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ABSTRACT. Let F' be a number field and n > 1 an integer. The universal family is the set §
of all unitary cuspidal automorphic representations on GL, over F', ordered by their analytic
conductor. We prove an asymptotic for the size of the truncated universal family F(Q) as @ — oo,
under a spherical assumption at the archimedean places when n > 3. We interpret the leading
term constant geometrically and conjecturally determine the underlying Sato—Tate measure. Our
methods naturally provide uniform Weyl laws with logarithmic savings in the level and strong
quantitative bounds on the non-tempered discrete spectrum for GL,,.

Soient F' un corps de nombres et n > 1 un entier. La famille universelle § est I’ensemble de
toutes les représentations cuspidales unitaires automorphes de GL,, sur F, muni de I'ordre induit
par le conducteur analytique. Nous obtenons un équivalent asymptotique pour le cardinal de la
famille universelle tronquée F(Q) lorsque @ — oo, sous une hypothese de sphéricité aux places
archimédiennes si n > 3. Nous interprétons géométriquement le terme dominant and déterminons
conjecturalement la mesure de Sato—Tate sous-jacente. Nos méthodes fournissent une loi de Weyl
uniforme avec un gain logarithmique dans le niveau et des bornes quantitatives fortes sur le spectre
discret non tempéré pour GL,,.

While automorphic forms can be notoriously difficult to study individually using analytic tech-
niques, desired results can often be obtained by embedding them into a larger family of cusp forms
of favorable size. In this article, we address the question of the asymptotic size of the universal
family, which contains all cuspidal automorphic representations on GL,, over a fixed number field
F, and is ordered by the analytic conductor of Iwaniec and Sarnak [40].

The analytic conductor Q(m) of a cusp form 7 is an archimedean fattening of the classical
arithmetic conductor of Casselman [15] and Jacquet—Piatetski-Shapiro—Shalika [43]: indeed, it is
the product of the conductors ¢(m,) of all local components ,, each of these arising from the local
functional equation of the standard L-function L(s,7,). One way to understand the significance of
the analytic conductor to the theory of L-functions is that its square-root determines the effective
length of the partial sums appearing in the global approximate functional equation for L(s, 7). In
turn, the analytic conductor controls the complexity of an array of analytic problems involving L-
functions, such as the evaluation of moments, subconvexity, nonvanishing, extreme value problems,
and numerical computations. From a broader and related perspective, Q(7) quantifies the size of a
system of equations large enough to pin down 7 exactly. In this respect, it has a close connection
with the requisite number of twists in the Converse Theorem.
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2 COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR

Our interest here is in the role that Q(7) plays as a natural height function in the automorphic
context. To this end, we denote by § the countable discrete set of all irreducible unitary cuspidal
automorphic representations 7 of GL, (Ar), considered up to unitary twist |det|®, organized into
a family under the ordering induced by Q(). Following [76], we shall refer to § as the universal
family. In recent years, Sarnak has repeatedly emphasized the importance of understanding the
statistical properties of the set

3(Q) ={reF:Q(r) <Q}.
It may come as a surprise how little is known about §(Q).

In this paper we investigate the cardinality |§(Q)|, for increasing ). Historically, the first result
in this direction is the finiteness of F(Q), which was established in [12] (see also [60]). Later, Michel
and Venkatesh [57] showed that |§(Q)| has at most polynomial growth in Q.

Our main theorem is the determination of the asymptotic size of F(Q), subject to a spheri-
cal hypothesis on the archimedean component of # when n > 2. This allows us to answer in
the affirmative the question posed by Michel-Venkatesh in [57] regarding the limiting behavior of
log |§(Q)|/log Q. More precisely, we find that |§(Q)| has pure power growth of the order Q"1
with no logarithmic factors. Moreover, we interpret the leading term constant in a way which is
consistent with analogous problems for counting rational points of bounded height.

CONTENTS
1. Introduction 2
2.  Equidistribution and Sato—Tate measures: conjectures 9
3. Outline of the proof 11
Part 1. Preliminaries 17
4. Global structures and the Arthur trace formula 17
5. Archimedean structures 26
6. Asymptotics of global Plancherel volume 32
Part 2. Proof of Theorem 1.2 41
7. Preparations 41
8. Spectral localizing functions 44
9. Bounding the discrete and exceptional spectrum 50
10. A Paley—Wiener function 59
11.  Proof of Proposition 7.3 65
12.  Deducing Theorem 1.2 67
Part 3. Proof of Theorem 1.3 72
13. Bounding the non-central geometric contributions 72
14. Estimates on local weighted orbital integrals 74
15.  Construction of test functions 82
16. Controlling the Eisenstein contribution 91
References 99

1. INTRODUCTION

Having briefly described the central problem, we now proceed to stating more precisely our main
asymptotic result on the counting function of §(Q), the trace formula input on which it depends,
as well as an interpretation of the leading term constant.
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1.1. Weyl-Schanuel law. We formulate, in Conjecture 1 below, the expected asymptotic behavior
of |F(Q)|. Following [77], we refer to this asymptotic as the Weyl-Schanuel law. Indeed, it can simul-
taneously be viewed as a sort of universal Weyl law, and as an automorphic analogue to Schanuel’s
well-known result on the number of rational points of bounded height on projective spaces.

To describe the conjecture, we shall need to set up some notation. Let II(GL,,(Ar)) denote the
restricted direct product, over all places v of F, of the local unitary duals of GL,(F,) relative to
the local unramified duals. Let II(GL,(Ar)') be the subset consisting of those m whose central
characters are trivial on the diagonal embedding of the positive reals. We give II(GL,,(Ag)!) the
subspace topology derived from the direct product topology. We may embed the universal family
§ into II(GL, (Ar)!) by taking local components, and the notion of analytic conductor extends to
all of the latter space.

Let GL,(Ap)! be the subgroup of g € GL,(Ar) with |detg|s, = 1. We equip GL,(Ar)*
with Tamagawa measure, denoted by wgr,; in particular, wgr, assigns the automorphic quotient
GL,(F)\GL,(Ar)" volume 1. This then induces a normalization of Plancherel measure @P' on
I(GL,(Ar)Y). Let

(1.1) #(F) = / Q(r) "L daP (),

I(GLn(AF)")

with the integral being regularized as in §1.4.
We may now state the following

Conjecture 1 (Weyl-Schanuel law). Fiz a number field F' and an integer n > 1. Then
Q) ~FFQ™ as Q — .

Conjecture 1 is motivated by the heuristic, borrowed from the setting of Schanuel’s theorem,
that the asymptotic behavior of |§F(Q)| should align with that of the “Plancherel volume of the
conductor ball”:

(1.2) Vz(Q) = / APl ().
7ET(GLn (Ap)L)
Q(mM<Q
In Proposition 6.1 an asymptotic evaluation of the finite integral V(@) is given, in which €(§)
appears as the leading term constant. Note that V3(Q) contains no automorphic information.
In this paper, we establish the above predicted asymptotics for |§(Q)| in many cases, with explicit
logarithmic savings in the error term. Namely, we prove the following

Theorem 1.1. Let F' be a number field and n = 1 be an integer. The Weyl-Schanuel law holds
forn <2, as well as for n > 3, when restricted to the archimedean spherical spectrum.

In addition, we address related counting and equidistribution problems and prove uniform Weyl
laws (with explicit savings in the level aspect), estimates on the size of complementary spectrum,
and uniform estimates on terms appearing in Arthur’s trace formula for GL,,.

1.2. Main auxiliary results. To prove Theorem 1.1, we first reduce Conjecture 1 to certain
trace formula estimates, and then prove these estimates in many cases. We elaborate on the
precise form of these estimates in §1.3, where we define the Effective Limit Multiplicity property,
or Property (ELM), which encapsulates them. The archimedean unitary dual II(GL,,(Fx)!) enjoys
a decomposition (1.4) according to the full set D of discrete inducing parameters, one of which
gives the spherical spectrum. For every subset A C D, we may consider the corresponding subset
I(GL,(Fx))a and a refined version of Property (ELM) with respect to A. We refer the reader
to Definition 1 for more details (including some of the notation used here), and proceed now to a
description of the two main auxiliary results which are used to prove Theorem 1.1.



4 COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR

Our first main theorem, proved in Part 2, is the reduction of Conjecture 1 to Property (ELM).

Theorem 1.2. Let F' be a number field and n > 1 an integer. Property (ELM) implies Conjecture
1 in the following effective form

F@I=7@"! <1 o <1g1c2>> |

Moreover, if Property (ELM) holds with respect to some given subset A C D, then the restricted
family Fa(Q) consisting of those m € F(Q) for which To € II(GL,(Fso)l)a satisfies

3a(Q) = EaE)Q" (1 e (1;@» |

where, making any choice of normalization of archimedean Plancherel measure dmeo,

J(Gn(Faoy)a A(To0) T deg
Jr(an, (o)) AToe) " direg

All implied constants depend on F and n (as well as A, where applicable).

CA(F) = ¢ (3)

One of the crucial ingredients in the proof of Theorem 1.2 is Proposition 9.1, in which we
provide upper bounds on the sum over the discrete spectrum of GL,,, where each m appears with
an exponential weight measuring how far its archimedean component 7, is from being tempered.
The role of the latter proposition is to show, at various places in our arguments, that discrete
for which 74, is non-tempered contribute negligibly to the total automorphic count. In particular,
the combination of Propositions 9.2 and 12.2 shows that the number of cuspidal 7 € §F(Q) with 7
non-tempered is in fact O(Q"*!/log® Q). (The Ramanujan conjecture states that such 7 do not
exist.) The fact that the archimedean place is singled out here is due to the expanding support
conditions on the test functions we consider at infinity.

In our second main theorem, formulated in Theorem 16.2 and proved throughout Part 3, we
establish Property (ELM) in certain cases. These are described in the following result.

Theorem 1.3. Let F' be a number field and n > 1 be an integer.

(1) For n < 2, Property (ELM) holds.
(2) Forn >3, Property (ELM) holds with respect to the spherical part of TI(GLy,(Fxo)').

The combination of the above two theorems yields our main result, Theorem 1.1. The restriction
to the archimedean spherical spectrum for n > 3 in Theorem 1.3 is a purely technical constraint,
having only to do with explicit spectral inversion of archimedean test functions. We believe that this
restriction can be removed, by following a different approach to bounding the weighted archimedean
orbital integrals appearing in the Arthur trace formula. We plan to address this in a subsequent
work.

1.3. Effective Limit Multiplicity (ELM) property. A natural framework for counting auto-
morphic representations is provided by Arthur’s non-invariant trace formula. This is an equality of
distributions Jspec = Jgeom, along with an expansion of both sides according to primitive spectral
or geometric data. Roughly speaking, the most regular part of the spectral side of the trace formula
Jeusp, coming from the cuspidal contribution, is expected to be governed by the most singular part
of the geometric side Jeent, coming from the central elements.

In the body of the paper, we shall use measure conventions for the trace formula which align with
the literature we cite. In particular, rather than wqr,,, we shall equip GL,(Ar)! with the measure
paL, which assigns the standard maximal compact subgroup at finite places unit volume.! Then

1 One might ask what shape Conjecture 1 would take under this alternative choice of measures. To describe
this, we follow the notational convention in [82, 83] in which, if a Haar measure m on a group G is fixed, then mP!
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paL, assigns the automorphic space GLy,(F)\GL,(Ar)! the measure D;2/2A}(1), where Dp is
the absolute discriminant of F', and A% (1) is the residue at s = 1 of the global motivic L-function
Ap(s) = Cp(s)Cp(s+1)---Cp(s+n —1) for GL,. Then, for a function ¢ € H(GL, (Ar)") we let

J(6) = DEPARD)S(1) and  Jeeni() = DE2A51) S 6(7)
YEZ(F)

be the identity and central contributions to the trace formula. Furthermore, let

qusp(¢) = tr(RcuSp(d))) and Jdisc(¢) = tr(Rdisc(¢))

be the cuspidal and discrete contributions, where R, is the restriction of the right-regular repre-
sentation of GL,(Ar)* on L2(GL,(F)\GL,(Afr)!). Finally put

(13) Jerror(¢) = Jdisc(¢) - JCCnt(¢)7

the estimation of which will be our primary concern. See §§4.10-4.12 for more precise definitions
of the distributions Jeent and Jyisc-

We shall in fact be interested in Jerror(¢) for ¢ of the form ey, (q) ® f, where f € C°(GLy(Fiso)b)
and €, (q) i1s the idempotent element in the Hecke algebra associated with the standard Hecke
congruence subgroup Ki(q). The latter subgroup, by the work of Casselman [15] and Jacquet—
Piatetski-Shapiro—Shalika [41, 43], is known to pick out from the cuspidal spectrum those rep-
resentations of conductor dividing q. As with many spectral counting problems, one expects
Jerror (€, (q) ® f) to be small in terms of various quantities involving q and f. If this can be prop-
erly quantified, one can hope to deduce that a sharp cuspidal count modeled by Jeusp(e Ki(q) ®f ) is
roughly equal to Ji(eg,(q) ® f). Indeed, with our choices of f, the passage from Jeen to Ji causes
no difficulty, and we will further be able to show (see Section 3) that Jeus, provides the dominant
contribution to Jyjsc.

Our interest is in taking f whose Fourier transform h(mo) = tr7moo(f) satisfies a localization
property around a given tempered unitary representation in II(GL,(Fx)'). Moreover, we would
like to have some control over the error in the localization. In general this error is quantified by the
support of the test function f. Indeed, if suppf C K exp(B(0, R))Kq, where B(0, R) is the ball
of radius R in the Lie algebra of the diagonal torus, then the walls of the corresponding h, that is,
the regions where it transitions to rapid decay, have width on the scale of 1/R. The following few
paragraphs make this precise.

The unitary dual of GL,,(Fx)! breaks up as a disjoint union

(1.4) M(GLp(Fo)') = | TH(GLn (Fio)Y)s
€D

indexed by discrete data D. More precisely, D is the set of conjugacy classes of pairs (M, )
consisting of a Levi subgroup M of GL,(Fx)! and a discrete series representation § of M*. Given
a discrete spectral parameter § € D represented by (M, ), a continuous spectral parameter p €
ih3,, and a real number R > 0, we will be interested in test functions fg’“ whose support lies

in Ko exp(B(0,cR))Ks (for a suitable ¢ > 0) and whose Fourier transform hf%“ localizes about
the irreducible tempered unitary representation indexed by the data (4, ). We shall need bounds

on Jerror(€K,(q) ® ff%’“ ) for such archimedean localizing functions hi;/“ . The exact conditions we

impose upon h(;é“ (where the parameter R controls the rate of localization and the corresponding
Paley—Wiener type conditions) are formulated in Definition 4.

denotes the induced normalization of Plancherel measure on the unitary dual TI(G). Let i®" be the normalization
of Plancherel measure corresponding to pucr,. Using P! in place of &P in the integral (1.2) would have the effect
of decomposing the adelic integral in (1.1) into a product of two factors, one coming from the automorphic volume
pcr, (GL, (F)\GL,(Ar)"), the other coming from the analogous spectral integral involving fiP'.
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The following definition expresses uniform bounds on this quantity which are sufficiently strong
for our applications. The dependence in the error term with respect to the archimedean spectral
data is via a natural Plancherel majorizer 5§, (6, v) dv, introduced in Definition 2.

Definition 1 (Effective Limit Multiplicity (ELM)). Let a number field F' and an integer n > 1 be
fixed. We say that Property (ELM) holds with respect to a subset A C D if there exist constants
C > 0 and ¢, 0 > 0 such that the following holds: for all § € A represented by (M, ¢), p € ib3},, and

R > 1, and for every spectral localizer hf;’{“ about [0, ] in PWg s, there exists an ffz’“ € "H(G})O)CR@
such that h‘;;f‘ (v) = trms,( g’“ ) and such that, for every integral ideal q of Op, we have

Jerror(gKl(q) X fféu) < eCRNq"*HBJ%(& [,L).
When (ELM) holds with respect to all of D, one then says that Property (ELM) holds.

Property (ELM) depends on the choice of number field F' and integer n > 1. Since these are
fixed throughout the paper, we will not recall this dependency elsewhere. We shall make more
extensive comments about Property (ELM) in §3.3. For the moment, we content ourselves to a few
brief remarks.

Remarks 1.

(1) We have expressed Property (ELM) with respect to the particular subgroups Ki(q) since
only these arise in our applications. More generally, one could ask for analogous bounds
for arbitrary sequences of compact open subgroups in GLy(Af) whose volumes tend to
zero. Our proof of Theorem 1.3, which establishes Property (ELM) in many cases, would
continue to hold for such subgroups, since we are appealing to the powerful results [23] of
Finis—Lapid.

(2) The estimate is trivial in the archimedean spectral parameters § and p. Indeed, as will be
seen in Section 8, we have

(1.5) / W (1) 85 (6, v) dv = / B85 (6,v) dv = R~ 4mba gG (5 11).

ih%, By (p,1/R)
Since the polynomial factor RY™Y% can be subsumed into the exponential factor e (with
a different constant C), it is in fact equivalent to state Property (ELM) with the majorant
BZC\}((F, w) replaced by any of the three expressions appearing in (1.5). All three appear
naturally in our proofs and are generically comparable to the archimedean component of
the identity contribution to the trace formula Ji (e, (q) ® f;;’“ ); see §8.3. While it might at
first seem surprising that no non-trivial savings at infinity is needed in order to deduce our
main result, it is rather the power savings in the level which is of critical importance in our
applications. To get a better feeling for the various ranges of parameters, and corresponding
savings, see §3.1.

(3) The terminology “Effective Limit Multiplicity” was chosen in reference to the power savings
in the level as well as the uniformity in all parameters that the statement provides, which
can be seen as a quantification of the limit multiplicity property for GL,, at the archimedean
place.

1.4. On the leading term. We now give a precise definition of the leading term constant in the
Weyl-Schanuel conjecture.

We now recall the Tamagawa measure for GL,,. We let w(g) = det(g) " (dg11 A-- - Adgnn) be the
unique (up to scalar) invariant rational differential form of highest degree on GL,,. Then w induces a
Haar measure wgr,, » on GLy, (F}) at every place v. We put the wqr,, » together into a global measure
in the following way. For every finite place v of F' we let Ay (s) = (y(8)Cp(s+1) -+ ((s+n—1) be the
local factor of the motivic L-function Ap(s) described in §1.3. Similarly, let (r(s) = [], .o Co(5)
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be the Dedekind zeta function for F', with residue (1) at s = 1. Define a global Haar measure
on GL,(AF) by

(16) * n2/2 H CU WGLn7 H WGLn v = * n2/2 H A wGLn,v H WGLp,v-

v<00 v]oo v]oo
Using the short exact sequence

log | det |4

1 = GL,(Ap)! = GL,(Ap) ——5 R — 0,
we factorize GL,(Afr) ~ GL,(Ar)' x R. Recall from [65, §2] that the Tamagawa measure wgqr,, on
GL,(Ar)! is defined as the unique measure which decomposes the measure in (1.6) as wqr,, x dt,
where dt is the standard Lebesgue measure on R. Then it follows from [93, Theorem 3.1.1] that
the Tamagawa number 7(GL;,) fGL F)\GLn (Ap)! dwgt,, of GL,, is 1.

On the spectral side, for every place v of ', we now fix a normalization of local Plancherel
measures W5 on II(GL,(F,)) by taking Plancherel inversion to hold relative to WGL,v- At finite
places v the measure bt assigns the unramified unitary dual volume A, (1); see [93, p. 31]. Similarly,
we let @P! be the adelic Plancherel measure on II(GL,(Af)!) for which the Plancherel inversion
formula holds relative to wgr,,. This is the Plancherel measure appearing in (1.2).

We now explain the regularization of the integral in (1.1). We let wo, be the unique mea-
sure on GL, ( ) decomposing war,, 00 8 Woo X dt and write woo for the Plancherel measure on

II(GL, (Fso)b) correspondlng t0 woo. We define local measures 73, on II(GL, (F)), for v finite, and
T3.00 01 II(GL, (Foo)t), by setting (for open subsets A)

A7) @) = [ alm) G m) (o< 00) Treeld) = [ alme) ! A0 ).

A A
Since @F' is supported on the tempered spectrum, so too is 75 ,. In Lemma 6.3 we show that for finite
places v the volume of 75, is finite and, using par, » = Ay (1)wGL, v, equals Ay (1)¢,(1)/Cp(n+1)" L.
We deduce that the measure on II(GL,(Ar)!) given by the regularized product

1.8 T :Dn2/2A* A 1Cv 1T v | TF,00
ko 5, S,

v<o0o

converges. Then the regularized integral (1.1) in Conjecture 1 is, by definition, equal to the volume
(1.9) vol(7) = 75(TI(GLy(Ar)"))

of the finite measure 73.

From the definition (1.7), one can interpret vol(7z) as the regularized Euler product of local
conductor zeta functions evaluated at s = n + 1. This point of view is emphasized in Section 6;
see, for example, Remark 13. The measure 75 also features in the conjectured equidistribution of
the universal family which we discuss in Section 2.

1.5. Schanuel’s theorem. The Weyl-Schanuel law of Conjecture 1 is reminiscent of the familiar
problem of counting rational points on projective algebraic varieties. In particular, one can set up
an analogy between counting 7 € § with analytic conductor Q(7) < @ and counting x € P"(F)
with exponential Weil height H(x) < B.

To be more precise, let us recall some classical results on counting rational points in projective
space P", where n > 1. For a rational point x € P"(F), given by a system of homogeneous
coordinates x = [zg : x1 : -+ - : ], we denote by

= [Tmax(zolus [21]us - - Jal) /4 (d=[F: Q)
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the absolute exponential Weil height of z, the product being taken over the set of normalized
valuations of F. An asymptotic for the above counting function was given by Schanuel [78]. The
leading constant was later reinterpreted by Peyre [69], as part of his refinement of the conjectures
of Batyrev—Manin [8]. Following Peyre, we write 77 (P") for the volume of the Tamagawa measure
of P with respect to H; then 74 (P") is equal to (}:(1)/{r(n + 1) times some archimedean volume
factors. Then Schanuel proved that

1
n+1
Schanuel in fact gave an explicit error term of size O(Blog B) when n = 1 and F = Q and
O(B"™+1=1/d) otherwise. Later, Chambert-Loir and Tschinkel [16] showed how the Tamagawa mea-
sure 7y (P™) appears naturally when calculating the volume of a height ball.

More generally, in the same spirit as the Batyrev—Manin—Peyre conjectures for counting rational
points on Fano varieties, given a reductive algebraic group G over F' and a representation p :
LG — GL,(C) of the L-group (see [10, §2.6]), then assuming an appropriate version of the local
Langlands conjectures, one can pull back the GL,, conductor to G. Under appropriate conditions
on p assuring a finiteness property, one would like to understand the asymptotic properties of
the counting function associated to global cuspidal automorphic L-packets of G(Ap) of bounded
analytic conductor. This problem has been investigated in some cases by Lesesvre [52] and Brooks—
Petrow [39], as well as in Petrow [68], which furthermore explores eligibility requirements on p. Our
methods suggest that, any time this problem can be solved, the leading term constant will be given
in terms of the Plancherel volume of the p-conductor ball

/ AP\ ().

mell(GL, (A)1)
Q(m,p)<Q
This analogy served as an inspiration and organizing principle throughout the elaboration of this
article, where we address the setting of general linear groups and the standard embedding. Finally,
we emphasize that we exploit several important features of GL,, throughout the proofs of Theorems
1.1 and 1.3, including the well-understood newform theory in Section 6, and strong estimates on
the continuous spectrum in Section 16.

{z € P"(F): H(z) < B}| ~ m(PYB™ as B — .

1.6. Hecke congruence subgroups. What makes the general linear groups particularly amenable
to conductor counting are the well-understood multiplicity and volume growth properties of the
Hecke congruence subgroups Ki(q) and Ky(q) defining the arithmetic conductor, in the newform
theory of Casselman [15] and Jacquet—Piatetski-Shapiro—Shalika [43].

To better understand the role of K(q) in the leading term asymptotics of the Weyl-Schanuel
law, consider the “index zeta function” of the system of Hecke congruence subgroups Ki(q):

[GL,(0,) : K1 (p"
[T > S

v<o0o r=0

If p, denotes the arithmetic function a — Na™ on ideals, and p is the Md&bius function over F,
then it follows from (6.3) that the above can be rewritten as

pn*# Cv S_n CF(S_n)
11> 5 =11 =

v<o0 r=0 V<00

The abscissa of convergence of the above Euler product determines the order of magnitude of the
asymptotic growth of |F(Q)|. Its regularized value at s = n+ 1, (5(1)/¢r(n + 1), contributes to
the volume vol(7z); see (6.21), where, it should be remarked that the arithmetic factor (p(n+1)~"
comes from inverting, through a sieving process, the series formed from the dimensions of old forms.
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1.7. Comments on other asymptotic aspects. Throughout this paper, both n and F will be
considered as fixed. Nevertheless, it would be interesting to understand the behavior of |F(Q)| as
n and F vary (either simultaneously with @ or for @ fixed). We remark on two aspects:

(1) In Conjecture 1, one could set Q = 1 + € (for a small € > 0) and vary either n or F. This
would count the number of everywhere unramified cuspidal automorphic representations of
GL,, over F' whose archimedean spectral parameters are constrained to a small ball about
the origin. In this set-up, if F' is fixed and n gets large, we recover the number field version
of a question of Venkatesh, as described for function fields in [27, §4].

(2) On the other hand, we may fix n (again keeping Q = 1+ ¢) and allow Dp to get large. For
example, when n = 1 this counts the size of a “regularization” of the group of ideal class
characters, which has size about D};/ 2+o(1) by Siegel’s theorem; this lines up with the power

of D in Conjecture 1. When n = 2, we recover the number field version of the famous
result of Drinfeld [19]. Note that in the function field case the role of D}/ ? is played by
the quantity ¢9~!, as one can see by comparing the Tamagawa measures in [64] and [18,
§3.8]. Thus, when n = 2 the factor of D% in the leading term in Conjecture 1 corresponds
to ¢*9=1 for function fields, and when multiplied by |[Pic(Xo)| = ¢ — 1 this recovers the
leading term of ¢%9~3.

We emphasize that we are not making any conjectures about the nature of the above asymptotic
counts (1) and (2) when either F' or n is allowed to move. The above discussion is meant purely to
evoke parallels with other automorphic counting problems in the literature.

1.8. Acknowledgements. We would like to thank Nicolas Bergeron, Andrew Booker, Laurent
Clozel, James Cogdell, Guy Henniart, Emmanuel Kowalski, Erez Lapid, Dipendra Prasad, Andre
Reznikov, and Peter Sarnak for various enlightening conversations. We are particularly indebted
to Simon Marshall for suggestions leading to a simplification of the proof of Proposition 9.1 and
to Peter Sarnak for originally suggesting this problem. Finally, we would like to express our most
sincere thanks to the referees; their extensive and detailed reports led us to make substantial
improvements to the exposition.

2. EQUIDISTRIBUTION AND SATO—TATE MEASURES: CONJECTURES

Beyond the counting statement of Conjecture 1 we in fact conjecture that the universal family
3(Q) equidistributes, as QQ — oo, to a probability measure on II(GL,(Ar)!) that we now explicitly
identify. This allows us to properly interpret the leading term constant in the conjectural Schanuel—-
Weyl law and our main theorems. We expect that our techniques can be leveraged to yield a proof
of these equidistribution conjectures and plan to address this in follow up work.

The universal family §(Q) gives rise, by way of the embedding into IT(GL,(Ar)!) via local
components, to two automorphic counting measures

1 1
2.1 E O and E Or
21) Q1 $(Q)
TeF(Q) TeF(Q)

on II(GL,,(Ar)t). We would like to understand their limiting behavior as Q — oo.

Recall the measure 75 on II(GL,,(Ar)!) of §1.4, whose volume enters Conjecture 1. Denoting by
o (GL, (Ar)!) the subset of II(GL,(Ar)') consisting of m with 7, spherical, the statement of our
Theorem 1.3 verifies that

1 1
QM+l © on(4) — nt1®

(2.2) (4),
TEF

for the sets A = II(GL,(Ar)!) for n < 2 and for A = IIy(GL,(Ar)!) for every n € N.
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We conjecture that this holds more generally:

Conjecture 2 (Equidistribution). As Q — oo,

1 1
W Z 57r — ot 17’3.
TeF(Q)

Conjecture 2 implies, in particular, the Weyl-Schanuel law (Conjecture 1). It moreover implies
that the closure of §, relative to the direct product topology, contains the support of 7z, namely, the
everywhere tempered subspace of II(GL,,(Ar)!). Concretely, this means that given a finite set of
places S, and an unramified tempered representation og € II(GL,,(Fs)), one can find = € § whose
S-components mg are arbitrarily close to og. This would extend to a wide degree of generality
an old observation of Piatetski-Shapiro and Sarnak [75] for level one Maass forms for compact
congruence quotients of SL,, (see Corollary 1.3 and the discussion on page 330 of [75]).

Remark 2. By contrast, if we give II(GL,,(Ar)) the restricted product topology, the set § is discrete
in II(GL,,(Ap)); this is a point of view more adapted to computational problems of isolating and
numerically computing cusp forms [74].

Note that neither object in Conjecture 2 is a probability measure. By contrast, the second
measure in (2.1) is. We therefore set

o_ TF .
£ vol(rz)’
this is a well-defined probability measure on II(GL,(Ar)!). Conjecture 2 then implies
1
(2.3) 30 > b — 5
TeF(Q)

2.1. Sato—Tate measure. Granting ourselves the statement (2.3), we may identify the Sato—Tate
measure ugrt(§) of the universal family §.

Let us consider the local components of 75. For a place v we define 73, = 75,/vol(75,4), a
probability measure on II(GLy(F},)) supported on the tempered spectrum; then 7¢ = [[, 3 -
Let T denote the diagonal torus inside the Langlands dual group GL,(C) of GL,, and let W be
the associated Weyl group. For finite places v, the Satake isomorphism identifies the unramified
admissible dual of GL,,(F,) with the quotient T'/W. It then makes sense to speak of the restriction
of 73, to T/W, which we write (abusing notation) as 77 |7. In [77], Sarnak, Shin, and Templier
define ugt by the formula

psr(S) = lim — > (logqy) - 75|73
qu<zx
thus g (F) is a measure on T'/W, provided that the limit exists (which we shall presently show to
be the case).

Note that, under the above identification, the tempered unramified unitary dual corresponds

with T./W where T, is the compact torus U(n) NT. Thus the restriction T§7U‘T is supported on

T./W and we may think of the Sato—Tate measure as being defined on 7./W. Now Lemma 6.3

G (1)

W. Thus, lettlng @51|TC

implies that for finite places v the volume of 73, is given by A,(1)
denote the restriction of @Bl to T./W, we have
o | _ G(n+1)mH
el = A, WG )

Since @51 = Av(l)ﬂgl, we deduce that

Pz, = (1+O(g, )@Y ..

. ~pl . ~pl
psT(F) = q}gnoo Ol = q}l_fgo |,
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where the latter limit is known to exist and have the following description (see, for example, [75,
p. 330]).

Corollary 2.1. Assume Conjecture 2. Then the Sato—Tate measure ust(§) of the universal family
is the push-forward of the probability Haar measure on U(n) to T./W .

Using the Weyl integration formula, we have

i ; 1 ) )
dust(F) (€™, ... e )—a”’e”—e”’
i<k

o2 o

In particular, it follows from Corollary 2.1 that the indicators

i(3) = /T (O dpse(3)(1), in(3) = /T (02 dpse(3) (1), is(3) = /T () dpisr (3)(2)

introduced in [77], where x(t) = tr(t), take values i1(F) = 1, i2(F) = 0, and 3(F) = 0 on the
universal family. This is consistent with the expectation that the universal family § is of unitary
symmetry type.

3. OUTLINE OF THE PROOF

To set up the proofs of Theorems 1.1-1.3, we begin by decomposing the universal family according
to discrete data:

(1) the first such datum is the arithmetic conductor ideal q in the ring of integers of F (see
§6.5);

(2) the second is an archimedean spectral parameter, which enters through the decomposition
of the admissible dual of GL,,(Fx)! into a disjoint union over a discrete set of parameters
0 € D. See §5.6 for more details.

The set D consists of equivalence classes of square-integrable representations on Levi subgroups
of GL,(Fs). More precisely, the elements § of D are conjugacy classes of pairs (M, J) consisting
of a cuspidal Levi subgroup M and an essentially discrete series representation § of M. We can
represent any class § € D by a square-integrable representation § of M! = M/Ay;, where M is
a standard Levi subgroup (with blocks of descending size) and Ajs is the split component of its
center. We shall call (M, 0) a standard representative of 0.

It remains to impose a condition on the continuous archimedean spectral parameter. This can
be done by specifying a nice W (Ajy)s-invariant subset Q of the J-unitary spectrum D5 un defined
in (5.11). For example, if 0 € D has standard representative (M, ), the set

(3.1) Qs x ={v € b5y, q(ms,) < X}

selects unitary representations my, € II(GLy,(Fiao)!)s of archimedean conductor ¢(mao) < X.

Given an ideal q and archimedean spectral data [0, 2] as above, let $(q,0,€2) denote the set of
m € § such that q(7) =q, 6, =9, and v, € Q. Then

(3.2) §(Q)] = Z Z\ﬁ(q7é,QQ,Q/Nq)|'
1<Ng<Q d€D

In the parlance of [77, 83], the set $(q,d,2) is what is called a harmonic family. One of the
hallmarks of a harmonic family is that it can be studied by means of the trace formula. For this
reason, it will be more convenient to work with the weighted sum

(33) N(g.6Q) = >  dimV@,
mENH(q,0,82)
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which counts each 7 € $(q, d, Q) with a weight corresponding to the dimension of the space of old
forms for m¢. The quantities [$(q,0,€2)| and N(q,d, ) can be related via newform theory, yielding

(3.4) BQI= >0 3D M@/A)IN@,8, 9 0/ng);

1<Ng<Q 0|q 0€D

where \,, = pux---xu is the n-fold Dirichlet convolution of the Mobius function on F. Indeed, from
the dimension formula (6.4) of Reeder we deduce

N@,5,2)=> > dua/0) =) du(a/)|5(2,4,9)],
ola men(0,6,9) ola
where d,, = 1 x--- % 1 is the Dirichlet inverse to A,. This equality holds for every integral ideal
q and is hence an equality of arithmetical functions. Since the inverse of d,,(m) under Dirichlet
convolution is A,(m), Mébius inversion yields

19(9,8, )] = > Aa(a/2)N (2,6, 9).
g

Taking © = Qs o/ng, the claim (3.4) then follows from (3.2).
From this point, the proof of Theorem 1.2 proceeds as follows. We approximate N(q,d,2) by
the discrete spectral distribution Jgis. of the trace formula, using a test function which

(1) exactly picks out the weight dim Vgl(q) and the condition ¢, = J,
(2) but which smoothly approzimates the condition v, € Q, with the auxiliary parameter R > 0
controlling the degree of localization.

The quality of this approximation is estimated in Part 2, where we execute the passage from smooth
to sharp count of the tempered spectrum in harmonic families. We obtain asymptotic results on
the size of the spectrum and strong upper bounds on the size of the complementary spectrum for
individual large levels q, which are of independent interest. Here it should be noted that we require
uniformity in g, d, and the domain €2, as all of them vary in our average (3.4).

The successful execution of these steps of course depends on the trace formula input, which enters
our argument through suitable applications of Property (ELM). Summing over q and appropriate
spectral data as in (3.4) then proves Theorem 1.2.

3.1. Prototypical example: classical Maass forms. Since much of the work required to prove
Theorem 1.2 involves the treatment of the continuous parameter v,, it makes sense to illustrate
the difficulties by describing the simplest case, where we restrict to the spherical spectrum for GL»
over Q, consisting of even Maafl cusp forms. In classical language, we seek an asymptotic for the
number of Hecke-Maaf cuspidal newforms on congruence quotients Y1(q) = I'1(q) \ H of level ¢ and
Laplacian eigenvalue A = 1/4 + r? satisfying the bound ¢(1 + |r|)? < Q.

3.1.1. Why existing results are insufficient. A familiar environment for automorphic counting prob-
lems is that of Weyl’s law. A Weyl law for GLo over Q, which is uniform in the level ¢, can be
found in [67, Corollary 3.2.3], where it is shown that Np, 4)(7'), the count of the cuspidal spectrum
on Y7 (q) with spectral parameter up to T, satisfies

(3.5) Nr,()(T) = VOIZY;(Q))

Since Vol(Y1(q)) < ¢, by taking 1+ T = /Q/q and summing over ¢, one expects the main term in
the asymptotic for |F(Q)| to be of size quQ qQ(\/Q/q - 1)2 = 3. Unfortunately, the total error
term is also of size Q3.

We see from this that one cannot simply sum (3.5) over ¢ to count the universal family. This is
not surprising, since when the level ¢ is of size comparable to @ and 1+ 7T = /Q/q is bounded, the
error term in (3.5) is of the same size as the main term, yielding only an upper bound. The loss

9
T? - #(g)d(q) ~Tlog T + O(¢°T).
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of information in this range is deadly, since limit multiplicity theorems [75] (or Conjecture 1 more
generally) suggest that Npl(q)(l) = ¢, which would then in turn show that the bounded eigenvalue
range contributes to |§(Q)| with positive proportion.

The important point here is that we cannot assume even a condition of the form T > ﬁ if
we wish to recover the correct leading constant in Theorem 1.2, since the complementary range
contributes with positive proportion to the universal count.

3.1.2. Weak spectral localization. For our purposes, what we require from a uniform Weyl law for
Npl(q) (T') is an error term that is not only uniform in ¢ but in fact gives explicit savings in ¢ for
bounded 7. The gain in such an error term is the measure by which one can localize about a
given eigenvalue in the cuspidal spectrum of Y;(g). For example, (3.6) below implicitly requires the
ability to estimate this spectrum for 7" in ranges of size comparable to 1/loggq.

Nevertheless, observe that even a modest improvement in the g-dependence in the error term
with a complete loss of savings in the eigenvalue aspect — something of the form

(36) Ney(o)(T) = VOI(E(‘J)) </_:;7"tanh7rrd7" +0 (11::;(;2))

for T > 0 — is sufficient and yields an asymptotic of the form coQ*+ O(Q?/log Q), with an absolute
co > 0. The gain by loggq in the error term, along with the absence of savings in the T aspect,
in the above expression coincides precisely with the type of estimate for error terms that we have
encoded into Property (ELM).

Note that the demands one places on the savings in the T- and g-aspects are on unequal footings:
we lose if we fail to show savings in the g-aspect (which is hard to acquire), but can afford to use the
trivial bound in T' (which is easy to improve). For example, when ¢ = 1 we may clearly get by with
the bound of T2 — or worse! This is essentially due to the fact that the parameter T corresponds
to one place only, whereas g encodes all finite places.

3.1.3. Correspondence with expanding geometric support. One approaches (3.6) through an appli-
cation of the Selberg trace formula, which states

, _ vol(Yi(q)) log No
(3.7) JE>0 h(rj) = — i /R h(r)r tanh 7r dr + [E] f(log N~) N2 N2 +...,
> gl

where h is an even Paley—Wiener function, % + ¢r; runs through spectral parameters of cuspidal
eigenforms on Yi(q), f is the inverse Fourier transform of h, and [y] runs through hyperbolic
conjugacy classes in I'; (q). Here, the real number N+ > 1 satisfies try = NvY/2 + Ny~1/2, and [o]
is the unique primitive hyperbolic conjugacy class associated with [y]. The remaining terms arise
from non-hyperbolic conjugacy classes on the geometric side and the Eisenstein spectrum on the
spectral side.

