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A B S T R A C T
In networks consisting of agents communicating with a central coordinator and working together to solve a global optimization problem in a 
distributed manner, the agents are often required to solve private proximal minimization subproblems. Such a setting often requires a decomposition 
method to solve the global distributed problem, resulting in extensive communication overhead. In networks where communication is expensive, 
it is crucial to reduce the communication overhead of the distributed optimization scheme. Gaussian processes (GPs) are effective at learning the 
agents’ local proximal operators, thereby reducing the communication between the agents and the coordinator. We propose combining this learning 
method with adaptive uniform quantization for a hybrid approach that can achieve further communication reduction. In our approach, due to 
data quantization, the GP algorithm is modified to account for the introduced quantization noise statistics. We further improve our approach by 
introducing an orthogonalization process to the quantizer’s input to address the inherent correlation of the input components. We also use dithering 
to ensure uncorrelation between the quantizer’s introduced noise and its input. We propose multiple measures to quantify the trade-off between 
the communication cost reduction and the optimization solution’s accuracy/optimality. Under such metrics, our proposed algorithms can achieve 
significant communication reduction for distributed optimization with acceptable accuracy, even at low quantization resolutions. This result is 
demonstrated by simulations of a distributed sharing problem with quadratic cost functions for the agents.

1. Introduction

Networked systems have emerged due to the rapid development of communication systems and sensing technologies. Such net-
works consist of multiple (possibly mobile) agents that cooperate to reach a global objective. Many of those networks can obtain 
its global objective by convex distributed optimization. In the framework of distributed optimization, some applications for network 
systems include power systems, sensor networks, smart buildings, and smart manufacturing [1].

Many algorithms are suited to solve distributed convex optimization; see e.g., [2], [3], [4], [5]. Among them, a simple yet powerful 
algorithm is the Alternating Direction Method of Multipliers (ADMM), first presented in [6]. This algorithm solves an optimization 
problem by decomposing it into smaller local sub-problems. Then, each agent solves its local sub-problem and sends its results to a 
coordinator, which combines all the agents’ solutions to assemble the global objective. Two major advantages of the ADMM are that 
it is relatively easy to implement and, because of its decomposing behavior, it is simple to parallelize. As described in [7], the ADMM 
has broad applications in statistical and machine learning problems including the Lasso, sparse logistic regression, basis pursuit, 
support vector machines, and many others.

To solve a distributed optimization in a star topology networked system using ADMM, a query-response scheme is often employed. 
In such a scheme, the local sub-problems are cast as proximal minimization problems [2], which are regularized versions of the original 
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sub-problems, to be solved by the agents in response to queries made by the coordinator. Proximal minimization keeps an agent’s 
local function from being revealed to the coordinator, which is ideal for networks with privacy constraints. The queries are calculated 
and transmitted by the coordinator in each iteration upon receiving the previous agents’ responses.

A major drawback of this distributed optimization scheme is that it often incurs extensive communication between the coordinator 
and agents, increasing communication overhead and communication costs, potentially making the network non-viable if communi-
cation is costly. It is therefore critical to reduce the communication load in these query-response distributed optimization schemes. 
The communication load can be reduced not only by limiting the number of communication rounds directly but by considering the 
communication overhead, namely the payload size in each iteration of a distributed optimization algorithm. Payload size can be 
reduced by quantizing the data exchanged between the agents and coordinator.

Our previous work [8] proposed to solve a distributed optimization problem using ADMM where the proximal operators were 
predicted by Gaussian process (GP) regression, and the communications coming from the agents to the coordinator were quantized. 
However, it had two limitations: 1) it did not account for the quantization of the training data in the optimization of the GP hyperpa-
rameters and in the GP regression; and 2) it did not consider the correlation between quantization noise and inputs, nor mitigation 
of these correlation issues. Because GP regression assumes a joint Gaussian distribution between any evaluations of the underlying 
latent function, but the quantization noise is not Gaussian and even correlated with the original function values, the regression mod-
eling had to be adjusted accordingly. The use of inferred values from an incorrectly modeled learning method affects the accuracy 
of the ADMM algorithm, which may cause an increase in the number of iterations to reach convergence or potential failure to reach 
convergence.

In this paper, we propose to address these limitations by integrating two components: an adaptive uniform quantizer with joint 
dithering and orthogonalization, and an improved regression method that takes into consideration the quantization error in the 
learning data.

Our main contributions are summarized below.

1. We study the statistics of the quantization error of the adaptive uniform quantizer proposed in our previous work [8], and 
characterize its impact on the distributed optimization algorithm.

2. We employ a novel Linear Minimum Mean Square-error Estimator (LMMSE) based regression which takes in consideration 
the impact of the quantization error to improve the hybrid communication reduction approach from [8]. We also develop an 
additional LMMSE to more accurately approximate the real response of an agent from its quantized value, to further mitigate 
the impact of quantization in the ADMM algorithm.

3. We integrate our adaptive uniform quantizer with orthogonal transformations and dithering to account for the inherent correla-
tion of the elements conforming the quantizer’s input and to ensure the un-correlation between the quantization error and the 
quantizer’s input, respectively.

4. We validate our approach by extensive simulations of a distributed network solving a sharing problem with a quadratic cost 
function. For comparison purposes, we also test two baseline methods using the proposed distributed network: vanilla ADMM 
and ADMM with GP. The simulation results show significant reductions in the total communication cost in all test cases compared 
to baseline methods, with negligible compromise in optimization performance.

Paper Organization: Related works are reviewed in Section 2, followed by the problem formulation in Section 3. An overview of 
uniform quantization and GP regression is presented in Section 4. Then, Section 5 presents the main mathematical foundation and 
derivations relevant to our work. A detailed presentation of our proposed approach is shown in Section 6. The simulation results are 
presented in Section 7. Section 8 discusses the convergence behavior of our proposed approach. Finally, we conclude the paper with 
the main contributions in Section 9.

2. Related works

ADMM has been widely applied for solving distributed optimization problems ([7], [9]), such as consensus problems [10] and 
sharing problems [11]. Communication reduction in distributed optimization settings has been previously studied. By solving each 
subsystem via ADMM and using the k-means algorithm to partition a distributed smart grid, the authors of [12] were able to reduce 
communication complexity. The concept of the Moreau envelope function is used in [13] and further developed in [14] to predict the 
proximal operators of the local agents so that certain communication rounds can be skipped. The same concept was used in [15], 
where the local proximal operators and their gradients were predicted by GP.

