canonical
angle estimates that are efficiently computable and applicable to arbitrary choices of
oversampling with good empirical concentrations. In addition to the prior bounds and
estimates, we further discuss two sets of posterior bounds that provide deterministic
guarantees for canonical angles given the computed low-rank approximations. With
numerical experiments, we compare the empirical tightness of different canonical an-
gle bounds and estimates on various data matrices under a diverse set of algorithmic
choices for the randomized subspace approximation.

As a major limitation of our space-agnostic bounds and estimates, we note that
Theorem 1 and Proposition 1 rely crucially on the isotropic property of Gaussian
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a=32, =64, y=2.00 k=10, r=650, 01/0%+1=1.01 k=10, r=650, 01/0k+1=1.50
1.00 | Lo __'__..__‘_-gsl-' = Lo
005 '/.__—-—-f—" N .;:‘—‘ .
0.90 B . ALY §
= © 0.8 0.6 YT S S
} 088 ﬁ 5 oe ArATA x r-“'_‘,-‘
. . &=
0.80 07 A
0.75 0.6 2
0 1 2 3 2 4 6 s 10 2 a 6 s 10
q power iterations canonical angle i canonical angle §
—e— 01/0%+1=1.01, §=0 —4— 1=320,q=0 —— I=45,g=3
—— 01/04+1=1.50, §=3 -4 I1=64,q=2 -k [=64,q=2
- I=45,q=3 «<h« [=320,9=0

Fic. 13. Under the same setup as Figure 12, for k=10, a =32, B =64, v=2.00, the trend in
d~(q) also aligns well with that in true canonical angles sin Z;(Uy,U;) (i € [k]).

random matrices and therefore are only applicable to Gaussian embeddings. Al-
though Gaussian embedding is one of the most commonly used Johnson—Lindenstrauss
transforms (JLT) both theoretically and in practice, in light of the appealing empir-
ical performance [14, 20, 6] of various alternatives (e.g., the subsampled randomized
trigonometric transforms [38, 26, 31, 2] and sparse sign matrices [22, 25, 37, 4, 33]),
it would be interesting to explore relaxations of the isotropic assumption and extend
the analysis to these fast JLTs.

Appendix A. Technical lemmas.

LEMMA 1. Let x € R? be a random vector with E[x] = 0, E[xx'] = ¥, and
X = X V2x7 being p?-sub-Gaussian®. Consider a set of n i.i.d. samples of x, X =
[X1,...,Xa]* €R"™ and a diagonal weight matriz W = diag (wy, ..., w,) with w; >0
corresponding to each sample i € [n]. If n > t;gaf) > 2072?”4‘1 + 10368p20g(1/6), then
with probability at least 1 — 9,

(1-etr(W)E <X WX < (14 ¢€)tr(W)X.

Concretely, with W =1, n = Ei%li = Q(p'd), and e = @(pQ\/%), (1-6X =

LXTX < (14 €)X with high probability (at least 1 — e~ ).

Proof. We first denote Py £ $31 as the orthogonal projector onto the subspace
X C R? supported by the distribution of x. With the assumptions E[x] = 0 and
E[xx ] = X, we observe that E[X] = 0 and E[xx'] = E[(Z7'/2x)(Z"/2x)T] = Py.
Given the sample set X of size n>> p* (d + log(1/6)) for any § € (0,1), we let

U= ﬁ iwi (2*1/%() (2*1/2X)T — Py
=1

Then the problem can be reduced to showing that, for any € > 0, with probability at
least 1 — 4, ||U||2 <e. For this, we leverage the e-net argument as follows.

7In the case where 3 is rank-deficient, we slightly abuse the notation such that X~1/2 and 1!
refer to the respective pseudo-inverses.

8A random vector v € R? is p2-sub-Gaussian if for any unit vector u € S?=1, u
Gaussian; E [exp(s-u'v)] <exp (s2p?/2) for all s€R.

Tv is p?-sub-
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For an arbitrary v € XN S?!, we have

v Uv :tr (1VV) zn:wl (v—r (E_l/2x> (E_l/Qx)T v — 1)
~ir (1w> > ((vTx)" 1),

where, given X; being p?-sub-Gaussian, v'X; is p?-sub-Gaussian. Since

E[(v'x:)’| =vE[R&]v=1,

we know that (v’ xl) — 1 is 16p-subexponential.” With 3; £ % [n]
such that B=[$1,...,8,]", we recall Bernstein’s inequality [34, Theorem 2.8.2], [35,

section 2.1.3],
Pl|vTUv| ( v xl —1) >t]

<o 1 . t? t
<2exp | —= min ) )
2 (16p2)* 18|13 160 (18|

wW? ) w;
where [|8]|5 = trEW)z) and Bl =~ &5

Let N C XN S%! be an €;-net such that |[N| = (1 + %)d. Then for some

2
0 < €3 < 16p? H‘lﬁgllll:o’ by the union bound,

1 €2 €2
P |max:|v' Uv >€2:| < 2|Nlexp | —= min 2 ,
gy VIOV 2" e I 167711

< exp dlog(1+2>—1 i <4
B a) 2 (1607118l

whenever Hﬁl\lz > :;E%gj 2(16p )2(dlog(1+ = )4—log%)7 where 1 < gga; <n.