One generally works with functions A which approximate the characteristic function x; of a
spectral interval I (or ball, in higher rank). One way of constructing such h is by convolving x;
with a suitably nice hg € PW(C), centered at the origin, or, in fact, for a parameter R > 1, with
the rescaled function v +— ho(Rv), which makes the walls around the interval I of length 1/R.
For example, if I = [-T,T], we may essentially localize r to [T 4+ O(1/R),T + O(1/R)] and the
de-smoothing process in Weyl’s Law incurs an error of size T/ R.

Note, however, that the spectral test functions h obtained in this way, while serving our purposes,
have two inevitable drawbacks:

(1) they assign an exponential weight to the non-tempered spectrum (as large as e“H"il for
1 .
2 +arg, Ty g R)>

(2) have Fourier transforms f supported on a ball of radius R about the origin.
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In the remaining subsections of this exposition of the Maass case, we discuss how we deal with the
obstacles created by these two properties.

3.1.4. Exponentially weighted discrete spectrum. After estimating the contributions from the Eisen-
stein series and the non-identity terms in the geometric side, a Weyl law of the form (3.6) follows
by converting the smooth count of (3.7) to a sharp-cutoff. This conversion requires local bounds
on the discrete spectrum, which itself involves another application of the trace formula. See [51,
Section 2] for a nice overview of this, by now, standard procedure.

Note, however, that by the first drawback above, the bounds on the discrete spectrum we require
are exponentially weighted by the distance to the tempered axis. Estimating this weighted count
is closely related to density estimates for exceptional Maass forms. In the context of quotients by
the upper half-plane this is classical, but in higher rank a delicate construction of positive-definite
dominating test functions is required. This is described in more detail in §3.2.

3.1.5. Ezpanding geometric side. In the case of a fixed level and large eigenvalue, it is possible to
localize r within Or, (4)(1), without seeing any of the hyperbolic spectrum. In light of the Prime
Geodesic Theorem, which states that

(3.8) #{primitive v : log Ny < T'} ~p, () e,

this approach can be pushed to the limit by entering up to Or, (4)(log T') of the hyperbolic spectrum,
which leads to the familiar (and currently best available) error term Or, (;)(T/log T') in a refinement
of (3.5), for a fixed level ¢. In fact, it is well-known that a purely analytic use of the trace formula
can only give log T" savings over the local Placherel bound even in the upper bounds for multiplicities
of Laplacian eigenvalues. Analogous reasoning holds in the g-aspect, as we now describe.

Estimates on Nt (4)(T') in bounded ranges of T" with error terms that feature explicit savings in ¢
correspond to instances of (3.7) such that the support of f is expanding for large ¢; thus, controlling
the number and magnitude of conjugacy classes of v € T'1(¢) in (3.7) is an essential ingredient in
any limit multiplicity-type statement. One can use effective Benjamini—Schramm type statements
[1], adapted to this non-compact setting [71], to show that the number of closed geodesics of length
at most R in Yi(q) is at most O(e“®), for some constant C' > 0.> This control allows us to use
functions h arising as Fourier transforms of functions supported up to O(log q). After some work?
to estimate all other contributions to (3.7), we obtain (3.6). More precisely, Proposition 7.3, when
specialized to the case of GLg over Q yields the following refinement of (3.6): there is § > 0 such
that

VOI(}/l (q)) /T min{T, T2} 1 —02
, Npyg)(T) = =120 h T
(3.9) ri(g)(T) i _Trtan ardr+ O logq +1og3q+q

for all T > 0. Taking T" = 1/loggq, this in particular implies that the dimension of the A = 1/4
eigenspace is at most O(Vol(Y3(q))/log?q).

3.2. Overview of Part 2. We now return to the general setting, and describe in more detail the
contents of each section.

ZFor the example Yi(q), an elementary argument shows that there are in fact no closed geodesics of length < log gq.
However, this fact is not robust: it already disappears for I'g(g) or for the analog of I'1 (¢) over number fields.

3Working directly with the Selberg trace formula, and being less wasteful in the T aspect, would yield a
0(¢*T/logq) error term in (3.5).
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Section 7: Preliminaries. In this section, we set up the notation for Proposition 7.3, the basic
estimate of Part 2. This result roughly states that for fixed discrete data q and J, and a nice set
P in the tempered subspace ily};, Property (ELM) allows us to control the difference between the

2

sharp count N(q,d, P) of (3.3) and the expected main term D /2A}(1)gpn(q) Ip d@El. The error
terms appearing in Proposition 7.3 depend on an approximation parameter 1 < R < log(2 + Nq)
and arise from several sources, namely, the passage from smooth to sharp count (in Section 11),
the estimation of complementary spectrum (in Section 9), and the applications of Property (ELM).
As we explain in Section 7, Proposition 7.3 provides a Weyl law with explicit level savings and
uniformity in the region P and the discrete data.

Section 8: Spectral localizers. In this section we define various archimedean Paley—Wiener functions
h(sé“ which localize around given spectral parameters (d, i), for p € ih},, and provide some basic
estimates for their analytic behavior. Similarly, we define héép for nice subsets P of ih3,, with the
basic idea that the characteristic function yp(v) is very well approximated by hﬁp(u) on points v

that are firmly inside or outside P. The test functions fg’“ or fI(;’P associated with these spectral
localizers, through an invocation of the Paley—Wiener theorem of Clozel-Delorme, will be used in
the trace formula to prove Proposition 7.3.

Section 9: Ezxponentially weighted discrete spectrum. We would like to approximate N(q,d, P) using
Jtemp (€ Ki(q) ® fg’P), the contribution of the tempered discrete spectrum to the trace formula. But
an application of Property (ELM) requires working with Jgisc rather than Jiemp. We must therefore
control the difference

(3.10) Jeomp(Exr(a) @ [ ) = Jaise (Exr (@) © [ ) = JrempExre) @ Fii”)-

Note that the spectral sampling functions hi—’i“ and h?%P(V), being of Paley—Wiener type, act differ-
ently on spectral parameters v, off the tempered spectrum ib},: they exhibit exponential growth
in [[Rev,||. In fact, the rate of exponential growth is directly related to the size R of the support of
the test functions used on the geometric side; see §5.8 for details. For this reason, the contributions
from 7 € Tgisc(G(Ap)!)s for which s is not tempered must be estimated separately; specifically,
for a suitable parameter R > 0 we require an upper bound for the exponentially weighted sum of

the shape
Z dim Vgl(Q)eRHRWﬂH.
m€llgisc(GLn(Ap)t)s
[ Im vy —p||<1/R

This is majorized, using an application of Property (ELM) and a very delicate construction of archi-
medean positive-definite dominating test functions, in Section 9, combining inputs from Sections 9
and 10. The principal difficulty in this construction is that every spectral localizer which detects,
with exponential weights, the desired exceptional eigenvalues v, with [[Imv, — ul| < 1/R also
picks up other unwanted, and difficult to control, terms. We separate such “good” and “bad”
contributions and construct the dominating test function in §9.2, using a delicate combination
of geometric and analytic ingredients. Two main ingredients of geometric nature (the inductive
construction of “good” and “bad” tubular neighborhoods and a lemma guaranteeing that the real
and imaginary parts of “bad” contributions are out of alignment) are proved in §9.3 and §9.4,
while the purely analytic construction of Paley—Wiener functions with desirable asymptotics is the
subject of Section 10.

For suitable R < log(2+ Nq), the upper bound of Proposition 9.1 is typically comparable to the
expected contribution of the tempered spectrum in the above sum. In fact, we achieve an additional
savings by a power of R in this majorization when the spectral center p is singular, coming from the
degree of vanishing of the Plancherel measure at p. In particular, this latter condition is automatic
when estimating the exceptional spectrum, as in Proposition 9.2. This observation accounts for
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the extra savings by log® @ in the contribution to |§(Q)| of cusp forms which are non-tempered at
infinity.

Section 10: A Paley—Wiener function. In this purely analytic section, we construct a Paley—Wiener
function h(v) such that, for sizable Rev > 1/R, h(Rv) exhibits exponential growth in R||Rev|| if
Im v is small (the “good” terms in the application in Section 9), and is sufficiently smaller if Im v is a
bit bigger and away from full alignment with Re v (the “bad” terms). At the heart of this argument
are new asymptotics for the complex Fourier transform of the smooth radial bump function on the
unit ball, which we prove by a rather intricate application of the method of stationary (complex)
phase and which may be of independent interest.

Section 11: Smooth to sharp for tempered parameters. Here we put to use the preceding results to
prove Proposition 7.3. Using the analytic properties of hé’P, we first identify N(q,d, P) as the sum

of Jiemp (€, (q) ® fgp) with a boundary error, of the form N(q,d,0P(1/R)), where 9P(1/R) is the

1/ R-fattened boundary of P. Then, using the results from Section 9, the term Jiemp (e, (q) ® fg’P) is
amenable to the application of Property (ELM). Finally, we show that the boundary contributions
can also be estimated from above by smooth sums, which can in turn be estimated by further
applications of Property (ELM).

Section 12: Summing error terms over discrete data. With Proposition 7.3 established, we can
sum N(q,d, P) over all discrete parameters § and levels q to obtain the full count |§(Q)| in (3.4).
Bounding the resulting averages of errors terms proves Theorem 1.2.

3.3. Overview of Part 3. In Part 3, we establish Theorem 1.3. The proof naturally divides into
two parts, corresponding to bounding Jgeom — Jeent On the geometric side and Jspec — Jdisc on the
spectral side. The estimations are not symmetric in the way they are proved, nor in the degree
of generality in which they are stated. We would like to briefly describe these results here, and in
particular explain why we are at present unable to establish Property (ELM) in all cases.

The main result on the geometric side is Theorem 13.1 in which we show the existence of constants
C,0 > 0 such that for any R > 0, integral ideal q, and test function f € H(GL,(Fx)')r, we have

(3.11) Jgeom (€K1 (q) @ f) = Jeent (e 1, (q) @ ) € e“NG" 7| ][ .

This can be thought of as a sort of geometric limit multiplicity theorem, although it is only non-
trivial in the q aspect. The exponential factor e“f should be compared to (3.8). The latter
shows that R < logNg is an allowable range in which the main term dominates. The proof of
Theorem 13.1 occupies most of Sections 13 and 14. Indeed, in Section 13 we reduce the problem
to a local one, and in Section 14 we bound the relevant local weighted orbital integrals.

The proof of our local estimates relies crucially on several recent developments, due to Finis—
Lapid, Matz, Matz—Templier, and Shin—Templier. In particular, a central ingredient in the power
savings in Ngq comes from the work of Finis—Lapid [23] on the intersection volumes of conjugacy
classes with open compact subgroups. On the other hand, the source of the factor ||f||o comes
from estimating archimedean weighted orbital integrals trivially, by replacing f by the product of
|| flloo with the characteristic function of its support. As the latter is, by hypothesis, contained
in Ko exp(B(0, R))K«, it is enough then to have polynomial control in the support of the test
function on these weighted orbital integrals. This can be viewed as the archimedean analogue
of polynomial control in the Hecke depth aspect, as developed in a variety of contexts by the
aforementioned authors. We in fact extract this from a careful reading of the papers of Matz [55]
and Matz—Templier [56].

Comparing the bound (3.11) to the statement of Property (ELM), it is clear that if one takes
f= fg’“ , then one wants to understand || f}%“ [|oo in terms of R~ 4m0x 3% (5 1), which, as we discuss

after Property (ELM), is a natural majorizer of the Plancherel mass of h}sé“ . It is at this point that
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we impose the condition that for n > 2 the discrete parameter ¢ is the trivial character on the torus
(and omit it from the notation). In this case, the Paley—Wiener functions that we use for spectral
localization can be inverted by integration against the spherical function ¢,. Since ||¢, |00 < 1 for
tempered parameters v, we obtain || &/ < th;%”Ll(@&l,)’ as desired. For GLj, we use a slightly
more general inversion formula, valid for 7-spherical functions, where 7 is an arbitrary K..-type;
see §15.3. In any case, the test functions fg’“ which we use in Property (ELM) are all defined in
Section 15, and their main properties are summarized in Proposition 15.1.

On the spectral side, our main result is Theorem 16.1, which roughly states that, for R < log Nq,

JSpeC(gKl(q) ® f?iu) - JdiSC(5K1(q) ® ff%u) < NqnieRi dlmbMﬁ]\C}(‘sa 1)
for some 6 > 0. The argument uses induction on n. Indeed the above difference can be written as a
sum over proper standard Levi subgroups M # G of Jypec, M (€K, ()@ fgj“ ), and each M is a product
of GL,,’s for m < n. The induction step itself relies critically on several ingredients. Besides the
bounds on the geometric side of the trace formula of Sections 13 and 14, and the properties of the
test functions of Section 15, the proof uses in an essential way the Tempered Winding Number
property of [26] and the Bounded Degree Property of [25]. Our presentation follows that of several
recent works, such as [55, §15], but differs in that we make explicit the dependence in the parameter
R and in the level q.
Putting all estimates together, we prove Theorem 1.3 in Theorem 16.2.

Part 1. Preliminaries
4. GLOBAL STRUCTURES AND THE ARTHUR TRACE FORMULA

The goal of this section is to put in place the basic notation associated with the algebraic group
G = GL,, defined over a number field F', and then to state the non-invariant Arthur trace formula,
for use in Part 3 of the paper.

4.1. Field notation. We recall some standard notation relative to the number field F'.

Let d = [F' : Q] be the degree of F over Q. Let r; and 7 be the number of real and inequivalent
complex embeddings of F', so that ry + 2ro = d. Write r = r1 4+ ro. Then r is the number of
inequivalent embeddings of F' into C. Let Op be the ring of integers of F'. For an ideal n of Of let
N(n) = |Op/n| be its norm. Write D for the absolute discriminant of F'.

For a normalized valuation v of F, inducing a norm | - |, we write F, for the completion of F
relative to v. For v < oo let O, be the ring of integers of F},, p, the maximal ideal of O,, w, any
choice of uniformizer, and ¢, the cardinality of the residue field.

Let Cr(s) = [[<o0 Cu(s) for Re(s) > 1 be the Dedekind zeta function of F. Write (}(1) for the
residue of (p(s) at s = 1. We let Ap denote the ring of adele ring of F' and Ay the ring of finite
adeles.

4.2. Levi and parabolic subgroups. We let G = GL,,, viewed as an algebraic group defined over
F. Let Py denote the standard Borel subgroup of upper triangular matrices and Ty the diagonal
torus of G. Let ®& = &(T}, G) be the set of roots of Ty on the Lie algebra g of G and ®&7 the
subset of positive roots with respect to Py. Let Z denote the center of G.

A Levi subgroup of G is called semistandard if it contains Tjp; it is automatically defined over
F. Let £ denote the finite set of all semistandard Levi subgroups of G. For M € L we let
M = ®(T,, M) C ® be the set of roots of Ty on the Lie algebra m of M. Write Zps for the
center of M. Let L(M)={L e L: M C L}.

An F-parabolic subgroup P of G is called semistandard if it contains Tj. Let F denote the finite
set of all semistandard F-parabolic subgroups. For P € F, let Up denote the unipotent radical
of P and Mp the unique semistandard Levi subgroup such that P = MpUp. When P = P, we
write Up for Up, and of course Mp, is simply Ty. For M € Llet F(M)={P € F: M C P};
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clearly, F(Tp) = F and F(G) = {G}. We have a map F(M) — L(M) sending P to Mp. Denote
by P(M) the subset of F(M) consisting of those F-parabolic subgroups having Levi component
M. Thus P(M) = F(M) —Ur-ps F(L).

We call an F-parabolic subgroup P of G standard if it contains Py. Each G-conjugacy class of
parabolic subgroups contains a unique standard member. Similarly, a semistandard Levi subgroup
M of G is standard if it is contained in a standard parabolic subgroup. Two standard Levi
subgroups Mp C P and Mg C @ may be conjugate. Write Fs and L for the respective subsets
of standard elements. Then Fg (resp. Lg) is in bijection with the set of ordered (resp., unordered)
partitions of n. Namely, the ordered partition (ni,...,n,,) is sent to the block upper triangular
subgroup of G whose diagonal blocks have successive dimensions given by (ni,...,n,,); forgetting
the ordering then corresponds with taking the conjugacy class of its Levi subgroup.

For M € L we let Wpy = Ng(M)/M denote the Weyl group of M. When M = T we simplify
Wr, to Wy. Then each Wjhs can be identified with a subgroup of Wy. More concretely, Wy
permutes the blocks of equal size.

For a finite non-empty collection of places S of F' and M € L we write Mg = M(Fs). When
M = Tj we shorten this to Ts = To(Fs). In particular, when S consists of all archimedean places,
we write M.

Remark 3. When M = G or M = T, we shall often write Gg in place of Gg and Tg in place
of Ts (dropping the boldface). We shall refrain from doing so more systematically, however, since
in later sections we shall need to distinguish between two types of Levi subgroups of Gg: those
that are defined rationally, as above, and those that are place-by-place products of Levi subgroups
for each GG,. No such confusion can arise for the two distinguished Levi subgroups M = G and
M =T,.

For any subgroup H of G we may consider the R-points H (R), where R is embedded diagonally
in Foo C Ap. In particular, G(R) is the diagonally embedded copy of GL,(R) inside Go, =

[Loj00 G(F)-

4.3. Characters, cocharacters, and split components. For M € £ we let X*(M) be the
group of F-rational characters of M. Then X*(M) can be identified with Z™ for some m > 1.
Namely, if M is isomorphic to GL,, X -+ X GL,, , then A\ = ()\;) € Z™ corresponds to the
character x*(g) = []det gf‘l Let X, (M) be the lattice of F-rational cocharacters. We then write
XFH(M)={)e X.(M):{(a,A\) >0 for all simple o € &} for the cone of positive cocharacters.

Let Aps be the connected component of the identity in Zps(R), the real points of the center
of M; then Aps is of dimension m over R. For example, Ag is the image of R/, embedded
diagonally across all archimedean places. When M = Tj we write Ag for Ag,.

We put M (Ap)t = Nyex+an ker([xlap). Then M(F) is a discrete subgroup of finite covolume
in M(Ap)l. For example, if M = G then G(Ar)! = {g € GL,(Ap) : |detgla, = 1}. More
generally, if M is isomorphic to GL,,, x --- x GLy,,, then M (Ag)! is isomorphic to GL,, (Ar)! x
-++ %X GLy,, (Ar)!. One has a direct product decomposition M (Agr) = M (Ap)! x Aps.

When S contains all archimedean places, we have similar decompositions for coefficients in Fg,
namely Mg = Mé X Apg, where Mé = Mg M(Ar)!. Concretely, when M € L is a standard
Levi, of block diagonal form GL,, x --- x GL,,,, , then

(4.1) M. = {diag(gl, s Gnm) € M(Fs) : gi = (gvi)ves € GLy,(Fs), H | det guily = 1}.
veES
Of particular importance is the case S = {v | oo}, as it will be throughout Section 5.
We set aj, = X*(M) ®z R and aps = Homg(a},,R) = Homz(X*(M),R). When M = Tj
we write ag for ag,. Then aps is spanned by the cocharacter lattice X, (M) and the map log :
Apng — apg, defined by eX198@) — |y (a)|, for a € Apy and x € X*(M), is an isomorphism. We
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may furthermore identify aps with the Lie algebra Lie(Aps) inside g, by composing the preceding
isomorphism with the exponential map on Lie groups. For example, when M is standard, with
(ordered) block decomposition of the form GL,, X ---x GL,,, , then aps = Lie(Aps) is the subspace
in g consisting of diagonal matrices of the form diag(RI,,,--- ,R1l,, ).

For L € L(M), there is a natural inclusion aj — aj}, induced by restriction of cocharacters
X*(L) to X*(M). By dualizing we obtain a surjective map aps — ar, whose kernel we denote

by aﬁ/[. Equivalently, aﬁ/f is the annihilator of a} in aps. For example, when M is standard as
in the last paragraph, af/l can be identified with the diagonal matrices diag(RZ,,,--- ,R1,, ) of

trace zero. Note, furthermore that there is a canonical linear isomorphism a3, = X*(M) @ R —
X*(Ap) ® R. The surjective restriction homomorphism X*(Ap;) — X*(Ap) then induces a dual
injection ay — ays, which splits the exact sequence 0 — aﬁ/l — aps — ar, — 0. We therefore have
a direct sum decomposition ays = ar & aﬁd.

4.4. Maximal compacts and the Iwasawa decomposition. For a finite place v we let K, =
GL,(O,) be the standard maximal compact open subgroup of G, = G(F,) and put Ky =
[I,<o Ko. For archimedean v, we let K, be O(n) or U(n), according to whether v is real or complex.
For a finite set of places S, denote Kg = [, Ky and K¥ = [To¢s Koo When S = {v | oo}, we shall
prefer to write Ko = Hmoo K, and Ky =[] K., respectively. Then K =[], K, = K;K is
a maximal compact subgroup of G(Ar).

When M € Ly and P € P(M) has unipotent radical Up, there is a global Iwasawa decomposi-
tion G(Ar) = P(Ap)K = Up(Ap)M (Ar)K. Similarly, at every place v of F' we have an Iwasawa
decomposition G, = P(F,)K, = Up(F,) M (F,)K,.

We may write the global Iwasawa decomposition alternatively as G(Ar) = Up(Ap) M (Ap)! ApK
and define the associated projection

Hp : G(AF) = UP(AF)M(AF)IAMK — apg, Hp(umexk) = X.
When M = Ty, so that P = P, we write this as Hy.

v<oo

4.5. Weyl discriminant. Let v be a place of F' and ¢ a semisimple element in G,. Let Gs,
be the centralizer of ¢ and g, its Lie algebra inside g,, the Lie algebra of G,. Then the Weyl
discriminant of ¢ in G, is defined to be

(4.2) D (0) = | det(l — Ad(0) g, /g, 1o = ] 11— (o).

aed,

a(o)#1
If an arbitrary v € G, has Jordan decomposition v = ov, where o is semisimple and v € G4,
is unipotent, then we extend the above notation to v by setting DS (vy) = DS (o). Whenever
there is no risk of confusion we shall simplify DS () to Dy(7). For a finite set of places S, let

Ds(v) = [l,es Do(7)-

Remark 4. The function 7 — Dg(v) on Gg is locally bounded and discontinuous at irregular
elements. We have, for example, Dg(c) = 1 for all central o. In our estimates on orbital integrals
in the latter sections, it is this function which will measure their dependency on ~.

4.6. Twisted Levi subgroups. Although our interest in this paper is solely in G = GL,, in
applications of the trace formula one encounters more general connected reductive groups, through
the centralizers of semisimple elements in G(F).

If v € G(F), we write G for the centralizer of v. If v = o is semisimple, then G, is connected
and reductive. Moreover, one knows that in this case G, is a twisted Levi subgroup, meaning
that there are field extensions Fi, ..., E, of F and non-negative integers ni,...,n, such that
G, ~ Resg, /p GLy, X -+ x Resg,, /r GLi,,. For example, if 0 € G(F) is regular elliptic, then G,
is the torus Resg/r Gy, given by the restriction of scalars of a degree n field extension F of F'. See
[56, §10A] for more details.
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If H is a twisted Levi subgroup of G containing some M € L, then an F-Levi subgroup of H will
be called semistandard (resp., standard) if it is the restriction of scalars of a semistandard (resp.,
standard) Levi subgroup. We similarly extend the notions of semistandard and standard to F-
parabolic subgroups of H. We let £LH (resp., FH) denote the set of semistandard F-Levi subgroups
(resp., F-parabolic subgroups) of H. If M € L we write LH(M) = {L ¢ £ : M c L} and
FHM) = {P ¢ F® . M C P}. Finally, P(M) will denote the subset of F¥ consisting of
parabolics having Levi component M.

If H is a twisted Levi subgroup of G, and v is a place of F, let H, = H(F,). When v is
non-archimedean, we write K = K, N H,. Recall that a semisimple element ¢ € G(F) has
good reduction at v if 1 — a(o) € Of is either zero or a v-adic unit for every a € ®; equivalently,
D%(0) = 1. When H = G, for ¢ semisimple with good reduction at v then K¥ = K, N H, is a
maximal compact subgroup of H,; see [49, Prop 7.1]. Finally, for archimedean v it follows from [56,
Lemma 5.3] that KH = K, N H, is again a maximal compact subgroup of H,; let KX = HU‘OO KH.
4.7. Measure normalization on G. Although the various theorems and conjectures from Sec-
tions 1 and 2 were expressed using the Plancherel measure &' on II(G(Ar)') induced by Tamagawa
measure wg, it will be useful, when it comes to estimates involving the trace formula (and citation
of the literature) to work with a different measure normalization throughout the rest of this paper.

For finite places v, let g, be the unique Haar measure assigning the maximal compact K, =
G(O,) volume 1. At archimedean places v, we will continue to take the local measure wg, defined
in §1.4, although it will sometimes be convenient, for notational uniformity, to denote it by ug.. We
then obtain a measure ug on G(Ar)! by decomposing [], i, as ug xdt via G(Ap) ~ G(Ap)! xR.
We give the automorphic space G(F)\G(Afr)! the quotient measure of jig by the counting measure
on G(F'). Abusing notation, we again denote this measure by pg.

We now explicitly compute the volume that ug assigns to the automorphic space, using the
notation from §1.4. Since wg, assigns K, volume A,(1)7! (see [93, p. 31]), it follows that

Ay(Nway = g, for all finite places. Comparing with (1.6), we find pg = D;Q/QA}(l)wg. It
follows that pug(GL, (F)\GL,(Ap)!) = DT}Z/ZA}(D, since the Tamagawa number of G = GL,, is 1.

4.8. Measure normalizations on subgroups. Now let H be a twisted Levi subgroup of GL,,
defined over F', as in §4.6, and write

HAp)' = () ker(Ixlap)-
XEX*(H)

In order to define the global arithmetic coefficients a™ (v, S), as well as the weighted orbital integrals
I (7, 1gs @ ¢g) on the geometric side of the trace formula in §§4.10 and 4.11, we must define
a normalization of Haar measure on H(Ap)!. As was the case for H = G, we shall adopt the
canonical normalization of Gross [33].

For a finite place v let up, denote the Gross canonical measure. When H is the centralizer
of a semisimple element with good reduction at a finite place v, then ug, assigns the maximal
compact subgroup K volume 1. At archimedean places v, whenever H # G, we let u H,v denote
any choice of Haar measure. The product ujy; = [[, prv is a well-defined measure on H(Ap).
Let {x; : 1 < i < m} be a Z-basis for X*(H), where m = rank;X*(H), and consider the
homomorphism

log : H(AF) > g+ (log|x1(9)|ap,---:10g [xm(9)|ap) € R™.

Then we have a split exact sequence

1 — H(Ap)! = H(Ap) 25 R™ - 0.
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This yields an isomorphism H(Ar) ~ H(Ar)! x R™. Let dt denote Lebesgue measure on R™.
Then we let pgr denote the unique measure on H(Af)! factorizing Wy as pp X dt. We again write
pr for the measure on the automorphic space H(F)\H (Ap)! similarly to that for G.

Finally, for every M € Ly, P € P(M), and any place v, there is a uniquely defined Haar
measure on U, = Up(F,) defined via the integration formula

F(9) . (g) = / / fmuk)dudpago(m)dk - (f € C2(Gy)),
Gy v v JUy

where dk is the Haar probability measure on K,. For example, at finite places v, by testing this
equality against the characteristic function of K, it follows from the definition of pug. and pns
that U, N K, receives volume 1. The product measures on Up(Ar), M(Ar), and K factorize
e = [, tew by a similar formula.

4.9. Hecke algebras. We now introduce the local and global Hecke algebras for use in the trace
formula.

4.9.1. Local case. At any place v we define C°(G,) to be the space of functions on G, which are
locally constant and of compact support, for v finite, and smooth and of compact support for v
infinite. We then let H(G,) denote C°(G,, ), when considered as a convolution algebra with respect
to the measure pug,. Similarly, for a finite set of places S containing all archimedean places, we
denote by H(Gg) or H(GY) the convolution algebra of smooth, compactly supported, functions on
Gg or G, respectively. For non-archimedean v, and an open compact subgroup K, of G, let

L 1
K,
)

43 SK’U = —
( ) /’LG,U(KU

denote the corresponding idempotent in H(G,).
Given an admissible representation m, of G, any ¢, € H(G,) define an operator on the space of
m, via the averaging

Ty (o) = : bu(9)m0(g) duc v (9)-

This is a trace class operator; we write tr m,(¢,) for its trace. If, for a finite place v, K, is an open
compact subgroup of Gy, it is straightforward to see that tr m,(ef,) = dim wXv.
We write II(G,) for the unitary dual of G, endowed with the Fell topology. Let ﬁgl denote the

Plancherel measure for II(G,), normalized to satisfy

(4.4) bole) = /H o TG AR )

for any ¢, € C°(G,), where ¢Y(g) = ¢,(g71).

4.9.2. Global case. Let H(G(Ay)) denote the space of finite linear combinations of factorizable
functions ®y<oco ¢y, where each ¢, lies in H(G,) and ¢, = 1k, for almost all v. We then take
as the global Hecke algebra H(G(Ar)!) the tensor product H(G(Ay)) @ H(GL,). Convolution is
taken with respect to the global measure pg. For admissible 7 = ®,m, and ¢ € H(G(Afr)') we
define the trace-class operator 7(¢) with respect to ug. Moreover, for admissible 7 = ®,m, and
factorizable ¢ = ®, ¢, € H(G(AFr)') the global trace tr 7(¢) factorizes as [, trmy(dy).

Similarly, if S is any finite set of places of F' containing all archimedean places, and G(A?.) is
the restricted tensor product of G, over places outside of S, we let H(G(A?%)) denote the analogous
space, with convolution taken with respect to the measure u% = va g MG,
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4.10. The geometric side of the Arthur trace formula. The next three subsections describe
the non-invariant trace formula of Arthur, alluded to in §1.3 and written there as Jgeom = Jspec-
We note that the Arthur trace formula can be seen as a vast generalization of Poisson summation,
to which it reduces in the case of n = 1. To guide the reader, we note that §§4.10 and 4.11 describe
the geometric side, while §4.12 describes the spectral side.

Let O denote the set of semisimple conjugacy classes of G(F'). As we are taking G = GL,, a
semisimple conjugacy class consists of all those v € G(F') sharing the same characteristic polyno-
mial. Associated with each o € O Arthur [7] defines a global distribution J, on C°(G(A)!), as
the value at 7' = 0 of a geometric distribution JI!' coming from his truncated kernel [7, §8]. These
distributions fit into the coarse geometric expansion, given by

(45) Jgeom(¢) = Z Ja(d))

0€D

The fine geometric expansion expresses each J,(¢) as a linear combination of weighted orbital
integrals Jas (7, ¢), where M € £ and v € M (F), which are local in nature.

More precisely, in [5, Theorem 8.1], Arthur shows that for every equivalence class o € O, there is
a finite set of places S,qm(0) (containing all archimedean places) which is admissible in the following
sense. For any finite set of places S containing Syqm(0), there are real numbers ™ (7, S), indexed
by M € L and M (F)-conjugacy classes of elements v € M (F') (and, in general, depending on S
as well as the measure normalizations on Levi subgroups from §4.7), such that

w
(46) JO(]-KS ®¢5) = Z WZQM(P%S)JM(P% 1KS ®¢5’)
MeL v

for any function ¢g € C°(G(Fs)!). In the inner sum, + runs over those M (F)-conjugacy classes
of elements in M (F) meeting 0. Furthermore, Jas(7y,1gs ® ¢g) = 0 for any v ¢ K° No and
Im (7, 1gs @ ¢s) = Jmg (7, ¢s) otherwise, the latter being an S-adic integral to be described in
§4.11. Moreover, when + is semisimple, Arthur [5, Theorem 8.2] shows that for S large enough the
global coefficient a% (v, S) is independent of S and equal to the volume of G- (F)\G(Ar)".

Let Ug,, denote (the Fs-points of the) algebraic variety of unipotent elements in the centralizer
of 0. Then the Jordan decomposition v = ov requires v to lie in Ug,. Following [55, §6] and [56,
§11D], for 0 € O and v = ov € oclg, (F) No we let

(4.7) Sy = Syila U {v < 00 : DS (0) # 1},

where Syiq is a certain finite set of finite places depending only on n. Then [55, Lemma 6.2] or
[56, Remark 11.8] shows that one can take Syqm(0) = S, U{v | oo} in the fine geometric expansion.
Note that, for any S containing Saqm(0), every o € o has good reduction outside of S.

When o is the semisimple conjugacy class of a central element v € Z(F), we shall be particularly
interested in the contribution that ~ itself makes to the M = G part of the fine geometric expansion
(4.6), namely a© (v, S)Ja(v, 1xs ® ¢g). From the formula for a® (v, S) stated above, applied to
the central element v and S O Syiq U {v | oo}, we obtain a®(v,S) = ug(G(F)\G(Ar)!). Tt is
natural then to define

_ /2 px § :
(48) Jcent(]-KS @ ¢S) = DF AF(l) JG(’% 1KS & ¢S)
YEZ(F)

This is the central contribution of the trace formula that was introduced in §1.3.

4.11. The weighted orbital integrals. In this section we review the definition of the weighted
orbital integrals Jar (7, ¢s). Following [6], we define Jas, (7, ¢s) in two steps, first for unipotent
elements then for general v. We emphasize that the structures in this section are purely local.
We fix a finite non-empty set of places S of F'. Where possible, we will drop the subscript S (and
the boldface font, violating momentarily the notational convention in Remark 3). So, for example,
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G = Gs, G, = G,(Fs), M = Mg, and K = Kg. By a parabolic P € F# (M) we mean the Fg
points of some P € FH(M). Throughout, we let v = ov € G be the Jordan decomposition of ~.

4.11.1. The unipotent case. Let v be a unipotent element lying in a standard Levi subgroup M.
The weighted orbital integral Jas(v, ¢) in this case was introduced in [4].

To define Jys(v, ¢) we shall need to specify a certain unipotent radical containing v as well as
a weight function. To begin, we let Vy be the M-conjugacy class of v and denote by V; the G-
conjugacy class given by inducing Vy from M to G along any parabolic P of G containing M as a
Levi subgroup. (The induced class V, defined as the unique class which intersects VoUp densely,
is independent of the choice of P.) Then, since unipotent conjugacy classes in G = GL,, are of
Richardson type (i.e., induced from the trivial class), there is a unique standard parabolic subgroup
P, € Fg, say with Levi decomposition P; = LU, such that V; has dense intersection with Uj.
(Specifically, the Levi factor of P; is given by the dual partition of the Jordan form of V;. See, for
example, [38, §5.5].) Then

(4.9) T (v, ¢) = /K ; o(k uk)wps v, (v) du dk.

Here, the weight function wjs,y, is a complex-valued function defined on Uy; it is invariant under

conjugacy by K%' (so that the above integral is well-defined) and constantly equal to 1 when
M = G. See [51, p. 143] for more details.

4.11.2. The general case. The general formula, for elements v = ov € oldg, N M, is considerably
more complicated. It will be expressed in terms of weighted unipotent orbital integrals for the Levi
components of parabolic subgroups in F& (M,). (The latter set reduces to F(M) when ¢ = 1.)
We first state the original definition of Arthur then proceed to give a simplification in the case of
GL,.

More precisely, if v = ov € ollg, N M, then [6, Corollary 8.7] states that

(4.10) Jut(7.6) = D(o) /2 / S Mg, | dy.

Go\G \ peFGo (Ms)

where, for m € Mg and y € GG, we have put
Ppry(m) = 5R(m)1/2/ o(y Lok~ imnky) vy (ky) dn dk.
KGo NR

The complex-valued weight function v on G is set to be

(4.11) vg(2) = > v,
QEF(M): Qs=R
ag=ar
where vg,, defined in [2, §2].

Using the expression (4.9) for the unipotent weighted orbital integral, valid for GL,,, we may
write J ]]\\J/[f(y, ®p ) more conveniently. To see this, similarly to before, we first let Vy denote the M-
conjugacy class of the unipotent element v € M,. Next we write V; for the induced unipotent class
of Vy to Mp along any parabolic in Mg containing M, as a Levi subgroup. Let P, = LUy C Mg
be a Richardson parabolic for V. Finally, let V be the induced unipotent class of V; to G, along
R. Then the Richardson parabolic P = LV C G, of V satisfies U = U1 Nr. We deduce that

(4.12) TR, D) = /K ) /U oy~ ok uky)wlE | (w)vl (ky) du dk,

where w%iU is the trivial extension of w%f,Ul to all of U. For more details, see [55, §10.4].
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4.11.3. Remarks on special cases. In the next few remarks, in an effort to render more comprehen-
sible the general definition Jy/ (7, ¢), we examine several special cases.

Remark 5. When o = 1 so that v = v is unipotent, the outer integral in (4.10) is trivial. Moreover,
the function v}, vanishes on K unless R = G when it is constantly equal to 1. From (4.12) we deduce

that J]]\\jR(l/, ®r.) =0 unless R = G, in which case (since U = Uy) we obtain

/ o(k~ uk)w§y y, (w) dudk,
KJU;

recovering the previous expression (4.9) for Jas(v, ¢).

Remark 6. Under the assumption that G, C M, the general definition simplifies greatly, yielding

(413) Tu(3:6) = D& [ oy v (0) .

G \G
Here, the weight function v/, is the volume of a certain complex hull; as a function on G, it is left
invariant under M (so the above integral is well-defined) and constantly equal to 1 when M = G.
In fact, the weight ’U/Q appearing in (4.11) generalizes v, to arbitrary parabolics @ € F(M). In
particular, when v € Z(F') is a central element one obtains Jg(v,¢) = ¢(y). From this and the
definition (4.8) it follows that

(4.14) Jeent(Lcs ® 95) = D P05 (1) Y 05(7).
YEZ(F)
which makes more precise the expression given in §1.3.
To see (4.13), observe that the condition G., C M is equivalent to G-, = M., and the uniqueness
of the Jordan decomposition then implies M, = G,. In this case ¢ (M,) = {G,} and the sum
over R in (4.10) reduces to the single term R = G,; clearly, Mr = G, and N = {e}. Thus U = U;

and the weight function w%j ¢ 1s constantly equal to 1 on all of U. Furthermore, v}, = v, in this

case. From the left M-invariance of v, we have v}, (ky) = v},(y) for k € K% and y € G. The
corresponding integral in (4.12) then reduces to

o) [ [ otk uky) dudk =, (0)IG: (0,67,
KGo JU;
where ¢¥(z) = ¢(y~12y). Note that the latter integral is

/ o(y ta tovay) de.
Gy \Go

Inserting this into the integral over y € G,\G we obtain the expression (4.13).

Remark 7. Note that for v unipotent G, ¢ M, unless M = G. When v = v is unipotent and
M = G then the two formulae coincide, giving the invariant unipotent orbital integral. For example,

the Richardson parabolic of the trivial class in G is of course G itself, so that both formulae collapse
in this case to Jg(1,¢) = ¢(1).

4.12. The spectral side of the Arthur trace formula. We now turn to the spectral side of the
trace formula. The work of Arthur for general groups [3, Theorem 8.2], coupled with the absolute
convergence of the spectral side of the trace for GL,, established by Miiller—Speh [61], yields the
following form of the fine spectral expansion

Jspec = E Jspec,M7
MeL
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for distributions Jspec, a1 (@) to be described below. The term corresponding to M = G is relatively
straightforward, whereas the terms Jypec pr for M € £, M # G, will necessitate a great deal of
notation; we borrow essentially from [26, §4]. Taking for granted their existence, we let

(415) Jdisc(qs) = Jspec,G(d)) and JE15(¢) = Z Jspec,M((Zs)

M#G

denote the discrete and continuous contributions to the trace formula.