Several works proposed quantization methods to reduce the data exchange size in each algorithmic iteration, resulting in less 
overall communication overhead. The work in [16] presented a quantized distributed composite optimization problem over relay-
assisted networks solved via a simplified augmented Lagrangian method. In [17], a distributed optimization problem affected by 
quantization was solved using the inexact proximal gradient method. In [18], a distributed optimization problem was solved by a 
distributed gradient algorithm with adaptive quantization.

Related to GP regression with quantized data is GP regression where part of the data was censored, which has been previously 
studied. The authors of [19] described a GP framework where all data that was outside of a specific range was fixed to a value. Also, 
in [20] a system identification with quantized output data modeled with GP was presented, where Gibbs sampler was used for kernel 
hyperparameters estimation. Finally, in [21] the best locations for sensors in a spatial environment are predicted by GP.
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Our work is fundamentally different from the above works because it combines the concepts of ADMM, online learning, and 
quantization that in previous works were studied separately. Furthermore, our work fully integrates the three concepts by accounting 
for the quantization error and prediction error to build an approach that correctly models and mitigates the impact of both sources 
of error.

3. Problem formulation

This work deals with a multi-agent optimization problem whose structure takes the form of the sharing problem as considered in 
[7,11]:

minimize
𝑈(
𝑤=1

𝐸𝑤
)
𝑇𝑤
√
+ 𝑌

[ 𝑈(
𝑤=1

𝑇𝑤

]
. (1)

Here, 𝑈 agents, each with local decision variables 𝑇𝑤 ∈ ℝ𝐼, equipped with a proper and convex local cost function 𝐸𝑤: ℝ𝐼 ↦ ℝ, 
coordinate to minimize the system cost consisting of all local costs and a proper and convex shared global cost function 𝑌: ℝ𝐼 ↦ℝ. 
Each cost function is only known to its corresponding agent and cannot be shared with the coordinator or other agents for privacy 
reasons. The problem presented in (1) can be solved with the ADMM. By introducing copies 𝐵𝑤 of 𝑇𝑤, the problem can be formulated 
equivalently as

minimize
𝑈(
𝑤=1

𝐸𝑤
)
𝑇𝑤
√
+ 𝑌

[ 𝑈(
𝑤=1

𝐵𝑤

]

subject to 𝑇𝑤 − 𝐵𝑤 = 0, ∀𝑤 = 1,… ,𝑈.

(2)

Because the agents keep their local cost function 𝐸𝑤 private, each agent 𝑤 will only provide the solution to the following local proximal 
minimization problem to the coordinator

!"#$ 1
𝑔 𝐸𝑤

(𝑍𝐺𝑤 ) = argmin
𝑇𝑤∈ℝ𝐼

⎧
𝐸𝑤(𝑇𝑤) +

𝑔
2⎪𝑇𝑤 − 𝑍

𝐺
𝑤 ⎪2

⎨
, (3)

in response to a value (a query) 𝑍𝐺𝑤 sent to it by the coordinator at iteration 𝐺, where 𝑔 > 0 is a penalty parameter. The ADMM works in 
a query-response manner as follows. At iteration 𝐺, a query point 𝑍𝐺𝑤 is generated by the coordinator and sent to an agent 𝑤. Each agent 
solves its proximal minimization problem at its query point 𝑍𝐺𝑤 and replies with the response vector !"#$ 1

𝑔 𝐸𝑤
(𝑍𝐺𝑤 ) to the coordinator. 

The coordinator then updates the dual variables and generates the query points at the next iteration. Mathematically, each ADMM 
iteration 𝐺 involves the following updates derived in the analysis in Chapter 7 in [7]:

1. The coordinator updates the average of 𝐵𝑤
𝑗𝐵𝐺+1 = argmin

𝑗𝐵∈ℝ𝐼

⎩
𝑌(𝑈 𝑗𝐵) + (𝑈𝑔%2)⎪ 𝑗𝐵− 𝑗𝑇𝐺 − ,𝐺⎪2|

then sends a query 𝑍𝐺𝑤 = 𝑇𝐺𝑤 − 𝑗𝑇𝐺 + 𝑗𝐵𝐺+1 − ,𝐺 to each agent 𝑤.
2. Each agent 𝑤 updates and sends its response 𝑇𝐺+1𝑤 = !"#$ 1

𝑔 𝐸𝑤

)
𝑍𝐺𝑤
√ to the coordinator.

3. The coordinator calculates the average 𝑗𝑇𝐺+1 = (1%𝑈) |𝑈
𝑤=1 𝑇

𝐺+1
𝑤 and updates the scaled dual vector ,𝐺+1 = ,𝐺 + 𝑗𝑇𝐺+1 − 𝑗𝐵𝐺+1.

This process is repeated until convergence is achieved or until a maximum number of iterations is reached.

3.1. Moreau envelope

To reduce the communication overhead in this distributed optimization scheme, the authors of [14] proposed an approach called 
STEP (STructural Estimation of Proximal operator) which relies on the concept of the Moreau envelope of a function 𝐸 . For brevity, 
we drop the subscript 𝑤 and the superscript 𝐺 in the subsequent equations. For 1%𝑔 > 0, the Moreau envelope 𝐸

1
𝑔 of 𝐸 is defined as

𝐸
1
𝑔 (𝑍) = min

𝑇∈ℝ𝐼

⎧
𝐸 (𝑇) + 𝑔

2⎪𝑇− 𝑍⎪
2
⎨
. (4)

When 𝐸 is a proper and convex function, the Moreau envelope 𝐸
1
𝑔 is convex and differentiable with Lipschitz continuous gradient with 

constant 𝑔 [Fact 2.2 in [22]]. Moreover, the unique solution to the proximal minimization !"#$ 1
𝑔 𝐸

(𝑍) is [23, Proposition 5.1.7]

!"#$ 1
𝑔 𝐸

(𝑍) = 𝑍− 1
𝑔
∇𝐸

1
𝑔 (𝑍). (5)

Consequently, the gradient ∇𝐸
1
𝑔 (𝑍) is all that is required to reconstruct the optimizer of (3) following from (5).
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Fig. 1. Flow diagram of a query and response between the coordinator and an agent in the proposed approach. The enhancements contributed by this work, compared 
with the original approach in [8], are highlighted in the blue-shaded boxes.