Now for any v e X N S¢- 1, there exists some v/ € N such that ||[v — v/|2 < e.
Therefore,

vTUv| = VUV +2vTU(v—V)+ (v— V) U(v—v)

< (s V7OV + 20Tl el vl + 0Tl - VB

< ({/nea]ifc |vTUv‘> +[|Ull2 (261 + 7).

Taking the supremum over v € S¥~!, with probability at least 1 — 4,

T 2 €
vTUV| = ||U|ls < Ull2 (2 U< ———.
v las, i VTOV[= Ul s + [0l Ga+él), 0k

With ¢; = %, we have € = %eg.

9We abbreviate (v,v)-subexponential (i.e., recall that a random variable X is (v,a)-
subexponential if E [exp (sX)] < exp (s?12/2) for all |s| < 1/a) simply as v-subexponential.
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2
Overall, if n > ggal) > 10232’)4’1 + 51622”4 log %, then with probability at least 1 — 4,
2 2
we have |U||2 <e.
tr(W)?

As a concrete instance, when W =1, and n = (W) >92.1025 - p*d, by taking

e = /125 yye have U], < §\/Z10250' with high probability (at least 1 - 6

d
where § = exp (—z2)). o
LEMMA 2 (Cauchy interlacing theorem). Given an arbitrary matric A € C™*™
and an orthogonal projection Q € C™** with orthonormal columns, for alli=1,...,k,

Proof of Lemma 2. Let {vj eCklj=1,.. .,k} be right singular vectors of AQ.
By the min-max theorem (cf. [12, Theorem 8.6.1]),

x ' QTATAQx
oi (A 2= min _—
( Q) xespan{vy,...,v; }\(0) xTx
TATA
< max min et o oi (A)°. O

T dim(V)=ixeV\(0) X'X
LEmMA 3 ([15, (7.3.14)]). For arbitrary matrices A,B € C™*",
(A1) oi (AB") <0;(A)o; (B)

for all i € [rank (A)], j € [rank (B)] such that i + j — 1 € [rank (AB*)].
LeMMA 4 ([15, (7.3.13)]). For arbitrary matrices A,B € C™*",

(AQ) Oitj—1 (A+B) SO’i (A)+0j (B)

for all i € [rank (A)], j € [rank (B)] such that i+ j — 1 € [rank (A + B)].

Appendix B. Supplementary experiments: Lower space-agnostic
bounds. In this section, we visualize and compare the upper and lower bounds in
Theorem 1 under the sufficient multiplicative oversampling regime (i.e., | = 4k. Recall
that k <! <r=rank (A) where k is the target rank, [ is the oversampled rank, and r
is the full rank of the matrix A).

With the same set of target matrices described in subsection 6.1, from Figure 14
to Figure 18, we observe the following:

1. Red lines and dashes (Thm1l w/ o and &) show the upper bounds in (3.1)
and (3.2) evaluated with the true (lines) and approximated (dashes) singular

sin L(Uk, X), k=50, /=200, g=0 sin £(Vk Y) k=50, /=200, g=0 %in L(Ux, X), k=50, =200, g=1 sin £L(Vi, Y). k=50, /=200, g=1
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Fic. 18. 800 randomly sampled images from the MNIST training set. k=50, [ =200, ¢=0,1.

values, ¥, and f], respectively, where we simply ignore tail decay and suppress
constants for the distortion factors and set

k
€1 =1/-— and

l

€ =

2. Blue lines and dashes (Thm1 Lower w/ o and &) present the lower bounds
in (3.3) and (3.4) evaluated with 3 and X, respectively, and slightly larger
constants associated with the distortion factors

€, =21/~ and

l
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The numerical observations imply that the empirical validity of lower bounds
requires more aggressive oversampling than that of upper bounds. In particular, we
recall from subsection 6.2 that { > 1.6k is usually sufficient for the upper bounds to
hold numerically. In contrast, the lower bounds generally require at least [ > 4k,
with slightly larger constants associated with the distortion factors e; = ©(y/k/1) and
ea=0(+/1l/(r—k)).
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