For M € L we write Igi.(M(A)!) for the set of isomorphism classes of irreducible discrete
unitary automorphic representations of M (A)!. We may view Ilgis.(M (Ar)!) alternatively as the
set of irreducible subrepresentations of the right-regular representation on L3, (M (F)\M (Ar)').
Indeed, the multiplicity one theorem [42, 81, 70] for the cuspidal spectrum of G = GL,, and the
description of the residual spectrum of GL,, by [59], together imply that the multiplicity with which
7 € Hyise (M (AfR)!) appears in the right-regular representation L?(M (F)\M (Ar)!) is one.

When M = G then according to Miiller-Speh [61] we have

(4.16) Jspec,G(¢) = Z tr(w(¢)),

m€llgisc (G(A)Y)

justifying the notation in (4.15). As in §1.3, we let Jeusp denote the restriction of Jgise to those 7
in the cuspidal subspace Ileusp(G(A)Y).

Now let M € L be a proper standard Levi subgroup. We choose a parabolic P € P(M)
containing M as a Levi subgroup. We denote by A%(P) the space of all complex-valued functions ¢
on the boundary degeneration Up(Ar)M (F)\G(Afr)! such that for every x € G(Ar) the function
©:(9) = 0p(g9)"Y?p(gz), where g € M(Af), lies in L?(M (F)\M (Ar)'). We require that ¢ be
3-finite and K -finite, where 3 is the center of the universal enveloping algebra of gc = g ®r C. Let
A2%(P) be the Hilbert space completion of A?(P). For every \ € aprc the space A2(P) receives

an action p(P,\) by G(Ar)! given by

(p(P, A\ y) () (z) = play)e™ i) =He@),
which makes it isomorphic to the induced representation
(4.17) Ind(L2,.(M(F)\M (Ap)") @ e MM O)y,

Applying this procedure for two parabolics P,Q € P(M) as above, we obtain the (analytic contin-
uation of the) standard intertwining operator Mg p(}) : A*(P) — A%(Q), where X € ahsc; then
Mg p()) is unitary for all A € ia},. For these facts see [3, §1].

The spectral distributions Jspec,pr for proper Levi subgroups M will involve, as an essential
input, the logarithmic derivatives of the intertwining operators Mg p(A), for varying choices of P
and Q. These can be packaged together rather compactly, in the case of GL,,. The Weyl group Whas
acts on P(M) by sending P to wsPw; !, where ws € Ng(Tp) is a representative. This gives rise to
a map on P-induced automorphic forms s : A%(P) — A?(sP) given by left-translation by w; 1. We
write M (P, s) for the composition Mp;p(0) o s : A?(P) — A?(P). Then M(P,s) is a unitary
operator which for A\ € ia}, intertwines p(P,\) with itself, where L denotes the smallest Levi
subgroup of G containing ws; note that when s € Was we have Ly D M (i.e., Ly € L(M)). Then
the work of Finis-Lapid—Miiller [24, §2] (see also [26, §4]) associates with certain dim afs—tuples
Xr. (), consisting of pairs of adjacent parabolic subgroups associated with root tuples 5 € Bp .,
a corresponding iterated logarithmic derivative of intertwining operators, denoted A XL;ﬁ) (P, ).

With the above notation in place, we may now give the definition of Jypec,pr for M # G. Recall
from §4.3 that ar, = ag & ai. For any s € Wps and 8 € Bp r,, we put

(4.18) Jspec,M(¢;8,ﬁ)=/ G

i(aLS)

Ctr (A, () (PVM(P,)p(P, A, 0) ) d,
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where the operators are of trace class and the integrals are absolutely convergent [61]. Finally, let

Z |det(s—1 L5,| L Z JspeCM ¢a5 /8)

SEWM ée%p Ls

(4.19) JspeC,M(¢) | M|

see [24, Corollary 1] or [26, Theorem 4.1].

5. ARCHIMEDEAN STRUCTURES

The goal of this section is to introduce the archimedean structures that will be required in our
construction of spectral localizer functions in Sections 8 and 9. In particular, we shall describe
various Lie algebra decompositions, and recall the parametrizations of the admissible, unitary, and
Hermitian duals of GL,,(Fx)!. Since we work in the setting of a general number field F', some care
must be taken in the presence of more than one archimedean place.

5.1. Local and S-adic Lie algebras. Let £, and F, denote the set of semistandard Levi and
parabolic subgroups of G,,. We will write M, for an arbitrary element in L,.

For M, € L, we denote by M} the largest closed subgroup of M, on which all |x,| are trivial,
as Xy runs over the lattice X*(M,) of F,-rational characters of M,. When v | co, we let Ay, be
the identity component of the R-split part of the center of M,; we have M, = M} x Ay;,. When
v < 00, let

Ay, = M, 0 {diag(w™, ..., @) tiy,... i € Z},

for a fixed choice of uniformizer w, of F,. When M, = Ty ,, we write Ao, = A, .

We set ay, = X*(M,)®R and apy, = Homg(a}, ,R). Their complexifications are denoted ayy, ¢
and ay; o. If M, is isomorphic to GLy, (Fy) X --- X GLy,, (F,) then ap, is isomorphic to R™v,
where m, = dimays,. The map log, : Ay, — apy,, defined as in §4.3, is injective and in fact an
isomorphism when v | co. If M,, C L,, we let aL” denote the kernel of the natural map from ay,, to
ar,. For example, ag, = RI,, C ay,, making an consist of trace zero matrices in apz,. Similarly
to §4.3, we have a direct sum decomposition ay;, = ar, @ aﬁv

The above definitions can be extended in the obvious way to the S-adic setting. For a finite
non-empty collection of places S of F, let Lg = [],cg Lo We will write Mg, or simply M if the

context is clear, for an arbitrary element in Lg. An M € Lg is then of the form M =[] M,
where M, € £,. When § = {v | oo} and M =[], My € Loo we let Apy =[], Ay, and

aM,OO = @ ay, -

v]oo

veS

When M is the archimedean diagonal torus Tp o = Hv| oo T0,0 We write ag oo for apsoo. Thus,

(5.1) a0,00 = H diag(ay1, ..y aum) t @y € R p C goo = gl,,(F @ R)

v]oo
is of dimension rn and ag ., consisting of central elements at every place, is of dimension r. For
every M € L, the Weyl group W (Ay,) = HU| W (Anm,) acts by orthogonal transformations on
aM,co and ap, . When M C L the subspace a{wm =@, aﬁiy is the kernel of the natural map
aM00 = 0L 00- For any M € L, let M = ®(Ay, M) denote the set of roots of Ag = HU‘OO

the Lie algebra of M. Let ®¢1 C ®% be the subset of positive roots, with respect to the ordering
induced by the standard Borel subgroup, and put ®M+ = &M 0 &+,

Ap,y on
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5.2. Norms and Weyl groups. In this subsection we let v | co. We let g, be the Lie algebra of
G,. We denote by 6, the usual Cartan involution of minus conjugate transpose, and let g, = p, ®t,
be the corresponding Cartan decomposition. Fix an Ad-invariant (i.e., conjugation invariant) non-
degenerate bilinear form B, on g,,, which is positive-definite on p, and negative definite on ¢,. Then
B, defines an inner product (,), on g, by the rule (X,Y), = —B,(X,6,Y). We may, for example,
take B,(X,Y) = tr(XY), so that (X,Y), = tr(X'Y). We may extend (, ), to a Hermitian
inner product on g, c in the natural way. We may restrict (, ), to agc and its subspaces. For
L, € L(M,), it then follows from the definition of a]LV}’U and the description of B, that the direct

sum decomposition ays, = ar, @ aﬁ;ﬂ is orthogonal with respect to (-,-),. We shall write || - || for
the norm induced by (-, -),. Using B to identify agc and aj ¢ we obtain a norm on the latter space,
again denoted by || - ||.

Recall §4.4 that K, = O(n) or U(n) according to whether v = R or v = C; thus K, is the
group of fixed points of standard Cartan involution ©, of inverse conjugate transpose on G,, and
Lie(K,) = ¢,. It follows from the Ad-invariance of B that Nk, (an,) = {k € K, : Adga C a} acts
by norm preserving transformations on a, c and aj, . Letting Zx,(apg,) denote the kernel of
this action we put W (A, ) = Nk, (ar,)/Zx, (anr, ). Note that since M, is split, the algebraic and
analytic Weyl groups — W (A, ) and Wy, = Ng, (M,)/M, — coincide [11, §5.1].

Once again, these definitions extend in the obvious way to the S-adic setting. For example, when
S = {v | oo}, we denote by goo = @v‘oo gv the Lie algebra of Go,. We extend in the obvious way
the inner product on g, of the previous subsection to gue.

5.3. The trace zero subspace h;;. We need to adapt the purely archimedean structures of the
previous paragraph to be compatible with G(Afr)!, or more generally with M (Ar)!, where M € L
is a rational Levi subgroup.

The diagonal embedding of M (R) in M (F,) described in §4.2 induces a diagonal embedding of
m = Lie(M) in m. For a rational Levi M € L, the Lie algebra aps should not be confused with
aM,00, Where M = M; the former is of dimension m, the latter of dimension rm, where r is the
number of places of F. For a rational Levi M € L, we shall, as a general rule, identify ap; with
its diagonal image in ag . For example, when M = Tj, the following global Lie algebras,

(5.2) aOGz Hdiag(al,...,an):Zaizo Cayg= Hdiag(al,...,an):aiER ,

v]oo v|oo

defined in §4.3, are diagonally embedded in ag o as in (5.1).

For M € L, we let M € L be a rational Levi such that M C M. We let f)% denote the
orthogonal complement of aps in apro. As usual, when M = T o, we shall write f)éw in place of
h%f . and when M = G we shall drop the superscript and write hys for hj\cj. The spaces hs will be
ubiquitous in everything that follows: indeed, much of the work to execute the strategy of Section
3 amounts to exhibiting appropriate functions of Paley—Wiener type on the dual hM(C.

For H € b1 let BM(H, R) denote the ball of radius R > 0 about H in h34. Similarly BM (u,r)
shall denote the ball of radius 7 in (h3)* about pu € (§3)*. When M = Tp o we shall drop
the M subscript in the ball notation, and when M = G we drop the superscript. In view of the
Cartan decomposition M1 = KM exp(hM K the sets KM exp BM (0, R)KM form an exhaustive
system of neighborhoods of the identity in M. When M = G, we recall the boldface convention
in Remark 3 and agree to write Giong = K exp B(0, R)Ko.. Denote by H(GL,)r the space of all
smooth functions on G, supported in G})Q< R

5.4. Subspace decompositions of hj;. We now provide several subspace decompositions of hs
which will be of use later in the paper.
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Since aps = ag P af/I, we have ap 0 = ag ® af,f @ b% so that

(5.3) ba = afy & hi.

For H € by we shall write H = Hps + HM according to this decomposition, and similarly for
v € ih},. For example, when M = Tj o and M = T, the inclusion bgb C by is given by

Hdiag(avl,...,am):Zdvavi:0Vi C Hdiag(avl,...,am):ZdUZavizo ,

v]oo v]oo

where d, = [F, : R]. Recalling (5.2), we deduce that hy = a§ @ ha°, verifying (5.3) in this case.
The trace-zero conditions defining hgo and ho are over all places v, which is a reflection of the fact
that they are orthogonal complements of globally defined Lie algebras. Using (, ), we may identify
by with b}, to obtain an analogous decomposition of the latter space. The decomposition (5.3)
according to rational Levi subgroups will be used in the trace formula estimates (the spectral side)
of Section 16, in the special case when M = Tj .

Similarly, if L € L, is any archimedean Levi such that M C L, we let hﬁ denote the orthogonal
complement of ay, o inside apoo. When M = Tj o we shall write hg in place of h:];OOO. When
L = G, the space b]\% is the codimension r subspace of ajs o consisting of elements whose v-adic
trace, for each v | oo, vanishes; in other words,

(5.4) b5 = Pl

v|oo

With hg as above, we have the decomposition

(5.5) by = ha @ b

into central and semisimple components, respectively. For example, when M = T o, we have

hg = Hdiag(av,...,av):ZdvaU:O and hOG: Hdiag(avl,...,am):Zam-:OVU

v|oo v]oo

We obtain the decomposition by = hg @ hS in (5.5), which furthermore recovers that of [54, §4.2].
The decompositions (5.5) and (5.4) will be used in the construction of spectral localizing functions
in Sections 8-10 and 15. The terminology of central and semisimple components is meant to reflect
the fact that the continuous parameter v € h?w,c (see §5.5) of an irreducible representation o,
of G will decompose as v = vz + /¥ in the dual decomposition buc = f]*G,(C &) (h%)f’é, with vy
arising from the central character of m.,. We also often further write 1% = (ug)v|oo relative to the
decomposition (5.4).

Then W (Ajs) acts by orthogonal transformations on by, leaving b fixed elementwise. Moreover,
h]\G/I = bf @ bﬁ/l, yielding

(5.6) bar = (be @ bF) & bl = by & by,

and similarly for b%,. For H € by (resp. v € b},) we shall write H = Hyp + HY (vesp. v =
vy, + v¥) according to this decomposition. Note that when L = G in (5.6) we recover (5.5). The
decomposition (5.6) according to archimedean Levi subgroups will be used in Section 9, where we
estimate the contribution of the complementary spectrum.
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5.5. Unitary and admissible archimedean duals. Let Irr(G,) and Irr(GL,) denote the admissi-
ble duals of G, and G._, respectively. The main goal of this subsection is to review the description
of Trr(G,) and Trr(GL,) (due to Langlands and Knapp-Zuckerman, and nicely described in [46,
§2]), and, in particular, to associate with every infinitesimal class of irreducible admissible repre-
sentations m an equivalence class of spectral data [d,v], consisting of a discrete parameter ¢ and
a continuous parameter v, the latter being taken up to Weyl group symmetry. Since the unitary
duals TI(G,) and TI(GL)) can be identified with subsets of the respective admissible duals, this
parametrization can also be applied to isomorphism classes of irreducible unitary representations.

As in Vogan [85, 87], we may put a norm on II(K) in the following way. Let K% denote the
connected component of the identity of Ky ; then K% is the analytic subgroup corresponding to
the Lie subalgebra £, as in §5.1. Let KL = T; 0,00 N K’ have corresponding Cartan subalgebra £r.
For any 7 € II(K) let A\, € €. be the highest weight associated with any irreducible component
of T|ko . Let || - |> = —B(-,0-) be the norm on &7 given by restricting the norm on g., from §5.2;
under the identification of €7 with its dual £}, induced by the non-degenerate bilinear form B, this
defines a norm on &, which we again denote by || - |2, Then, we put ||7|| = |A; + 2pk..||?, where
pK.. denotes half the sum of the positive roots of KL inside Ko.. Given 7 € II(Gy), Vogan defines
a minimal K-type of m as any 7 € II(K) of minimal norm appearing in 7|k_ . In general, a
minimal K-type is not necessarily unique, but for Goc = GL,(Fx) it is [87, Theorem 4.9].

For M € L, or M € L, we let &2(M?') denote the set of isomorphism classes of square-integrable
representations of M'. We say that M is cuspidal if £2(M*) is non-empty. If M € L, and M is
isomorphic to GLy, (Fy) X --- x GL,,, (F,), where ny + - -- 4+ n,, = n, then M is cuspidal precisely
when 1 < nj; < 2 for v real and n; = 1 for v complex.

Following [26, §6] we let D denote the G..-conjugacy classes of pairs (M, ) consisting of a
cuspidal Levi subgroup M of G, and § € &2(M'). We note that W(Ay) = Ng(M)/M acts
on &2(M?Y) via (w.6)(m) = d(w tmw). We let W(Ay)s denote the stabilizer of & in W(Ayy).
Furthermore, we put

(5.7) W (AM s = {we W(Ay)s :wv=v Vv et}

Fixing § € D, we may and shall (in this paragraph) take § to be represented by a pair (M, ?),
where M € L o has blocks of descending size. We call such a pair (M, 0) a standard representative
of §. We caution, however, that the representation ¢ in the pair (M, d) is not uniquely determined;
if (M, d) is a standard representative for § then so is (M, w.d) for all w € W(Ax). For v € by, ¢,
we may form an essentially square-integrable representation § ® e” of M. Let P be the unique
standard parabolic containing M as a Levi subgroup. We may then consider the (unitarily) induced
representation 7(8,v) = Ind% (8 ® e”). This is not, in general, irreducible. Nevertheless, if Re v is
taken to lie in {\ € b3, : (\,a) > 0 for all simple o € ®“\®M} (which one can achieve by replacing
(6,v) by (w.0,w.v) for some w € W(Ays)), then m(d,v) admits a unique irreducible quotient; see
[46, Theorems 1 & 4]. The infinitesimal equivalence class of this quotient is denoted 75,. Then
w5, € Irr(GL,). Conversely, any 7 € Irr(GL,) arises from the preceding construction, as follows:
there is a standard cuspidal Levi subgroup M with blocks in descending size, a § € &2(M?'), and
v € b}y ¢ such that m >~ 75, Given M, a pair (6,v) for which the last isomorphism holds is unique
up to the diagonal action by W (As), in which w € W(Ays) sends (4,v) to (w.d, w.v). We write
[07, Vx| for the W(Aps)-orbit of any such pair, and §, € D for the conjugacy class generated by
(M,9).

Let G' = [I, Sl (R) [1,c SLa(C), where SLi(R) = {g € GL,(R) : det(g) = +1}. We
furthermore put K/, = Ko, N G’. For § € D, with standard representative (M, d), we let 7(m5) €
II(K,) be the minimal K/_-type of m;,, for any choice of v € ih},. This is well-defined, since the
K o-type decomposition of 7(d,v) is independent of v, and 7(d,v) is irreducible for v € ib}, (see
[58, Proposition 3]). We set [|d|| = ||7(7s)||. The set D is equipped with a partial ordering (see [17,
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§2.3]), in which §’ < § if ||¢’|] < ||6]| or &' = §. This partial ordering will be used in §8.5 and again
for the specific case of GL9 in Sections 15-16.

5.6. Decomposition according to J-type. We shall in fact need to parametrize the admissible
dual of ML for any rational Levi M € L. Similarly to the above, we let DM denote the M-
conjugacy classes of pairs (M, §) consisting of a cuspidal Levi subgroup M of M, and § € &2(M*).
(When M = G we simply write D = DF.) Extending the earlier notion, we shall say that the pair
(M, 6) is a standard representative of § € DM if, for every block of M, the corresponding subblocks
of M are of descending size. Given § € DM we write Irr(ML)s for the subset of m € Trr(ML)
with . = . We have

Irr(ML) = |_| Irr(ML)s.

seDM

From the inclusion II(ML) C Irr(ML), we deduce

(5-8) (M) = || I(M)s,
sepM

extending to M the decomposition (1.4) from the introduction.

We may furthermore decompose the discrete automorphic spectrum Ilgis. (M (Ap)'), recalled
earlier in §4.12, according to the archimedean decomposition (5.8). For 7 € Hgisc(M (Ar)'), we let
0, denote the discrete parameter §, € DM associated with m.. We have

Maise(M(Ap)") = | | Taise(M(AR)")s,
seDM
where Hgisc(M(Afp)!)s consists of those 7 for which &, = §. Finally, when 7 € Hgisc(M(Ap)!)s,
with § having standard representative (M, §), we shall write [d,, v| for the W (AM)-orbit of a pair

(6x, ) consisting of a discrete parameter 6, € &?(M1) and a continuous parameter v, € (h17)z
associated with 7.

5.7. Hermitian archimedean dual. We now describe the Hermitian dual of Go,. We are inspired
by the treatment in Lapid—-Miiller [51, §3.3], who deal with the spherical case.
For M € L and w € W(Ap) we let

(5.9) Bir = {v € Birc 0w = 7.

For § € &2(M"), we introduce the §-Hermitian spectrum

(510) hg,hm = U h*M,w‘
’u)EW(AI\/I)g

The key property of b}, . is that whenever v € b3, = the representation 75, admits a non-degenerate
Hermitian structure [48, Theorem 16.6]. If we put

(5.11) B5.un = 1V € by : 75, unitarizable},

then b3, C b}, For v € b}, we have ||[Rev|| < [|p||, where p is the half-sum of positive roots
on G [36, Chapter IV, Theorem 8.1].

A key feature of the §-Hermitian spectrum is that if v € f]jihm is such that Rerv # 0 then Im v
is forced to belong to a positive codimension subspace in h3,. We would like to be more precise
about the collection of such singular subspaces in hj,;. We begin by noting that if s 1 denotes
the +1 eigenspaces for w acting on b}, then b}, = b3/, 1+ b}, 1. From [66, Theorem 6.27]
it follows that for every w € W(Ap) we have by, . = b}, , where M, is the smallest Levi
subgroup in L., containing M and (a representative of) w.
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Let L+(d) be the collection of the M,, as w varies over W (As)s. In view of (5.10), as well as
the observations of the preceding paragraph, we obtain the following inclusion

{Imy Ve bg,hm’ Rev ?é 0} C h;,sing

where
(512) h;,sing = U h?%’
M'eLo ()
M'DM

We shall refer to h;,sing as the d-singular subset of b},.
The following lattice-type property of Lo(d), extending [51, §3.2], will be used repeatedly in
Section 9.

Lemma 5.1. If Ly and Ly lie in L () then the Levi subgroup they generate (L1, La) also lies in
L (0).

Proof. 1t suffices to prove the proposition for each archimedean place v, taking Lq, Lo to lie in
L,(d,). We therefore fix v | oo and drop the v subscripts throughout the proof.

We begin by giving an explicit description of W(Ays)s. Conjugating M if necessary, we may
assume that M is a standard Levi subgroup, whose block decomposition is ordered, with respect
to d, in such a way that

M=MMx - xM™,  §=06""®  ®35™,

where the §; € &?(M}!) are pairwise distinct. Then W(Ap)s is isomorphic to Gy X -+ X Gy,
and we may write w € W (Ap)s as (w1, ..., wt), where w; € &y, so that My, = My, X -+ X My,.
It therefore suffices to prove the claim for pairs of the form (M™,§%™).

We can describe any L € £(9) explicitly as follows: if w € &,,, is such that L = M,,, then L is a
product of Levi subgroups indexed by the disjoint factors in the cyclic decomposition of w, with a
cycle of support {i1,...,4,} being associated with the Levi subgroup generated by M;,,...,M; . In
this way, M,, depends only on the partition of {1,...,m} determined by w. With this description,
it can now be checked that, given wi,wy € &,,, we have (M, , My,) = M,,, where the partition
associated with w € &,,, is the finest common coarsening of those associated with wy, ws. (|

Finally, for every L € L (), we denote by W (M, L)s the subset of W(Ajs)s consisting of
transpositions fixing hr. (This is not a group, as for example, it does not contain the identity.)
Note that W(M, M)s = 0 but that |W (M, L)s| > 1 for L 2 M. See Remark 9 for the role of this
subset in our main estimates.

5.8. Paley—Wiener classes. Let M € L. For a function g € C®(hy) and v € b}, let
g(v) = th g(X)el"X)dX denote the Fourier transform of g at v. The image of C2°(hys) under this
map is the Paley-Wiener space PW(h}, ). Recall that

(5.13) PW(bic) = | PWBic)r,
R>0

where PW(E)}‘\LC) R consists of those entire functions & on b}, ¢ such that for all £ > 0 we have

sup { 1)l IR (1 4 ]))* } < oc.
Ve ¢
Then the Fourier transform CZ°(har) — PW(b},¢) is an isomorphism of topological algebras,
each of these spaces being taken with their natural Fréchet topologies. Moreover, for R > 0, if
C°(ba)r denotes the subspace of g € C°(hys) having support in the ball B/(0, R), then the
Fourier transform maps C2°(har)r onto PW(b}, c)r; see [28, Theorem 3.5].
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We will also be working with decompositions b}, - = b ¢ © (6§ and (h5)E = @Mm(affv)("‘c
dual to (5.5) and (5.4), and with the analogously defined Paley-Wiener spaces PW((ha.c)*)r,
PW((65))r, and PW((a5} &) &-

We write PW for the space of collections of complex valued functions Hps(d,v), indexed by
standard Levi subgroups M (with blocks in descending order), and defined on pairs (J,v) €
EX(MY) x b3sc» such that, for each M,

(1) Hp(-,v) is supported on a finite set of 4, in the sense that for all but a finite number of
§ € &2(M1) the function v — Hys(8,v) is identically zero on bircs
(2) for all § € &2(M?') the function Hp(d,-) lies in PW(h%, ¢);
(3) Hys(w.6,w.v) = Hy(8,v) for all w € W(Ap). ’
Similarly, one defines PWg using PW(h}, c)r in (2).

Lastly, for a fixed § € D, we let PW§7(resp. PWrs) be the subspace of PW (resp. PWRg)
consisting of functions Hy on &2(L') x b1 ¢ for which v — Hp(o,v) is identically zero on bic
unless (L, o) € 4. Similarly, we let H(GL,)s (resp. H(GL,)rs) denote the subspace of H(GL) (resp.
H(GL,)Rr) consisting of those f that are mapped into PWs (resp. PWpgs) under f > trm,,(f).
(Since 75, depends only on the diagonal W (Ay )-orbit of (o,v), property (3) is always met.) Non-
trivial examples of functions in H(GL)s will be given in Section 15.

Remark 8. Given a standard representative (M, d) of 9, a function in PW; is uniquely determined
by the choice of a single W (Ap)s-invariant function h € PW(b}, c)- Indeed, from the latter, one
can construct the associated collection of Hy in PW; by setting Hy(o,v) equal to zero unless
there exists w € W(Ayy) satisfying ¢ = w.d, in which case we put Hy/(o,v) = h(w~l.v). This
is well-defined, in light of the W (As)s-invariance of h. Throughout this paper, we will identify
PW;s with the space of W (Ap)s-invariants of PW(hj, ) via the above construction. The same
discussion applies mutatis mutandis to PWpg s and PW(ch) R

6. ASYMPTOTICS OF GLOBAL PLANCHEREL VOLUME

In this section we asymptotically evaluate the global Plancherel volume V(@) from (1.2), in the
limit as @ — co. Recall the constant €(§) from (1.1). As usual we put d = [F': Q]. The following
is our main result.

Proposition 6.1. Let 0 < 0 < 2/(d+ 1) whenn > 2 and 0 < § < min{1,2/(d + 1)} when n = 1.
Then for all Q > 1 we have

VE(Q) — %(S)Qn—kl + OG (Qn+1_0)-

It is the above proposition which essentially gives the shape of the leading term constant, as well
as the precise power growth, in the Weyl-Schanuel law. The proof of Proposition 6.1 culminates
in §6.6, where we shall also indicate how to deduce from it the following corollary.

Corollary 6.2. We have
DEPAR1) 3 Y h@)en@) [ dE () = €EQ +00(Q),

1<Ng<Q qu TI'OOEH(GI )
q(Te0)<Q/Nq

where ¢y (a) = N(@)" [Ty (1 - xyr)-

In view of the decomposition (3.4), the left-hand side of the above expression will be what
naturally arises from our methods.
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6.1. Conversion to the canonical measure. In order to line up with the measure conventions
for Plancherel inversion in (4.4), we renormalize the spectral measures appearing in Proposition
6.1, to be taken with respect to the measure ug,,.

The relation pg = D}f/ 2A’I‘;(l)wc implies OP! = n2/ 2A%(1 »(1)pP. Similarly, for finite places v
the relation pug, = Ay(1)wg,, implies ﬁBl = A,(1)~ Apl. When these local formulae are inserted
into (1.8), we obtain

2/2
5 = D;/ A%(1 H ! Tgv T3 00
V<00

where the 75 are defined as in (1.7) but with respect to 7ib!. This shows that the quantity vol(7z)
defined in (1.9) can be written as

vol(r3) = D’y /QAF (H G Zy(n + 1)) Zso(n+1),

<00

where
(61)  Zu(s) = / a(m) AR (m),  Zools) = / 4(7o) ™ ABT ()
I(G(Fy)) I(G(Fo)t)

are the local conductor zeta functions at finite and infinite places, respectively.
Proposition 6.1 is then equivalent to the asymptotic

(6.2) / dpPl(r) = (H G Zy(n + 1)) Zoo(n +1)Q" T + 0g (Q"177),
TEM(G(AR)Y) vsoo
Q(m<Q
the implied constants depending, as always, on F' and n. It is rather this version which we shall
prove over the course of this section.

6.2. Local and global conductors. We now define the local conductor of an irreducible generic
representation of GL,,(F),) for all places v of F.

Let 7, be an irreducible admissible representation of GL,(F},). The local conductor can be read
off from the local functional equation of the standard L-function associated with m,. Let L(s,m,)
denote the standard L-function of m,, as defined by Tate [84] (for n = 1) and Godement—Jacquet [31]
(for n > 1). When v is finite, the local conductor appears in the epsilon factor, taken with respect
to an unramified additive character of F),. It was shown in [15, 41, 43] that when, furthermore, m,
is generic, the local conductor encodes the existence of non-zero invariant vectors under a certain
Hecke congruence subgroup. When v is archimedean, the local L-factor is a product of Gamma
factors, and the shifts that appear in them define the archimedean conductor. We review these
definitions now. A more uniform approach, using the local v-factors, can be found in [57, §3.1.12].

6.2.1. Non-archimedean case. Let v be a non-archimedean place. For an additive character of
level zero 1, let €(s,my,1,) be the local espilon factor of m,. Then there is an integer f(m,),
independent of 1, and a complex number €(0, 7, 1,) of absolute value 1 such that €(s,m,,1,) =

€(0, Ty, Y)qu fmo)s Moreover, f(m,) = 0 whenever 7, is unramified.
Under the additional assumption that m, is generic, Jacquet, Piatetski-Shapiro, and Shalika [43]

show that the integer f(m,) is in fact always non-negative. One then calls f(m,) the conductor

exponent of 7,. The conductor ¢(m,) of a generic irreducible 7, is then defined to be ¢(m,) = ¢ flmo),

In particular, q(ﬂ'v) = 1 whenever 7, is unramified.
For an integer r > 0 write K ,(p;,) for the subgroup of K, consisting of matrices whose last row
is congruent to (0,0,...,1) mod p}. In particular, when r = 0 we obtain the maximal compact K,.
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For ideals q, = p], of O,, we have
1

(63 K /K1) = NG (1= ) = s @) = e,

where pr(q,) = N(g,)" is the n-power function on O,-ideals. Jacquet, Piatetski-Shapiro, and
Shalika [41, 43], building on work of Casselman [15], show that for any irreducible generic represen-
tation m, of GL, (F},) the conductor exponent f(m,) is equal to the smallest non-negative integer r

such that m, admits a non-zero fixed vector under K ,(p;). Moreover, the space of all such fixed

vectors is of dimension 1. Letting q,(m,) = p{(m’) by the subsequent work of Reeder [72] it follows

that for an O,-ideal q, and an irreducible generic m, with q,(m,)|qy, one has

(6.4) dim TI'KI o(av) - dn(qv/qv(ﬂ'v))’

where d,, = 1 x---x 1 is the n-fold convolution of 1 with itself. In particular, if 7, is an irreducible
generic representatlon of GL,,(F},), one has

(6‘5) tr (Wv(gKl,U(qv(wv)p{,)» = dn(pZ)

6.2.2. Archimedean conductor. For v archimedean the local L-factor of m, is a product of shifted
Gamma factors. We shall first describe these shifts relative to the inducing data for m,, then use
this expression to define the local conductor of .

As in §5.5, we shall realize 7, as 75, for some § € EX(MY) and v € b, where M is a standard
cuspidal Levi subgroup. Let o denote the essentially square-integrable representation é ® e” of M.
Since M is cuspidal it is isomorphic to GL,, (Fy) X -+ x GLy,, (Fy), where ny + -+ + ny, = n,
1 < n; <2 for vreal and nj = 1 for v complex. We may then decompose § = 61 ® -+ ® 6y, and
vV =Vie1+ "+ VUmEm, Where v; = (v,¢;) € C and (g;) is the standard basis for a}, - = X*(M)®C.
Thus 0 =01 ® - - ® 0y, Where 0; = §; ® €75, Then

m

(6.6) (s,ms50) HL (s,05) H (s +vj,0;

It therefore suffices to describe L, (s,d) for § in <§’2(GL1((C) ), &2(GL1(R)), or £2(GL2(R)Y). (Of
course GL;(C)! is just the circle group, and GL1(R)! = {£1}.)

We have &2(GL1(C)') = {xx : k € Z}, where y}, is the unitary character z ~ (z/|z|)*; in this
case, Ly,(s,xx) = Lc(s + |k[/2). Moveover, &2(GL1(R)!) = {sgn : ¢ = 0,1} and L,(s,sgn) =
I'r(s +¢). Finally, 2(GL2(R)!) = {Dy : k > 2}, where D}, denotes the weight k discrete series
representation, and we have L, (s, Dy) =Tc(s+ (kK —1)/2).

We now insert these expressions into (6.6). To do so in a uniform way, we include v subscripts
on various parameters. In particular, m, denotes the number of blocks in the Levi M, necessarily
equal to n when v is complex. Furthermore, for v real, we denote by a, the number of GL; blocks
and by b, the number of GLo blocks of M,, so that m, = a, + b, and n = a, + 2b,. Now set

vj = |kuvj|/2, for indices j = 1,...,n and v complex, and
€vj, jzl,...,av;
51’.7 = (kvj_l)/27 j:a’u+17"'amv; and Vv(j+bu) :ij7 j:av+17-~-7mv7
1+ (kyj —1)/2, j=my+1,...,n,
for v real. Finally, for 1 < j < n, we put fi,; = vy + dy; € C for any v | oc.

Then it follows from the above computations, as well as the duplication formula for the Gamma
function, in the form T'c(s) = T'r(s)T'r(s + 1), that

o(8,T5.) HI‘ s—l—uw
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for any v | co. Iwaniec and Sarnak [40] then define the conductor ¢(m,) of 7, as

n

(6.7) q(my) = H(l + ’Mvj’)dv,
j=1
where d, = [F}, : R].
6.3. Non-archimedean local integrals. In this section we examine the local conductor zeta

functions (6.1). In the definition of Z,(s), the complex parameter s has large enough real part to
ensure absolute convergence. For a finite place v and an ideal q = p? let

M= [ dpm)
q(mv)=q
be the Plancherel measure of those tempered 7, with q(m,) = q. For Re(s) large enough, we have
$)=> Mpy)g, "™
r=0

Lemma 6.3. We have
Cu(s —mn)
G

Z)‘nﬂ N(q/0)" and Zy(s) = S(s)n L

0l
In particular, Z,(n + 1) = (,(1)/Cp(n + 1)" L
Proof. Applying Plancherel inversion to the idempotent e, () Wwe obtain
1 / ~pl : Ki,0(a) 37pl
_ = tr (7o (€K, (q(mo)pT)) d,up(ﬂ):/ dim Vi, " dpb (7).
pew(Kio(q)  Joe,) (moE6satmap)) AR (e (G " !

From (6.3), the left-hand side is [K7,(q) : Ky]/pe0(Ky) = [K14(q) : Ky] = ¢n(q). Thus, from
(6.5), we get

on(d) = / o (/a(7)) AE2 (1) = 3 dn(a/0)30,(2) = (dy + M) ().
q(m)lq

0[q

By Mobius inversion (and associativity of Dirichlet convolution) this gives 9, (q) = (A, *¢n)(q) =
ot # ) (@) = Dagg Ans1 ()N (q/2)". From

S A ()G = S pale)a " = Gols — ),

’/‘20 C’U(S)n—‘rl ’ 7,,20
we obtain the value of Z,(s). O
6.4. Archimedean local integral. In this section, we shall work with the group G' = G,

viewed as a reductive group over R. Wherever possible, we shall drop the subscript co from the
notation. So, for example, OP' = o2 and = meo.

The work of Harish-Chandra [34, Theorem 27.3] allows us to explicitly describe the Plancherel
measure OP' on II(G'). Namely, for every § € D with standard representative (M,§), Harish-
Chandra defines constants Cjy > 0, depending only on the class of M, and a function p§;(6,v),
such that for every h € L'(&P') we have

(6.8) / h(m) daP!(m
I(G1)

where deg(d) is the formal degree of 4. A standard reference in the setting of general groups is [89,
Theorem 13.4.1]. The density function ,u]C\;/[((S, v) is a normalizing factor for an intertwining map
[89, Theorem 10.5.7]. In the specific context of GL,, more approachable texts are available, such

= 3" Cor deg(s / B )G (6, v) dv,

N
0eD M
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as that of Knapp and Stein [47, (6.3)] over R and the classical work of Gelfand and Naimark [30,
p. 159] over C.

Let 0 = § ® ¥, where § € &?(M') and v € ib}, as above. We write M = [I,cs.. My and
o= Hvesw oy, where o, = 9§, ® €”*. We may then factorize o, = 04,1 ® - - - ® oy, according to the
block decomposition of M,. We have a factorization of the form

GL,, . )
G o nv7,+nvj . .
par(6,v) = | | | | HGLy,; xGLy, ; (0vi ® 0v;).
VESoo 1<i<g<my

Applying standard identities for the Gamma function to the presentation in [47, 30], we may
describe the latter factors can be described in terms of archimedean Rankin—Selberg local factors.
The latter are described, in all cases, in [73, Appendix A.3]. We obtain

Lv(l,O'm' X 51}]‘) 2
LU(O,O'M' X &vj)

GLn tm. -
(6.9) ,LLGLZ:: ch’jinvj (0vi ® 0yj) = ¢

)

where ¢ # 0 is a constant depending only on measure normalizations. The above formula is analo-
gous to that of the p-adic setting [80, Theorem 6.1], and moreover x§; (6, v) reduces to |c(v)c(p) ™42
in the case of M = Tj o and ¢ trivial, where

(6.10) ew)= [ poidar)

is the Harish-Chandra c-function [56, (8.3)].

Remark 9. Recall the subset W (M, L)s C W(Apr)s from §5.7. The significance of this subset to

us is that the Plancherel density function u§;(d,v) defined above vanishes to order 2|W (M, L)s|

at generic v € b} . In particular, the quantity R~ dim b —2{W(M.L)s| featuring in several of our

estimates is commensurable with the u§; (8, v)-measure of the ball of radius 1/R, for R > 1.

We would now like to define a majorizer of the (normalized) density function deg(8)u§;(d,v).
Recall the notation from §6.2.2.

Definition 2. Let v, € ib}, . When v is complex (in which case M, = Tp,) we let

B6 (60, 1) = H (1+‘kvi_k’0j+yvi_yvj‘)2’

1<i<j<n
and when v is real we let

ﬁ]?j;(éval/u) = H Ky H (1—1— ‘Vvi—Vij H (1+ |kvj+yvi_7/vj‘)2

Ay <T<My 1<i<j<aq 1<i<ay
Ay <] <mv

H (1 + ’kvz - kvj + Vyi — ij‘)2(1 + ’kvz + kvj + Vi — ij‘)Z-

Ay <E<J<My

Next, set 85 (5,v) = | J B]\C}”;((Sv,uv).

Remark 10. We have restricted the definition of B]C\’} (0,v) to v € ib},, since that is the support of
the Plancherel measure. Using this assumption, it also follows that B]C\j(d, v) is unchanged when v
is replaced by w.v, where w € W(Ayy).

Lemma 6.4.
(1) We have deg(8)u$;(6,v) < S (5,v).
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(2) For every \,v € ib},,
Bir(0,0) < (1+ [IA = )™ 8§ (6, v),

where

(6.11) dy =Y > dyning.

’UlOO 1<i<j<mv
(3) Let L € Loo(0). Then, for every v € i} and every X € ib},,
deg(8)uy (6, 1) < I = w|PW RSN 4 |A — eIV OEERl 55 (5, ).