The STEP approach estimates the unknown gradient ∇𝐸
1
𝑔 (𝑍) at any query point 𝑍 by constructing a set of possible gradients at 

𝑍 based on past queries and then selecting a gradient that is “most likely” the true gradient. The work presented in [15] improved 
STEP by learning the Moreau envelopes corresponding to the local proximal operators with GP, which are updated online from past 
query data and used to predict the gradient ∇𝐸

1
𝑔 (𝑍) for estimating the proximal operators (3) of the agents by (5).

3.2. Proposed solution overview

The communication expenditure can be reduced further if the learning component is combined with the quantization of the 
communications between agents and coordinator. Our work [8] presented some preliminary results on a hybrid approach combining 
learning with quantization for further reducing communication overhead. This paper builds upon our hybrid approach [8] by further 
analyzing and mitigating the impact of quantization errors. Our improved hybrid approach is depicted in the diagram in Fig. 1, which 
describes the communication and computation processes between the coordinator and an agent 𝑤 at ADMM iteration 𝐺. In the colored 
boxes are new or modified components developed in this work compared to the approach in [8]. The blocks colored blue indicate 
the processes that were added or improved compared with our work in [8].

In Fig. 1, if the coordinator determines that a communication with agent 𝑤 is necessary at iteration 𝐺, it will send the query point 𝑍𝐺𝑤
to the agent. The Moreau envelope 𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 ) and its gradient ∇𝐸
1%𝑔
𝑤 (𝑍𝐺𝑤 ) are then calculated. A regression is performed simultaneously 

by the agent’s proxLGP (identical to the coordinator’s proxLGP), to obtain the predictive mean 𝜓𝐺𝑤 (𝑍𝐺𝑤 ) and the covariance matrix Σ𝐺𝑤 (𝑍𝐺𝑤 )
of the agent’s response. These values are used to parameterize the quantization process of the exact response 

⎧
𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 ),∇𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 )

⎨
to 

reduce the quantization error. The rationale is that if the exact values fall with high probability inside a range (determined by the pre-
dictive covariance matrix) around the predictive mean, then the quantization error is reduced and diminished as the proxGP becomes 
increasingly accurate, ensuring the optimization’s convergence [17]. The quantized response 

{(
ℚ
)
𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 )

√
,ℚ

)
∇𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 )
√)}

from agent 𝑤 is sent back to the coordinator, which uses a similar dequantization process based on the same predictive mean 𝜓𝐺𝑤 (𝑍𝐺𝑤 )
and covariance matrix Σ𝐺𝑤 (𝑍𝐺𝑤 ) to obtain the dequantized approximate response 

⎧
.𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 ),∇ .𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 )
⎨
. The dequantized values are 

used both for the ADMM calculations and for updating the proxGP.
In the next section, we present a review of the important theoretical results relevant to our work.

4. Review of Gaussian process and quantization

4.1. Gaussian process with derivative observations

Let us assume that we have ⊳ observations of a random variable, and 𝜆 ∈ ℝ⊳(𝐼 whose rows 𝑇𝑤 (𝑤 ∈ [1, ⊳]) are observed inputs 
vectors. Considering a mean function 𝜓(𝑇𝑤) and the co-variance function 𝜃(𝑇𝑤, 𝑇)𝑤) of a real process 𝐸 (𝑇𝑤) ∈ ℝ satisfying positive 
definite conditions as presented in Chapter 4 of [24], the GP can be written as 𝐸 (𝑇𝑤) ∼  )

𝜓(𝑇𝑤),𝜃(𝑇𝑤,𝑇)𝑤)
√.
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Now, consider the case where we have extended function values at 𝑇𝑤 ∈ℝ1(𝐼 including both the function value and its gradients 
at 𝑇𝑤, denoted by 

[
𝐸 (𝑇𝑤);∇𝐸 (𝑇𝑤)

], where ∇𝐸 (𝑇𝑤) =
[
𝜁𝐸 (𝑇𝑤)
𝜁𝑇(𝑁)𝑤

]

𝑁=1,…,𝐼
, and 𝑇(𝑁)𝑤 is the 𝑁-th element of 𝑇𝑤. Following [25], the covariance 

matrix is correspondingly expanded, for any pair of points 𝐿, 𝑂 ∈ [1, ⊳], resulting in the covariances between the observations and its 
partial derivatives given by

Cov
[
𝜁𝐸 (𝑇𝐿)

𝜁𝑇(𝑁𝐿)𝐿

,𝐸 (𝑇𝑂)
]
= 𝜁
𝜁𝑇(𝑁𝐿)𝐿

𝜃
)
𝑇𝐿,𝑇𝑂

√
,

and between the partial derivatives given by

Cov
⎡
⎢
⎢⎣
𝜁𝐸 (𝑇𝐿)

𝜁𝑇(𝑁𝐿)𝐿

,
𝜁𝐸 (𝑇𝑂)

𝜁𝑇(𝑁𝑂)𝑂

⎤
⎥
⎥⎦
= 𝜁2

𝜁𝑇(𝑁𝐿)𝐿 𝜁𝑇(𝑁𝑂)𝑂

𝜃
)
𝑇𝐿,𝑇𝑂

√
,

where 1 ≤ 𝑁𝐿, 𝑁𝑂 ≤ 𝐼. The GP then will have its predicted mean and covariance as presented in Chapter 2 of [24].
4.2. Uniform quantization

We consider a uniform quantizer ℚu of the mid-tread type [26], where the input-output relation is given by

ℚu(𝐵;𝐵,𝐽) = 𝐵+ 𝐽
(⌊

𝐵− 𝐵
𝐽

⌋
+ 1

2

)
,

in which 𝐽 > 0 is the quantization window length, 𝐵 is the mid-value, and ⌊𝐵⌋ denotes the integer closest to 𝐵 towards 0. Here, 
𝐽 = 𝑂

2𝛼 , where 𝑂 is the range of the quantization interval and 𝛼 is the bit resolution of the quantizer. Let .𝐵 = ℚu(𝐵;𝐵, 𝐽), then the 
quantization error (or quantization noise) is defined as 𝜄ℚ = 𝐵 − .𝐵. The statistics of the quantization error for this uniform quantizer 
are characterized in Section V-A in [27].