Proof. We must first explicate the Rankin—Selberg L-factors involved in the definition (6.9) of
the density function u§;(6,v). It suffices to do so in the following cases (see [84, p.319] and [73,
Appendix A.3]):

vi

) = Le(s +v1 + 2, Xk +ke) = De(s +v1 + 12 + [k + k2[/2),

Lg(s,sgne” x sgne"?) = Lr(s + v + vo,sgn) =Tr(s+v1 + 12 +¢€), (e =€+ €2 mod 2)
Ly(s, Dy ® € x sgn®e”?) = Lr(s + v1 + v, Dy x sgn®) =Tc(s+v1 +va + (K —1)/2),

Ly(s,Dg, ® €t X Dy, ® €?) =Tc(s+v1 +va + |k1 — k2| /2)Tc(s + v1 + vo + (k1 + k2)/2).

We shall apply these formulae when the second member is a contragredient representation. In light
of this, we note that the contragredient representations of xre”, sgne”, and Dy ® e” are x_re ",
sgne™” and Dj ® e”, respectively. From this description of the local Rankin—Selberg L-factors,

as well as Stirling’s formula, in the form
(6.12) Ly(1+s)/Ty(s) < min(]s|, (1 + \s\)d”/Q),

we deduce that u§;(6,v) is majorized by the product over 4,5 in 5§ (5,v). Taking deg(s) into
account yields the first statement.

The second statement follows directly from Definition 2, applied to A = (A — v) + v.

For the third statement, we write again A\ = (A — v) + v and use the first bound in (6.12) to
estimate those factors of HAG/[ (0, A) that vanish along ih7 and the second bound for the remaining
factors. This implies (3), in view of Definition 2. O

Le(s, Xk, €7 X Xkpe

We define a measure 3(r)dr on II(G') by putting, for any h € L' (i),

(6.13) /H(Gl)hwﬁ dw—Z/ h(ms,,) 55 (8, v) dv.

0eD iy
Lemma 6.5. For QQ > 1 we have / B(m)dr < anl/d'
Q<q(m)<2Q

Proof. We begin by estimating the § sum in (6.13) by an integral, as follows. Let § have standard
representative (M, ), with 6 = ®y|ody on M =[], M,. We define

v|oo

> d, anlmuvjzo

(6.14) Hy=pe [ vl 7
H Re(pj) =0forv =R, j=1,.

Pj = fo(j+b,) for v =R, j —av—l—l,...,mv

v]oo

The space H s captures the values of the parameters ji,; involved in the analytic conductor (6.7),
up to real shifts of bounded size. Finally write H(Q) = {z € Hun : q(p) ~ Q}, where q(u) =
[Tojoo [T (1 + pwj|)%. Here, and throughout the proof, we shall use the symbol ¢ ~ @ to mean
c1Q < g < 2@, where 0 < ¢ < ¢ are constants that can change from line to line.



38 COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR

We now define a function 51\62 on Hps that will capture the Plancherel majorizer of Definition 2.
Namely, we put 8§ (1) = | B ﬂf/f; (1y), with

B ()= [T Re(uodl TT (Ul —m)™ T (U fbrwi = g ])* (1 |10 + g ).

Ay <T<Myy 1<i<ay Ay <1<j<my
v real 1<j<n

Observe that this reduces to H1<i<j<n (1 + ’,um- — uvj’)d“ when M, = Tp,. Then, by construction,

we have the upper bound
[ smar<m [ s§0dn,
q(m)~Q M JHum(@)

the max being taken over cuspidal Levi subgroups of G_.

Fixing M, we now dyadically decompose the integral over H;(Q). Let R denote the collection
of all tuples R = {R,;} of dyadic integers, indexed by archimedean places v and j = 1,...,n. For
R € R we let Hyyr denote the intersection of Has with {p € [0 C™ ¢ (14 |ptvs]) ~ Ruj Vv | 00}
ERQ)={ReR:]],, Rff; ~ Q}, then Hp/(Q) is contained in the union of the s g, as R runs
over R(Q). We deduce that

(6.15) / B () dp < Z max B (1) vol Has g
Hu (Q) RER(Q) MR

We now bound the Plancherel majorizer 5$;(1) by a factorizable expression in the coordinates
iyj. Fix an R € R. For each v | oo we re-index the R,;, if necessary, so that R,, < --- < Ry1. We
claim that, for u € Has g,

n
(6.16) s < 111207 (% = R3).
v]oo j=1
To see this, for indices 1 <4, j < n, let My;; = maxyey; j3(1+ |poe]). Then, for v complex, the claim
follows by inserting 1 + ‘,u,m- — ,uvj‘ < M,;; and taking into account the ordering of the R,;. For
real places v, a similar reasoning shows that the product over 1 < i < a,,7 < j < n in the definition
of ,BJ\G/[’; (o) is at most [];;<,, icjcn Moij- For the remaining factors, we first observe that

H (1+‘“mfﬁ‘vﬂ")2(1+|Mvi+ﬁvj‘)2<< H Mf;lz'j?

Ay <i<j<my Ay <T<J<My

and the latter, in view of the symmetry M,;; = M,;; and the third condition in (6.14), is
T  MoiiMyjirn) Muison Mooy oy = ] Mois-

ay<t<Jj<my ay<i<j<n
J#itby

We furthermore bound [, i<, IRe(twi)| by [1a, <icm, (1 + [10il) = [a, <icm, Muigi+b,)- Putting
all everything together we find ﬁfj; (tv) < Tlicicj<n Moy in the real case, and we again deduce
(6.16) using the ordering of the R,;.

To estimate the volume factor in (6.15), let vy | oo satisfy Ry,1 = max, R,1 and write Ry = Ry,1.
From the first condition in (6.14), we have vol(Harr) < Ry* [1,;%vj. Together, the above
estimates yield

n
— —i41
(6.17) max BSr(w) vol Haur < Ry [ [] 207
MR v]oo j=1
We first treat the case when d = 1, so that there is a unique archimedean place, which is real.

Then (6.17) yields an upper bound of R’f_l I 2 R;L_j +1, upon dropping the v from the notation.
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Since H]- Rj ~ @, the latter product is at most Q"1 Hj>2 R?ij. The sum over the dyadic integers
R;, for j > 3, is a convergent uniformly bounded geometric series. There are only O(1) remaining
choices of Ry, Ry; indeed, from Hps,r # () we have Ry ~ R, and there is exactly one dyadic integer
lying in any given dyadic interval. This produces the desired bound of Q™! in this case.
Henceforth, we assume that d > 2. Using [], ; #v; ~ @, the right-hand side of (6.17) is of size

anlRal H H@SJ—] — anl H H‘%fj_]Ral H 7
v]oo 521 v j=2 v|oo
It remains to execute the sum over R € R(Q). We begin by noting that for R € R(Q),
-1 a1
Ri' [[#n =124 I BRua/Bo™* < (Q/T[11%w) ™ TI (Rer/Ro)™".
v|oo v]oo v|00,v#£vg v]oo j22 v|00,v#£vg
Thus, grouping the sum on R,; according to (min,—,, Ry1/Ro) ~ 1/N, we obtain
a1 a-1
> R %20 < @/ T[] %) = Y. N V0 1+ N) < (Q/ [T T[] %) * -
Ry1e2N v|oco v|oco j=22 Ne2N v]oco j22
Inserting this into the remaining sum we get
Z max A5 (1) vol Hay r < Q14 H H Z %;;jﬂ/d.
Hwy,r ’
ReR(Q) v|oo j22 R, ;€2N

Since d > 2, the exponents in each factor are all strictly negative, in which case the geometric series
are absolutely bounded. We finally obtain O(Q™ /%) in all cases. O

Corollary 6.6. The archimedean conductor zeta function
Zulo)= [ qlm)*datl(a)
In(Gh)

converges absolutely for s € C with Res >n — 1/d.
Proof. This follows from Lemma 6.4 (1) and Lemma 6.5. 0

Remark 11. Despite the “spikes” introduced by the product condition ¢(m5,) < X, the asymp-
totics of the Plancherel measure of the sets {v € ib}, : ¢(75,) < X} as X — oo feature pure power
growth without logarithmic factors. This is due to the following two facts: first, the Plancherel den-
sity increases into the spikes; and, second, these spikes are somewhat moderated by the trace-zero
condition. To visualize this latter feature, we include the following graphics.

FIGURE 1 FIGURE 2 FIGURE 3
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In Figure 1, the region {(1 + |#|)(1 + |y|)(1 + |2|) < X} is drawn in R3. The spikes extend as far
as < X. The intersection with « 4+ y + z = 0 is indicated in bold and reproduced in the plane in
Figure 2. The spikes extend as far as < X1/2.

In Figure 3, the set {(1+|z|)(1+|y|) < X} is drawn in R? with spikes as far as < X and volume
= X log X. The intersection with z 4+ y = 0 is in bold. This produces a segment of length = X1/2.

6.5. Global analytic conductor. In this section, we define the analytic condutor Q(m) of ev-
erywhere locally generic 7 in the adelic unitary dual II(GL,(Ar)!). This includes, on one hand,
cuspidal automorphic representations 7 of GL,(Ar)!, since their local components are generic
[44], and on the other, any m € II(GL,(AFr)') appearing in the support of @P!, since such 7 are
everywhere tempered, and therefore generic.

Let 7 = ®,m, € II(GLp(Ap)') be everywhere locally generic. Let q(m) = [, o0 (qu(m) N OF)
with each q,(m,) being defined in §6.2.1. Then q() is an Op-ideal called the arithmetic conductor
ideal of 7. Its absolute norm ¢(7) = N(q(7)) € N factors as [[, .. ¢(m,). As almost all local
components of 7 are unramified, these products make sense as finite products.

The analytic conductor of m is defined as Q(m) = [, q(my). Writing ¢(moc) = [[,(o0 ¢(7v) for the
archimedean conductor, it follows that Q(w) = q( )q(Too)-

Remark 12. For an integral ideal q in O, whose completion in A factorizes as [[p;”, we agree
to write Ki(q) for the open compact subgroup of GL,(Ay) given by ], .. K1.(py’), with each
local factor being defined in §6.2.1. Its index in Ky is the product over all finite places of the local
indices described in (6.3). Thus |K¢/K1(q)| = ¢n(q), with ¢, as in the statement of Corollary 6.2.

6.6. Proof of Proposition 6.1 and Corollary 6.2. We deduce from Lemma 6.3 that

[ @@= IIme) [ @)= Y e [ @)

TEI(G(AR)Y) Nas@pilla oo €TI(GL,) Nos@ oo €TI(GL,)
Qm<Q 4(7o0) <Q/ NG 4(m0) <Q/NG

where wy, = pp *x Apy1. Let W, (X) = Zng x Wn(q). Exchanging the order of summation and
integration,

(6.18) / AP () = / W(Q/q(mo0)) dGB (o0
(GL,)
Tell(G(Ar)')
Q(mM=<Q

The statement of the proposition will follow from an asymptotic evaluation of W, (X).

Recall the classical estimate ) nycx 1 = (p(1)X + O(X1=2/(d+1)) on the ideal-counting func-
tion [50, Satz 210, p. 131]. From this we deduce that given any o > —1, 0 < 6 < 2/(d+ 1), and
X > 0, we have

(1
(6.19) Z N¢° = (C;FJEiXOH + Oup (Xa+179)’
Ng<X

where for X > 1 we simply estimate X°t1-2/(d+1) — O(Xo+1-9) and for X < 1 the estimate
(6.19) holds vacuously. Using (6.19), we find that, for every X > 0,

DI ILRICLED P e e (lii)”HW(éi)"H_e)

N(ve)<X Ne<X

xntl Anti(e n+1—6 [Ant1(e
_n+1 Z Nn+1 <X Z Nn+1 0)
Ne<X Ne<X
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From [Ap+1(n)| < dpy1(n) < (Nn)€ and the identity > A1 (n)Nn=% = (p(s)™" "1 we obtain
1 ¢r(1)

_ n+1 n+1—0
(6.20) Wh(X) = n+1§F(n+1)"+1X +0(X ).
Using (6.18) and (6.20) we see that
N 1 (1 n el
(6.21) / dpPl(r) = 1 CF(7§F+( 1))n+1 Zoo(n+1)Q" + O(Zoo(n+ 1 —0)Q"7).
Tell(G(AF)")

In light of Corollary 6.6, both integrals converge. Inserting Lemma 6.3, we recover (6.2).
Finally, to establish Corollary 6.2, we observe that w,, = pp*Anp1 = pprp*™t) = (Ppxp)* ™ =
©n * Ap. Thus, arguing similarly to the beginning of this paragraph,

D) Y Ya@e® [ ama= [ e,

1<Na<@ 2lq e €TI(GL,) eT(G(AR))
4(ma0)<Q/ NG QmM<Q

to which we may then apply Proposition 6.1. ]

Remark 13. A natural way of determining the asymptotics of V(@) is through a Tauberian
theorem, such as the quite general one to be found in [16, Theorem A.1]. In this way we would
consider the associated zeta function

/ Q(m)~* da¥ (),
I(G(Ar)Y)

for s € C of sufficiently large real part. Although we do not explicitly take this point of view in this
section, our calculations suggest that the abscissa of convergence of the above integral is s = n+1,
where it has a simple pole with residue vol(7z) (thus a =n+1,b =1, and © = %HVOI(Tg) in the
notation of [16, Theorem A.1]).

Part 2. Proof of Theorem 1.2
7. PREPARATIONS

Our principal aim in Part 2 is to establish Theorem 1.2. For this we need to understand the
behavior of N(q,d,?) from (3.3) in all parameters. The bulk of the work will be to approximate
N(q,9, P) for nice enough sets P which lie in the tempered subspace ib7},.

To formulate this precisely, we will first need to define what class of subsets P we consider and
associate with them appropriate boundary volumes. Once these concepts are in place we state, at
the end of this short section, the desired asymptotic expression for N(q,d, P) in Proposition 7.3.

7.1. Nice sets and their boundaries. For M € L., we let B, be the g-algebra of all Borel-
measurable subsets of ih},. For every P € B, and p > 0, let
P°(p) ={n€iby; : B(u,p) C P}, P*(p) = {n € iby; : B(u, p)NP # 0},  OP(p) = P*(p)\P°(p),

where B(u, p) denotes the open ball of radius p centered at u. Then, for every point u € 9P(p),
there are points vy, v9 € B(u, p) with v1 € P, v, & P, and hence by a continuity argument there is
a point v on the boundary OP such that |u — v| < p; in other words,

(7.1) oP(p) C | J B(v.p).
vEIP

We record a few simple facts. For any bounded Borel set P € B, and ps > p1 > 0, let
P*(p1,p2) = P*(p2) \ P*(p1), P°(p1,p2) = P°(p1) \ P°(p2).
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Definition 3. Let X,Y C ibj, and r > 0. We say that X is r-contained in Y if, for every u € X,
B(u,r) CY.

With these notions, we are ready for the following simple lemma.

Lemma 7.1. Let P € B,; be a bounded Borel set. Then:
(1) For every p,r > 0, the set OP(p) is r-contained in OP(p + ).
(2) For every pa > p1 > 1 > 0, the set P*(p1, p2) is r-contained in P*(p1 —r,p2 + 1), and the
set P°(p1, p2) is r-contained in P°(p1 — 7, pa + 7).

Proof. These statements follow essentially by the triangle inequality. For example, for the first claim
of (2), we need to prove that, if v € P*(p1, p2), then B(v,r) C P*(p1 —r, p2+ 7). Indeed, there is a
ve € B(v, p2)NP while B(v, p1)NP = (. Therefore, if v; € B(v,r), then v, € B(vy, po+7r)NP and so
v1 € P*(p2+r). On the other hand, we must have B(vq, py —r)NP =0, for if v3 € B(vy,p1 —7r)NP,
then v3 € B(v, p1) N P, a contradiction; and so v; & P*(p1 —r), as was to be shown. The other two
claims are proved analogously. O

It will be convenient to consider the following family
By = {P € By : Pis bounded and Vp > 0, P°(p), P*(p),0P(p) € B}

For example, every compact region with a piecewise smooth boundary clearly belongs to %),.
Finally, if 6 € D has standard representative (M, J), we define #(0) to be the family of all W (Axs)s-
invariant sets in %),.

7.2. Archimedean Plancherel volumes. Fix M € L., and § € &*(M"). Let P € %);. For
R > 0 and large enough N € N, we define

(7.2) dvolg N (6, P) Zz— / B85 (8,v) dv.
OP({/R)
We shall often drop the dependence on N in the notation, writing simply 0 volg(d, P).
Intuitively, the sum in (7.2) should be dominated by terms with small ¢, and indeed by estimating
the Plancherel majorizer, the following lemma shows that 0 volg(d, P) is essentially the Plancherel
majorizer volume of the 1/R-thickened boundary of P.

Lemma 7.2. For all sufficiently large N,
dvolr N (8, P) < / B (6,v) dv.
OP(1/R)

Proof. The lower bound follows trivially by positivity. For the upper bound, consider the double
integral

1:/ / (14 RN — )~V 85, (5,\) dAdv.
aP(1/R) Jin*

The lemma will follow from the follow two inequalities:

(7.3) R™4mba g yolp(8, P) < I < R~ 4imbu / B (8, v) dv.
OP(1/R)

For the lower bound in (7.3), we first restrict the inner integral over A\ to 9P(¢/R) for any ¢ € N.
We switch the order of integration and let A € OP(¢/R) be arbitrary. By definition, B(\,¢/R)
contains a point in P and a point in P° and thus by convexity and continuity two such points
at a distance no more than 1/R; taking 1y to be the midpoint between these two, we have that

B(vo,1/2R) € OP(1/R) and ||A — v|| < (£ + 1)/R for every v € B(1,1/2R). We may therefore
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restrict the inner integral over v to the ball B(vg,1/2R), minorize the integrand by (=N while
picking up the volume of the ball R~ 4mbax g0 that

I> / 855, )\)/ (1+RIIAN—v|) ™ NMdvd) > R—dimhMe—N/ B8, A) dA.
OP(¢/R) 8P(1/R) dP(¢/R)

Multiplying both sides by £=2 and summing on / establishes the first inequality in (7.3).
To prove the second inequality in (7.3), we use Part (2) of Lemma 6.4. The inner integral in [ is

< [ @R (1 A= )™ G 6 ax

M

*

by

< R™Amb gG (5, y)/ (1+ AN+ an < R0 58 (5, 1),

uniformly for every N > dys + dim byy. O

Next, recalling the description of Hermitian archimedean dual and the notation |W (M, L)s| from
§5.7, we define for every L € L(0)
(7.4) volg, (6, P) = R=imoy (00)=2WMLLs| [ (1 4 q(u, P)- R)™NBS(6,v) dv.
in;
When L = M we drop the dependence on L from the notation and simply write volp (6, P) =
volgr, (6, P). Note that

voln(3,P) = [ 56,0 dv + O(0 vole(s. P));
P

moreover, volg, (6, P) < volg, (4, P) if Ry < Rs.
Finally we shall write

(7.5) volR(6,P) = Y volg.(,P).
LeLo(9)
L#M

Remarks 14.

(1) It will be plain from our arguments that a sufficiently large N € N (in terms of n and F') can
be chosen once and for all to ensure convergence of sums we later encounter, and we normally
suppress the dependence on N in the notation; if we want to emphasize this dependence
(for example, in §11.2), we shall write d volg n (8, P) or (when L = M) volg n (6, P).

(2) Under certain geometric conditions on P, namely if d(v, P) =< d(v, P Nib}) for all v € ib},
it can be shown that volg 1 (4, P) < fP'(l/R)m’hz B$,(6,v) dv, similarly to Lemma 7.2. This
would be the case, for example, for a ball or a box in ih}, centered at the origin. We do

not pursue this observation in detail since it is not required for our main application to
Theorem 1.2.

7.3. Tempered count for fixed discrete data. The central ingredient to the proof of Theorem
1.2 is the following result.

Proposition 7.3. Assume that Property (ELM) holds with respect to § € D. There are constants
¢, C,0 > 0 such that for P € A(9), integral ideals q with Nq > C, and 1 < R < clog(2 + Nq),

N(a,8, P) = DA (1)pn(a) / aoy!
(7.6) P
+0 (mq) (8 volg(8, P) + vols(8, P)) + Nq™ Vol (s, P)) .

If Nq < C, then (7.6) holds with the first term replaced by O(npn(q) Ip d@gé).
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Proposition 7.3 will be proved in Section 11, after having introduced an appropriate class of test
functions in Section 8 and estimated the (exponentially weighted) discrete spectrum in Section 9.
Then, in Section 12, we make the deduction from Proposition 7.3 to Theorem 1.2.

Our methods in fact yield a main term in Proposition 7.3 for every q; in the case Nq < C, its
shape is mildly affected by the roots of unity in F' (see (8.5)). Since the bound O (¢, (q) [ di\ug}))
in that range is sufficient for the proof of Theorem 1.2, we have not included the finer result for
small q.

Proposition 7.3 provides a Weyl law with explicit level savings, with full flexibility and uniformity
with respect to the discrete parameter § € D and the region P € %(J). For example, specializing
to the ball B(0,r) C ib}, of radius r > 1/log(2 + Ngq), we obtain

1 1 n2 2 A % o~
NG B(0.0) = (1405 (o + o ) ) DE A Wpn(@@26,5(0,1),
Note that, for every fixed 9,
QPL(8, B(0, 1)) ~ Agrdmtdimbar gy o0
where djy is defined in (6.11), and
BB (8, B(0,7)) ~ agr?WMGsltdimbar 5y oF

for some explicit constants Ag, as > 0.

8. SPECTRAL LOCALIZING FUNCTIONS

In this section we introduce a class of Paley—Wiener functions which localize about given archi-
medean spectral parameters, and then estimate the central contributions to the geometric side of
the trace formula for the test functions giving rise to them.

8.1. Definition of spectral localizer. Let § € D and a real number R > 0 be given. Recall
the space PWpg from §5.8. Let (M,§) be a standard representative for ¢, and fix a spectral
parameter p € ih},. As in §5.5, we let [d, ] denote the W (Aps)-orbit of (6, 1). In this section, we

will be interested in functions h(;é“ € PWpg, which localize about the W (Ar)s-orbit of p in ih3,
(equivalently, under the identification from §5.8, about [d, u]).

Definition 4. A function h%“ € PWg, will be called a spectral localizer (about [6, p]) if

(1) hf%”(y) > 0 for all v € ib};
(2) the normalization
/ haé“(y) dy = R~ dimbu
i,
holds;
(3) the estimate

0, R||Rev|| o -N
hH (W) <y e max (1+ R|lv —w
R ( ) <N weW(AM)(;( ” N”)

holds for all v € h’JK\J,C and all N > 0;
(4) there are functions

0 0
W7 e PWhgc)rn  and Ry =[] hp" € PW((0S)E)

v]oo
with hf.t@”’”2 € PW((aﬂGﬂ)(’é)R such that hf%”(l/) = h’éz(yz)h(;%uo(yo). Here, we write M =
Hv‘oo M, and § = HU|OO &, and use the decomposition of h%, from §5.4 to write pn = pz + p°,

: * * G'u *
with 17 € b ¢ and p” = (1)) yjoe € (W55 1) € (agf)E-
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Clearly, items (1)—(3) are ensured by the factorized conditions (with a suitably small ¢ > 0)

Wi > 0 on i, / WiZ = R 2 () < ePIRZI (14 Rllvg — g7V,
ihg

0 .G
h&nuv - R dim aMZ}7

(81) k" > 0o0mi(afp)", /< "

G
ang )*

6u,sd 0 cR||Re Y| 0 0\—N
hR v,) <N € v max 1+ R|lv, — W .
( v) N wEW(AMv)éu( H ! UH)

Finally, a system of spectral localizers héé” over all [J, p] is said to be normalized if, additionally,
for every v € ibj,,

/ ' (v) dp = R~ dimbar,
ih%,
Remarks 15.

(1) Recall that the notation PWp 5 includes the assumption of W (Ajs)s-invariance. Note that
W (Anr)s acts trivially on b, -, so that h%“o is necessarily W (A )s-invariant.

(2) We also clarify that the spectral localizers hi’i" will be used with varying R and [0, ], and
that the implied constant in (3) is understood to be independent of R, [0, u], or any other
parameters (apart from F' and n), unless explicitly indicated otherwise.

(3) We note that Property (3) is in agreement with the definition of the Paley—Wiener space

PW(hMC) r in §5.8, although the former features a factor of R in the polynomial decay
factor while the latter does not. Indeed,

min(L, R)*(1+ [v[)* <& (1+ R|v[)* <k max(1, R)* (1 + ||v|)".

Since the definition of PW(bh}, ¢)r makes no statement about the dependence of the stated
supremum on R or k, includiné such a factor would yield the same space.

(4) These factorization conditions are imposed (and hence ensured in the constructions in §8.2
and §9.2) solely for their utility in Section 15, especially the second factorization of héé“ ’ (9)
over the individual archimedean places; they play no role in the actual application of spectral
localizers in this and the later sections. For a similar decomposition to (4) in the literature,
see [54, §4.2] in the context of M = T .

8.2. Construction of spectral localizers. In this subsection, we show how to construct an
explicit normalized system of spectral localizers satisfying Definition 4, which will be used in the
proof of Proposition 7.3 in Section 11. We remark, however, that everything in §8.3 (resp., §8.4)
applies to any spectral localizer (resp., any normalized system of spectral localizers) verifying
Definition 4 and condition (8.2), independently of any explicit construction.
It suffices to construct the central and semisimple factors of h(;“ which appear in the definition.
— Abelian localizer: We let ~: C2°(hg) — PW(hg ) be the Fourier transform. Let go €
C(he) be supported in the ball of radius 1, satisfy go(0) = 1, and have non-negative
Fourier transform hg = go on ih,. For a real parameter R > 0 we write gor(X) =
R~4imb6 g0 (R=1X) and ho,r = go.r; in particular, ho g lies in PW(b o). We let g (X) =
go,r(X)e 2z X) and hiZ = git?. Then we have Y7 (vz) = ho r(vz — piz).
— Semisimple localizer: Next we let g1, € C° (af/[“;) be supported in the ball of radius 1
about the origin and satisfy g1,(0) = 1. Assume h;, = g1, is non-negative on i(a]\G/j;)*.

Let g1, ro(X) = R_dimagﬁjgl,v(R_lX) and put gégy(X) = gLR,U(X)e_Wg’)Q. Then if
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0 0 0
h1 R, h%“v € PW((a]\Gj;)?é)R are the Fourier transforms of g; g, and géﬁ:’v, we have h’;{ (vy) =
0
h1,rw(ve — ). Finally, for 19 = (10,0)yje0 € (b%)f{;, we set by (10) = [T hé’jv(yg).

Z 0
With the above constructions, we now set hl(v) = iy (vZ)hl, (1°) and let h}sé“ be the unique
function in PWpg s such that, for v € b}, ¢,

1
W)= ——"— 3 W)
A R
WA e,

In other words, the function h%“ (o,v) is zero if o ¢ J§ and is otherwise equal to the displayed
equation. (This is in accordance with our notational conventions for functions in PWg s, as de-
scribed before Definition 4.) It is clear that this choice satisfies (1)—(3) as well as the normalization
property. The factorization property (4) also holds as it is preserved in the W (Ajs)s-average.

8.3. Central contributions. Recall the definition of the space H(GL )rs from §5.8. In this

subsection, let ;1 € ib}, and assume that we have at our disposal a test function ff%’“ € H(GL)ers
(with a constant ¢ > 0 depending on F', n only) such that

(8.2) h%“ DVt ( g’“)

is a spectral localizer in PWp s about [J, u], as described by Definition 4. In this subsection, we

evaluate and bound the central contributions Jgent to the trace formula, used with fg,j“ as the
archimedean component of the test function. From the expression (4.14), we have

’I’L2 2 * ,
(8.3) Jeent(Ercy (@) ® F5") = Dp PAR(Wen(@) Y. ()
YEZ(F)NK1(q)
'YOOEGéo,gcR

Note that, by compactness, the sum over « in (8.3) is always finite. The next lemma estimates the
number of terms in (8.3) and, in fact, shows that, in the range 1 < R < log(2 + Nq) of interest to
us, the sum typically contains only the identity element.

Lemma 8.1. There exist constants ca,Cy > 0 such that, with the field notation from §4.1:

(1) the sum over ~ in (8.3) has at most O(1 + (R/log(2 + Nq))"*"271) nonzero terms.

(2) if 1 < R < colog(2 4+ Nq), the sum over 7y in (8.3) consists only of v = 1 and possibly a
subset of non-identity roots of unity in OF.

(8) if, additionally Nq > Cy, then the sum over 7 in (8.3) reduces to the identity v = 1.

Proof. Let V =[], R be Minkowski space and denote by H = {(zy)yjoc € V : >_, dyxy = 0} the

trace-zero hyperplane. The logarithm map logyp : O — V, v — (log |’Y(v)\)v|oo, where () denotes
the image of v under a real or complex embedding associated with the place v, takes values in H.
Its kernel consists precisely of the roots of unity in Oj.

Note that elements v € Z(F)NK;1(q) are given by diagonal elements corresponding to a unit u in
O} congruent to 1 mod q. If ¢y is taken small enough, the image under logy of such u is a lattice in
H having trivial intersection with B(0, ccolog(2 + Ngq)). From this, (1) follows by a simple lattice
point counting argument. Moreover, for cR < ccolog(Nq), the only v € Z(F) N K1(q) contributing
to (8.3) correspond to roots of unity congruent to 1 mod q. This is a finite set which for q large
enough is just 1. O

v]oo

Recall the Plancherel inversion formula given in (4.4) and the explicit decomposition (6.8). If
ws,, denotes the central character of 75,, we obtain, for v € Z(F),

(3.4) £() = Car deg0) [ B )} (1)ue(6.0) .

by,
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Sy o
Thus Jcent(EKl(q) ® fR“) is given by

’Il2 * s —
£5)  DEPADe@ > Curdes(d) [ B )os)nGi(60) v
~veZ(F)NK1(q) by
'YOOEG})O,QCR

In particular,

(8.6) Jeent (€1, (q) @ f3) <€ 0a(@) - {7y € Z(F) N K1(a) : 7o € Gl cen} - 115"

It will be useful to have the following estimate, which is a variation of [20, Proposition 6.9].
Recall the Plancherel majorizer 3§, of Definition 2 and the subset W (M, L); of §5.7.

1@z

Lemma 8.2. For L € L,(5). Then, for every pu € ih; and every R > 1 we have
4, —dim —

W00 o, < R im0 —2W OIS G 5 )
Proof. From the definition, we have that

5, 6’

A sy = Cordes®) [ i 0)nio.) v
Y
Combining Lemma 6.4 (3) with the rapid decay of hf_—’i” , the right-hand side is at most
max / (1+ Rllw = wpl) ™ [lv = wpl 2V LD (1 4 o — wpl)) VD556 (6, ) o
weW (Anr)s by,

This is in turn bounded by

R~ dimbar—2W(M.L)s| 3G (5 M)/ (1 + ||p|)~ NHam WML qy « R=dimbu—2lW(M.L)s G (5 ).

by

uniformly for N > dim by + maxay, r,(das + |W (M, L)s)). O
We obtain the following estimate for the central contributions.

Lemma 8.3. For 0 € D with standard representative (M,0), integral ideal q, and R > 1, the
following holds: if pu € ib} for some L € Lo(6), then

eent (Ext, () @ Sp1") < R0 =2WALLSI(1 4 (R/Tog(2 + Nq))™ ™) 0, (9) 857 (0, 1).

Proof. We use Lemma 8.1 (1) to estimate the number of v contributing to the second factor in
(8.6). We then apply Lemma 8.2 to the last factor in (8.6). O

8.4. Approximation estimates. Let us assume that we have at our disposal a system of test
functions fg’“ € H(GL)ers as in §8.3 over all [d, u], locally integrable when seen as a function of
(9,11) € G xib%,, and whose spherical transforms h(;é“ € PWg,s given by (8.2) form a normalized
system of spectral localizers in the sense of Definition 4. In this subsection we will show how this
data can be used, by an averaging procedure, to construct additional functions in PWg s which
smoothly approximate characteristic functions of certain sets. We will moreover construct test
functions that give rise to the latter via the spherical transform.
Specifically, for a set P lying in the class Z(J) defined in §7.1, and a parameter R > 0, we put

(8.7) WP (v) = RO /P B0y dp, AP (g) = ROy /P 75 (g) du.

Note that if Property (ELM) holds for § (see Definition 1), then it holds using h‘;ép, for any
P € A(9), with the upper bound

(88) Jerr0r<€K1 (q) & f](.sép) < eCRNqTL_a /P B]\GJ((S, V) dv.
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Here, as in (1.3), we have denoted Jerror = Jdisc — Jeent-
We now quantify the extent to which h(;ép approximates the characteristic function of P. We
shall use the notation P°(p) and P*(p) from §7.1.
Lemma 8.4. Let notations be as above. Then:
* 57P .
(1) For every v € by, ¢, by () < efllRev
(2) For every v € b}, ¢ such that iImv ¢ P*(p),

h” (v) < IRl (Rp) =N

(3) For every v € ib},, 0 < hiép(u) < 1, and, for every p >0, N € N,

hé,P( ) = {1 + On ((Rp)’N) , vEP(p);
f On ((Bp)™), v ¢ P*(p).

Proof. From (3) of Definition 4, iImv ¢ P*(p) and the W (Aj)s-invariance of P, it follows that

haéP(V) <N RdimhMeRHReVH (1 —FRHZIIHI/ o HH)—N—dimhM d,U,
< eRHReVH Oo(l +t)—N—dimhMtdimhM—1 dt < eR”ReVH(R,O)_N
Rp
proving (2). The estimate (1) follows similarly.
Next, let v € ib},;. The inequality 0 < h%’P(l/) < 1 follows immediately from the definition of

h(sép and the normalization of the system h%“ . Further, if v € P°(p), then

B0 = B [ e ane 0B [ i) au) = 1 O,

ihis v—pl[=p
by the normalization and estimating the remainder as in (8.9). This establishes the first estimate
in (3); the second one is analogous. O

Lemma 8.5. For P € #(d), R> 0, and v € Z(F), we have

deg () /h* WP () (1) (6, v)dv = deg(6) /P wy 111G (6, v)dv + O (0 vol (6, P)).
Proof. We begin by decomposing the integral according to
(8.10) ihy = OP(1/R)U (P°\ OP(1/R)) U (P \ 0P(1/R)).

The integral over ih}, in the lemma may therefore be rewritten as [, wé_l} (v)u§; (6, v) dv plus

o( [ i dv)+2/ WP (W) (i (6,v) d
8P(1/R) *(¢/R,((+1)/R)
- Z / (1= 3 () ()15 (6.v) o
°(¢/R,((+1)/R)
Using Lemma 8.4 and accounting for the factor deg(d), the three terms above are majorized by

/ B (6,0) v+ 3 1N ( / B (5, v) dv + / BS(5,v) dz/) |
OP(1/R) —1 Pe((¢+1)/R)\P P\P°((4+1)/R)

The last error term is indeed O (9 volg(4, P)), as desired. O

We return to the estimation and evaluation of the central contributions for the functions fg’P.
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Lemma 8.6. Let 6 € D have standard representative (M,d) and take P € HB(5). Let q be an
integral ideal and R > 1. Then

(1) the central term Jeent(€ K, (q) @ fg’P) satisfies

Jcent(EKl(q) & ff{’P) < (1 + (R/log(2 + Nq))rl—'—m_l)@n(q)

Xmin(deg(é)/ u%(é,u)dqu@volR(é,P),/ ﬁﬁ(é,ﬂdl/);
P P

(2) there exist constants ca, Co > 0 such that if R < calog(2+ Nq) and Ngq > Cs, then

TL2 k
Jeont (€ () @ fi7) = D> (1) (9)Cas deg(6) /P 157 (6,v) dv + O(pn(q)3 vol (8, P)).

Proof. The second bound in (1) follows from an application of Lemma 8.3, recalling the definitions
(8.7). To prove (2) we apply the third part of Lemma 8.1 to reduce (8.3) to the identity contribution,
and then use the integral representation (8.4) and Lemma 8.5. The first bound in (1) is analogous,
accounting for contributions from the units in (8.3), the number of which is bounded in the first
part of Lemma 8.1. g

8.5. Application of the Paley—Wiener theorem of Clozel-Delorme. Let h(;%“ € PWgs be
as in Definition 4. In this section, we describe how one can use the results of Harish-Chandra and
Zuckerman [86, Prop 6.6.7] and the Paley—Wiener theorem of Clozel-Delorme [17], to find test func-

tions f}%“ € H(GL,)rs which recover h‘;é“ through the relation (8.2). We present the construction
here primarily for the possible interest in its J-aspect. We emphasize, however, that in the cases
in which we verify Property (ELM) (that is, in Theorem 1.3), we do not need this construction or

rely on the theorem of Clozel-Delorme; instead the test functions fg’“ are constructed via explicit
spherical inversion (including for non-trivial K-types when n < 2) in Section 15.

From [86, Prop 6.6.7] there are upper triangular (with respect to the partial ordering <) arrays
(n(g,0"))e.0rep and (m(c,d’))y o ep, With integer coefficients and (multiplied as matrices) inverse
to one another, such that for any f € H(GL,) we have

(8.11) trm(o,v)(f) = Zn(g, o rme,(f)  and  trag(f) = Zm(g,g’)trw(a’, v)(f).

o./

Note that both sums in (8.11) consist of finitely many terms for every f € H(GL,). With the first
formula in (8.11) in mind, we set

H%H(U, v) = Zn(g, g’)h%“(a', v).

a-/

Note that, since h‘;é“ is supported on § in the first variable, we have Hg:“(a, v) = n(o, é)h%“(é, V).
In particular, H;;’“ is supported in the first variable on ¢ < §. We deduce that Hg’“ € PWgr
and hence there exists, by the theorem of Clozel-Delorme, a function fg’“ € H(GL,)r such that
tr (o, v)( g’“) = Hz“(a, v). The second formula in (8.11), when applied to f = f%“, then yields

tr o ( ]‘;’”) = Zm(g, Q/)ng(a'/, v) = h(;“((s, V) Zm(g, an(d’,d) = héé“(é, v)1,_s,

showing that f%“ € H(GL ) ps verifies the relation (8.2).
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9. BOUNDING THE DISCRETE AND EXCEPTIONAL SPECTRUM

The goal of this section is to provide bounds on two (similarly defined) exponentially weighted
sums over the discrete spectrum. Throughout we shall assume Property (ELM), introduced in
Definition 1.

Let § € D have standard representative (M, ). Let pu € ib} for some L € L,(5). Let q be an
integral ideal. For a real parameter R > 0 let

(9-1) Dr(q,8, 1) = > dim VK1 (@) FIRevs]
WEHdiSC(G(AF)l)é
1Im VTrEB]V[(/L,]./R)

The following result will be used in the proof of Proposition 16.6. Recall the subset W (M, L)s
from §5.7.

Proposition 9.1. Let notations be as above. Assume that Property (ELM) holds with respect to
d. Then there are constants C > 0, 0 > 0 such that, for R > 1,

Dr(q,d, 1) < (RAWIMDS 4 cORNG=0) R™ ™0V g, () 857 (6, ).
In particular, there is ¢ > 0 such that for 1 < R < clog(2 + Ngq),

Dg(q,8, ) < R~ Ambu=2WQALLYs| o, (q) 35 (5, p0).

Remark 16. For n = 1, the quantity Dr(q, d, u) simply counts the number of Hecke characters x of
conductor q, of discrete archimedean parameter ¢, and continuous parameter ||, — p|| < 1/R. The
proof of Proposition 9.1 bounds this cardinality by R~ 4721 (1 4 (R/log(2 + Nq))" 727 1) (q)
in fact for all R > 1.