5. GP regression under adaptive quantization

In this section, we present the derivations and principles of our proposed approach. We present our proposed adaptive quantization 
scheme and its properties, the new regression mechanism, and an approximation method to deal with the quantized data.

5.1. Adaptive uniform quantization

We propose a quantizer that adapts the standard (non-adaptive) uniform quantizer. Given an input 𝐵 which is a sample of a 
Gaussian distribution  (

𝜓𝐵,𝜂2𝐵
)
, we adapt a uniform quantizer by setting its mid-value 𝐵 = 𝜓𝐵 and its range 𝑂 = 2𝛾𝜂𝐵, for some 

given 𝛾 > 0 that controls how many standard deviations apart from the mean 𝜓𝐵 are set for the range of values for quantization, 
which determines how confident we are that the quantizer’s input is within the defined quantization range. The proposed adaptive 
quantizer ℚua on 𝐵, given by ℚua(𝐵; 𝜓𝐵, 𝜂𝐵, 𝛾, 𝛼) = ℚu

(
𝐵;𝜓𝐵,

2𝛾𝜂𝐵
2𝛼

)
= 𝜓𝐵 +

2𝛾𝜂𝐵
2𝛼

(⌊
2𝛼(𝐵−𝜓𝐵)
2𝛾𝜂𝐵

⌋
+ 1

2

)
, therefore has parameters that are 

adapted for a quantization resolution appropriate for the most likely values of 𝐸 (𝑇).
The following result characterizes the error statistics of the adaptive uniform quantizer, which will play an important role in the 

analysis of our proposed adaptive quantization methods throughout the rest of the paper. Its proof is presented in Appendix A.

Proposition 1. Consider a sample 𝐵 of a Gaussian distribution  (
𝜓𝐵,𝜂2𝐵

)
and an adaptive uniform quantizer ℚua(𝐵; 𝜓𝐵, 𝜂𝐵, 𝛾, 𝛼) on 𝐵. 

Define the quantization error 𝜄ℚ = 𝐵 −ℚua(𝐵; 𝜓𝐵, 𝜂𝐵, 𝛾, 𝛼). Then the mean and variance of the quantization error are

#[𝜄ℚ] = 0

#[𝜄ℚ𝜄)ℚ] =
𝐽2

12𝑆(<),

where 𝐽 = 2𝛾𝜂𝐵
2𝛼 , < = 2𝛼

2𝛾 , and

𝑆(<) = 1 + 12
̃2

+(
⊳=1

(−1)⊳

⊳2 exp
)
−2̃2⊳2<2

√
. (6)

Furthermore, the correlation between the input 𝐵 and the quantization error is given by,

#[𝐵𝜄ℚ] = 2𝜂𝐵
+(
⊳=1

(−1)⊳ exp
)
−2̃2⊳2<2

√
. (7)
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While 𝑆(<) and #[𝐵𝜄ℚ], given in (6) and (7), involve complex mathematical series, we will show that when the ratio < = 2𝛼
2𝛾 exceeds 

1, 𝑆(<) becomes approximately 1 and the correlation #[𝐵𝜄ℚ] becomes negligible. The following lemmas establish the monotonicity 
and the negative values of these series. Their proofs can be found in Appendix B.

Lemma 1. The series |+
⊳=1

(−1)⊳
⊳2 exp

)
−2̃2⊳2<2

√ is negative and increasing with <.

Lemma 2. The series |+
⊳=1(−1)⊳ exp

)
−2̃2⊳2<2

√ is negative. Furthermore, for < > 1√
2̃

≈ 0.225, it is increasing with <.

It follows from these lemmas and equations (6) and (7) that 𝑆(<) < 1 and increasing with < for all < > 0, and #[𝑇𝜄ℚ] < 0 and 
increasing with < for all < > 1√

2̃
≈ 0.225. In practice, the ratio < = 2𝛼

2𝛾 is at least 1 and often much greater than 1. Indeed, with the 
typically chosen 𝛾 = 3 (giving a confidence of 99.7% that the quantizer’s input is within the quantization range), at a resolution of just 
𝛼 = 3 bits, < = 4%3 > 1 and increases exponentially with 𝛼. At < = 1, we have 𝑆(1) = 1 − 3.253 ( 10−9, and #[𝐵𝜄ℚ] = −5.351 ( 10−9𝜂𝐵. 
Therefore, for all practical purposes, we have 1 − 3.253 ( 10−9 ≤ 𝑆(<) < 1, thus we can consider 𝑆(<) = 1 and hence #[𝜄ℚ𝜄)ℚ] =

𝐽2
12 . In 

addition, we have −5.351 ( 10−9𝜂𝐵 ≤ #[𝐵𝜄ℚ] < 0, thus we can consider #[𝐵𝜄ℚ] = 0.

5.2. Adaptive uniform quantization with vector input

Consider the case where the input to the quantizer is a Gaussian random vector 𝐵 with conditional mean vector 𝜓𝐵 and conditional 
co-variance matrix Σ𝐵. The previously presented adaptive quantization scheme must be adjusted to handle the multidimensional 
nature of the input. We propose two schemes described below: one ignores the correlations among the input values and the other 
takes these correlations into account.

Adaptive Scheme Ignoring Correlation. Quantization is performed element-wise, using each element of the quantizer’s input with its 
corresponding element of the conditional mean vector 𝜓𝐵 and the diagonal of the co-variance matrix Σ𝐵 for adaptation. Therefore, 
we have a vector of window lengths 𝐽 with the 𝑤>𝑌 entry given by

𝐽𝑤 =
2𝛾
√
Σ𝐵[𝑤𝑤]
2𝛼

, (8)

where Σ𝐵[𝑤𝑤] is the 𝑤>𝑌 entry of the diagonal of Σ𝐵.
Using Proposition 1, we can characterize the quantization error under the proposed scheme, as stated in the following proposition.

Proposition 2. Under the Adaptive Scheme Ignoring Correlation, an adaptive uniform quantizer ℚua(𝐵; 𝜓𝐵, Σ𝐵, 𝛾, 𝛼) has a quantization error 
vector 𝜄ℚ whose components are uncorrelated. The correlation matrix, defined as Δun = #[𝜄ℚ𝜄)ℚ], is a diagonal matrix with its diagonal given 
by the vector 𝐽212𝑆(2𝛼%2𝛾), with the entries of vector 𝐽 defined in (8) and 𝑆(⋅) defined in Proposition 1.

Correlated Adaptive Scheme. The use of an orthogonal transformation of the quantizer’s input 𝐵 allows us to consider the correlation 
between its elements, and to perform quantization over the transformed input similarly as in the previously defined Adaptive Scheme 
Ignoring Correlation.

Using the above notations, the orthogonal transformation to the quantizer’s input is expressed as

𝐵𝐻 =𝐻(𝐵− 𝜓𝐵), (9)
where 𝐻 is the transformation matrix. The conditional mean of 𝐵 is subtracted to have a zero-mean quantizer’s input. Then, the way 
𝐻 is determined will define our orthogonal pre-filtering of the quantizer’s input.

Pre-filtering: The transformation matrix A used in (9) is obtained by applying an eigenvalue decomposition of matrix Σ𝐵, in which Σ𝐵 =
𝜉Λ𝜉 ), with Λ being a diagonal matrix with the eigenvalues of Σ𝐵 and 𝜉 being a square matrix whose columns are eigenvectors of Σ𝐵. The 
matrix 𝐻 can be expressed in two ways; 𝐻1 = (Σ𝐵)−1%2 or 𝐻2 =𝜉 ), where (Σ𝐵)1%2 is a matrix such that (Σ𝐵)1%2(Σ𝐵)1%2 = Σ𝐵. The use of 𝐻1
will result in a whitening procedure where the result will be a zero-mean unit variance vector with independent components. The use of 𝐻2
will result in a decoupling procedure where the result will be a zero-mean vector whose variances are determined by the eigenvalues in Λ.

Following this pre-filtering, 𝐵𝐻 will be element-wise quantized given by:

ℚua(𝐵𝐻; 0,Σ̃, 𝛾,𝛼) = 𝐵𝐻 + 𝜄ℚ,

where Σ̃ represents the identity matrix (when 𝐻 = 𝐻1) or a diagonal matrix with entries given by the eigenvalues of Σ𝐵 (when 
𝐻 =𝐻2).

Proposition 3. Under the Correlated Adaptive Scheme and the proposed Pre-filtering, an adaptive uniform quantizer ℚua(𝐵𝐻; 0, Σ𝐵, 𝛾, 𝛼), 
where the input vector is transformed following (9), has a quantization error vector 𝜄ℚ whose components are correlated with each other. The 
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correlation matrix, defined as Δco =B[𝜄ℚ𝜄)ℚ], is independent of the choice of the transformation matrix 𝐻 and is given by Δco = 𝛾2𝑆(2𝛼%2𝛾)
3(2𝛼)2 Σ𝐵, 

with 𝑆(⋅) as defined in Proposition 1.

Proof. The proof is presented in Appendix C. □

5.3. LMMSE regression with quantization

In this subsection, we consider a GP regression as presented in Section 4.1, but when the training set  is affected by adap-
tive quantization. In this scenario, we do not have access to the exact extended values 𝐵𝑤 but a quantized version of them 
.𝐵𝑤 =

[
ℚua(𝐸 (𝑇𝑤));ℚu(∇𝐸 (𝑇𝑤))C

]
+ 𝜄𝑤n, which are quantized following the proposed adaptive quantization with vector inputs presented 

in Section 5.2. These quantized extended values are also expressed as .𝐵𝑤 =
[
𝐸 (𝑇𝑤);∇𝐸 (𝑇𝑤)C

]
+ 𝜄𝑤n + 𝜄

𝑤
ℚ, where 𝜄𝑤ℚ refers to the quanti-

zation error vector for the observation 𝑤 and 𝜄𝑤n is a vector whose entries follow the same Gaussian distribution with zero mean, 𝜂2𝑈
variance at observation 𝑤. Such Gaussian noise is not a physical noise but one added to avoid possible matrix singularity.

The added non-Gaussian quantization noise invalidates the Gaussian noise assumption of the regular GP regression. In this case, 
the regression cannot be a Minimum Mean Square-error Estimator (MMSE) anymore, so we must compute the conditional mean 
which requires a more involved computation. To overcome this challenge, we adopt a Linear Minimum Mean Square-error Estimator 
(LMMSE). This allows us to balance the accuracy and complexity of the estimator while preserving the advantages of GP. With this 
premise we will derive two estimators under two scenarios regarding the training set .
5.3.1. Linear GP regression (LGP-R)

This estimator is used to predict the extended values of an input 𝑇∗ given a training set where the observed extended values are 
affected by quantization. In this case, we only have access to quantized values of the extended values. For a new input 𝑇∗ we want to 
predict 𝐵∗, leading to the following theorem, whose proof is presented in Appendix D. This estimation is performed at every iteration, 
and for every agent to assess the quality of regression.

Theorem 1. The LGP-R Estimator has an input 𝑇∗ ∈ ℝ𝐼 and a training set containing ⊳ past observations with quantized extended values  = (𝜆, .D ), with 𝜆 ∈ℝ⊳(𝐼+1)(𝐼 being a collection of the past inputs 𝑇𝑤 ∈ℝ(𝐼+1)(𝐼 and .D ∈ℝ⊳(𝐼+1)(1 being a collection of the past quantized 
extended observation values .𝐵𝑤 ∈ℝ(𝐼+1)(1. This estimator has its predicted mean

𝜓(𝑇∗) =Φ(𝜆∗,𝜆)
)
Φ(𝜆,𝜆) + 𝜂2𝑈E⊳(𝐼+1) +Δ+ 2#[D 𝜄)ℚ]

√−1 .D ,
and predicted covariance matrix

Σ(𝑇∗) =Φ(𝜆∗,𝜆∗)−Φ(𝜆∗,𝜆)
)
Φ(𝜆,𝜆) + 𝜂2𝑈E⊳(𝐼+1) +Δ+ 2#[D 𝜄)ℚ]

√−1Φ(𝜆,𝜆∗),

where 𝜆∗ ∈ℝ(𝐼+1)(𝐼 contains a copy of 𝑇∗ in each of its rows, the entries of the matrices Φ(𝜆∗, 𝜆∗), Φ(𝜆∗, 𝜆), and Φ(𝜆, 𝜆) are as detailed 
in Subsection 4.1, Δ = #[𝜄ℚ𝜄)ℚ] contains the information of the uniform quantization error of all extended values observations of the training 
set , and the entries corresponding to each observation in Δ are added block-wise following the expression given by Δun in Proposition 2
or Δco in Proposition 3 (depending on the quantization scheme selected), and #[D 𝜄)ℚ] is the correlations between the extended observation values D in the training set  and their corresponding uniform quantization errors, calculated as shown in Proposition 1.