Let 0 € D and P € A(d). We shall also need the following sum
(9.2) Kr(q,6,P) = 3 dim V1 @eFlRevall(1 4 B d(ilm vy, P)) .

7"’Gl—ldis,c(c"‘(AF)l )é
vr&ibhy

Note that, when compared with Dg(q,d, i), the above sum is now over 7 with 7 non-tempered,
and the membership of iImwv, in By(u,1/R) is replaced by power decay outside of P. As in
Remark 14, we have suppressed the dependence on N in this sum, but will occasionally revive it
for clarity, writing Kg n(q,0, P).

The following result will be used in Section 11, in the proof of Proposition 7.3.

Proposition 9.2. Let notations be as above. Assume that Property (ELM) holds with respect to
d. Then there are constants C' > 0, 8 > 0 such that, for R > 1,

Kp(q,8, P) < (1 + RV AslCBNG™) o, (q)vol}; (6, P).
In particular, there is ¢ > 0 such that for 1 < R < clog(2 4+ Nq),
Kr(a,0,P) < @n(q)voly(d, P).

As will become clear shortly, the bulk of the work necessary to prove Propositions 9.1 and 9.2
is the construction of appropriate test functions. This turns out to be a highly non-trivial analytic
problem.



COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR 51

9.1. Reduction to test functions. Let § € D have standard representative (M, ). Recall the
0-Hermitian dual from §5.7, and let ;1 € ib3, and R > 0.

We grant ourselves momentarily the functions Hz’“ € PWgs in Lemma 9.3 and use them to
prove Propositions 9.1 and 9 2. These are linear combinations with uniformly bounded coefficients of
certain spectral localizers hp Doars (M’ > M). Invoking Property (ELM) on each of them and forming

the same linear combination of the resulting test functions fg Otiars , we obtain a test function we

denote by FR’“ € H(GL)ers (with ¢ > 0 depending on n, F only), such that tr 7T571,(F1‘;’“) = Hfz’“(y)

and, for every integral ideal ¢ C OF, Jerror (€, (q) @ fp O M") and the same quantity for F' g’“ verify
the upper bound specified in Property (ELM).

Proof of Proposition 9.1. Recall the definition of Jg;s. from (4.15)—(4.16). Properties (1) and (3) of
Lemma 9.3 show that there are constants C, ¢ > 0 such that

(9.3) Der(a,0,1) < O Maise (e, (g) @ FR™).

For each of the spectral localizers hp Opar

(1.3) to Jdlsc(f:‘Kl(q ® fp Okt ). For n = 1, Joyror = Jaisc — Jeent = 0 trivially; this is the Poisson
summation formula. For n > 1, we estimate Jeyor using Property (ELM). We bound Jeepn using
Lemma 8.3. Note that 8$,(6, uar) < B8$(6, ) in light of ||| < 1. This proves Proposition
9.1, noting that the bound of Lemma 8.3 is dominated by the first term in the upper bound of
Proposition 9.1 for R < log(2 + Nq) and by the second term otherwise. O

in Property (2) of Lemma 9.3, we apply the decomposition

Proof of Proposition 9.2. We now let
Jtemp(¢) = Z tI‘ﬂ'((Z))

7 Cllgise (G(A))
Too temp
be the contribution to the discrete automorphic spectrum arising from 7™ ~ 7y ® mo for which
Too is tempered, and write Jeomp(¢) = Jaisc(¢) — Jremp(¢) as in (3.10). Note that the restriction
of Jeomp to test functions g, (q) ® H(GL,)s is supported on discrete automorphic representations

T~ Ty ® Mo for which Vﬂljl(Q) # 0 and 7 is of the form 75, with Rev, # 0. More precisely,
in view of the Hermitian structure of 7, the continuous parameter v, must lie in the J-singular
subset b3 g, of b3 ¢, defined in (5.12). We consider

(9.4) S r [ e ® FE+ P RN dp
LELo(5) L
LAM

On one hand, from Lemma 9.3, the sum-integral in (9.4) is bounded below by

C Z RdimhL/ (1 + d(,LL, P) . R)*N Z dlm Vﬂifl(q)eCR“Rel/‘rr” du
LELoo () iy, [l Im v —pil| SR
L#M vriby,, i Im vy €ib}
om0 m
LelLo (6 vr€iby, ih*
L;ﬁ]W() ilmyiej;ﬁlf]z HEIb,

lu—iImve <R~

> S dim VS @eeRIRevel () 4 d(itmu,, P) - R),

LeLoo () vadiby,
L#M  ilmuvg€ib}
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where the automorphic sums are over 7 € Ilgis.(G(A F)l)é . The last quantity is simply K.r(q,d, P).
On the other hand, Property (1) of Lemma 9.3 ensures that

3, 5, 5, s,
']COHIP(EKl(Q) ® FR#) < Jcomp(EKl(q) ® FRu) + Jtemp(5K1(q) ® FRH) = Jdisc(EKl(q) ® FR#)-

As in the proof of Proposition 9.1, we now use Property (ELM) and Lemma 8.3, along with the
fact that 5§, (8, uar) =< BS(6, 1) for ||u™'|| < 1 to bound (9.4) by

pn(a) D Reotmo 0 (REAWOMDS 4 cCRNG ™) | B (6, 0) (1 + d(p, P) - B)7N dp.
LeLoo(8) ih7,
L#M

Recalling the definition of vol’(d, P) in (7.4) and (7.5), the terms involving R™2WMM:Lsl in the
above quantity add up exactly to ¢,(q)voly(d, P). Using W(M,L)s C W (Ap)s to bound the
remaining terms and putting all estimates together completes the proof of Proposition 9.2. [l

9.2. Existence of test functions. The main result of this subsection is the following lemma,
which proves the existence of test functions used in §9.1 to prove Propositions 9.1 and 9.2. This
delicate construction, in turn, also crucially relies on three results of geometric and analytic nature,
which we prove as Lemmata 9.4, 9.5, and 10.1.

We recall from §5.7 the d-unitary and -Hermitian duals b3, and by, .

Lemma 9.3. Let § € D have standard representative (M,0), and let p € i}, and R > 1. There is
H;;’“ € PWg verifying the following properties:

(1) Hg’“ 20 on by

(2) Hfz’“ is a linear combination, with coefficients bounded independently of & or u, of spectral

localizers h(;“M' over M' D M such that ||p™'| < 1;
(8) There are constants C > 0 and 0 < ¢ < 1 such that for all v € b:;ml satisfying

(9.5) |ilmv — p| < R
we have Hf%’“(y) > CecRIRev

Remark 17. It will be seen in the proof of Lemma 10.1 that the constant 0 < ¢ < 1 in (10.1) may
in fact be taken as close to 1 as desired by taking n > 0 (as well as the variable u > 0 appearing
in the proof) very small. In turn, the value of the constant ¢ in the local version of Lemma 9.3 (3)

(see (3') below) may also be taken as close to 1 as desired; this conclusion should be contrasted

with the obvious upper bound of < effllRe voll,

Proof. For A > 0 as in Lemma 9.4 and v | oo let
Eow = {10 € 03, IR0l AR}, Ery = {10 € 0t [Rewl] > AR},

where we recall the notation bj = C (a]\/fv)fc from §5.7. Then b3 . C bs, @ &b Eyp, U Eq,).

Recalling the decomposition v = vz + 1% from §5.3, we will construct the desired function Hf%’“ €
PWpgs as

(9.6) Hy'(v) = Wy (vz) [T (Hows 0) + Hyls (09)).

v|oo

v\oo(

where hi% € PW(h ) and W (A, )s,-invariant functions Hfz;”f%g € PW((aAGj;)(’E) (e € {0,1}) are
such that:

(1) hg% 0 on ihg, and HEZ";{ 0on by .
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0
(2) the functions ho g and Hg””g satisfy the factorized spectral localizer conditions (8.1), and

(51) ’Uv(u"u) . . . oy
H U‘}}’ is a linear combination of H, , » Mo as in (2) satisfying these conditions.

(3") there are constants C' > 0 and 0 < ¢ < 1 such that:
 Wivz) >} (v € i vz =zl < R

51}7 v
* HOUA;%( D)

6'u7 v
b Hlvﬁ}i( )

116 (VO € EOQM ||ZIIHV0—,LL2H < R 1)a

>
> CecBlIRenll (L0 ¢ By, [liTm 2 — 40)| < R7Y).

This clearly yields the statement of the theorem. (For v € Eo., CecllRerill is hounded above by
an absolute constant. The above conditions thus imply that Hf%’“ (v) > eff ojoo IRl g every
v € b3, satisfying (9.5), whence (3).)

The construction of hgﬁ% € PW([)*G’(C) is straightforward; we take a sufficiently small 0 < ¢’ < 1
fix a gz € C°(hy) be a real even function supported in the ¢’-ball around 0 and satisfying [ gz =1,
and consider the Fourier transform hy; = gz xgz. Then, hz > 0 on ih¢,, and we may take
8’ > 0 sufficiently small to assure that hz(vz) > % for all vz € ibE with ||vz|| < 1. Then
ho’z(vz) := hz(R(vz — pz)) has all the desired properties (1")~(3").

It remains to construct Hfi’)‘g € PW((aAG/fv)E) with the desired properties. This is now a purely
local task, and, to lighten the notation, for the rest of the proof we consistently drop the , and °
decorations. Thus, Hg’g,Ee,u,u, a%,W(AM)g,... all refer to their local counterparts, as do the
archimedean structures referenced from Section 5.

We first construct Hg:é € PW((a§,)%). This is essentially accomplished by [13, Lemma 4.3],
which we only need to adapt slightly. Let 6” > 0 be sufficiently small, let gy € C2°(a$;) be a real
even function supported in the §”-ball around 0 and satisfying [ go = 1; then, the Fourier transform
ho = go * go € PW((a$))%) satisfies ho > 0 on i(a;)*. As in the proof of [13, Lemma 4.3], we may
take 6” > 0 sufficiently small to assure that Reho(v) > 1 for all v € (a§))% with ||[Imv| < 1 and

|[Rev| < A, and that Re ho(v) > —C"§" (with a C” > 0 depending on G only) for all v € (a§))%
with [|[Rev| < A. We set

2
0.7) = (X mo(r-)

weW (Apr)s

Then H(S’R € PW((a$))&) r is W (An)s-invariant by construction. Now, by the definition of B3 nm 1
(5.9)—(5. 10) we have W (A )s.v = W(Awm)s.(—7) for all v € by . It follows that the sum in (9. 7)
is unchanged under the substitution v — —7 on the é-Hermitian spectrum. Furthermore, since gg
was taken real and even, then hg = gy * go enjoys the relations ho(—v) = ho(v) and ho(7) = ho(v),
for all v € (a§;)%. Finally, using —p = fi, we conclude that the sum in (9.7) is real-valued. Thus
Hg"é 0 on bhjy,,- This establishes (1), while (2') is immediate. Finally, for 6" > 0 sufficiently
small, we have that for v € Ey satisfying |[iImv — u| < R71,

> ho(R(wy — ) > Reho(R(v — ) — [W(An)s|C"8" > 1,
weW (Anr)s

and hence Hg”é( ) > 1 as desired for (3').
We now proceed to the principal task of constructing H R € PW((a§ 27)¢)s which in particular
needs to satisfy H1 ) = CecElIRevll for » € Fy such that

(9.8) |ilmy — pl| < R7? and |Rev|| > AR
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Our approach in this complementary range is inspired by that of [13, Lemma 4.3], although the
argument is necessarily much more elaborate. Note that if 4 is such that no J-Hermitian v satisfies
(9.8), then condition (3') is vacuous and the function Hf’% identically equal to zero satisfies the

remaining conditions. Otherwise, u should be of distance at most R~! from the d-singular subset
05 ging Of (5.12). Let M), € £(5) be maximal for the property that |Me|| < R7Y5 in view of (5.12),
such a maximal M, 2 M is distinct from M. Now if the lemma is true for pyz, then it is true for
)
u (by taking for Hf’% the function Hl’gM“). We may therefore assume that pu € z'b*M”.
With b € PW((a§))%)1 as in Lemma 10.1 below and B > 0 as in Lemma 9.4, we put, for

v e (a§)E

2
é
99) mhn= Y (X R )
M'DM, ~weW(Anm)s
I l<B
As in the first case we conclude that Hf’ﬁ is W (Ans)s-invariant and that the inner sum in (9.9) is

real valued on the J-Hermitian spectrum, whence Hf";{ > 0 on bj,,,. This establishes (1'), while
(2") is immediate by expanding and grouping (9.9).

For the proof of (3'), we shall show that for all v € b}  verifying (9.8) there is M’ D M,
(depending on v) such that ||u™'|| < B and

2
(9.10) < Z h(3R(wv — MM’))) > CecRlIRev|

’LUGW(AM)5

Dropping the other terms by positivity yields the lemma.
To prove (9.10) we let v € b} satisfy (9.8) and apply Lemma 9.4 below; this gives rise to an M’

satisfying the indicated properties. Recall from (5.7) the definition of W (AM');s, and write Wiaq
for the complementary set W (An)s \ W(AY)5. Then

5> n(3RGo )

weW (Anr)s

> > h(éR(wv—uM/))' ~ |Woaa| max [h(5R(wr — )|

bad
weW (AM'Y;

(9.11)

Note that W (Ax)s C O(a$;,(,)). By property (1) of Lemma 10.1, the fact that M’ O M,,, and
the definition of W (AM")5, we have

(9.12) ‘ > h(3R(wv - ,UM’))' = W (AN sl |[h(3R(W = par)) | = [R(GR(v — par)) |-
weW (A})s

It now suffices to establish an upper bound for the second term in (9.11). For this, we shall avail
ourselves of Lemmata 9.4 and 9.5, along with the remaining properties (2) and (3) of Lemma 10.1.
Note that (9.15) of Lemma 9.4 implies that wv — upsr, for w € Whaq, satisfies the first inequality
on the left-hand side of (10.2), with x = &, ,, (and 73/ = dim bp). Similarly, (9.14) implies that
v — pyp satisfies the inequality on the right-hand side of (10.2), with n = »,, ,. Moreover, (9.14),
(9.15), and property (2) of Lemma 9.4 show that the second statement of Lemma 9.5 applies and
that wv — pupp for w € Whaq also satisfies the second (angle) inequality on the left-hand side of
(10.2). These observations, together with (9.8), allow us to apply property (3) of Lemma 10.1.
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Recalling the value of € from Lemma 9.4 (2), we deduce that
1

(9.13) [Whaa| max |h(3R(wv — par))| < S|h(3RW — par)) |-
wWEWhad 2

Inserting (9.12) and (9.13) into (9.11) yields

S h(REww — )| = SR(RO — par))|
weW (Anr)s

From this and property (2) of Lemma 10.1, with n =7, ,, the lower bound (9.10) follows. O

9.3. Good and bad Weyl group elements. The proof of Lemma 9.3 rests on three key ingredi-
ents, the geometric Lemmata 9.4 and 9.5 and the analytic Lemma 10.1, which we proceed to prove
in order. Moreover, Lemma 9.3 produces spectral localizing functions in their factorable form (9.6)
in connection with the factorability condition in Definition 4 of spectral localizers, which in turn is
introduced purely for purposes of verifying the (ELM) property in Section 15.

With this in mind, continuing the convention from the proof of Lemma 9.3, for the rest of
sections §9.3 and §9.4 as well as throughout Section 10, we work with local groups and spaces
G=Gy,,M = My,by = by, = a]\G/;;, ... and consistently drop the , and ° decorations. However
we note that all statements and proofs in these sections are true verbatim also for G = G, M =
Moo, b = bu,, - - ., and that those statements could just as well be used for a proof of Lemma 9.3
except for the factorability condition in Definition 4.

In this subsection, we prove a geometric lemma which was a crucial ingredient in the proof of
Lemma 9.3, and which in turn references statements of the forthcoming geometric Lemma 9.5 and
analytic Lemma 10.1. For M € L we let 73y = dim b; we also write rg = r7;,. (Thus, r¢ = 0 with
our local convention; though we keep the notation rg for compatibility with the G, case.)

Lemma 9.4. Let § € D have standard representative (M,6). Let pn € ib}, be contained in a 0-
singular subspace ihfwu for some M, € L(5) strictly containing M. Let the constants 6y, Ag > 0 be
as in the second part of Lemma 9.5.

There are constants A, B > 0 and two finite systems (n;)
depending only on G, satisfying the following properties:

My, M,
i=rg’ (K/l)i:'rg—l-l

of positive constants,

(1) for every i =rg,...,ru, the constants (n;, A) verify Property (2) of Lemma 10.1;

(2) for every i =rg +1,...,70, the constants (k;,n;, A) satisfy ki/n; = Ao and verify Prop-
erty (3) of Lemma 10.1 with e = £|W (Anr)s|™! and 0y as fized above;

(8) for all v € by, verifying (9.8) there is M' € L(0) containing M,, (depending on p and v)
such that ||™'|| < B and

(9.14) [itmv — ppr|| < nrpy | Re v
(9.15) Jw-iTmv — ppp|| > ke, |Rev]] (M # G, we W(Ay)s \ W(AM)5),
where W (AM )5 is as in (5.7).

In item (1), we mean that Property (2) of Lemma 10.1 holds with constants A, B,n;,c > 0, for
a suitable choice of B,¢ > 0. Similarly, in item (2), with the specified €,6y > 0, it is meant that
7, A are suitable constants to be returned by Property (3) of Lemma 10.1 for the choice of inputs
€, Ki, 00 > 0.

To deconstruct what Lemma 9.4 is saying, consider that Lemma 9.3 provides for a combination
Hi{“ of spectral localizers that suitably detect v € h}vun with ¢Imwv close to p € ib},, and which
are in turn built out of averages over Weyl group translates of the form hA(R(wv — p)) as in (9.9).

For ;1 (and thus Im v) close to ihf;, all occurring h(R(wv — p)) can be made large; in fact, v can
then be at least as well detected by re-centering the spectral localizer from p to pug. For p and
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v E b:;,un in a more generic position, one faces terms with very different sizes of Im(wv — p) and
asymptotics of h(R(wv — p)) (cf. Remark 18), and a way is needed to clearly distinguish between
the “good” and “bad” Weyl elements w according to the size of ||w - iImv — p||. This difficulty is
how to make such a discrete distinction for any given p; certainly it cannot be made in a continuous
fashion as p varies.

To resolve this problem, the basic idea is that, in the intermediate range, when |[w - iImv — pl|
is sufficiently small to prevent w from being “bad” yet not sufficiently small to make w “good”,
then both ¢Imv and p € ibj,; must be reasonably close to ih*M7w7+1, and v might in fact be better
detected by re-centering to a (nearby) more singular point such as pys, . Such re-centering, though,
affects whether other w should be labeled good or bad.

Lemma 9.4 makes this descent precise and provides, for each singular p € b}, and a nearby
v € b, a specific choice of M "€ L(9) such that, re-centering the localizer to the nearby gy,
all Weyl translates are either “clearly good” or “clearly bad” (all are “clearly good” if M’ = G).
We construct tubular neighborhoods around each ih},, so that each v € b;un can be detected by
re-centering p to ppy for the largest M’ to whose corresponding tube it belongs.

An inductive scheme of this broad nature, though in the absence of exponentially increas-
ing weights and on a fixed scale, was used first in the foundational work of Duistermaat—Kolk—
Varadarajan [20, Proposition 7.1] and then by Lapid-Miiller [51, Proposition 4.5]. The relevance
of the specific scale in (9.14) and (9.15) is transparent on comparing with (10.1) and (10.2) in
Lemma 10.1.

Proof. The values of A > 0 and the system (k;,7;) depend on fixed choices of constants depending
only on G which we now specify:
e For L € £(6) and n > 0 let To(n) = {v € ib%, : |[vF| < n} denote the tube of radius 7
about b7 inside ib3,. Let 0 < 7y, < flro41 < - -+ < 7 be a fixed system of radii such that
for any L1, Ly € £(J) one has

(9.16) Try (e, ) 0 Teo (e, ) © T (),

where L = (L1, L) € L(0) is generated by Ly and Ls. It is not hard to see that the property
(9.16) then also holds for any other system of radii (1;);¢, satisfying n;/7; < n;/7; for every
1 > j. See Figure 4.

e There exists a constant C' > 1 such that for all L, L’ € £(J) and all p1 € ib}, one has

(9-17) =20 < Ol

To see the second point (which can be extracted from [51, p. 136]), note that it suffices to verify

(9.17) for fixed L,L’ € L(J) and for p € i(h<LL/’LI>)*, and indeed only for nonzero (and hence only

for norm one) such p. The statement then follows from the continuity of p > ||u||/||*|| on the
(DL )\

compact 1-ball in i(h, ;" ")*.

We first set 7,, and A, to be values of n and A for which property (2) of Lemma 10.1 hold.
(Note that this property is invoked just once and for all. Also note that in the base case M, = G,
M' =G in (3), p € ib, and W(AS))s = W(Aum)s.)

The remaining constants indexed by i = rg + 1,...,7y, will be defined by induction on i. We
set ¢; = minj; 7;/7; and then take any &; satisfying 0 < x; < m.

Applying Property (3) of Lemma 10.1 with k = k;, € = %]W(AM)5|_1, and 6y yields constants
n; and A;. We then set 7; = min {7}, /1()-7-711/2} Since n;/1; < nj/n; for i > j, (9.16) holds with the
system of 7;’s in place of 7;. We record that (particularly in view of n; < min(n}, n,.)) the constants
(i, A) and (n;, k;, A) verify Properties (2) and (3) of Lemma 10.1 (with € = |W (Aar)s| ™! and 6p)
for every A > max(A;, Ar,).
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FIGURE 4. The system of subspaces ib} (three 1-dimensional, and one 2- and 0-dimensional each)
corresponding to the five semistandard Levi subgroups L € Lo of SL3(R), and their corresponding
tubular neighborhoods 77 (7-.). Also depicted are the intersection property (9.16) (with L =
(L1,L2) = G, and with the intersection on the left-hand side shaded) and its preservation when
passing to radii (n1,72) with n1 < 71.

L NNET

Finally we put A = max;{A4;,2n; '} and B = in,,|/p|. Recall from §5.7 that the half-sum of
positive roots p bounds the real parts in the unitary dual. Our construction of constants A, B, (n;)
and (k;) ensures that properties (1) and (2) of Lemma 9.4 hold; it remains to verify (3).

For v € by, satisfying (9.8), let M’ € £(J) containing M), be maximal for the property

o1
(9.18) M) < Ty IRe .

This is well-defined, since if M; and My satisfy this bound, then so does (M7, Ms) € L(5). Moreover
||| < B is immediate.
Using (9.8) we have that [|ilImv — u|| < R~! < A7!||Rev/||, and so

, _ : 1 ~
(9.19) ity = pap || < T = pll + 1) < (G0 + A7D[Rev]| < 1,y [Re v

This proves the upper bound (9.14).
We proceed to some preliminary estimates toward (9.15). We claim that for all L € £(J), not
contained in M’, we have

cry 7
(9.20) It > 2 [Re v
Assuming otherwise, we apply the inequality (9.17) with L' = M, to obtain the upper bound
|| pdEMid|| < %CTM’ﬁT(L,JMM) [Rev|. Now from (9.18) and using n,,,, < ¢, 7r,,, We also have ™M) <
3¢y [Rev||. Setting M” = (M, (L, M,,)) = (L, M'), the compatibility of the constants 7j; then
shows that [|p™M"|| < 2¢r,, ey, |[Rev|. Now since L ¢ M, the subgroup M” is strictly larger than
M'. Thus ¢, < Ny, /7r,,, and (M| < $nr,, |[Rev||. But this contradicts the maximality of
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M’ establishing (9.20). Moreover, we may bootstrap (9.20) to show that

3ch/ Tlro

(9:21) [uaan) ) > =2t

for all L € £(6) not contained in M’. This can be seen from

[Rev|

1 CropTiro

It = Ganr Y1 = G = a1 = G < < Gy lRewl] < =527

; [Rev]

along with the triangle inequality.
We can now prove (9.15). Arguing by contradiction, we let w € W (Ayr)s\ W (A5 and suppose
that [|w-ilmv — ppp|| < Ky, || Rev|]. Then, using this and (9.19), we get

s — wpare | < langr —w - i T + oo - (i Tm v — pagn)| < (Rryp + 1y )l Re .

From this it follows by induction on k that ||y — w*pae || < k(kr,, + 1y, )| Rev|. From this and

W (An)s|
k=1

the expression (ppr)ar, = |W(Anr)s| ™" w” g, we conclude that

1 1. ¢, 7
1 (ar )M || = Ilpener = (ar ) az, | < W (Apr)sl(Kryys + ey )l Rev|| < (g + Z)MTOH Rev||.

Since w ¢ W(A%/)g, M, ¢ M', we may now apply (9.21) with L = M,, to get a contradiction. [

9.4. Angles. We keep the local notational conventions from §9.3. The following result provides
geometric information on vectors v € b}‘wc which will be used as inputs in our application of
Lemma 10.1. Put briefly, it says that the real and imaginary parts of the argument of h on
the left-hand side of (9.13) are bounded away from being parallel. To quantify this, here and in
Section 10 we will write Z(v, 1) for the unoriented positive angle between the subspaces spanned
by v1,v2 € b}, (that is, the shortest positive distance from the angle between vy and vy to 7Z).

Lemma 9.5. There ezists 0y > 0 (depending only on M ) such that, for every v = Rev +ilmv €
h;hm \ b3, and every w € W(Ap)s not fizing v, we have Z(Rev, wlmv — Imwv) > 6.

In particular, there are 6y, Ag > 0 such that, for everyv € h§7hm\ih7\4, p € iy, andw € W(Aum)s
satisfying |[w - iImv — pl| > AolliImv — p||, v1 = wv — p satisfies Z(Rewvy,Imuvy) > 6y.

Proof. As in Section 5 we may use the standard basis to coordinatize a}, so that a}j, and b}, are
identified with RU™ M and its trace zero subspace, respectively, and so that W (Ayr)s acts on bisc
by permuting its coordinates: wv = w(v;) = (v ())-

Recalling the notations of §5.7, we claim that, for arbitrary wo,w € W (A)s,

(9.22) M wo,—1 N (W —id)By e 11 = {0}

Indeed, suppose, contrary to (9.22), that Imv € O3 wo,+1 15 such that 0 # wlmv —Imv € b}, - ;.
Let S = S(Imwv) be the subset of indices i < n of Imv such that {Im v, : k € Z} is not reduced
to {Imv;}. From wlmv # Imv, it is clear that S is non-empty. We may choose ig € S such that
Imy;, > Imy; for all i € S and Imv;, > Imv, ;). Let jo = wo(ip). Then Imvj, = Imw;, since
Imv € b}y 0 41, and Im vy, o) — Imuj, = —(Im vy (i) — Imvy,) since wlmv —Imv € D0 e, —1- We
find that Tm ;o) = 2Im v, — Im v,y > Imvy, = Imwj,. This, in particular, shows that jo € S,
and by the w-invariance of S we obtain w(jo) € S. But then Imuv, ;) > Im;, contradicts the
maximality of Im v;,.

It follows from (9.22) that there exists an angle 6y(w,wp) > 0 such that Z(Rev, (w —id)Imv) >
Oo(w,wp) for every 0 # Rev € DM wy,—1 and every Imv € by, -y with wlmv #* Imwv; indeed,
angles between unit vectors in the two subspaces b*M,woﬁl and (w— id)hhwo, 1 are strictly positive
and we may by compactness take the smallest one, with the statement vacuously true if one of
these subspaces is {0}.
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Recall now the description of b}, ~in (5.10), along with the decomposition 67\4@ = 67\47w7_1 +
ibh,w, 41+ The first claim of the lemma now follows by taking 6y > 0 to be the minimum value of
Oo(w, wp), as M and w,wy € W(Apr)s vary over the finitely many choices.

For the second claim, let v = Rev + ilm v, and note that

Z(Rev,Imv; — (Imv — p/i)) = Z(wRev,wImv — Imv) = Z(Rev,w 'Imv — Imv).

Now v € b3, \ b, and w™! cannot fix Imv, so that Z(Rev,w mv — Imv) > 6y by the first

claim. Since |[Im 1|l > Ag||(Imv — p/7)]|, the second claim follows by taking Ay = 1/sin 36y and
noting that then Z(Rewy,Imuy) > 0 — arcsin(Ay ') > 10,. O

10. A PALEY-WIENER FUNCTION

Throughout this section, we keep the local notational conventions from §9.3. The principal result
of this section is Lemma 10.1. This technical lemma provides for Paley—Wiener functions h(v) with
desirable asymptotics that are crucial in the proof of Lemma 9.3.

The proof of Lemma 10.1 is based on the principle of stationary phase, and in particular derives
inspiration from standard treatments of the Fourier transform of the uniform measure on the
round sphere. Our setting is non-standard (relative to the existing literature) due the presence
of a complex phase, which leads to an integral transform a priori interpolating between Laplace-
and Fourier-type integrals with competing exponential and oscillatory behavior in two independent
(but not necessarily orthogonal) directions.

10.1. Construction of Paley-Wiener function. In the proof of the crucial Lemma 9.3, essential
use is made of a Paley—Wiener function h on h}‘wc with properties that ensure that the average in
(9.9) detects the complementary spectrum with suitable exponential weights. Lemma 10.1, which
is of purely analytic nature, spells out these properties and constructs such h(v).

Lemma 10.1. Let M € L. There is a real-valued g € C°(hpr) whose Fourier transform h &
PW(bi o)1 satisfies:

(1) h(kv) = h(v) for all k € O(bn, (,)) and all v € b}, ¢

(2) there are constants A, B,n,c > 0 such that for R > 1, 0 > AR},
(10.1) min  |h(Rv)| > Bet;

|tm vj<no
IRevl|=0

(3) for every €, k,0y > 0 there is 0 < n < 1 (depending only on K, 6y) and A > 1 (depending on
€, k, 0g) such that for R > 1, 0 > AR, we have

(10.2) max |h(Rv)| <e min |h(Rv)|.
| Im v||>ko, |Rev||=0, Im v||<no
Z(Rev,Imv)>0q |IRev|=c

Remark 18. Weyl group invariance (1) is required to guarantee non-negativity in (9.9).

Properties (2) and (3) require perhaps greater explanation. As a Paley-Wiener function of ex-
ponential type R, h(Rv) exhibits exponential growth as high as efiroM)IRer|l iy the non-tempered
directions and rapid decay along the tempered subspace as soon as |Imv| > 1/R. Properties
(2) and (3) express the delicate interplay between these two asymptotic behaviors. The angular
condition in (3) is used to show clear distinction in exponential behavior in (10.2); cf. (10.4)—(10.5).

It might also assist the reader to recall how these two properties are used in the proof of Lemma
9.3. Property (2) is used to show that the “good Weyl elements” make a large contribution to the
average in (9.9). These good elements, by Lemma 9.4, have orbits whose tempered components
remain in a small ball about the origin. Property (3) is used to show that the “bad Weyl elements”
are well-controlled; these (again by Lemma 9.4) have orbits which lie far from the origin.
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Proof. Let b € C°(R) be the bump function equal to e=*/(=*) in [—1,1] and vanishing outside
of this interval. For H € by, let g(H) = b(||H]|). In the purely archimedean-analytic Lemma 10.2
below, which is also of independent interest, we shall obtain precise asymptotics of h = g (critically
as a Paley—Wiener function on all of h}k\/l,C)' Using these asymptotics, we shall now show that g
satisfies all properties of Lemma 10.1.

It is clear that h € Pw(h}k\/l,c)l since g is supported in the ball of radius 1. To see property (1),

identify by equipped with the non-degenerate bilinear form (,) of §5.2 with a Euclidean R?, and,
as above, let w denote the surface measure of the unit sphere S in R?. The Fourier transform
at v € C¢ of the function X ~ b(||X||) can be written as

1
(10.3) / 6_1/(1_T2)dw(ru)rd_1dr.
0
The O(d, R)-invariance of this expression then follows from that of w. This proves (1).
Statements (2) and (3) are consequences of Lemma 10.2 below, where the notation N'(v) derives
from (10.7). Specifically, denoting |[Rev| = o, ||[Imv| = ¢, and Z(Rev,Imv) = 6, we will prove
that:

— for every € > 0, there exist 1, A > 0 such that, whenever ¢ > A and t < 7o,

(10.4) Re(NV(v) — V2N (v)) = (1 —€)o and [G(v)| > ! 7297
— for every k, 6y > 0, there exist d, A > 0 such that, whenever ¢ > A, t > ko, and 6 > 6,
(10.5) Re(N(v) — V2N(1)) < (1-8)o and [§(v)] < 1797

It is clear that (2) and (3) follow from the above statements. Indeed, let B, B’ > 0 be implied
constants in the second estimates in (10.4) and (10.5). Fixing any 0 < € < 3, (10.4) yields , A >0
such that for Ro > A,
min 1G(RV°)| > Beclto
[tm(Rv?)||<n(Ro)
[Re(Rv®)||=Ro

with ¢ = 1 — 2¢ > 0. Similarly, given €,x,6p > 0, let §, A’ > 0 be values yielded by (10.5), let
1, A > 0 be values yielded by (10.4) invoked with e = min(16, 1), and let A” = log(B"/B'¢)/(5/2);
then, for Ro > max(A, A’ A”),

BI/
(R <= —(6/2)Ro B’ (1—2¢)Ro < . SR
o s R e 0TS 7€ ‘ (i) )]
Z(Re(Rv),Im(Rv))>00 |Re(Rv) || =Ro

Writing (v, v) = u + v, we have that
u=o0%—1t* v==20tcosh, u®+0v®=(c?+1t%)?—4sin’®fo*t?
as well as Re NV (v) = Revu +iv = (& (u+ \/m))l/2. For t < no with < 1, this gives
Re(N(v) — 2N (v)) = u? = V2(u? + )8 = 0 /1 — 2 — 2¢/0.

This clearly implies the first claim in (10.4); the second claim in (10.4) follows by invoking
Lemma 10.2 and noting that, for n > 0 sufficiently small, |arg V'(v)| < & and |V (v)|7! > e=c7/d.

On the other hand, for t > ko and 0 > 8y, we find, using the elementary inequality v/1 —z <
1-— %:1: for x < 1, that

Vu2 + 02 = (0 + t2)\/1 — 4sin? 00212 /(02 + 12)2 < 02 + % — 202 sin? Opk? /(1 + K?),
and therefore (since the square root is the principal branch)

Re(NV(v) — V2N (v)) < ReN(v) < o(1 —sin® or?/(1 + /12))1/2.
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This estimate implies the first claim in (10.5); the second claim in (10.5) then follows by Lemma 10.2
by using simply [N (v)| > 1. O

10.2. (Complex) Fourier transform of the sphere. Consider R? equipped with its standard
inner product (,), and let w denote the surface measure of the corresponding unit sphere S%! in
RY. We now collect some facts about the Fourier transform ac\u(u), for v € (CH)*.

When v is either real or imaginary, then we may use the rotational invariance of w to assume
that v = 11 points in the first standard coordinate direction. Then, using spherical coordinates, we
obtain

(10.6) dw(v) = ’wd2’/ e/t %% (sin )2 dyp = (zﬂ)d/g(i’/l)_d/QHJd/z—l(iVl),
0

where |wg_o| = 27(4"D/2/T'(4(d — 1)) is the volume of the (d — 2)-sphere, and Jaj2—1(v) is the
usual J-Bessel function [63, (10.9.4)]. The above oscillatory integral has non-degenerate stationary
points at ¢ = 0,7. The classical method of stationary phase when v; is imaginary, or Laplace’s
method when 17 is real, can then be used to obtain asymptotics of d/ZJ(V), which of course agree
with the usual asymptotics for the J-Bessel function with large argument.

Returning to general v € C?, extend (,) complex linearly to all of (C%)*; we denote this extension
by (,)c. Thus, if v € (C%)* is given by v = (v1,...,14) in the canonical orthonormal basis for (,),
then (v,v)c = Y, ¥2. Moreover, if both Rev and Im v are non-zero, and 6 € [0, 7] is defined by
the relation (Rev,Imv) = |[|[Rev||||Imv|| cosf, then

(10.7) (v,v)c = |Rev|? — |Imv|?> 4 2i||Re v||||Tm v|| cos 6.

We also set N(v) = (v, V)é:/ ?_ where we fix the standard branch of the square root.

We claim that

(10.8) d/(,\u(y) = ’Wd—2|/ 6N(V)cos<p(sin @)d_Q dg@,
0

extending (10.6) to complex v € (C?)*. It is clear that ac\u(y) is an even entire function of v € (C9)*.
Moreover, the above argument by rotational invariance shows that, for v € (R9)*,

(10.9) dw(v) = (2m) 726N ()Y Ty 1 (N (V).

The right-hand side, understood as a function of z = N'(v), is an even, entire function of z, so in
turn it defines (for example via its series expansion in powers of 22 = N/(v)?) an analytic function
of v € (C%)*. Thus the two sides of (10.9) are analytic functions of v € (C%)* that agree along
(R4)*. The claim (10.8) follows by analytic continuation.

In particular, using the asymptotic expansion for the J-Bessel function [63, (10.17.3)],

e or N\ (@-1)/2 N N eRe N ()]
(10.10) dw(v) = (IN(V)I) (ceN W) 4 c_emN W) +O<W(V)|<d+1>/2>’
where 2 = (N (v)/|N (v)]) =%, as well as dw(v) < 1 for N'(v) = O(1). The main term in (10.10)
arises from the stationary points at ¢ = 0, 7.
The expression (10.8) and the corresponding asymptotics (10.10) point to the importance of the
complex parameter N (v), which can be thought of as encoding the relative sizes and positioning
of Rev,Imv € b}, via (10.7).

10.3. Fourier transform of a bump function. Let b € C°(R) be the bump function equal
to e~1/(1=7*) in [—1,1] and vanishing outside of this interval. Define g € C>®(R%) radially by the
formula g(H) = b(||H||). The principal result of this section is the following technical Lemma 10.2,
which gives asymptotics for the size of the Fourier transform §(v) for v € C%.
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Lemma 10.2. For [N'(v)| > 1 we have

(27T)d/2 e:l:N(V)—\/:tzN(V)
Y36 — (iN(y))d/ZH/zL

as well as §(v) = O(1) when N'(v) = O(1).

(10.11) 9(v) = (1+O(N W) 7?)),

Remark 19. Here and below, we use the standard branch of the square root (and all fractional

powers); this does not cause confusion with the following convention in force. If |arg N'(v) £ 5| > ¢,

say, then one of the summands in (10.11) is clearly dominated by the error term in the other

regardless of the choice of the branch, and we interpret the asymptotics (10.11) as simply the

dominant summand; otherwise both summands appear (although one will still dominate unless
s

arg N'(v) is very close to +7). In either case, the square root and each fractional power that

appears is the standard branch, which is then only taken on {z € C: |arg z| < Z7}.

Remark 20. The proof of Lemma 10.2 relies on the method of stationary phase (for complex
phases). While the asymptotics in (10.11) resemble the asymptotics of the Fourier transform of the
sphere for general complex arguments (10.10), the smooth cut-off nature of the test function g (and
in fact its particular choice) is reflected in new features in the proof and the delicate subexponential
behavior within §. A rough main term analysis for the asymptotic behavior of §, in dimension 1
and for v imaginary, as well as a numerical verification of constants, can be found in the note [45].

Proof. The second claim is clear, so we may assume that |N(v)| > 100, say. It follows from (10.8)
that dw(v) depends only on N (v). Thus dw(v) = dw(N (v)e;) and, for d > 2,

i) = / e
{xeRd:||x||<1}

1 V1—x2
_ !wd2!/ eN(V)x/ /(=22 =?) 42 4 4y
-1 0

1 rl
(10.12) = |wg—2| N Wr—u/(=e) (] _ 52)(d=1)/2 g yd=2q4.
0 J-1

Vo1 0-1/ (1= [xI) |4

where u = u; = 1/(1—t2?). The heart of matter is in the asymptotic evaluation of the inner integral
I(N(v),u); we state this result as Lemma 10.3.

Lemma 10.3. For s € C and u > 1, let

1
I(s,u) = /_1 P p,(z) da, Gsu(z) = sz —uf(1—2?), pa(z)=(1—2%)=D/2

Then, for u < |s|,

\/7? 2u (d+2)/4 + _\/:tT_l +0( 3/2/| |1/2)
(10.13) I(S,u) — Z il et us—u u s ’
n 2ul/2 \ £s

as well as I(s,u) < eBesl=csl foru > c|s].

Remark 21. The proof of Lemma 10.3 shows that, more precisely,

— /ou\ @2/ i
Isu) =3 VT (2) Pa(V/Eufs) =SV (11 O((uls) %) (u < |s]).

1/2 \ Lo
i2u/ +s

where §q(t), p(t) € 1+ tC[[t] are explicit analytic functions around 0. Computing the first few
terms explicitly, we find that ¢(t) = 1 — /2t — %tQ + O(t?), say, recovering (10.13).
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We postpone the proof of Lemma 10.3, which is by the method of steepest descent, for later in
this section, and return to (10.12). Denoting by Ip(+s,u) the summand in (10.13), we find that

1
(10.14) 30) = lwaal 3 [ Tolees.unet 2 at,
4+ J0

where for brevity we set s = N (v). By symmetry, it suffices to asymptotically evaluate the first
term, and it also suffices to consider the case when |arg s| < 2T, say, as otherwise the corresponding
summand will be seen to be clearly dominated.

For 1 < u < c|s|, the expression —Rev2us — fu + %logu + Cu3/?/|s|'/? has derivative <
_2%/6 + (dzl) + %Ccl/ 2 and is thus a decreasing function of 1 < u < ¢|s| for sufficiently small c.
Therefore, (10.13) along with the complementary bound for the range |u| > ¢|s| shows that

1
1 V2|.1/4

d—2 Re(s—v/2s)—%2|s|1/
(10.15) /51/8 In(s,u)t* 2 dt < 7|s|(d+2)/4e 1 )

which will momentarily be seen as negligible. In the remaining, principal range, we can write

|s|~1/8
/ Io(s,ut)td_2 dt
0

(d+2)/4 |s|—1/8
(10.16) = ‘/; (i) eV d / e 3V (1 L O (2 + |s| /2t + |5 7H/2)) dt
0

V(2R s—VZs ~1/2
=17 s I'(3(d-1))e (1+0(]s|71/%)).
Combining (10.14), (10.15), (10.16), and |wy_2| = 27@=V/2/T(1(d—1)), with s = N'(v), we obtain
(10.11) for d > 2. In the case d = 1, (10.11) follows by simply applying Lemma 10.3 directly to the
integral in the first line of (10.12). O

Having proved Lemma 10.2, we now turn to the unfinished business of Lemma 10.3.

Proof of Lemma 10.3. The complementary bound for u > c|s| is obvious. Note that we may thus
assume that in fact v < |s| with a sufficiently small implied constant in (10.13), since for u < |s]
(10.13) holds vacuously (with an adjusted implied constant) in light of the complementary bound.
The exponential integral I(s,u) will be analyzed using the method of stationary phase. The
phase ¢, is holomorphic in C\ {£1}. Consider first the range when |args| < Z, say; we may
assume 0 < arg s < 3T by symmetry. Inside the disk QO = {z € C: 0 < [z — 1| < T}, we have

Gsu(x) = sz — %u/(l —z) +u0(1),

where O(1) is an explicit analytic function (independent of u or s).

There are four total stationary points: two close to 1 and two close to —1. To describe them, it
will be convenient to denote by ty(0), a real analytic function defined on a small neighborhood of
0 (uniform in ), which satisfies t9(0) = 1 + O(0), (ty/d9)(0) = O(p), and (9ry/0)(0) = O(¢?)
uniformly in ¥, and which may be different from one line to another. Using this notation, one finds
two points 2 = 1 4 gpe’”® € Q) at which (d/dx)\x:xg ¢su = 0; they satisfy

s — ue 2% /g1y, (00) = 0

with ¥y = —% arg s + O(gp). In fact, xoi = 1 — w, where w is one of the two solutions close to 0

of the equation w?(1 — w)?/(1 — w) = Ju/s, which can be solved as an implicit function problem

(with the choice of + as just specified).
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FIGURE 5. Contour shift in Lemma 10.3, showing several level curves for Re ¢s ., with warmer
colors indicating higher values.

We now isolate a critical point of interest, say xo = x, € 21. Writing gg(azg) = ¢su(z0), we find
d(x0) = 5 — V2us — Lu+ O(*?/|s]'/?),
1 (m0) = —ue™*"0 o} 4 O(u),

where in particular ¢ ,(zo) = (—u/w?)(1 + %w3)/(1 — w)? = —u/w3 + O(u). With this we may
evaluate the correspondlng principal contribution to the asymptotics of I(s,u).
The segment
Lo = {2 = o + te 28 Fu(@)/2 14 < 10}

is the best linear approximation to a curve of steepest descent. Let
o= uluf|s)) "2 gy = paxo)(uw/ls) T2, and  to = !/ = 0/ (uls])V/O.
Then along I1 o we have |1 — x| < (u/|s|)'/?, ]¢su(xt)| = Pk,
Gsu(t) = dsu(@o) = 3107w (20) [t + Gedll, (x0)t® + O(pat?)

with a fixed |e| = 1, while |p((ik) (z¢)| < vx. Thus by standard estimates (using also that contributions
of the odd higher order terms vanish)

/ ed)s*“(x)pd(x) dz
I10

(QW)1/2 $s,ulz0) < ( 804 31 [ —1(u |)1/6>>
= ————————ePul® x +0 + + + e 2luls
(=@ u(wo))'/? pilto) 03 w3 V3o pavo

(d+2)/4
_ ﬁ <2u> S~ 2us—%u+0(u3/2/\5\1/2)(1+O((u|8’)—1/2)).

2u1/2

This recovers one of the principal terms in (10.13), with acceptable error terms.

We will shift the contour of integration in I(s,u) from [—1,1], beginning with the part within
(21, to a polygonal contour consisting of I; o (where a contribution to the main term arises) and two
segments along rays I; + originating at = = 1; see Figure 5. Keeping in mind that we are working
with 0 = arg s satisfying (by symmetry) 0 < o < %’r, we will analyze the phase along such rays
z = 1— pe, with the goal of showing that the exponential term e?s=(#) decreases in size along
I+ and I; _ away from 244, and then concluding that the corresponding integrals are negligible.
For any fixed 9 with |9, |9 + o] < %” (say), the critical point condition (0/0¢)Re ¢, = 0 only has
solutions close to 1 and may be written as

—Re(se™) + %uRe(e_w)/@2 =0
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for some explicit ¢ = pty(e). This equation has exactly two roots ¢ = +0y, where
g9 = (cos 9/ cos(o + 9))/*(Ju/|s|)"/?,

with a global maximum of Re ¢, at the corresponding 1 — o9e™. As 1 varies within the same
range, dgy/dv = 1 (u/|s|dg)sino/ cos?(o + ) > 0, and consequently doy/d¥ > —O(03).
In particular, gy, = 0o. At the endpoints of I; o, we have

Bsu(Tty) = bs,u(@o) — §(uls)"/® +O(1).
Writing z; = 1 — g%, in light of
|5 arg(— ¢ (20)) — Yol = 3[9o| + O((u/|s])*?) < 2,

we have gy, — 01, > 0v,|Vt, — V0| while 00y, > 00y + 0(91290|19t0 — Yp|); this shows that gy, < 09,
(since gy, = (u/|s])'/? is sufficiently small). Analogously, o0_s, > 0g_ 1+ Denoting

Ly ={1 = Dot A€ [0,1]}, I_={1—-Xo_geV 0 :A>1}NQy,

the term e?su(*) decreases in size along Iy 4 and I; _ away from x4, and thus the integrals over
I+ of esu@py(z) < ePsu@) =351V aro (in light of u < |s|) absolutely dominated by the error
term in the integral over I o. This completes the description of the contour shift near the point 1
(within ;) for |args| < 2Z.

It remains to do the analogous analysis near —1 and put everything together. If |arg s — 7| < %’r,
say, the same argument applies, mutatis mutandis, in the disc Q_; given by |z + 1| < g, with
stationary points at 1 £ igpe’’, where gy and ¥y satisfy the same asymptotics as above, and with
analogous segments /_1 9 and /_; 4+ such that

x ™ 2u (d+2)/4 —s—/—2us—tu ud/2/|s|1/2 —
/ s @ p(z)de = 2‘(/2 (_) e 2us—zu+0(u?/2/|s| )(1 + O((uls|) 1/2))7
]_1’0 u S

and the integrals over /_; 4+ are dominated by the error terms in the above.

If 2% < |args| < 2%, the claim (10.13) now follows by shifting contours to the union of Iy 1,
I+10, and sub-segments of I; _ formed by their intersection (which lies in €y N Q_; as, say,
Dty = —20 + O((u/|s))V/? + 1/(uls]|)/8)). If 0 < |args| < 2 we can simply use the Iy 4o/
contour and connect to —1 via a straight-line segment, and analogously for 3% <largs|<m. O

11. PROOF OF PROPOSITION 7.3

Similarly to the existing literature on Weyl laws, our basic strategy in the proof of Proposition 7.3
is to relate the sharp count N(q,d, P) to a corresponding smooth count; we can control the smooth
count via trace formula input, as represented by Property (ELM), applied to the test function fgp
constructed in §8.4.

We need to pass from a smooth to a sharp test function in two terms: the central contribution
Jeent (€, (q) ® fg’P) and the smooth count over the discrete spectrum Jyisc(€x,(q) ® fg’P). The
central contributions were already addressed in §8.3. In the following paragraphs we treat the
discrete spectrum.

11.1. Upper bounds. We must first bound the total deviations of h‘;ép from the sharp-cutoff
condition of belonging to P over the “transition zones” (where the smooth test function is transi-
tioning between 0 and 1). This is done in Lemma 11.1 below. For the statement, recall the notion
of p-containment from Definition 3 and the sum Kr(q,0, P) from (9.2).
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Lemma 11.1. Let co > 0 be as in Lemma 8.6, and let 1 < R < cylog(2 + Nq). For a suitably
large a > 0 and any W (Ap)s-invariant set S C ib}, which is a/R-contained in some B € H(J),
we have

N(q,é, S) < Son(q)/BB]%((s’ V) dv + |Jerror(5K1(q) ® f}%B” + KR(CLQ, B)
In particular, this holds with S = 0P(p) and B = OP(p + a/R) where P € 2(d) and p > 0.

Proof. Using Lemma 8.4 (3), we fix a > 0 (independent of B € Z#(d)) such that, for every v €
B(a/R), hy"(v) > §.
Let B € #(0). As in §9.1, we decompose the discrete distribution
5,.B 5,B 5,B
Jdisc(EKl(q) ® fR ) = Jtemp(gKl(q) ® fR )+ Jcomp(EKl(q) ® fR ),

according to whether or not the archimedean component of the 7 contributing to Jgisc (e Ki(q)® fg’B)
is tempered. Using the non-negativity of h?%B on ih}, and the fact that S is (a/R)-contained in B,
we have that hééB(u) > 1 for every v € S and

1)
Jtemp(EKl(q) ® fR’B) > %N(q,é, S)
On the other hand, by definition, we have
8,8 8,8 5,8 8,8
(1L.1) Jremp(eri(q) @ fR ) = =Jeomp(Ery() @ [R) + Jeent (€K1 (q) @ fR ) + Jerror (€K1 (a) © R )-

It suffices to bound the first two terms on the right-hand side. We use Lemma 8.6 (1) to bound
Jeent €k (q) ® ffz’B). Further, by Lemma 8.4 we have that

WP W) <y eRIRVI(1 4 R d(iTmy, B)) ™

for every v € b}, ¢, so that

(112) Jcomp(gKl(q) ®f%B) < KR(q,é, B)
The last statement of the proposition follows from Lemma 7.1, where it is shown that 0P(p) is
(a/R)-contained in OP(p + a/R). O

11.2. Proof of Proposition 7.3. With C' and 6 as in Property (ELM) and ¢y as in Lemma 8.6,
let ¢ = min(6/(2C), c2). Assume that 1 < R < clog(2+ Ngq). Then, according to (8.8), we have for
every d € D and P € #A(9),

(11.3) Jerror (€, (q) ® ffgp) < Ng"™ /Pﬁj\ci[(é, v)dv,

with 0/ =6 — Cc > 0.

We begin by applying the decomposition (11.1). We use the bound (11.2) and then Proposition
9.2 to bound the complementary term by ¢, (q)volk(d, P). We bound the Jeyor term as in (11.3).
Finally, when Nq > Cs, where Cs is as in Lemma 8.6 (2), that lemma allows us to conclude that

5P\ yn3/2 A% G
Jtemp(EKl(q) ®fR )= D Ar(1)pn(q) deg(d) [ pi(6,v)dy
(11.4) P

+0 (cpn(q) (8 volg(, P) + volfy (8, P)) + Ng" % /P B (6, v) dy) :

The case Nq < C5 can be treated similarly, yielding an upper bound, using Lemma 8.6 (1).
We now decompose the sum in Jiemp (€, (q) @ ff-.,jp) according to (8.10). Note that

N(q,8,P) = > dim VK1),

7T€Hdisc (G(AF)l )é
vr€EP
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Indeed, this follows from the description of the discrete spectrum by Moeeglin—Waldspurger [59],
where it is shown that any 7 € HdiSC(G(AF)l) such that 7, is tempered is necessarily cuspidal.

Using this and Lemma 8.4, we find that Jiemp(ex,(q) ® fgp) equals

N(q,9, P) + O(N(q,0,0P(1/R))) + O ( ie—N > N(a,8,P°(¢/R, (£ + 1)/R)))

/=1 e/o

(=1

It follows from this and Lemma 11.1 that Jiemp (e, (g) @ fR ) — N(q,9, P) is majorized by

Z N (‘Pn(q)

/ 55(6.0) dv
(11.5) = OP((¢+a)/R)

+ K410, 8,0P((£+ )/ R)) + [Jermor e,y @ S/

The first of the error terms in (11.5) is at most ¢, (q)0 volg(d, P). The second of the error terms
in (11.5) needs only elementary manipulation to be put into the required form. Indeed, expanding
into a double sum, we have

Zf_N "Krnia(a,8,0P((C+a)/R) <D D N 'm S dim V@ cRIRer
(=1 ¢=1m=1 tIm vy €OP(({+m+a)/R)
< Z Z dimvﬂlfl(q)eRHReVﬁ” Z (knks)~ N1
(=2 iTm v, €0P(¢/R) =itk
<y N 3 dim V1 @ llRevel]
iImv,€0P({/R)

where the automorphic sums run over 7 € Igisc(G(Ap)t)s with v, & ib%,. The last of these is at
most Kr n(q,0, P), which by Proposition 9.2 we can bound by ¢, (q)voly (9, P).

It only remains to treat the Jeror terms in (11.5). Indeed, applying (11.3) as was done in (11.4),
their total contribution is bounded by

Ng"=" ) eV / B (6,v) dv < Nq"~?vol (5, P). -
OP(¢/R)

12. DEDUCING THEOREM 1.2

To pass from Proposition 7.3 to Theorem 1.2, we need to sum over the various discrete data
coming from the decomposition of |§F(Q)| in (3.4). In this section, we package together the terms
arising in Proposition 7.3 after executing this summation, evaluate the main term, and bound the
boundary errors. The main results are Lemma 12.1 and Proposition 12.2, from which we deduce,
in Corollary 12.3, the statement of Theorem 1.2.

12.1. Summing over discrete data. Recalling the set {5 x of (3.1), we put
PQ,X = QQ,X ﬂlh*jw and Px = U Pé’X.
0eD

Then Py can be identified with Qx Nlemp(GL,), where Qx = {r € TI(GL)) : ¢(7) < X} and Iiemp
indicates the tempered unitary dual. We use this notation to extend the definition of the boundary
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terms of (7.2) and (7.4) by writing

(12.1) VOIR PX ZVOIR (5 P5 X)
deD

and similarly for 0 volg(Px) and VOI}BL(P)(). We shall also need to introduce the notation

8PX U{ﬂgy.y€8pgx( )}
€D

For a sequence # = (R(n))nco, of real numbers indexed by integral ideals n, and 6 > 0, let
vol(@) = Y > [An(a/0)|IN0™ Vol pioy (Po/ng)-
Ng<Q d|q
Analogously notation holds for dvolg(Q) and vol,(Q) with No"~? replaced by ¢, (2).

Definition 5. We shall say that Z = (R(n))nco, is admissible if 1 < R(n) < clog(2+ Nn), where
c is the constant in Proposition 7.3.

The following result reduces the remaining work to an estimation of error terms.

Lemma 12.1. Assume Property (ELM). There is > 0 such that for any admissible sequence
Z = (R(n)) we have

F(Q) = €FQ" + 0(Q" 7 + 9volz(Q) + voliy(Q) + volly(Q)).

Proof. We begin by decomposing §(Q) = Ftemp(Q) U Scomp(Q), according to whether the archi-
medean component m, of the cusp form 7 € F(Q) is tempered or not.
We first dispatch with the contribution from |[§comp(@)|. Using (3.4) along with the inequality

> dim V1) < > dim V1) < > dim V1) < K (0, P x),
71'El—lcusp(G(A&F)l)é 71'EI—IC‘JSP(G(I&F)I)é ﬂ-EHdisc(G(AF)l)é
vr€Qs x \Ps, x ilmv.€Ps x iImvr€Ps x

valid for any R(9) > 0, we find that
|S’( comp| Z Z’)‘ q/a ‘K’R(D)(a PQ/Nq)
1<Ng<Q g

Proposition 9.2 then bounds the latter sum by vol7,(Q).
For the tempered contribution, we again apply (3.4) to get

§(Q)temp| = Z Z)‘ (a/0)N (2, Po/ng)-
1KNg<Q 0lq

Proposition 7.3 show that N(q, Px) is
n? * ~ n—0_"7
(122)  Dg /2AF(1)90n(UI)/ d@% + O (pn () (9 vOlr(Px) + volj(Px)) + Nq"~*volp(Px)),
Px

for 1 < R < clog(2+ Nq) and Ng > C. Summing the error terms in (12.2) over all q and 9 | g, we
recover the three boundary error terms in the lemma.

The second part of Proposition 7.3 furthermore shows that N(q,Px) < ¢n(q) [ Py Ao for
Ng < C. From the trivial estimate

(12.3) D [An(a/0)¢n(d) < X"Ng©

olq
No<X
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and Corollary 6.6, we easily deduce

S A(a/0)len(d) / o <« Qnt/ite,

Ng<Q 0|q Po/Ng
No<C

which is clearly admissible as an error term.

To obtain the contribution of €' (F)Q" !, first note that the summation on the main term in (12.2)
can be extended back over all 9 since the contribution from divisors with N0 < C is estimated as
above. We conclude by an application of Corollary 6.2. O

We must now prove satisfactory bounds on the error terms appearing in Lemma 12.1. The
remaining sections will be dedicated to proving the following

Proposition 12.2. There is 0 > 0 and a choice of admissible sequence % such that
Ovolz(Q) < Q" /logQ,  vol(Q) < Q"/1og? @, volfy(Q) < Q"1
Granting ourselves the proposition, we deduce the following
Corollary 12.3. Property (ELM) implies Conjecture 1, in the effective form of Theorem 1.2.
Proof. This follows immediately from Lemma 12.1 and Proposition 12.2. O

12.2. A preparatory lemma. The following lemma will go a long way towards proving Propo-
sition 12.2. It bounds very similar quantities to dvolg(Q), vol’,(Q), and volz(Q), but with the
arithmetic weights in the average replaced by powers of the norm, and with the admissible sequence
Z taken to be constantly equal to the real number R. Dealing with these arithmetic weights and
choosing an appropriate admissible sequence to prove Proposition 12.2 will be done in §12.3.

Lemma 12.4. Let 0< 0 <2/(d+1) ando >n—1/d—1+6. For R> 1, Q > 1, we have
> Ng79volp(Pgng) = Oce(RT1Q7H + Q7117

1<Ng<Q
> Ng°volp(Py/ng) = 04(Q71),
1<Ng<Q
> Ng°volk(Py/ng) = Os(R72Q7H).
1<Ng<@Q

We remark that this lemma is one of the places which put requirements on the integer N implicit
in the volume factors; for example, for purposes of this lemma, N > 3 + d(o + 1) suffices.

Proof. The first sum equals

> Nq°9volg(Pgng) = ZzN > Ng / B(m)dr,

1<Ng<Q 1<Ng<Q O0Pq/Ng(¢/R)

where the measure 3(7)dm is as in (6.13), and we use the definition (7.2) directly (rather than
Lemma 7.2) to emphasize steps that apply also for the third sum. Now for any r > 0 we have

> Nq/ dw—/n(%)( > Nq") B(r) dm,

1<Ng<Q OPq/Ng(r 1<Ng<Q
WGBPQ/Nq (r)

upon exchanging the order of the sum and integral. From Lemma 12.5 below we deduce that the
right-hand side is majorized by

P [ ()T g dr (L) QT [ () ) dn
n(GL) ME%)
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In view of Lemma 6.5, both integrals converge, yielding

Z Nqa/ /B(W) dn <o T’(1+7“d(g+1))Qg+l +(1+T)d(0+1_G)QU+1_9.
1<Ng<Q 9 Pg/ng(r)

Applying the above estimate with » = /R > 0 and executing the sum over ¢ > 1, we get

oo nl ! o\ "o+ . 2\ Uo+1-0) iy
Y Na"9vola(Pong) < ) ¢ <R<1+<R> )Q +<1+R> Q )

1<Ng<Q =1
< R*l(l +R*d(0+1))Q0+1 4 (1 _'_Rfd(oui’l*@))QO"Flf@‘

The last expression is majorized by R~1Q+! + Qo+1-9,
For the remaining two estimates, recalling the definitions in §7.2, it is enough to show that for
any standard Levi L € Lo (M) we have

> Nq™volp,1(Po/ng) = Op (R~ Um0 (00)-2W (LS| i),
1<Ng<Q

where |W(M, L);| is as in §5.7. When L = M (corresponding to the second sum of the lemma,
over volume terms volr(FPg/ng)), the above estimate follows from

Y Ng° /P - B(r)dr = /H (ng,>( 3 Nq0>5(7r)d7r

1<Nq<Q 1<Ng<Q/q(m)

& QU+1/ )q(w)_"_lﬁ(w) dm,

(G}

o0

the last integral converging in view of Lemma 6.5 and our assumptions on o.

For L strictly larger than M (corresponding to the third sum of the lemma, over volume terms
vol(Pg/Ng)), similar manipulations apply (in light of Lemma 8.2), and one has only to verify the
convergence of the remaining integral, but with integration of the Plancherel majorizer ﬁf/[(é, V)
taking place over the planar sections ihj N P5 x. From Lemma 6.4(2) it follows that the integral of
B$;(8,v) over such a planar section is dominated by that over its O(1)-tubular fattening. Lemma
6.5 can then be applied to complete the proof. ]

We now establish the following result, which was used in the proof of Lemma 12.4.

Lemma 12.5. Let 7 € iemp(GL,). Letr >0,0< 0 <2/(d+1), and o > —1+ 6. Then

o awny (@ N\ a0 QN
Z Ng” <o r(1+7 ) ) +(1+7) ) '

N q(m q(m
ﬂE@PQ/Nq (7“)

Proof. We first convert the condition 7 € 9FPg/Nq (r) on the ideal g to a more amenable condition
on the norm of q. We may assume that = = w5, for some ¢ € &MY and v € ih}s, where M is a
standard cuspidal Levi subgroup.

For parameters r, X > 0 we have m € Px (r) precisely when there is p € ib}, with ||p—v| < rand
q(ms,) = X. Letting M, (m) (resp., m, (7)) denote the maximum (resp. minimum) value of ¢(m;s,,)
as p varies over ih}, with || —v|| <7, we see that m € OPg/ng(r) implies m, (1) < Q/Nq < M, (7),

so that
>, Na'< > Ng”.
1<Ng<Q Q/M(m)<Nq<Q/m ()
TE€OPY . (7)
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Using the asymptotic (6.19) we see that this is bounded by

Ch(1) 1 1 Qo0
(12.4) UF—I(— EQ " <mr(7r)‘f+1 B Mr(ﬂ)"H) * O(mr(ﬂ)gﬂ_e)

To conclude the proof of the lemma we shall need to relate m, (7) and M, (7) to expressions involving
(1 +r) and ¢(m). This will require some basic analytic properties of the archimedean conductor
q(ms,) as v varies.

For v € ibh}, and r > 0, let v(r) € ib},; denote the translation v + riy, for some fixed vy € ibh},
in the positive chamber, and write 7(r) = 75,(,). Since g(7s,) is monotonically increasing in v,
it follows that for vy large enough we have M, (7) < ¢(w(r)). Similarly, ¢(7(—r)) < m,(m), for
r < i||v||, say. In this interval we have q(m(—r)) < (), while, if r > 3||v||, we have

g(m(=r)) = q(m50) > (1+ [vl) " Fg(m) > (14 7r) ().

Thus, in either case, g(7(—r)) > (1 4+ r)~%(n), proving m,(7) > (1 + r)~%g(r). When inserted
into the second term in (12.4) we obtain the second term of the lemma.

Now let s — m(s) be a unit length parametrization of the line between v(—r) and v(r) in ib},.
Since s +— q(m(s)) is a real-valued differentiable map on the interval [0, 1], we have

1 1 -
(1)) —al(r))? = [ Satr(e)as = [ oata(ee I g

d7r(s)

Since d%gf((;))) < q(m(s)) and < r, the latter integral is bounded by

< 1lo] / )7 ds <o ra(n(—1))7 <o r(1+ 1)~ q(x)".

Since o < 0 we have (14 1)~% =<, (1 +r~%), proving m, ()7 — M;(7)? <o r(1 4+ r7%)q(m)°.
Inserting this into the first term of (12.4) then completes the proof of the lemma. O

12.3. End of proof. We now return to the proof of Proposition 12.2.
We first choose the sequence #Z = (R(n))nco, of the form

Ri, ifQY?2<Nn<QqQ,
R(n) = . 1/2
RZa if Nn < Q )

where Ry, Ry > 0 will be chosen shortly (and Q7 works as a cutoff for any o € (0, 1]). With the
above choice of # the term 0voly(Q) is equal to

oY Pa@)lea@dvolr, Py + D D [Aa(a/0)]n(2)0volr, (Po)ny).

Ng<@ dlq Ng<@  0fq
Q1/2<N0<Q ND<Q1/2

(12.5)

Bounding the first term using

> An(a/0)len(@) < Ng" JJ(1 = Np™) (1 +nNp~™ + (5)Np ™" 4 ---) < Ng"

%lq pla
and second term using (12.3), the above expression can be majorized by

> Ng"dvolg, (Pgng) + Q™ Y Ngdvolr,(Po/ng)-
Ng<Q Ng<@
Combining this with Lemma 12.4 shows that dvoly(Q) <. Ry Q" + RQ_ngﬂJr€ + Q1o
Similarly one obtains vol%(Q) <. R{3Q"" 4+ Ry3Q=71+¢ and vol,(Q) < @10,
Now let ¢ > 0 be as in Proposition 7.3. Then taking R; = §log(@Q and R = c in the definition

of Z in (12.5) yields an admissible sequence according to the definition preceding Corollary 12.1.
Inserting these values establishes the stated bounds of Proposition 12.2. O
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Part 3. Proof of Theorem 1.3

Theorem 1.3 is proved using the Arthur trace formula, which we recalled in Section 4. In this
part, whose overview may be found in §3.3, we construct suitable test functions and estimate the
geometric and spectral contributions in the trace formula, culminating in the proof of Theorem 1.3
in Theorem 16.2.

13. BOUNDING THE NON-CENTRAL GEOMETRIC CONTRIBUTIONS

Arthur defines a distribution Jgeom on H(G(Ap)!) related to geometric invariants of G; we
described its general shape in §4.10. This distribution Jgeom admits an expansion along semisimple
conjugacy classes of G(F'), and our task in this section is to bound all but the most singular terms
(the central contributions, shown explicitly in (4.14)) appearing in this expansion. We must do so
uniformly with respect to the level and the support of the test functions at infinity.

Theorem 13.1. Let n > 1. There exists 8 > 0 and ¢ > 0 satisfying the following property. For
any integral ideal q, R > 0, and f € H(GL,)r we have

n2 * c n—
Jeeom (e () @ F) = D5 PARWgn(@) Y f(9) < e NG floc
YEZ(F)NK1(q)

The implied constant depends on F and n.

Our presentation is by and large based on the papers [23], [55], and [56]. Many aspects of our
argument are simplified by the absence of Hecke operators in our context. On the other hand, we
have to make explicit (in various places) the dependence in R. The proof of Theorem 13.1 spans
Sections 13 and 14. In the first of these, we bound the number of contributing terms as well as
the global coefficients. This reduces the problem to a local one, which we treat in Section 14, on
bounding weighted orbital integrals. In the course of the proof, the value of ¢ can change from
instance to another.

13.1. Contributing classes. We now wish to bound the number of equivalence classes 0 € O
contributing to the coarse geometric expansion (4.5) of Jgeom(€x, (q) ® f), for f € H(GL)r. For
this it clearly suffices to take q trivial.

Definition 6. For R > 0 let O denote the set of o € O for which there is f € H(GL )r with
Jo(1ky, ® f) # 0.

Our main result in this subsection is the following estimate. The argument is based largely on
[55, Lemma 6.10].

Proposition 13.2. There is ¢ > 0, depending on n and [F : Q], such that |Og| < e°F.

Proof. Let o be a semisimple G(F')-conjugacy class represented by some semisimple element o €
G(F). Let x, denote the characteristic polynomial of o. It is a monic polynomial of degree n
with coefficients in F', independent of the choice of o, and the map o — ¥, is a bijection onto such
polynomials. We shall count the o appearing in O by counting the corresponding x,.

As in §4.11, let Ug, denote the algebraic variety of unipotent elements in the centralizer G,.
The condition 0 € O is equivalent to the following collection of local conditions at every place v:

(1) for every vt oo there is v, € Ug, (Fy) such that the G,-conjugacy class of ov, meets Ky ;
(2) there is vo € Ug, (Fixo) such that the Goo-conjugacy class of o, meets Géqu.

Note that any element ¥ € G(Ap) lying in the G(Ar)-conjugacy class of o has characteristic
polynomial equal to x,. From the above local conditions we deduce that the coefficients of x, (for
0 € Op) are v-integral for all finite v, and so lie in Op. Moreover, their archimedean absolute value
is bounded by e®? for some constant ¢ > 0. Each coefficient of y, for contributing classes o then
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lies in the intersection of Op C F' with [[, o [-X, X] C Fso. As there are at most O(X 7@y such
lattice points, the proposition follows. O

For a contributing class o, and S, is defined in (4.7), we will now apply the fine geometric
expansion (4.6) in the case where

(13.1) S=8USUSx and ds= [] 1k, ® [] eriu@®
vES,,v¢Sy vESy
for the f € H(GL )r appearing in the statement of Theorem 13.1.
13.2. Bounding global coefficients. Next we bound the coefficients a™ (v, S,), for 7 lying in a

contributing class 0. Once again, we are free to assume that q is trivial, so that o € Op.
For any finite set of finite places T' we put

qr = H qQu-
veT
We begin with the following useful result.

Lemma 13.3. For o € O we have qs, < e“?. In particular,
(13.2) |Se] < R
foro e Op.
Proof. If 0 € O and 0 € G(F) is a semisimple element representing o, then there is y € G(F)
such that y~lolg, (F)y N K; # 0. In other words there are y € G(F) and u € Ug, (F) such
y~touy € Ky. Thus, for every finite place v we have D,(c) = D,(y touy) < 1. Moreover, it
follows from [56, Lemma 4.4] that (under the same assumptions on o and o)
(13.3) Doo(0) < e°ft.
Thus for 0 € O we in fact have

Sy = Syila U{v < 00: Dy(y) <1} = Syita U {v < 00 : Dy(y) < gy '}
By the product formula, we deduce that

1= H Dy(7) H Dy() H Dy(v) < quildqgoleCR <n qgoleCR’

v¢SoUSeo VES, VESso

as desired.

To deduce (13.2) from this we note ZUESU 1< ZUGSU log g, =loggs, < R. O

For the next estimate, we invoke the main result of [53], a corollary of which is the following. Let o
be elliptic semisimple in M (F'). Then o is conjugate in M (C) to a diagonal matrix diag(¢1, . .., pn)-
Let

AMe)=N| ] @-¢)?).
1<j:Gi7C;
where N is the norm from F' to @, and the product is taken over indices ¢ < j such that the string
@; + -+ -+ a;j lies in the set of positive roots @M+ = &G+ N M for M. Then it follows from [53]
(see also [55, (22)]) that there is k > 0 such that for any finite set of places S containing S, if
v = ov is the Jordan decomposition of 7, we have?

(13.4) aM(v,8) < ]S|“AM(0)“< [] log qv>n
veES

4The measure normalization in [53] differs from ours by a power of the discriminant of F. This is not an issue,
since our implied constants are allowed to depend on F' and n.
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for o elliptic in M (F) and a™ (v, S) = 0 otherwise.

Proposition 13.4. There is ¢ > 0 such that for any M € L, any 0 € Or meeting M, and any
v € 0, we have a™ (v, S,) = O(eR).

Proof. Tt follows from (13.2) that the factor of |S,|" in the upper bound (13.4) is at most O(R").
To bound the factor AM (o) we follow the argument of [55, Lemma 6.10, (iv)]. The eigenvalues
(1,...,C, are the roots of the characteristic polynomial of 0. As in the proof of Proposition 13.2, for
0 € Og, these coefficients have v-adic (for archimedean v) absolute value bounded by O(e‘f). An
application of Rouché’s theorem shows that each (; has complex absolute value bound by O(e“?),
from which it follows that AM (o) < e“®. To bound the last factor in (13.4) we apply the first part
of Lemma 13.3. O

13.3. Reduction to local estimates. Now we return to the setting where S is an admissible set
of places of F', as in §4.10.

We first recall that for factorizable test functions ¢g = ®,c5¢, and v € M (F’) one has a splitting
formula which reduces Jpz(7, ¢g) to a sum of products of local distributions. Write M, = M (F,)
and put M =[] g M, € Lg. More precisely (see [55, Lemma 6.11] or [56, (11.4)]), there are real
numbers {dps(Lg)}, indexed by Levi subgroups Lg = (Ly)yes € Lg(M), such that

m(y0s) = . dm(Ls) [] 757 (v 019,

Ls€Ls(M) veS

Here, we are using an assignment £, 3 L, — @, € Py(L,) which is independent of S, and for every
v € S the element ~, € M, is taken to be M,-conjugate to v. The properties of interest for us on
the coefficients dps(Lg) are the following, proved in [55, Lemma 6.11]:

(1) as Lg varies, the coefficients dps(Lg) can attain only a finite number of values; these values
depend only on n.
(2) the number of contributing Levi subgroups Lg can be bounded as

{Ls :dp(Ls) # 0} < |S|" L.

From these properties, it follows immediately that for any o € O, v € o, admissible S, and
factorisable ¢g = Qypesd, € H(Ggs) we have

JM(%¢S)<<\5!”_1 e HIJL” (s 52)).

Thus, if 0 € Og, f € H(GL)r, and S and ¢g are taken as in (13.1) we obtain

Im (V. Exy (@) @ f) < R max Hu (o, £59))]

LseLs(M)
(13.5) I I
X H ’J , %”EKl ))‘ H |J]\/[1;(7v71K5v)’7
vESy vES,,vE Sy

where we have used (13.2) as well as the fact (see, for example, [55, §7.5] or [83, Lemma 6.2]) that
1) = 1,1,

14. ESTIMATES ON LOCAL WEIGHTED ORBITAL INTEGRALS

It remains to bound the local weighted orbital integrals appearing in (13.5). In this section, we
provide (or recall) such bounds at every place, and show how they suffice to establish Theorem
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13.1. As we mentioned in Remark 4, the dependence in our bounds on « will be expressed in terms
of a Weyl dscriminant. Specifically, when M € L, and v = ov € M we put

Dy (7) = | det(1 = Ad(0)jmymp Mo = [ 11— (o).
acdM
a(o)#1
When M = G, this recovers the definition of D (7) from §4.5.
For v dividing ¢, we offer the following proposition, the proof of which is based heavily on works
of Finis-Lapid [23], Matz [55], and Shin—Templier [83].

Proposition 14.1. There are constants B, C,6 > 0 such that the following holds. Let v be a finite
place. Let M € L,,, L € L,(M), and Q € P,(L). Then for anyr >0 and v = ov € olg, N M and
r > 0 we have

T 1) ) < ai " DE(0)

where a = 0 whenever the residue characteristic of F, is larger than n! and v ¢ S,, and a = 1
otherwise.

A great deal of work has been recently done by Matz [55] and Matz—Templier [56] in bounding
archimedean weighted orbital integal for GL,,. Their bounds are almost sufficient for our purposes,
except for the dependency in the support of R. By simply explicating this dependence in their
proofs, we obtain the following result.

Proposition 14.2. There are constants ¢,C > 0 satisfying the following property. Let v | oco.
Let M € L, L € L,(M), and Q € Py,(L). Then for any R > 0 and v = ov € ollg, N M and
f € H(GL)r we have

Ti1 (1, £ ) < DY (o)™ flloo-

14.1. Deduction of Theorem 13.1. We now show how the above results imply Theorem 13.1.
We will need an additional result for places v € Sy, v ¢ Sq (as in the last factor of (13.5)). Namely,
it is proved in [55, Corollary 10.13] that there are constants B, C' > 0 such that for any finite place
v, and any M € L,, L € L,(M), and v € L, one has

(14.1) Jir(v 1ge) < i DY (o) €.

Returning to the global situation of Theorem 13.1, we let 0 € O be such that o N M (F) is non-
empty, and let 0 € M (F') be a semisimple element representing 0. We may assume that o € Op,
for otherwise Jar(7,ex,(q) @ f) = 0. We apply (13.5) to reduce to a product of local factors. Then,
using Proposition 14.1 (at finite places v € S;), display (14.1) (at finite places v € S,, v ¢ Sy), and
Proposition 14.2 (at v € S ), we deduce that for v = ov € oldg, (F) N M (F):

JM(%€K1(q) ®f) < «E’CRNq”_quU max H Df” (J)_C“.
LseLs(Ms) VES,USoo

Here we have incorporated the ([[cnar(m,)<n: ¢,)? into the implied constant, which is allowed to
depend on the number field F' and n. We may furthermore apply Lemma 13.3 to absorb qgn into

the exponential factor e¢f® (at the cost of a larger value of c).
To treat the product of Weyl discriminants, we argue as in the proof of Lemma 13.3. Observe
that for M € L, we have DS (v) = D§;(v) DX (v), where

(14.2) D§im = JI n-a@)l.