5.3.2. Linear GP approximation (LGP-A)
Consider the case where we perform adaptive uniform quantization on the extended values at 𝑇∗ , resulting in the quantized version 

of 𝐵∗ given by .𝐵∗. Such adaptive quantization uses the conditional mean and conditional covariance given by LGP-R. It is possible to 
approximate the real value 𝐵∗ if .𝐵∗ and the statistics that adapt the quantizer are known. To do so, we propose the construction of 
a LMMSE named LGP-A to be performed after the quantization process. This estimation is only performed when communication is 
required and after receiving the reply from the agent.

The estimation could be performed by updating the training set with the new input and the quantized extended values. Input 𝑇∗
could then be reinserted to the estimator presented in Theorem 1. To avoid such redundancy we consider an approximator that deals 
with a zero-mean input .𝐵∗ − 𝜓(𝑇∗), and since .𝐵∗ already has the information of the past training set, we then have the following 
theorem, whose proof is presented in Appendix E.

Theorem 2. The LGP-A Estimator has a training set containing ⊳ past inputs, past quantized extended observation values, and the current input 
𝑇∗ and its quantized extended observation value .𝐵∗, leading to the training set  = ([𝜆; 𝑇∗], [ .D ; .𝐵∗]), with 𝜆 ∈ℝ⊳(𝐼+1)(𝐼 being a collection 
of the past inputs 𝑇𝑤 ∈ℝ(𝐼+1)(𝐼, and .D ∈ℝ⊳(𝐼+1)(1 being a collection of the past quantized extended observation values .𝐵𝑤 ∈ℝ(𝐼+1)(1. LGP-A 
estimates the target value 𝐵∗ by

𝑗𝐵∗ =F
)
.𝐵∗ − 𝜓(𝑇∗)

√
+ 𝜓(𝑇∗),

where F = Σ(𝑇∗) 
(
Σ(𝑇∗) +Δ𝐼+1 + 𝜂𝑈E𝐼+1 + 2#[𝐵∗𝜄)ℚ∗]

)−1
, with 𝜓(𝑇∗) and Σ(𝑇∗) as presented in Theorem 1 and Δ𝐼+1 is given by Δun in 

Proposition 2 or Δco in Proposition 3 depending on the quantization scheme selected, 𝜄ℚ∗ is the quantization error of only the quantized values 
in the current iteration, and #[𝐵∗𝜄)ℚ∗] is calculated as shown in Proposition 1.
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6. Proposed approach

6.1. Proposed adaptive uniform quantization scheme

This section combines the overview presented in Section 3 with the results presented in Section 5 to present our complete proposed 
approach in more detail.

In Fig. 1, upon receiving the query point 𝑍𝐺𝑤 ∈ ℝ1(𝐼 from the coordinator (left side), agent 𝑤 (right side) solves the proximal 
minimization problem (3) (the box !"#$ 1%𝑔𝐸𝑤 ) and obtains the exact values of 𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 ) ∈ℝ and ∇𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 ) ∈ℝ𝐼(1. Simultaneously, it 
uses the regression process, depicted in the block ‘proxLGP’, to obtain the conditional mean 𝜓𝐺𝑤 (𝑍𝐺𝑤 ), which stores the predicted values 
of 𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 ) and ∇𝐸
1%𝑔
𝑤 (𝑍𝐺𝑤 ), and the conditional covariance matrix Σ𝐺𝑤 (𝑍𝐺𝑤 ). We can adopt the same adaptive uniform quantization 

scheme presented in Section 5.1, as the exact values follow a Gaussian distribution (under the LGP model). We will denote the 
quantized values of the query response as 

[
.𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 );∇ .𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 )
]
= ℚua

([
𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 );∇𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 )

]
;𝜓𝐺𝑤 (𝑍

𝐺
𝑤 ),Σ

𝐺
𝑤 (𝑍

𝐺
𝑤 ), 𝛾,𝛼

)
. The output of 

the quantizer is transmitted from the agent (right side) to the coordinator (left side). The dequantized values .𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 ) and ∇ .𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 )
are used by the ADMM algorithm and to update the corresponding ‘proxLGP’ of agent 𝑤.

6.2. LGP-R based regression in our proposed approach

The ‘proxLGP’ block on the coordinator side of Fig. 1 runs at every iteration and its resulting covariance matrix is used to determine 
whether to send 𝑍𝐺𝑤 to agent 𝑤.

Using the quantization scheme for vector inputs ℚua (defined in Section 5.2) and following (8), the results presented in Propo-
sitions 1-3 apply to the adaptive quantizer ℚua. Hence, we can use the previously derived regression scheme LGP-R presented in 
Theorem 1 as the regression scheme to be used in this work. Using the results in Section 5.1 that #[𝐵𝜄)ℚ] ≈ 0 and 𝑆(<) ≈ 1, we hence-
forth remove the correlation #[𝐵𝜄)ℚ] present in Theorems 1 and 2, and remove the term 𝑆(2𝛼%2𝛾) used in the characterization of the 
variance of the quantization error in Propositions 2 and 3.