We first note that for 0 € O, represented by a semisimple element o € M (F'), we have va (0)<1
for finite v and va (0) < e°f for archimedean v. We may therefore replace D (o) by D, (o) =
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DS (o) in the statements of Propositions 14.1 and 14.2, as well as in display (14.1). Moreover, since
D, (o) <1 for every v < oo, we may increase the value of C' in Proposition 14.1 and display (14.1)
at the cost of a worse bound. Let C, denote the value of C at each place v € S, U S and put
C = maxyes,us., Cv- An application of the product formula yields

[T Do) < I Do) @ ] Dolo) @ = [] Do) .

VES,USoo VES, VESso VESso

Since C' — €y, > 0 we deduce from (13.3) that [[,cq 5. Dy(0)~% < e°f which completes the
proof of Theorem 13.1.

14.2. Proof of Proposition 14.1. In this paragraph we let v denote a finite place. Where possible,
we will drop the subscript v. So, for example, G = Gy, G5 = Goy, Ug, = Ug, (F,), K = K,,
P =Py, @ = Wy, Kl(pr) = K17U(p2)7 q = quv, and D(U) = DU(U)'

The basic idea of the proof of Proposition 14.1 is to show that the semisimple conjugacy class o has
small intersection with K7 (p”). One has to do this in the framework of the definition of the general
weighted orbital integrals (4.10), which involve various weight functions. (No confusion should arise
between the parabolic subgroups R € F% (M,) in (4.10) and the archimedean parameter R > 0.)
We shall divide the proof into three steps as follows:

Step 1. Reduce to the case that L = G. We do this by showing that whenever L is a proper Levi
subgroup of G we can get savings in the level by means of the constant term alone.

Step 2. Reduce to the case of M = G and 7 semisimple non-central. This involves bounding the
parenthetical expression in (4.10), as a function of y € G,\G, 7, and the level p”.

e If v is not semisimple, then for every R € F%(M,) we get savings in the level for the weighted
unipotent integrals J ]\Ajf(u, ®p,) of (4.12) by bounding the intersection of unipotent conjugacy
classes (in the centralizer of o) with congruence subgroups (which depend on y).

e If v is semisimple non-central, but M # G, then the same argument as above applies to all
terms except the one associated with R = M., since in that case the unipotent integral collapses
and one has simply Jjj\\j;’(l, Por, ) = 1K1(pr)(y_10?/)vf\/[o (y).

Step 3. Bound the invariant orbital integrals of 1y () for semisimple non-central +.

In all cases, the central ingredient to bounding intersections of conjugacy classes with open compact
subgroups is the powerful work of Finis-Lapid [23]. We shall give a brief overview of their results
in §14.2.1 below.

It is instructive to examine the division into Steps 2 and 3 in the case where G, C M, as the
notation greatly simplifies under this assumption. As usual, let v =ov € cldg, " M. Let V C Ug,
be the G,-conjugacy class of v in G, endowed with the natural measure. Then we are to estimate
the integral

J]\Cj[(’Yv ]-Kl(pr)) = /G \@ VOly—laVy(y_lan N K, (pr))vgw(y) dy
We proceed differently according to whether v is trivial or not.

o If v is trivial, then the inner y~'oVy-volume is just 1K1(p7‘)<y710_y). Thus Step 2 is vacuous is

this case, and Step 3 then bounds
/ L, ry (™~ o) v (y) dy
Go\G

by estimating the intersection volume of the conjugacy class of ¢ with the congruence subgroup
Ki(p").
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e If v is non-trivial, then V is of positive dimension and Step 2 bounds the inner y~'oVy-volume
by a quantity which is roughly of the form ¢="1 B(tg)(yay_l). Here, for a real parameter t > 0, we
have denoted by 1p(;) the characteristic function of the ball B (t) of radius ¢ about the origin, and
t, roughly of size D(0)~C. One may then estimate the volume of G, \B(t) (a compact piece of the
tube of radius ¢ about G,) by appealing to the work of Shin—Templier [83].

In either case, the weight function v}, is easy to control, as it grows by a power of log with the
norm of y, using results from [55].

The more general case, when G is not necessarily contained in M, is complicated by the presence
of the various terms parametrized by R € FCo(M,) in (4.10). For example, whenever R # G,
these terms include the unipotent weight functions wﬁ‘}], which must be dealt with. Nevertheless
the case G, C M described above already contains most of the difficulties.

14.2.1. The work of Finis-Lapid. It will be convenient to use the results of [23]. We now recall
their notation (specialized to our setting) and describe two of their main theorems. As we will
sometimes need the global group G alongside the local group G,, where v is a finite place, in this
subsection we temporarily return to the notational convention of the rest of the paper, and restore
all subscripts v.

For r > 0 let K,(pl) = {k € K, : k = Id (mod p])} be the principal congruence subgroup of
level exponent r. Let g, = M, (F,) be the Lie algebra of G and write A = M, (O,). Following [23,
Definition 5.2] for v € G, we put

Ay(7) = max{r € ZUoo: (Ad(y) — 1)A C w,A}.

In other words, if we make the identification GL(g,) = GL,2(F,), then A,(vy) is the maximal
r € ZUoo such that Ad(«) lies in the principal congruence subgroup of GL,,2(O,) of level exponent
r, c.f. [23, Remark 5.23]. The function A\, on G, descends to one on PGL,(F,), and one has
Ao(7) = 0 whenever v € K,,.

For a twisted Levi subgroup H recall that K2 = H, N K,. Then KH(p") = K,(p?) N KH
is the principal congruence subgroup KX of level exponent 7. We define the level exponent of
an arbitrary open compact subgroup K of K as the smallest non-negative integer f such that
KH () is contained in K. For example, the level exponent of Ky (py) is 7.

We shall make critical use of the following result, which can be deduced from Propositions 5.10
and 5.11 of [23]. See [13] for more details on this deduction. Recall the measures pgr, from §4.8.

Proposition 14.3 (Finis-Lapid [23]). For every e > 0 small enough there is 8 > 0 such that the
following holds. Let r be a mon-negative integer, v a finite place of F', H a twisted Levi subgroup
of G, and x € KH. If \,(z) < er then for any open compact subgroup K of K of level exponent
r we have

pr Ak e KH k7 lak e K} < )%

We shall also need the following result, which can be deduced from [23, Lemma 5.7]; see also the
proof of [23, Corollary 5.28].

Proposition 14.4 (Finis-Lapid [23]). Let H be a twisted Levi subgroup of G. Let P be a proper
parabolic subgroup of H, with unipotent radical U. Let v be a finite place of F'. Then

vol{fu € U, NKH : )\ (u) > m} < ¢;™,
uniformly in v.
Finally we remark that in [13, Lemma 6.10] it is shown that for semisimple o € K, we have
(14.3) ¢ < Dy(0)7L.

This inequality will be occasionally used to convert from large values of \,(o) to large values of
—log,, Dy(0).
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14.2.2. Reduction to L = G. We return to the purely local setting of Proposition 14.1 and drop all
subscripts v where possible, as explained in the opening paragraph of §14.2.

We recall the definition of the constant term. Let M € Lg and P € Pg(M) with Levi decompo-
sition P = MU. Let ¢ € C>°(G). Then the constant term of ¢ along P is defined by

(14.4) o) (m) = 6p(m)'/? /U /K o(k~tmuk)dkdu  (m € M).

Then ¢(F) € C(M).
We begin by reducing the proof of Proposition 14.1 to the case L = G. The first step in this
reduction is to estimate the constant terms of the functions 1x, ), uniformly in r and 7.

Proposition 14.5. There is 8 > 0 such that the following holds. Let M € L,, M # G, and
P e P,(M). Then fory € M, and r = 0 we have

P o
1570 (1) < a7 g ().

Proof. Tt follows from [55, Lemma 7.3 (i)] or [83, Lemma 6.2] that 1&? =1gm. Now 0 < f<g
).

implies that fF) < ¢(P). From this we deduce that lgg)(w)(w) =0 unless v € KM, Henceforth we

may and will assume that v € KM: note that 6p = 1 on KM,
Recall the definition of the constant term map in (14.4). Note that if v € U is such that
k~'yuk € K then u € U N K. Fixing u € U N K the inner integral is

pa(k € K : k™ lyuk € Ki(p")).
From Proposition 14.3, for every € > 0 small enough there is # > 0 such that

1§i)(pr)(7) < vol{fu e UNK : AMyu) > er} + ¢ volfu € UNK : AM(yu) < er}.

We apply the trivial bound vol(U N K) = 1 to the latter volume. To deal with the former, we
note that A(yu) < A(u) for v € KM and w € U N K and then apply Proposition 14.4 to finish the
proof. O

We now prove Proposition 14.1 in the the case that L # G. Let v = ov € oldg, N M. From
Proposition 14.5 we deduce

T ) < P IE (. 1k,

where b = 0 or 1 according to whether the residual characteristic of F, is > n! or not, and J&
denotes the weighted orbital integral J 11\34 but with absolute values around the weight functions in

(4.12). If v € S, we apply (14.1) to the latter integral (which is valid with J§, replaced by J).
Otherwise, if the finite place v is not in S,, then it follows from [55, Lemma 10.12] (which, again,

is valid with J§; replaced by J§;) and the identity JE (o, 1xr) =1 (for semisimple o) that

T L) < ¢,
with the same convention on b as before. This yields the desired estimate in both cases.

14.2.3. Bounding the weighted unipotent orbital integrals on descent functions. We shall now bound
the parenthetical expression in (4.10), with ¢ the characteristic function of K;(p”"). Before doing
so, we shall need to introduce slightly more notation.

If y = kidiag(w™, ..., @™ )ky € G, where k1,k2 € K and m; > --- > m,, are integers, then we
write

lyll = qmax{lml\,lmn\}_

For t > 0 we write B(t) = {g € G : ||g|| < t} for the ball of radius ¢ about the origin in G. Then
1p() is the characteristic function of B(t).
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Lemma 14.6. There are constants B,C,0 > 0 such that the following holds. Let v = ov €
ola, N M be non-central. Let b= 0 or 1 according to whether the residual characteristic of F,, is
> n! or not, and putty = D(U)*Cqu. Letr > 0 be an integer. Then there is a set of representatives
y € G, \G such that the expression

M
Do Il ®ry),
ReFGo (Mo)
where the descent functions @, are associated with 1y (yry, is magjorized by

(1+logts)" ™" 1, pry(y~'oy) + 4"~ D(0) " “1p,) (v~ oy).
Proof. Let (y,u,k) € G x Ug, x K be such that y~'ok~'uky € K. From [55, Corollary 8.4],
there are constants B, C > 0, and for a triplet as above there is g € G, (which can be taken to be
independent of u) such that

(14.5) lgyll < D(0)~“¢"Z,
(14.6) lgug™'|| < D(0)~“¢*?,

where the convention on b is as in the lemma. Henceforth we take a set of representatives y € G,\G
whose norm is bounded by the right-hand side of (14.5), in which case it can be assumed that the
norm of u is bounded by the right-hand side of (14.6).

We furthermore recall the bound on the weight function |vg ()| < (1 + log lz])"~! established
in [55, Corollary 10.9], valid for any parabolic Q € F(M). Thus, using (4.11), we deduce that for
any y as above and any k € K% we have

<
<

n—1
[orlky)| < (1+1og D(e) “g"")"

In particular, if v = 1 and R = M, then we may go ahead and bound the integral J J\Aj;’(l, Pry)
appearing in (4.12). Indeed, the unipotent subgroup U of that formula is reduced to the identity
in this case, so that the U integral collapses and one has

Ta (1, @01,.4) = i, ory (y ™ oy)viy, (1)
Using the above bound on the weight factor, we obtain the first term of the majorization of the
lemma.

Next, for p € R let Den(p) denote the set of matrices in M, (F,) all of whose coefficients have
valuation at least —p. Note that if g € G is such that ||g|| < ¢ then g € Den(p); indeed it suffices
to establish this for diagonal elements in the positive chamber, where it is immediate. Thus, for u
as above, we have u € U N Den(p,), where p, = bB — Clog, D(0).

We return to estimation of the integral J ]]\\4/[;2(1/, ®py), this time in the case where either v is not
semisimple or M # G. In either of these cases, the U appearing in (4.12) satisfies dim U > 1. From
the above discussion we deduce that J ]\J\jf(z/, ®p,) is majorized by

n—1
(14.7) (1 —I—logD(U)_Cqu> /UmD ( )|w]\]\f[[iU(u)|/KG lKl(p7-)(y_lak_1uky) dk du.
en(po o

For y € G and r > 0 let us put K°(y,r) = yKi1(p")y~' N G,. In the special case when
r = 0 we shall simply write K?(y) = K?(y,0). With this notation, the inner integral in (14.7) is
Jxceo 1 Kcr(ym)(k'ilo"l)k) dk. After an application of the Cauchy—Schwarz inequality, we see that the
double integral in (14.7) is bounded by
1/2
(14.8) ( / / 1oy (k ouk) du dk> ( / g™ ()] du)
KGo JU UNDen(ps)

1/2



80 COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR

Using [55, Lemma 10.5], we see that the second factor in (14.8) is O(D(c)~%¢*?), with the same
. . . . M
convention on b. (The aforementioned result in fact bounds the integral fUﬁDen(pU) [wi g (w)| du,
but the same proof applies with ]w%fU(u)\Q as integrand, simply by replacing the polynomial ¢ in
[55, Lemma 10.4] by its square.)
Next, we treat the first factor in (14.8). We follow closely the presentation in [23, Corollary

5.28], explicating several small differences. We first write the double integral as
/ voly (U No 'K (ky,r)) dk.
KGo

We may suppose that UNo ' K (ky, ) is non-empty, in which case, fixing any ug in this intersection,
we have UNo K7 (ky,r) = ug(UNK?(ky,r)). By invariance of the Haar measure on U we obtain
in this case

voly (U N o K7 (ky,r)) = voly (U N K% (ky,T)).
We claim that we can reduce to the case where K?(y,r) is replaced by K7(y,r) N K& =
yK1(p")y~t N K% . Indeed, this double integral is

(14.9) / voly (U N K (ky,r))dk = / i(k) voly (U N K (ky,r) N K% ) dk,
KGo KGo

where
i(k) = [UNK°(ky,r) : UNK(ky,r) N K% < [K7(ky,r) : K7 (ky,r) N K%]
= [K7(y,r) : K (y,r) NK“] < [K7(y) : K7(y) N K.
Therefore the expression in (14.9) bounded by

(14.10) [K°(y) : K°(y) N K% /U /K Ly )y 1K (k™ tuk) dk du.
Continuing, it now follows from (14.5) that
[K7(y) : K7(y) N K9] < D(0)"“¢"".

It remains to bound the double integral in (14.10).

We first note that the level exponent of yK;i(p™)y~! N K is at least 7. That is to say,
yK1(p")y ' N K% cannot contain K&~ (p"~1). This follows, for example, from the fact that the
central element 14 ™! lies in K% (p"~1) but not in y 1K (p")y N K. In light of this, we may
apply Proposition 14.3, with H = Gy, to find 6, e > 0 such that

-1 —0r
/I<GU 1yK1(pr)y71mKGa (k uk) dk << q
whenever \(u) < er. The double integral in (14.10) is therefore bounded by
vol{u € UNKE : \(u) > er} + ¢ " vol{u € UNKY : \(u) < er},

We bound the second volume factor trivially by vol{u € U N KG”} = 1. Finally, an application of
Proposition 14.4 (with H = G,) shows that the first volume factor is majorized by ¢~ finishing
the proof. ]

14.2.4. Invariant orbital integrals. In view of Lemma 14.6, it now remains to establish good bounds
on the invariant orbital integrals of 1x, ) and 1p(,). It suffices to estimate the unnormalized
orbital integral

0s(6) = /G P ),

since JG (0, ¢) = D(0)Y20,(¢).
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We first handle the invariant orbital integral for 1p(, ). If o ¢ S, and the residue characteristic
of F, is > n! then ¢, < 1, and we may apply [83, Theorem A.1] to deduce that O,(1p(,)) < 1 in
this case. If either the residue characteristic of F, is < n! or v € S, then we proceed as follows.
For every A € X (Tp) let 7(\) denote the associated Hecke operator, namely the characteristic
function of KA(w)K. Then

Ocr(lB(tg)) = Z Oq (7).

NeXT (Tp)
Al <log, to

Note that there are only O(logg ty) cocharacters A satisfying the bound in the sum. For each of
the above orbital integrals, it follows from [83, Theorem 7.3] (see also [83, Theorem B.1] for a
stronger result) that there are constants B, C' > 0 such that O, (7)) < t2D(0)~¢. Inserting this
into the above expression (and recalling the definition of ¢, from Lemma 14.6) we deduce the bound
O,(1p4,)) < ¢PD(0)C in this case. We conclude that in all cases we have

Os(154,)) < ¢"?D(0)~C,

where b = 0 or 1 according to whether the residue characteristic of F,, is > n! or not.

It remains then to estimate the invariant orbital integral Oy (1, (yry) uniformly in the level p”
and the semisimple element 0. We accomplish this in the next lemma; our presentation follows
closely that of [13, Proposition 6.2].

Lemma 14.7. There are constants B,C,0 > 0 such that the following holds. Let v be a finite
place. For any r > 0 and semisimple o0 € G, 0 ¢ Z, we have

Os(1g, (o)) < ¢~ D(0)~,
where a =1 or 0 according to whether v € S, or not.
Proof. Letting U, ¢ denote the conjugacy class of o, we have
Oo (1K, () = Ho(Coc N K1(p")),

where 11, = pa/pG,. Now Cy is closed since o is semisimple. The compact set Cyp.q N K1 (p")
is then a disjoint union of finitely many (open) K-conjugacy classes Cy, k meeting K;(p”). This
gives

t
po (Cax N K1 (p"))
OU(lKl(Pr)) - Z - :U’U(Cxi,K)'
~  jo(Ca k)

From the definition of the quotient measure, for any x € K, we have

_pe(ke Kk lak € Ki(p"))

Using (14.3), we may deduce from Proposition 14.3 that if 2 € K is semisimple and non-central,
and D(x) > ¢~ for some € > 0, then

po(k e K : k7 lak e Ki(p")) < ¢~ 79,
Thus for every € > 0 there is § > 0 such that if D(o) = D(x;) > ¢~ then

MU(C:C,K N Ky (pT))
NU(CI,K)

po(Crx N K1(p"))

=pgkeK:k ek e K1(p")) < ¢ 7.

In this case we obtain

t
O0s(1K) < "> 11o(Cr,x) = ¢ "0 (1x),

i=1
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since

t t

Z 1o (Cay ) = Z 1o (Cac NK) = po(Co NK) = Og(1k).
i=1 i=1

If, on the other hand, D(0) < ¢~ (so that 1 < ¢~ D(c)~%/¢) then we may apply the trivial

bound Oy (1, (yry) < Os(1k) to obtain

Ou (15, (o)) < ¢ ""D(0) "0y (1xk).

If v ¢ S, then O,(1x) = 1. If v € S, we apply the bound O,(1k) < ¢®D(0)~ of [83, Theorems
7.3 and B.1]. This proves the desired estimate in either case. O

14.3. Proof of Proposition 14.2. The statement of Proposition 14.2, without the explicit de-
pendency in R, follows from the proof of [56, Theorem 1.12] (in the case of v real) and [55] (in the
case of v complex). To prove Proposition 14.2 it therefore suffices to make explicit the dependence
in R in these works. For simplicity, we shall concentrate on the real case here. Once again, we drop
all v subscripts from the notation, so in particular G = G,,.

It suffices to take L = G, since on one hand the constant term map f — f(@) takes C°(G)g to

CX(LY).r (see, for example, [55, Lemma 7.1 (iii)]), and on the other the factor (%/2 is bounded by

O(e“ ) on GlgR N L. Here ¢, ¢ > 0 are constants depending only on n.

We would like to make explicit the dependency in C(f1) in [56, Theorem 1.12] on both || fi|lec
and the support of fi. (Note that, since we do not seek any savings in the spectral parameter,
our interest is in n = 0.) It is clearly enough to bound the modified weighted orbital integral

Jﬁ(’y, f), where the weight functions are replaced by their absolute values. The dependency on
|| f1llco is easy enough to make explicit, for in the proof of [56, Theorem 1.12] (see Proposition 7.4,
Corollaries 8.3-8.4, and Proposition 8.5 of [56]), one replaces the function f; with a majorizer of
the characteristic function of its support. We can thus assume that f is the characteristic function
of Glg R-

We now supplement a few of the lemmas and propositions leading up to the proof of [56, Theorem
1.12], pointing out how the dependency in R can be made explicit.

e The constant ¢ in [56, Lemma 7.3] can be taken to be of the form O(R), with an implied
constant depending only on n. To see this, first note that the constants in Lemmata 4.6
and 4.7 depend only on n. It can then readily be seen that each of the constants a; in the
proof of Lemma 7.3 can be taken to be of the form et for x; = r;(n). (For example,
a1 = ce“f where ¢ = ¢(n) > 0 and ¢; = ¢1(n) > 0 are given in Lemma 4.6.)

e Inspecting then the proof of [56, Proposition 7.4], one then applies Lemma 7.5 with ¢ = O(R)
and ¢; = O(1), and Lemma 7.6 with s = cA~(7,)°" and the same ¢ = O(R). These
dependencies are admissible, as the integral in the statement of [56, Lemma 7.5] is bounded
exponentially in r(vys) = ¢+ ¢1 log(A™(vs)), as is remarked in the proof, and the statement
of Lemma 7.6 is polynomial in s.

e We now consider the proof of [56, Proposition 7.7]. One is led to consider integrals of the
form [, 1G1<R(v)] log |p(v)||¥ dv, where V is the unipotent radical of a proper parabolic of

G, k > 1 is an integer, and p : V' — R is a polynomial function on the coordinates. (Once
again, recall that n = 0.) This can be bounded by aR’ I 1G1<R(v) dv, where a > 0 and

b > 0 depend on p, k, and n. The latter integral is O(ec?).
15. CONSTRUCTION OF TEST FUNCTIONS

In this section, we construct (in certain cases) explicit realizations of test functions f € H(G)crs
having prescribed spectral transform h € PWpgs. (We are again dropping the subscript oo in the
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notation; thus G = G, G = GL,, K = Ko, £ = L, etc.) We also provide bounds on these
which will be important in the estimation of associated orbital integrals.

Let G' = [[,r SLE(R) [1,/c SLn(C), where SLE(R) = {g € GL,(R) : det(g) = +1}, and set
Z' = ZN G'. The construction of G’ guarantees that we may write every g € G' as g = zyg1,
where g1 € G’ and 2y € Z'. Let Z! = Z' N @', and write AL = {(v,u™) :u e Z}} c Z' x G'.
There is a short exact sequence 1 — Al — Z'xG' — G! — 1, and so if fo € H(Z!) and f; € H(G")
are such that fo x f1 on Z! x G’ is invariant under A}, then one can construct f € H(G') by setting
f(g) = fo(20)f1(g1)- In particular, in either of the two situations (1)—(2) in Proposition 15.1 below,
one immediately verifies that every element of Z} acts by scalar multiplication on the representation
space of § € &2(M*), giving rise to a character we denote (via a small abuse) by &| 71 then, the
previous invariance condition is satisfied if both f and f; transform by the complex conjugate §| z3
under the regular action by Z..

Note that Z! = (ZNK) exp(hg). For R > 0 we denote by H(Z!)r the space of functions in H(Z?!)
whose support is contained in (ZNK)exp(B(0, R)). Analogously, writing K' = KNG’ = HU|OO K/
with K/ equal to O, (R) for v | R and SU(n) for v | C, we denote by H(G’) g the space of functions
in H(G') with support contained in K'exp(B(0, R))K', and by H(G.)r the space of functions in
H(G')) with support contained in K/ exp(B(0, R))K/ .

For M € L recall the Lie algebra decompositions hy = hg @ hf/[ and h% = EBU‘OO a% from §5.4.
Recall furthermore the notation H(G')s from §5.6 and PW; from §5.8.

Proposition 15.1. Letn > 1. Let § € D have standard representative (M,5). Suppose that either

(1) n <2, or

(2) n > 1 is arbitrary, but M = Ty o and § is the trivial character of Ty .

Let h € PW; factorize as
h = hoh1, h1= H he,
v]oo

for some ho € PW(b¢ c)r, and hi € PW((hS))&) with h, € PW((a%)(’E)RU. Tﬁen there exist
fo € H(ZY)R, and f1 = [Ljo0 fo € HIG") with f, € H(G,)R, . both transforming by 6|1 under VA
and such that the product f = fof1 is the unique function in H(G')s for which tr s, (f) = h(v).
Moreover,
(15.1) 1flloe < NIA]l1,

the latter being taken with respect to the measure deg(8)u§,(3,v)dv supported on ib%,.

To facilitate the exposition that follows, we spell out the first stated property on f. Namely, for
any o € D, with standard representative (L,0), and v € hz,(c» one has

h(w™tw), o=w.d, we W(Ay);
0, otherwise.

(152) tr Fa,u(f) = {

Both sides of (15.2) depend only on the W (Ap)-orbit [0, v] of the pair (o, v).

15.1. The operator version of Proposition 15.1. In this subsection, we state an operator
version of Proposition 15.1 which yields the scalar version upon taking traces.

The key to picking out a particular ¢ is a sort of Mobius inversion process on K’'-types, which
we now explain. For v | oo and 7, € II(G)), recall that the restriction of 7, to K/ decomposes
as the orthogonal direct sum over II(K!), with each appearing with multiplicity at most one and
exactly one of them being the lowest K/ -type 7(m,) (relative to the norm ||7,|| as in §5.5). Given
any 7, € II(K)) we say that 7, € II(K/) is an “immediate predecessor” of 7, if, for every m, in
which 7, appears without being its lowest K/ -type, then 7, also appears in 7,. It is easily verified
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that, when n < 2, only the characters of K/ admit no immediate predecessors, and that immediate
7, is uniquely determined for the others. For 7 = [, 70, 7" = [, o0 7v € II(K'), write

v v|oo

e ) = (—1)#lloomi=r} if 7/ ¢ {TU,T;} for every v | oo,
0 otherwise.

For general n > 1 and 7 = 7 the trivial K'-type, we naturally extend this definition simply by
w(ro = 7') = Ly—py.

Now, let (M,5) and h be as in the statement of Proposition 15.1. Let 7(ws) € II(K') be
defined as in §5.5. To prove Proposition 15.1 we shall construct an f € H(G'), verifying the
stated factorization and transformation properties, as well as a function H defined on pairs (o,v) €
EXT} o) X ho,c» such that

(1) H(o,v) is supported on o < ¢ and verifies

(15.3) n(f)=H(ow) Y ulr(ms):7)

rell(K)

1

WHT (r € {mop,m(o,V)}),

where IL. denotes the orthogonal projection onto the 7-isotypic component of 7;

(2) H(o,v) = h(w™'.v) when o = w.6;

(3) when n =2, we have H(o,v) = ho(v) ], H1,(0v, 1), where Hy, is given by the expres-
sions in (15.19) and (15.25) at complex and real places, respectively.

The identity (15.3), in the case m = 7, ,, along with property (2), together imply (15.2) upon
taking the trace. We will use (15.3) when m = m(o,v) in Section 16 in the course of proving
Theorem 16.1.

Remark 22. The existence of f € H(G') satisfying (15.2) is a consequence of the Paley—Wiener
theorem of Clozel-Delorme [17], which is of course valid without assuming either (1) or (2). In
general, it does not make sense to ask for the bound (15.1) to hold, since, given h, the function f
is unique only up to addition by functions whose orbital integrals vanish identically.

15.2. Reduction to semisimple component. We now prepare the proof of Proposition 15.1 by
reducing it to the corresponding statement for the function hi. For 7 a finite length admissible
representation of G with central character w;, the restriction 7’ = 7|g is again of finite length as
a representation of G’ and we have

©(f) = fo(@x)m'(f1).
For § € &%(M*') we let & denote the restriction of 6 to ZNK C M!. If 7 € Rep(G')s then
Wr|znk = 6o. We write & for the restriction of 6 to M N G’. Let D’ denote the corresponding
set of conjugacy classes ' on G'. If we set M’ = M N G’, then we may identify h$, = b5, = b
indeed h = 0 since G’ has finite center.

From the product description in §6.4, u%(é, v) is plainly ihj,-translation invariant in v, and so the
measure deg(8)u; (6, v)dv on ib%, = ih% ©i(h§,)* factorizes as the Lebesgue measure on ih¥, times
deg(6")u§; (8", v")dr’ on i(h§))*. Accordingly, we have ||h||; = [W(Apr) : W (An)s] - |holl1]|h1 ]z, the
Weyl group index coming from the o € W (Apy).0.

To prove Proposition 15.1 it therefore suffices to construct test functions fo € H(Z')g, and
f1 =1lyjo0 fo € H(G') with f, € H(G))R,, both transforming by 0|z under Z,, such that

(1) for xpe” € 2\1, where xo is a character of ZNK and v € b, ¢, we have

~

fo(xo0e”) = 1z =s,ho(v)
and || folloo < ||holl1;
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(2) for any ¢ € D, with standard representative (L',0), and v € b}, -, we have

hi(w=tw), o=w.d, weW(Ay);
0, otherwise,

(15.4) tr g, (f1) = {

and

(15.5) [f1lloo < llAall1-

The first point is simple: let go € C°(hg)r denote the (inverse) Fourier transform of hg. For
ue ZNK and H € hg, we set fo(ue) = 6p(u)go(H). The inequality || folleo < ||hol|1 follows from
Fourier inversion.

It remains to carry out the second point, as announced. The main idea is that, for 7 € TI(K’)
and f in the 7-isotypic Hecke algebra H(G’,7), the transform f ~— trm(f) is described by the
spherical transform of type 7, with an inversion formula when H(G’, 7) is commutative. We review
this abstract theory in §15.3 and then in §15.4 its reformulation in terms of (non-unitary) principal
series representations (1, ) and the corresponding 7-spherical transform H (n,§) = 7 (n,&). For
the actual construction of the test function in §§15.5-15.6, we first rewrite the target function on
the right-hand side of (15.4) as a linear combination of finitely many eligible H(n,¢), for which
we rely on the Paley—Wiener theorem for the 7-spherical transform. We then explicitly describe
the types 0’ appearing in the corresponding inversion formula (15.15) and show that this inversion
indeed provides a test function satisfying (15.4). Finally, we prove (15.5) by estimating all the
terms in (15.15). We review the theory of spherical transforms over the entire group G’ and only
pass to factors G at the end, but the reader will notice that the entire setup for G’ in fact factorizes
over all archimedean places.

15.3. Spherical transform of type 7: abstract theory. We begin by recalling the spherical
functions (and trace spherical functions) of a given K’'-type 7 on a semisimple Lie group with finite
center. These will then be used to define the associated spherical transform on the 7-isotypic Hecke
algebra. For these definitions, see, for example, [92, §6.1] and [14].

Fix 7 € II(K'). For 7 € II(G"), acting on the space Vg, let II; be the canonical projection onto
the 7-isotypic subspace V7. Then the spherical function of type T for 7 is defined by

(15.6) ®7(9) =1l om(g) o Il

Note that ®7(g) is an endomorphism of the finite dimensional space VT, which is zero if 7 is not a
K'-type of m. Similarly, we may define the spherical trace function of type T for m by

(15.7) ¢ (9) = tr 7(g).
Note that ®7(e) =11, and ¢ (e) = dim V]. Furthermore, since 7 is unitary, we have
(15.8) o7 (9)] < dim V|7 (g)[| < dim V7.

Moreover, both @7 and ¢ transform under Z’ by the central character of .
For 7 € II(K') let & denote the character of 7 and write x, = (dim7)&;. We then let H(G', 7)
denote the space of functions f € C2°(G’) such that
(1) f(kgk™') = f(g) forall g € G’ and k € K/,
(2) Xrxf=f=F*Xr
Then for any f € H(G',7) and any 7 € II(G’) we have II, o w(f) o I, = 7(f); see, for example,
[14, Prop. 3.2]. In particular w(f) = 0 on H(G’,7) unless 7 is a K'-type of m. Note as well that
any f € H(G',7) transforms under Z’ by the conjugate of the central character of 7.
We define the spherical transform of type 7 of a function f € H(G’,7) by

27 = [ H0) el do
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It follows from the definitions (see [14, (14)]) that, for f € H(G’',T) we have
1

(15.9) ") = AT ) T
and hence
(15.10) tr(f) =27 (f)(m).

The convolution algebra H(G’, ) is commutative if and only if 7 appears with multiplicity at
most 1 in every irreducible admissible representation = of G’ [92, Proposition 6.1.1.6]. This is
the case, for example, for arbitrary K’-types of archimedean GLs, and for the trivial K'-type for
archimedean GL,; these are the two cases described in the hypotheses (1) and (2) of Proposition
15.1. Whenever H(G’, 7) is commutative, we may invert the spherical transform of type 7. Indeed,
it is shown in [14, p.43] that in this case one has the inversion formula

flg) = — H7(f) () T (o) doPl ()
d1m7‘ H(G’)

for all f € H(G',7). In such situations we see, using (15.8) and the equality dim V7 = dim 7 valid
in this case, that

(15.11) [flloo < 1277 (F)l 21 @m1)-

15.4. Reformulation using the subquotient theorem. Using the Harish-Chandra subquotient
theorem, we may complement the abstract theory of the previous section to give an explicit in-
tegral representation of 7-spherical functions, and explicit formulae for the associated 7-spherical
transforms and (in the commutative case) their inversions.

We begin by extending the definitions (15.6) and (15.7) to the principal series representations
7(n, &), where n € &*(T, 0.00) and € € (P)OG/)(*C, which are not necessarily unitary nor irreducible, but
admit a central character 7|z. For 7 € II(K'), we write

7e(9) =T om(n,€)(g) o L,

where II; is the projection of I(n,§) onto its 7-isotypic component I(n,&)". Here, I(n,§) is the
space on which 7(n,£) acts. Similarly, we put

Pnelg) =tr @, (g).

Both CI‘T; ¢ and gonT’ ¢ transform under Z’ by n|z. We have the integral representation of Harish-
Chandra (see [92, Corollary 6.2.2.3])

(15.12) o) e(9) = / (xr * ) (k(k~Lgk))elE—PHR) qp
K/

where dk is the probability Haar measure on K’, p is the half-sum of positive roots, and g =
k(g) exp(H(g))n(g) in the Iwasawa decomposition G’ = K'A{jN’. Moreover, if 7 € II(K') appears
as a K'-type of 7(n, £), we associate with a function f € H(G’, 7) the transform

(15.13) A7 D0.8) = [ Ha)eqe s

The relation between ¢~ (resp., 7 (f)(m)), defined on unitary representations © € II(G'),
and ¢; . (resp., H7(f)(n,€)) is given by the Harish-Chandra subquotient theorem [91, Theorem
5.5.1.5]. This theorem states (in particular) that for any 7 € II(G') there is n = n(r) € &%(Tj )
and £ = &(m) € (hOG,)E: such that 7 is infinitesimally equivalent to a subquotient of the principal

series representation m(n,&). Thus for 7w € II(G’) appearing as a subquotient of m(n, /), and for any
K'-type 7 of 7, we have

(15.14) por =ne and  AT(f)(m) =H7()(n, )



COUNTING CUSP FORMS BY ANALYTIC CONDUCTOR 87

Note the importance of the assumption that 7 € TI(K’) appearing as a K'-type of m for this
formula to hold: if 7 is not a K'-type of 7, then both ¢ and 7 (f)(w) are zero, whereas this is
not necessarily the case for ¢ . and J7(f)(n,§).

Now assume H(G', T) commutative. Following [14, (46)], we write the inverse spherical transform
of type 7 more explicitly. Let D/ denote the subset of ' € D’ having standard representative (M’ §")
for which 7 appears as a K'-type in m(¢’,0). For any f € H(G',T) we have

(15.15) 10)= Gy 2o ewdenld) [ AT 09076l (0 v

dim 7
€Dy,

where the ¢jp > 0 are constants, and n = n(7ns ), & = &(ns ). We remark that for all ¢’ € D)
we have ¢'|z7 = 7|z = n|z, and thus each Lp:]’g(gfl) appearing on the right-hand side of (15.15)

transforms under Z’ by &'|z.

15.5. Proof of Proposition 15.1 in the spherical case. For the trivial K'-type 75 € II(K'),
and the trivial character ng € é"Z(Tévoo) we write ¢, = @0, for the associated trace spherical
function. Moreover, for f1 € H(G',9), we write hy(v) = F7(f1)(no, v) for the associated spherical
transform. Then the inversion formula (15.15) becomes

(15.16) flo)= [ M@l

where ¢(v) is the Harish-Chandra c-function whose definition in our setting was recalled in (6.10).
In this case, (fi1, h1) forms the familiar spherical transform pair [36, IV,§7 Equations (3),(14)], which
we recall is a bijection from H(G’,7) onto the space of W (Aj))-invariant functions in PW((h5")%)
[36, IV, §7 Theorem 7.1].

We now turn to the proof of Proposition 15.1 in the spherical case (2). From the discussion
directly preceding §15.3, it only remains to consider hy € PW((h5 )%). We use (15.16) to define
f1, that is, we let f1 € H(G', 1) be the inverse y-spherical transform of hj, as shown in (15.16).
Moreover, the factorization hy = HU| oo hw givesrise to f1 = Hv‘ o Jv in the obvious way, with ( f,, hy)
forming a spherical transform pair over G,. The support conditions that f, € H(G,,7olg,)r, are
contained in [36, IV, §7 Theorems 7.1 and 7.3]. Since f1 € H(G’, 19), the operator 7(f1) acts on V.
as zero whenever 7 does not contain the trivial K’-type. Moreover, writing 7, = m, ,,, we deduce
from (15.9) that m,(f1) = hi(v)Il;,. These two observations together imply (15.3). The bound
(15.5) follows simply from (15.11).

15.6. Proof of Proposition 15.1 for n < 2. We now remove the spherical hypothesis of the
preceding paragraph, but restrict to n < 2. Let & be represented by §' = | ! for some
&, € &2(M)), with M, € {T; ,, G} for every v | co. In the following three subsections, we will
construct functions f, € H(G))r, that verify the local versions of (15.3) (and along with it (15.4))
as well as (15.5); the corresponding statements for f =[], fo € H(G') follow immediately.

In our construction, we rely on the explicit T-spherical transform and its inversion in §§15.3-15.4,
as well as their local versions for 7,-spherical transform on GJ,. Here, we denote by 7 = HU|OO Tw
the minimal K'-type of 7s/, so that each 7, is the minimal Kj-type of 75 , and D; = HU| D7,

From now on, we refresh the notation and drop the prime decorations and “local” notations. In
particular, we shall write f,h,8,7,G, R for fy, hy, &), 7, G4, Ry, and bo for b’ .

15.6.1. The case of M, = Ty and v real. We begin by parametrizing the irreducible dual of O(2) as

follows. For k > 1 we put 73, = Indgg()z) (e?F9)

, a two dimensional representation. Then II(O(2)) =
{m0,det} U {7 }x>1. We let ng,n—, and n; denote the characters (1,1), (sgn,sgn), and (1,sgn) on
To, respectively. Thus in this case 7 is either 79 (when § = 1), det (when 6 = n_), or 71 (when

5 == 771).
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We also note that no elements of &2(SLE (R)) appear in D,. Indeed, &2(SLE (R)) = {Dy, : k > 2}
where Dy, is the weight k discrete series representation for SLi (R), and the lowest O(2)-type of Dy
is 7, (see (15.22) below) with k£ > 2 (thus type 7 does not appear in Dy). Hence, in fact, D, = {¢},
and this § € &2(T}p) is the only term contributing non-trivially to the summation in the inversion
formula (15.15).