Now, defining G1%𝑔𝑤 (𝑍𝐺𝑤 ) =
[
𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 );∇𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 )

]
, we have that, given the new query point 𝑍𝐺𝑤 , the predicted value of the vector 

G1%𝑔𝑤 (𝑍𝐺𝑤 ) using LGP-R will be given by

𝜓𝐺𝑤 (𝑍
𝐺
𝑤 ) =Φ(H𝐺

𝑤∗,H
𝐺
𝑤 )

)
Φ(H𝐺

𝑤 ,H
𝐺
𝑤 ) + 𝜂

2
𝑈E⊳(𝐼+1) +Δ𝑤

√−1 .I𝐺𝑤 , (10)
where H𝐺

𝑤∗ ∈ℝ(𝐼+1)(𝐼 contains a copy of 𝑍𝐺𝑤 in each of its rows, H𝐺
𝑤 is the training input set containing queries sent to agent 𝑤 up to time 𝐺

in the set {𝑍J𝑤 }J∈𝑤 ,  𝐺
𝑤 contains the indices of the iterations where a query was sent to agent 𝑤 by the coordinator up to the current algo-

rithmic iteration, ⊳ is the number of elements in set  𝐺
𝑤 , .I𝐺𝑤 is the quantized training target set containing the local quantized proximal 

minimization problem results sent from agent 𝑤 to the coordinator up to time 𝐺 in the set 
⎧
ℚua

(
G1%𝑔𝑤 (𝑍J𝑤 );𝜓

J
𝑤 (𝑍

J
𝑤 ),Σ

J
𝑤 (𝑍

J
𝑤 ), 𝛾,𝛼

)⎨
J∈𝑤 , 

𝜂2𝑈E⊳(𝐼+1), Δ𝑤 are defined in Theorem 1, and the entries of Φ(H𝐺
𝑤∗, H

𝐺
𝑤 ) and Φ(H𝐺

𝑤 , H
𝐺
𝑤 ) are detailed in Subsection 4.1 with a covariance 

function given by the square exponential kernel function.
Using the same notation, the covariance matrix given by the LGP-R is

Σ𝐺𝑤 (𝑍
𝐺
𝑤 ) = Φ(H𝐺

𝑤∗,H
𝐺
𝑤∗)−Φ(H𝐺

𝑤∗,H
𝐺
𝑤 )

)
Φ(H𝐺

𝑤 ,H
𝐺
𝑤 ) + 𝜂

2
𝑈E⊳(𝐼+1) +Δ𝑤

√−1Φ(H𝐺
𝑤 ,H

𝐺
𝑤∗). (11)

The matrix Δ𝑤 will be updated block-wise by inserting the corresponding quantization error covariance matrix of the query round, 
which follows Proposition 2 or Proposition 3 depending on the quantization scheme used. Henceforth, we will use Δ𝐺𝑤 to refer to the 
resulting quantization error covariance matrix obtained after a query process in iteration 𝐺, which will be then added to Δ𝑤 .

6.3. LGP-A approximation in our proposed approach

In Fig. 1 we can see that the coordinator receives the quantized version ∇ .𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 ) of the exact value ∇𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 ). To improve the 

accuracy of the gradient values used in the ADMM updates at the coordinator, we estimate these values with a LMMSE estimator 
rather than using the inexact quantized values directly. The estimator derived in this subsection is different from that in subsection 
6.2 because it is applied only when a query is performed, which only uses the newly added entry in the training set. The result is 
further used by the ADMM process.

After a query undergoes a communication round, the quantized value of G1%𝑔𝑤 (𝑍𝐺𝑤 ), .G
1%𝑔
𝑤 (𝑍𝐺𝑤 ), is added to the regression training 

set, and Δ𝑤 is updated with the block Δ𝐺𝑤 . Therefore, we can obtain the desired approximation 𝑗G
1%𝑔
𝑤 (𝑍𝐺𝑤 ) following the derivation from 

Theorem 2, which gives us

𝑗G1%𝑔𝑤 (𝑍𝐺𝑤 ) =F
𝐺
𝑤

(
.G1%𝑔𝑤 (𝑍𝐺𝑤 )− 𝜓

𝐺
𝑤 (𝑍

𝐺
𝑤 )
)
+ 𝜓𝐺𝑤 (𝑍

𝐺
𝑤 ), (12)

where F𝐺𝑤 = Σ𝐺𝑤 (𝑍
𝐺
𝑤 ) 
)
Σ𝐺𝑤 (𝑍

𝐺
𝑤 ) + 𝜂𝑈E𝐼+1 +Δ𝐺𝑤

√−1.



EURO Journal on Computational Optimization 12 (2024) 100098

9

A. Duarte, T.X. Nghiem and S. Wei

Algorithm 1 LGP: Distributed Optimization with Estimated Proximal Operator Based on Gaussian Processes with Adaptive Uniform 
Quantization.
Require: 𝑇0𝑤 ∈ℝ𝐼 , 𝑗𝐵0 ∈ℝ𝐼 , ,0 ∈ℝ𝐼 , 𝛾 ∈ℕ, 𝛼 ∈ ℕ
1: for 𝐺 = 0, 1, … , 𝐺stop do
2: 𝑗𝐵𝐺+1 ← argmin

𝑗𝐵∈ℝ𝐼

⎩
𝑌(𝑈 𝑗𝐵) + (𝑈𝑔%2)⎪ 𝑗𝐵− 𝑗𝑇𝐺 − ,𝐺⎪2|

3: for each agent 𝑤 do
4: 𝑍𝐺𝑤 ← 𝑇𝐺𝑤 − 𝑗𝑇𝐺 + 𝑗𝐵𝐺+1 − ,𝐺
5: Calculate 𝜓𝐺𝑤 (𝑍𝐺𝑤 ) and Σ𝐺𝑤 (𝑍𝐺𝑤 ) from (10) and (11)
6: if max

)diag)Σ𝐺𝑤 (𝑍𝐺𝑤 )
√√

> K𝐺
𝑤 then

7: Send 𝑍𝐺𝑤 to Agent 𝑤
8: .G1%𝑔𝑤 ← Quer&Age()(𝑍𝐺𝑤 ) ⊳ Agent 𝑤
9: Compute 𝑗G1%𝑔𝑤 from (12)
10: Add 

(
𝑍𝐺𝑤 , .G

1%𝑔
𝑤 (𝑍𝐺𝑤 )

)
to the GP training set

11: Perform the GP hyperparameter update.
12: 𝑇𝐺+1𝑤 ← 𝑍𝐺𝑤 − (1%𝑔)∇ 𝑗𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 )
13: else
14: 𝑇𝐺+1𝑤 ← 𝑍𝐺𝑤 − (1%𝑔)𝜓𝐺𝑤 (𝑍𝐺𝑤 )
15: end if
16: end for
17: 𝑗𝑇𝐺+1 ← (1%𝑈) |𝑈

𝑤=1 𝑇
𝐺+1
𝑤

18: ,𝐺+1 ← ,𝐺 + 𝑗𝑇𝐺+1 − 𝑗𝐵𝐺+1
19: If ⎪ 𝑗𝑇𝐺 − 𝑗𝐵𝐺⎪+ ≤ 𝜄𝐼 )1 + ⎪M𝐺%𝑔⎪+

√ then Terminate.
20: end for

6.4. Dithering

From Section 5.1, we have that the correlation between the quantization noise and the input is negligible when the quantization 
bit resolution (𝛼) becomes larger and we fix a small value for 𝛾. If 𝛼 is too small, we can introduce dithering to randomize the 
quantization error and break the correlation between this error and the quantizer input.