According to Ehrenpreis-Mautner® [21, Theorem 2.1], the 7-spherical (or Fourier) transform is a
bijection from H(G, 7) onto the space of W(Ap)s-invariant functions in PW(hj ). We define f as

the inverse T-spherical transform (15.15) of k. Moreover, noting that for any § € &2(Tp) we have
n=mn(rs,) =0 and { =¢(m; ) = v, the formula (15.15) reads as

19) = s | M5 6w o

dim 7

Recalling that h € PW(bg c)r, the condition that f € H(G)g now follows from [21, Theorem
2.1, Proposition 2.1]. The verification of (15.3) (and hence (15.4)) follows from (15.9) and (15.14).

As in the spherical case, the bound (15.5) comes directly from the above explicit realization of
(15.15) and (15.11).

15.6.2. The case of M, = Ty and v complex. For v € C and p € %Z, let the character x,., € 1§
be given by x,¢(diag(z,271)) = [2]*"(2/|2])?; we also write 8, = xo, € &*(1p). For every
0 € 1Z=o, 7o = sym*(C?) is an irreducible (2¢ + 1)-dimensional representation of SU(2), and in
fact II(SU(2)) = {7¢} e 17" For v € iR and p € 1Z, the corresponding irreducible representation
T(0p, V) = T5,, = Tp, satisfies n(7s, ) = 0p and {(7s,,,) = v and decomposes according to the

SU(2)-action as
Tpy @ ¢

te3Z, £2|p),

f=p mod 1
in particular, 7, with £ = [p| is the lowest SU(2)-type appearing in m,,,, and each 7, with £ > |p|, ¢ =
p (mod 1) appears with multiplicity one. Put another way, D, = [[¢]] :={p€ 3Z:p < |¢|, p=
(mod 1)}.

The formulas (15.13) and (15.15) for the 7y-spherical transform are then explicitly realized as

the transform from f € H(G, 1) to the system of functions (H(p,v)) e[, namely H(p,v) =
H(F)(bp,) via

(15.17)  H(p,v) = /G F(9)eTs (9)dg,  f(g) =

Z CH(p,v)eys, (97D (v +p%) dv,
pE([4]]

with an absolute ¢ > 0. Note that 7 (f)(d,,v) vanishes for p ¢ [[¢]]. This explicit description
will be particularly handy when verifying properties (15.3) and (15.5).

The following Paley—Wiener theorem of Wang [90, Proposition 4.5, Lemma 4.4] fully characterizes
the image of H(G, 7¢) under the 7y-spherical transform #°7: for R > 0, a system of functions
(H(p,v))pe(g) lies in the image of H(G, ) g if and only if it satisfies the following conditions:

(1) for every p € [[{]], H(p,-) € PW(bgc)r;

(2) H(p,v) = H(—p, —v) for every [p| < ¢, v € b

(3) H(p,v)=H(v,p) if v € $Z and |p|, [v| < ¢
We denote the set of such systems by PWjy z- It will be convenient to denote a system (H (p, v/))pe(je)
in PW[[E]],R by H[[g]], and, if £ > 1, by H[[é—l}] = (H(p, V))pe[[ﬂ—l} its restriction to |p| < ¢ — 1.

The (perhaps initially counterintuitive) “additional symmetry” (3) (a case of the so-called Arthur—
Campoli relations) corresponds to a discrete set of (for (v,p) # (0,0)) non-unitary representations

2€+1

%In fact, Ehrenpreis-Mautner treat the group SLa(R) rather than SLE (R), but their methods extend to this case.
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and can be understood both in terms of the infinitesimal characters [90, Corollary 2 and its proof]
or in terms of irreducible subquotients of the fully induced representations 7 (v,p) [9, (2.7)]. It
makes analytically interesting (and nontrivial) the problem of extending from given target functions
H(£l,v) = hye(v) € PW(hjc)r to the full system (H(p,v)pe(g) € PW],r Without increasing
the Paley-Wiener support parameter R or (essentially) the Plancherel L' norm, which features,
for example, in our announced bound (15.5). We record our solution to this extension problem as
a formal lemma for its independent interest.

Lemma 15.2. Let { € %220, R >0, and a pair of functions hye € PW(h; )R be given, satisfying
h_¢(v) = he(—v) forallv € bo.c- Then, the system Hyy, given explicitly by (15.19) below for £ > 0
(and simply by H(0,v) := ho(v) if £ = 0) satisfies

Hygy € PWigyre H(ELv) = hee(v) (v € b5 ),
as well as Hjg_1)) € PWy—q),r for £ = 1. Moreover, denoting
f= (") (Hyg) = Loz (A7) (Hige—ay),
we have that f € C°(G<r),
(15.18) tr s, (f) = Lsmor hae(v) and || flloe < [[hell1,

with the latter 1-norm being taken with respect to the standard Plancherel measure (|v|? + ¢2)dv,
and the implied constant is independent of £, R, and hiy.

Proof. For ¢ € {0, %}, there is virtually nothing to do, so we assume from now on that ¢ > 1. We
may identify ihj ~ iR (and thus b ~ C) so that, as in §5.8, the fact that hy € PW(hj ) r means

equivalently that the standard inverse Fourier transform ;L/g € C°(]—R, R)]), the latter normalized
so that he(v) = [g he(z)e™"" dz. We define functions (H (p,v))peqig) in PW(h; c)r by

—v—p)x _eiéxl;e(x) + eéa:}\;e(_x)
H(p,v) :z/Re( P) T ra— da

—lxyp lxp
o [ T ),
R

e%x _ 672[56

(15.19)

Noting that both fractions appearing above are even functions of x, one immediately verifies that
the system Hyjy = (H(p,v))pe[y) indeed belongs to PWjg) g (which of course implies that Hyjy_yj €
PWie—1)),r) and that H(£l,v) = hye(v).

By the 7- and 7y_1-Paley-Wiener theorem, the systems H[y and Hjy_q) have the pre-images
f+ = (%TZ)_I(HWH) S H(Tg)R and f_ = (%7—371)—1([{[[@71”) S ’H(Tgfl)R, which, by (15.10) and
(15.14), satisfy

trs, o (f+) = Lp<eH(p,v),  tr7s, o (f-) = Lpj<e—1 H(p, v).
Hence f = fi — f- € C°(G«p) satisfies the first claim of part (15.18). Finally, for the second part
of (15.18), denote for an integer |u| < 2¢ the even function
Ly €V —eT 7 sin(mu/20)
H = ve dx =
wee(V) /Re 2z _ o2t 7 2l[cos(mv/2€) + cos(mu/20)]’

where the evaluation comes from [32, Table 17.23, Entry 20, renormalized]. We see that, for t € R,
0 < Hyo0(it) < 1/(2¢ — |ul), Hyo0(it) < (1/€)e=™H/2 for |t] > ¢, and [ Hy 00(it) dt = u/(4rL).
We may now write, for p € [[{ — 1]],

U

(15.20) H(p,v) = / e (Hngp,Qg(x)f\L/g(x) +Hg,p725(—$)gg(—x)) do = Hyqppor*xhe+Hp_popxh_y,
R
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where * denotes the usual convolution, and so by spherical inversion (15.17)

Flg) = (™) (Hyg)(g) — (A7) (Hypnp)(9)

_ C . - o ) )
_Z%H/hﬂ(”)%ie,it(g V(2 + £2) dt

C To_ _
+ > Z/ Heine*hﬂ)(lt)(%Jrl% it 7%_190521;)(9 Yt +p®) dt.
pe(le-1]] +

The announced bound on [f(g)| in (15.18) follows using the estimates ¢§" ,, < £and ‘ng, ’it—gogf);; <

1, which are immediate from (15.8) and (15.12) (noting that x,, — xr,_, < 1), and the resulting
estimate

c r __C 7'171) —1y/.2 2 } 2 42
[(%Jrl%p,i. 57 1 Popi ) (97 (7 HD7) * Hepwpoae | (it) <17+ 5. O

The verification of (15.3) (and hence (15.4)) then follows from (15.9) and (15.14). As in the
spherical case, the bound (15.5) comes directly from (15.11).

15.6.3. The case of M, = G. Before coming to the proof of Proposition 15.1 in this case, we shall
restate the formula (15.15) explicitly. Recall that Dy (k > 2) appears as the unique irreducible
subrepresentation of I(n; (k — 1)/2), where € = k mod 2. Indeed, there is an exact sequence

(15.21) 1 — Dy — I(ne, (k—1)/2) — Sym*™2 — 1.
The O(2)-type decomposition of Dy can therefore be deduced from that of I(n., (k —1)/2) and

Sym*~2. Namely, for any k > 2 we have
(15.22) Reso)(Dr) = P 7,
n>k
n=k mod 2

while Sym*~2 consists of lower O(2)-types.
Using (15.21) and (15.22) we find that for k > 2 and j > k with j = k = ¢ mod 2, we have

Dy = P
For k > 2 and f € H(SLE(R), ) we put H(n,v) = #™(f)(n,v). Then, when k > 2, we have
H (7, 2), 2<j<k,j=k=emod?2;
- B

0, else.
Then (15.15) states that there are constants a,b > 0 such that the following holds: if k£ > 2 and
f € H(SLE(R),73,) then f(g) is given by

(1523) a ) /gomt H(n, it)t tanh(rt/2) dt + by o (g—l)H(no,(j_1)/2)(j—1)

nN="mn0,1—- 2<j<k
j even

for k even, and

(15.24) a/ e a9 H (mit)tcoth(mt/2) dt +0 Y @™, (g7 VH (m, (G —1)/2)( — 1)
R sSi<k 2
j odd

for k odd. These inversion formulae hold also for £ € {0,1}, in which case the latter sums are
empty.

Let € € {0,1}, with € = k mod 2, record the parity of k. We introduce the space PW,(h c)r
consisting of functions H(n,v) on E, x bo.c. where Ey = {no,n-}, Ex ={m},and v— H(n,v)is a
W (Ap),-invariant function in PW(hg o)r. With this notation, the 74-spherical transform (15.13)
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is a bijection from H(SLF (R),7)r onto PWe(hj c)r, as in [21, Theorem 2.1, Proposition 2.1].
Formulas (15.23) and (15.24) then explicitly invert this transform.

With formula (15.15) explicitly restated, we now prove Proposition 15.1 for the delta mass on
some Dy, for some k > 2, that is, we construct an f € H(SLi(R))g satisfying (15.3) (and hence
(15.4)) and (15.5). (In fact we shall produce an f € H(SL3(R));.)

Let r € C2°(R) be supported in [—1, —1] and satisfy [, r(z)dz = 1. Let 7 € PW(C) denote the
Fourier transform of r. Then 7(0) = 1 and, for y > 0, the Paley-Wiener estimate 7(z + iy) <y
e Y21+ )N (1 + |z))~"N holds. Let € € {0,1} be of the same parity as k. Then we put

(15.25) H(n,s) = {Zi (s — (k= 1)/2)/1), 1n=ne

B 0, else.

Then H(n,-) € PW(C); and ¢ := H(ne, (k — 1)/2) = 1+ O(e */2). Recalling that 7, is the
lowest O(2)-type of Dy, we let fi € H(SLi(R), 7)1 be the inverse 7j-spherical transform of H,
as in (15.23) and (15.24). Observe that 7;_o is the O(2)-type directly preceding 73 (in the natural
ordering) in the induced representation containing Dj. We let f_ € H(SL3(R),7,_2)1 be the
inverse 7j,_p-spherical transform of H. We then put fo = (fy — f_)/cx € H(SLE(R));. Recall the
ordering < on D introduced in §5.5. From (15.10), (15.14), and the definition of fi and f_, it
follows that, for 7, , occurring as a subquotient of 7(n,§), we have

tr 7o (fo) = A (f1/ex)(Tow) = A2 (- /) (o)
= Lp<o<D, T (f1)(10,€) /e = o<y, X2 (f-) (0, )/ ck
= 1g=DkH(n7 é)/ck = 1£:Dk‘

This establishes (15.4). In fact, as in the previous cases, (15.3) follows in the same way as invoking
(15.9) yields

roulfe) = HO©)fen (il — ).

dim7, " B dim 73,9
It remains to prove (15.5) for this choice of fg. The term corresponding to j = k in (15.23)
and (15.24) can be bounded, using (15.8), by H(ne, (k —1)/2)(k — 1) < k — 1 = deg(Dy). Unlike
(15.15), it is not the case that all other terms in (15.23) and (15.24) vanish; nevertheless, using
(15.8) and the properties of r, we can estimate

This establishes (15.5).

16. CONTROLLING THE EISENSTEIN CONTRIBUTION

Our aim in this section is bound, for appropriate test functions ¢ € H(G(Ar)!), the Eisenstein
distribution

(161) JE15(¢): Z Jspec,M((Zs)

M#G

from (4.15). The main result is given in Theorem 16.1 below. We will then show how to deduce from
Theorem 16.1, along with the results of previous sections, Theorem 1.3. This is done in Theorem
16.2. In particular, it will be seen that it suffices to take test archimedean functions associated
with characters of the maximal torus 7 .
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Theorem 16.1. Let n > 1. Let § € D have standard representative (Tpo,0). Assume § is the
trivial character if n > 3. For p € ihy and R > 1, and let ff%’“ € H(G},O)Ré be the archimedean

test function associated with the spectral localizer h%’“ of Definition 4 in the explicit construction
of Proposition 15.1. Let q be an integral ideal. Then there is C' > 0, depending only on n and F,
such that

JEiS(EKl(q) ® ff%’u) <e 6CRNqn71+6ﬁ0(57 1),

where Bo(0, p) = 57%700(5#)-

The proof of Theorem 16.1 in fact establishes a much stronger estimate, which, for each proper
Levi subgroup M € L, majorizes Jpec, M(EK1 @ ® f *) by the upper bound in Propositions 16.3
and 16.6. The proof that the latter estimates indeed imply Theorem 16.1 is given in Remarks 23
and 24.

From Theorem 16.1, as well as the various estimates established in Sections 13-15, we obtain as
an important consequence the following reformulation of Theorem 1.3.

Theorem 16.2. Let n > 1. Let § € D have standard representative (M,0). Assume that either
(1) n <2, or
(2) M =Ty and 0 is the trivial character of Tol,oo-

Then Property (ELM) holds with respect to §.

Proof. By definition, we have Jspec — Jris = Jaisc- Moreover, the Arthur trace formula is the
distributional identity Jspec = Jgeom ON H(G(Ap)'). Thus

S, 2/2 px 5,
Jerror(gKl(q)@)fR ) = Juis(ex, q)®fR )+ Jgeom (€1, q)®f ")-D Z“/ A%(L)en(q) Z B (0)-
YEZ(F)NK1(q)
Note that in case (1), if M # Tj  then the only rational Levi subgroup M C G containing M is

G itself, in which case Jgis(ek, () ® f%“) = 0. We may therefore apply Theorem 16.1 in all cases,
which shows that the Eisenstein contribution is of acceptable size. For the remaining two geometric
terms, we first apply Theorem 13.1. We then use Proposition 15.1 to convert the L°°-norm of fg’“

to the L'-norm of h(;%” (it is here where we use the conditions on n and ) and apply Lemma 6.4 (1)
with M = T} o, to bound the latter by an acceptable error. ]

16.1. The distribution Jy,cc ps. From (16.1) it follows that, to prove Theorem 16.1, it will be
enough to bound Jspee, M (€, (q) @ fg’“) for a given M € L, where M # G.

We apply the expansion (4.19) and bound each term Jspec, M (€, (q) @ fg’“ ; s, B) separately, where
s € War and B € Bp .. Recalling the definition (4.18) and expanding over Hgisc(M (Ap)t), we
find that the integral Jspec M (Ex,(q) @ f;;’“; s, B) is equal to

(16.2) / AXL (P, T NM(P, s, m)p(P,\, 7,65, (q) ® fg“)) dA
wendm (ay) ieE

where Ay, % 8)(P,m, A), ./\/l(P, s,m), and p(P, A\, 7, ) denote the restrictions of the corresponding
operators to the invariant subspace A2 (P )

Recall the notation K. = K., N SLI(F,) from §5.5 and Section 15. For 7 € II(K.)) w
let T, (q),- denote the orthogonal projection of AZ(P) onto AZ(P)K1(®7  From (15.3) for the
fully induced representation, the description of p(P,\, 7, ) in (4.17), and the induction by stages
identity Ind%:’ (m(o,v) @ eMHM)) = (g, v + N), as representations of Gy, it follows that

1
PP AT exy(q) ® o) = H(brve + ) > pulr(ms) : 7)

T 7 K@) (T=7p @ T, 0r)-
Tell(K')
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Recalling the support condition on H from property (1) of §15.1, we conclude that for a given
7 € Iaise(M (A)1), the corresponding term in (16.2) vanishes unless d; < 4, which then contributes

1
(16.3) /( . )*H(ém Ur + )\)tr< E w(t(ms) T)AXLS@(P’ T, A)M(P,s, TF)d-HKMq),T) dA.
wag

mT
Tell(K')

We now explicate and bound (16.3) according to whether n = 2, or n > 3 and § is trivial character.

16.2. Proof of Theorem 16.1 for n = 2. In the GLy case, many of the quantities in (16.3)
simplify. We begin by describing these simplifications explicitly.

We have, for example, M = Tj, and the parabolic P is necessarily the standard Borel subgroup
Py. The 7 € Hgise(M(Ap)') = Tgise(To(Ar)!) are therefore pairs of unitary Hecke characters on
F*\AL, which we shall denote by x = (x1, x2). Recall from §5.4 the subspace

(16.4) oo =< ] (x” yv> DY dury =Y duyy =0 (dy = [F, : R]).

v]oo

Then o, € (T} ) is the restriction of xeo t0 To,co N K and vy lies in i(ha0)*.

Moreover, the Levi subgroup Ls can be either Ty or G, according to whether s € Wy is the
trivial element e or the non-trivial element w. In the former case, we may identify the complex
dual (a§)% with C, in the latter we have (a&)% = 0. When s = e the combinatorial data X, () is
the pair {{Py, Py)}, and the operator A Xr, 8)(Po, X, A) is the logarithmic derivative of the normal-
ized intertwining operator M(x,\) = n(\, x)R(x,\) = n(\, x) [T, Ro(xv, A) from [29, §4], where
n(\,x) = A1 — 2\, x2/x1)A(1 + 2\, x1/x2) . Moreover, in this case the intertwining operator
M(Py, e, x) is trivial. On the other hand, when s = w, the combinatorial data Xg(53) is empty,
the operator Ay () (£, 0) is trivial, and tr(M(Py, w)p(P,0,¢)) = —tr(p(P,0,¢)|A(2T(P)), where
A%(P) is the subspace of invariants under left-multiplication by {diag(t, t=1),t e A}?}; for this, see
[22, p. 375]. In particular, tr(M(Py,w,x)p(P,0,x,¢)) is supported on characters x = (x1,x2)
such that y; = x2. Finally, recall from the discussion preceding (16.3) that we may assume that
g, <0.

All in all, we deduce from the above explicit descriptions that (16.3) is either

1
. -1
(16.5) /i(a(?)*H(JX,VX+)\)tr ST plr(ms) s MO M 6 A) T g« | A

Tell(K’)
when s = e, or

(16.6) H(oy,vy) dimw(xf)Kl(q) w(r(ms) = 1),

ITIZ N7 (o )l

when s = w. The condition on 7 comes from the projection onto the 7-isotypic subspace of
T(Xoo). The latter contributes to the discrete part of the trace formula; it derives from the residual
spectrum.

Having explicitly described the Eisenstein contribution for GLo, we now proceed to prove Theo-
rem 16.1. We shall in fact prove a stronger estimate, recorded in Proposition 16.3 below. We recall

the decomposition hy = aoG P hg‘) from (5.3); we write pg, and uTo for the orthogonal projections

G

of y1 onto i(a§)* and i(ha?)*, respectively.

Proposition 16.3. Let n =2. Then for R > 1, we have

Jspec, Ty (€ (q) ® Fky <o Ngtlog(1 + fo (0, u™0)).
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Remark 23. To see that Proposition 16.3 implies Theorem 16.1 it suffices to observe that log(1 +
Bo(6, 1T0)) < log(1 + Bo(d, ). Let B denote the unique positive root in @&+, For o € $Coert
let n, denote the multiplicity of the corresponding root space. Recalling Definition 2, and setting
k=11,(kivei, +kowes,) € a5, we have that

(16.7) log(1+ fo(6, ) = log(2+ max [(k,a)| + max |{u,a)|).
a€PGooit a€PGooit

We put p* = {ur,, B) and note that u* = (u,, @) for all a € @+, Thus log(1+Bo (6, uT0)) verifies

the same asymptotic as (16.7) but with [(u, a) — p*| in place of |{u,«)|. The desired conclusion is
of course immediate if ;* = 0. Otherwise we observe, using (16.4), that

Zna«:u’a O[> Zd TO 61 ’U - <MTO7e§,v>) =0.

From this it follows that the maximum of ](,u, a) — p*| over all « is unchanged (up to a multiplicative
constant) if restricted to « for which (i, ) € Roou*. The latter maximum is at most max, |(u, )|,
as desired.

Proof. Taking the logarithmic derivative of the normalized global intertwining operator, we have

I+ZR (s )Ry (s A) Q) Lo
v#U
We treat separately the first term (involving the logarithmic derivative of n(A,x)), and then the
other terms according to whether u is finite or archimedean. When inserted into (16.5), only those
u dividing qoo will contribute: indeed, at the remaining places, R, (xu,-) acts as a constant on the
spherical vector, so its (logarithmic) derivative is zero.
When inserted into (16.5), the first term in (16.8) contributes

. n'(\,
dlmﬂ_(Xf)Kl(q)/ o H(oy, vy + A) n((/\ >><<)) Z p(7(ms) = 7) dA.
i(ag") ’ I7IIZl7 (o )l

(16.8) MO TM () =

The sum over 7 vanishes unless ¢, = J, in which case it is 1. Since H(d,v) = h‘;é“ (v) by Property
(2) of §15.1 we have

()0 [ 0000 00 A
t(ag”)*

Observe that dim 7(x )50 = 0 unless qy, qy,|q, in which case dim 7(y;)%1® < log(1 + Ng). We
let T be a lattice in i(a§)* ~ iR, of unit spacing and break up the integral over i(a$§)* into a sum

over unit intervals centered at vy € I'. Inserting the rapid decay estimate on h%“ from Definition
4(3) (disregarding the savings in R), we deduce that, for NV large enough, the above expression is
bounded by

log(1+ Na) 3= max (1 o+ o — )Y [ 7O ) /(0] dA
el WEW (4o)s [A—vill<1/2

From the proof of [62, Propositions 4.5 and 5.1] we deduce that the last integral is bounded

by O(log(1 + ||vk] + Q(Xlxgl)), with @) denoting the analytic conductor. Now Q(Xlxgl) <

Na T, o0 (14 [601 = vz + vy, — Vyoo|)% = Ngq Bo(d,vy). Executing the sum over I' and summing

over x = (x1, x2), we get’

log(L+Na) D7 max (14 o — wn™ )N log(1 4 o — wn™ | + Nasio(8, ).
X0, =8 v 0J8

Ix1 Ix2 14

61 this, and the estimates which follow, the value of N can change from line to line.
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We decompose vy, = 1y, + vy, with respect to the diagonal GL; block decomposition of (16.4). We
cover i(hgo)* by balls of unit radius centered at points in a lattice A = Ay @ Ag respecting (16.4).
For p9) € A we write pl¥) = ,ugj )y ,uéj ) accordingly. Using Lemma 6.4(2), we find that the above
expression is then bounded by (log(1 + Nq))? times

> max (14 [|p® —wp™) Nlog(1 + |19 — wu™ | + Bo(6, ) DT L.
pldeA weW(do)s X0, =8
q142]q

o =1 11, k=1,2

If 6 = 0162, with 6; a character of [],g{£1}]],c U(1), the condition g, = ¢ is equivalent to
(j))

{0y1,0x} = {01,02}. The last sum on x can be written as the sum of N(q1,;, ,ugj))N(qQ, diry s
over all qi1q2]q and all {i,i'} = {1,2}. Applying Theorem 7.3 for n = 1 (where Property (ELM)
holds trivially) and the standard divisor bound yields Ngq!*¢. The remaining sum over pi € A has
rapid decay away from p) € WuT + O(1), and is bounded by O(log(1 + Bo(6, u™))) as desired.
Now we address the sum on w in (16.8). At a finite place u | g, the sum over 7 collapses as
before, leaving only x for which ¢, = §. Using the upper bound [[A[; < dim V| A]| for any linear
operator A on a finite dimensional Hilbert space V', the contribution of such u is majorized by

3 dimW(Xf)Kl(q)/ [R5 (e + MR s M,y ]| AN
Xig, =0 i(af’)" 7

X

Here, we have used that R, is unitary and commutes with the projection Il (4),- When qy,dy, | 4,
we break up the above integral over unit intervals centered at a lattice I' C i(a$§)*, and use the
rapid decay estimate of h(;%“ from Definition 4(3), to get

log(1+ N max (1 + |lvy + v — wp N/ Ry, (X, A w(@ || dA.
( 9 VkerweW(Ao)s( o b A—vgl<1/2 7 )‘W(X"’/\)Kl’ ol

We insert the Bounded Degree Property of [25, Theorem 1] (see also the analysis in [26, §5.4]) to
bound the integral by log(1 + Ngq). We then execute the sum over I', sum over y, and argue as in
the previous paragraph to obtain a contribution of O(Ngq!*€), which is acceptable.

Finally, to treat an archimedean place u, for a K/ -type 7,, we denote by v(oy,, A, 7,) € C the
scalar by which the K/ -intertwining operator R, (oy,, A) acts on the isotypic subspace my, (o, , A)™.
With this notation, we may write the contribution of u | co to (16.5) as

~

dimﬂ(Xf)Kl(q)/ o Hlow+2) S plr(ms) )L (0 Vi + A7) A

o) 217 (o) 7

For u real, the sum on 7 again vanishes unless o, = d. Applying Stirling’s formula to the classical

formula for the intertwining operator [88, Theorem 7.17] yields 77/( ws Ay Ty) <K log(1+ Bo,u(0u, A)).
We can then argue as in the preceding cases to obtain an acceptable contribution. For u complex,
the sum on 7 vanishes unless o, = d,, for every archimedean v # u. Applying Stirling’s formula

to the formula [88, Theorem 7.23] shows, using the parametrization of §15.6.2, that, for p € [[¢]],
p # £, we have %’(p, ) — %’(p, MLl—1) < 71 as well as %(Z, A, 0) < log(1+ Bou(de, A)). Letting
ly € 3Z=¢ be such that 7y, = 7(,), for every v | oo, this produces the bound of

(16.9) log(1+Naq) [ £,1 >~ +log(l+ fou(de, A) > > /G | H (py, vy +A) | A
puclltu]] pu=tlu) X axgla * %0

Pxwv :Z’U (U;’éu)
Pxy=Pu
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For the x prescribed by the summation, we have [Hy(py,: Vx, + A) I 110004 h%’””(uxv + A)|. For
the factors at archimedean places v # u, we insert the rapid decay estimate from Definition 4(3).
At u, we put A, = ming ||\ £ py]| and use the definition (15.20) to deduce

(gu_ |pu‘)_17 if Ay <4y — ‘pu‘;
Hu(pua )‘) < A;2(£u - |pu|), if £, — ’pu’ KAy < Uy
020y — |pu))e ™ /2t if Ay > 0.
We now combine these estimates across all archimedean places and integrate over A. To succinctly

(u)

express the resulting bound, it will be convenient to introduce the following notation. Let Sso’ =
{v|o0:wv#u}. Forvei(ha?)* and v | oo we put
Xy = max{||vy, — vy, || 1 v1,02 € Sgg)}, Ay = vy — |SSOL)|71 Z vol|-
vES’éloL)

Then the integral in (16.9) is bounded by Ox(max,cp(4y); 9,8 (Px, Vy — wpT®)), where, for ¢ €
i(hgo)*, we have set

(ly — ’pu,)il(l"i‘Xf)iNv if Ae < by — |pul;

gé,N(]?:f) = Ag_z(éu_ ’pu’)(l"i'X{)iNv it 4, — ’pu| <<A€ L Ay

552@” — |pu]) (1 + E;lAg + Xﬁ)_N, if Ag > L.

Observe that [ g/ n(p,€)d€ = O(1). Inserting this expression into (16.9), we obtain

log(1 + Na)log(1 + Bou(du, )G D > max gz,N(p,u(j) — wp™) > L.
Puclltul] pen Xt Ox; dx2 19
vazg’U(v#u_)vau:pu
llx—n(I<1

Inserting Lemma 7.3 for n = 1, and using the fact that the sum over A and the normalized sum
over p, € [[(y]] are both O(1), we deduce that the contribution of complex places u to (16.5) is
acceptable. All cases having been treated, this completes the proof of the estimation of (16.5).

We now turn to (16.6), which we must sum over characters x of the form (x1, x1). As before, the
alternating sum on K/ _-types implies that only those x for which g, = 4 contribute non-trivially.
Similarly, we may assume qil | . Summing (16.6) over such y, we obtain

s, .
Z R (vy) dlmw(xf)Kl(q).
x=(x1,Xx1)
a,=9, 43, 1q
Bounding dim 7(x f)Kl(q) < log(1 + Ngq), and arguing as in the previous paragraphs, we find that
that (16.6) makes an acceptable contribution. O

16.3. Proof of Theorem 16.1 in the spherical case. It remains to prove Theorem 16.1 for
G = GL,, n > 3, when § trivial. We first conveniently package two of the major inputs that will
be necessary for the proof of Theorem 16.1 for ¢ trivial. Throughout this section, the reader is
encouraged to regularly consult §4.12 for the notation related to the spectral side of the Arthur
trace formula.

The first input concerns the norm of the operators Ax, ., (P,A) : A%2(P) — A%(P) and is
encapsulated in Lemma 16.4 below. The second, recorded in Lemma 16.5, bounds the dimension
of the space of oldforms of an induced automorphic representation in terms of the corresponding
dimension of the inducing data.

We first need to introduce some more notation. As in §4.12 we let M € £ and P € P(M).
For m € Hgise(M(AfR)!), let A2(P) denote the subspace of A%(P) consisting of ¢ such that, for
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each z € G(Ap)!, the function ¢, transforms under M (Ar)! according to 7. For a compact open
subgroup K of G(Af) we let A;(P)Xs™ be the finite dimensional subspace of K ;Kqc-invariant
functions. Finally, if 7 is spherical, so that K& # 0, then we denote by v, € (héVI )¢ its spectral
parameter and put

(16.10) Buve)= ] @+,

a€PGoort
ag{)MoorF

where n, is the dimension of the corresponding root space.

Lemma 16.4 (Finis—Lapid-Miiller, Lapid, Matz). Let q be an integral ideal. Let M € L, M #+ G,
and L € L(M). Then for all m € Haise(M(Ap)), with 755 #£0, and v € i(ai)* we have

/B( ——— HAXLS(;;)(Pa )‘)\A?T(P)Kl(ﬂ)v‘fo ” dA < (1 +log Nq + IOg(l + HVH) + IOg(l + BM(Vﬂ')))QmL7
v)ni(ay )* -

where myp, = dimay,.

Proof. This is a slight refinement of [55, Lemma 14.3]. The proof is based on two important
contributions from Finis—Lapid—Miiller. The first is a strong form of the Tempered Winding Number
property for GL,, established in [26, Proposition 5.5]. This is usually expressed in terms of the
Casimir eigenvalue but the proof in fact yields the stronger statement with the finer invariant
B (V). Indeed, if M ~ GL,, X --- x GL,,, and 7 ~ 7 ® -+ - ® 7, the upper bound obtained
in [26, p. 26] is given in terms of Hi<j q(m; x 7j), the product of analytic conductors of Rankin—
Selberg L-functions. Under the spherical hypothesis, the archimedean component of this product
is precisely the expression Spr(vr). The second is the Bounded Degree property; in [25, Theorem
1] it is shown that GL,, over p-adic fields satisfies this property and in the appendix to [61] (see
also [25, Theorem 2]) the same is shown for arbitrary real groups. O

We next relate the dimension of space of invariants of the P-induced automorphic forms on G
to the dimension of the corresponding space of invariants of the inducing representation.

Lemma 16.5. Let M ~ GL,, x---xGL,,, € Lwithni+---+np=n. Let r>m Q- -Qmp €
Hgise (M (AR)') and write qi for the arithmetic conductor of my,. Then, for any integral ideal q, we
have AZ(P)K10):70 = 0 unless all my are spherical at infinity and [}, qx | q, in which case

m GLn,
dim A2(P)S1 @70 < (14 log Na)" [ dim V50",
k=1

where KlGLnk (qr) is the Hecke congruence subgroup for GLy, from §6.2.1.

Proof. Let Hp(my) and Hp(ms) be the Hilbert spaces of the (unitarily) induced representations
IP(Af) (m¢) and Ig;’: (Too). By [62, (3.5)] and the multiplicity one theorem described in §4.12, we

dim A2 (P)K1@70 — dim HP(Ff)Kl(q) dim Hp (7o) ™.

M
By [62, (3.6)] we have dimHp(ms)™ < dim Vil , where 1M = Tolkm denotes the trivial rep-
resentation of KM . The latter dimension is 1 or 0 according to whether all 7, are spherical or
not.
Now let v be a finite place and write f, for the conductor exponent of the irreducible tempered
generic representation I, = Igj’ (my) of G,. From the dimension formulae of [15, 72] we have

dim’Hp(Trv)Kl(pZ) = (”J”;Z_f”) for r > f, and /HP(TFU)Kl(pZ) = 0 otherwise. On the other hand,

Ly

L. . . G .
by definition of the conductor exponent of ,, the dimension of the K, (p7)-fixed vectors in
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Vi, 18 at least 1 precisely when r > f, ;. Now, we may use the Local Langlands Correspondence
[35, 37, 79] to compare the conductors of the 7, ;, and IT,. Indeed, if ¢, is the Langlands parameter
of I, and ¢, that of m,; then ¢, = @y¢p, . From this it follows that f, = >, for. We
deduce that dim Hp (m)Kl(q“) = 0 precisely when []; qu.% 1 qv, and the upper bound follows from
(nJrlogvrll\qu;*fv) < (n+log7z, Nqu) <n (1 + logv qu)n N

We shall again prove a stronger estimate than that stated in Theorem 16.1. To state it, we recall
the decomposition hy = a§; @ b} from (5.3) to write u = pupr + p™

Proposition 16.6. Letn > 1. Let M € L, M # G. When ¢ is the trivial character, we have

Tpee M (Exy (q) @ ') <e eCTNG =1 (log(1 + Bag (™))™ n M (M),

Remark 24. Similarly to the n = 2 case, we now show how the spherical case of Theorem 16.1
can be deduced from Proposition 16.6. When M = Tj o, we may rewrite Definition 2 as

Bow = JI (4 [ma))™.

acdGoo,t

In this way, 8 (M) is given by the same expression as By(u), but with ®%=* replaced by &M=+,
Recalling the definition (16.10), it follows that £o(u) = BM (™ )Bar(w). It therefore suffices to
verify that log(1 + Bar(u™)) < log(1 + Bar(i)). For every g € @G+ \ @M+ let Mz < M be the
Levi subgroup on which 3 is non-trivial, and Gg the smallest Levi subgroup properly containing
M. Then Mg o, contains Agg = Ag N G0, and we may consider ®Ms~ = ®(Ag g, M ) as
a subset of ®Fs~ = ®(Ag 3, Gp o). With this notation, we may reorganize the a appearing in
(16.10) according to the disjoint union over rational roots f € ®&+ not in M-+ of the various
complements ®Gs.00F \ ®Ms.0:F of archimedean roots. Thus

(16.11) log(l—l—BM(u))xlog(2+ Z ( max \(,u,a)\)).

G ,+
G,+ acd 8,00
ﬁﬁ;gM + agd™Mp.oort

Moreover, log(1 + Bar(u™)) verifies the same asymptotic as in (16.11) but with (i, ) — (u™5, )
in place of (u, ). We conclude by arguing as in Remark 23 for each 3 separately.

Proof. The proof is by induction on n. For n = 1 there is no continuous spectrum so Proposition
16.6 is trivially true in that case. Now assume the result for GL,, for all m < n.

We adapt the discussion in §16.1 to the present context. When ¢ is the trivial character of T&OO
and 7(ms) is the trivial K'-type 79, the condition §; < ¢ implies d, = §. Thus (16.2) becomes

/ halu V7T + A)tT(AXL (8) (P T, )\)M(P’S77T)HK1(CI)77'O) d)\
ﬂ'EI—Idlsc A) ) (

We apply the upper bound ||A||; < dim V|| A|| to deduce that the above expression is bounded by

. T 0,
Z dlmAi(P)Kl(q)v 0/ e )* |hR'u’(Vﬂ- + )\)H‘AXLg(é) (P, )\)|.A727(P)K1(q>*"0 || d)\

mE€Msac(M(A)!)g e,
We have omitted M(P, s, 7) from the norm || - ||, since it is a unitary operator commuting with

Following [51, §6], we now proceed to break up the sum-integral, so that iImuv,; + X lies in
(1/R)-balls centered at lattice points. Note that since m € Hgisc(M (Ap)!)s, and § is represented
by (8, To,0), the spectral parameter v lies in (h}1)%. As M is, by definition, orthogonal to aAG/_, it
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is orthogonal to a§. We choose lattices A C i(h})* and T C i(ags)* of covering radius 1/R. We
deduce that the previous display is bounded above by the sum over all p; € A and v, € I" of

: . s,
Z dlmAi(P)Kl(q)’ 0 / ‘hR'“(yTr + )\)‘HAXLS(@(P, )\)|A%(P)K1(q),70 H dA.

€M gisc (M (A)1)s B(vg,1/R)Ni(aG )*
9 ks Nz(a
T €BM (1, 1/ ) (ve,1/R)Ni(aZ )

Note that Lemma 16.5 implies, in particular, that only those 7w which are spherical at infinity
contribute non-trivially to the above sum.
We now use the Paley—Wiener estimate

RO 4 \) <y eBlRe(n)l 1+ R||ilmy, + X — -N
R (Vr+A) <ne iz (1+ il wl|)

where \ € i(ai)*, as well as Lemma 16.4, to bound the contribution of the integral. We then
execute the sum over I'. For N large enough, we obtain bound on (16.2) of the form

(1612)  (1+logNe)?™e > Ly p(pyp) Y, eflRewnldim 42 (P)@m,
pi €A €l gisc (M (A)Y)
ilmv,€BM (u;,1/R)
where, using ufs = L},

L1, 1) = wenvlvé?fxo)(l + Ry — wp )V (1 + log(1 + [|py — wple||) +log(1 + Bar () > ™ 2.

From Lemma 16.5 it follows that if 7 ~ 7 ® -+ ® 7, contributes non-trivially to (16.12) then

[1; 9k | 9. Writing p; = >, 115k, and applying the triangle inequality to |[Re(vx)|| = || D_r Re(va,)|l,
the last sum is then majorized by

m
(1+logNg)" > ] D (ks O 117),
q1---gm|q k=1
where Jj, is the trivial character on the diagonal torus of GL,, (Fw). It follows from the induction
hypothesis that the spherical case of Theorem 16.2 holds for GL,,, establishing Property (ELM) in
that case. This then renders Proposition 9.1 for GL,, unconditional when ¢ is the trivial character
of Tp oo We conclude that there is C' > 0 such that

GLp GL.,
Dp " (Qk, O Mj,k) < eCRNqZkBO k(ﬂj’k)'

Summing over all qx, using ny < n — 1 and the standard divisor bound, we deduce that (16.12) is
bounded by

eCRNgn 1t Z »CN,R(,U«jaN)/BéW(Nj)‘

piEA
The above sum over A has rapid decay away p; € Wuts, and is therefore dominated by (log(1 +
Bar(pLs))2mes BM (L), This completes the proof. O
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