A recent study ([28]) explores the use of quantization with dithering to determine which distribution the subtractive dithering 
follows. The work presented in [29] shows that the use of dithering with quantization could be improved if an orthogonal transfor-
mation was performed on the quantizer input prior to the quantization process. We thus adopt dithering as part of quantization after 
orthogonal transformation is performed at the quantizer’s input.

When the uniform quantizer is used with a zero-mean Gaussian input, the dithering variable 𝑁𝐺𝑤 will be a random number coming 
from a uniform distribution 𝑁𝐺𝑤[<] ∼

(
−𝐽𝐺𝑤[<]
2 ,

𝐽𝐺𝑤[<]
2

)
, where the window length 𝐽𝐺𝑤[<] is as defined in (8). The dithering will be performed 

element-wise, so 𝑁𝐺𝑤 will have the same dimension as the quantizer input. Following the orthogonal transformation as in Section 5.2, the quantizer input with dithering is given by

G𝐻[𝑁]𝑤 (𝑍𝐺𝑤 ) = G
𝐻
𝑤 (𝑍

𝐺
𝑤 ) + 𝑁

𝐺
𝑤 , (13)

where G𝐻𝑤 (𝑍𝐺𝑤 ) = 𝐻 
(
G1%𝑔𝑤 (𝑍𝐺𝑤 )− 𝜓

𝐺
𝑤 (𝑍

𝐺
𝑤 )
)
, with 𝐻 as presented in the Pre-filtering. Then, G𝐻[𝑁]𝑤 (𝑍𝐺𝑤 ) will be quantized and sent to the 

coordinator. The coordinator then performs the dequantization process and subtracts the noise added to the input before adding back 
its mean. The value .G1%𝑔𝑤 (𝑍𝐺𝑤 ) is given by

.G1%𝑔𝑤 (𝑍𝐺𝑤 ) =𝐻
−1

(
G𝐻[𝑁]𝑤 (𝑍𝐺𝑤 ) + 𝜄

𝐺
ℚ𝑤 − 𝑁

𝐺
𝑤

)
+ 𝜓𝐺𝑤 (𝑍

𝐺
𝑤 ),

where 𝜄𝐺ℚ𝑤 is the 𝑤th agent quantization noise at iteration 𝐺.

6.5. LGP pseudo-code

The complete LGP algorithm considering all its different variations is presented in Algorithm 1.

7. Numerical simulations

In this section, we evaluate the methods proposed in this work by solving a sharing problem where the agent’s sub-problems are 
quadratic. The specifics of the sharing problem considered, the simulation settings, and the results obtained are presented next.

7.1. Sharing problem

7.1.1. Problem definition
Our testing problem is based on the application presented in [11]. In this example, a dynamic sharing problem where the problem’s 

variables change at each iteration is presented and solved via ADMM. In our work, those varying variables are fixed and do not vary 
at each algorithmic step. We consider the following sharing problem:
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Algorithm 2 Query Process at the Agent Side.
1: procedure Quer&Age()(𝑍𝐺𝑤 )
2: Compute 𝐸 1%𝑔

𝑤 (𝑍𝐺𝑤 ) and ∇𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 ) from (4)

3: G1%𝑔𝑤 ←
[
𝐸 1%𝑔
𝑤 (𝑍𝐺𝑤 );∇𝐸

1%𝑔
𝑤 (𝑍𝐺𝑤 )

]

4: if Using Adaptive Scheme Ignoring Correlation then
5: .G1%𝑔𝑤 ←ℚua

(
G1%𝑔𝑤 ;𝜓𝐺𝑤 (𝑍𝐺𝑤 ),Σ𝐺𝑤 (𝑍𝐺𝑤 ), 𝛾,𝛼

)

6: else
7: Perform decomposition Σ𝐺𝑤 (𝑍𝐺𝑤 ) =𝜉𝐺

𝑤 Λ𝐺𝑤 𝜉𝐺)
𝑤

8: if Using Whitening Transformation then
9: 𝐻𝐺𝑤 ←

)
Σ𝐺𝑤 (𝑍𝐺𝑤 )

√−1%2
10: end if
11: if Using Decoupling Transformation then
12: 𝐻𝐺𝑤 ←𝜉𝐺)

𝑤
13: end if
14: G𝐻𝑤 ←𝐻𝐺𝑤

[
G1%𝑔𝑤 − 𝜓𝐺𝑤 (𝑍𝐺𝑤 )

]

15: if Using Dithering then
16: Compute G𝐻[𝑁]𝑤 as in (13)
17: .G1%𝑔𝑤 ←ℚua

(
G𝐻[𝑁]𝑤 ; 0,Σ𝐺𝑤 (𝑍𝐺𝑤 ), 𝛾,𝛼

)
+ 𝜓𝐺𝑤 (𝑍𝐺𝑤 )

18: else
19: .G1%𝑔𝑤 ←ℚua

)
G𝐻𝑤 ; 0,Σ

𝐺
𝑤 (𝑍𝐺𝑤 ), 𝛾,𝛼

√
+ 𝜓𝐺𝑤 (𝑍𝐺𝑤 )

20: end if
21: end if
22: return .G1%𝑔𝑤
23: end procedure

minimize
𝑈(
𝑤=1

(𝑇𝑤 − N𝑤)C0𝑤(𝑇𝑤 − N𝑤) + O⎪
𝑈(
𝑤=1

𝐵𝑤⎪1

subject to 𝑇𝑤 − 𝐵𝑤 = 0
(14)

where 𝑇𝑤, 𝐵𝑤 ∈ℝ𝐼, N𝑤 ∈ℝ𝐼, 0𝑤 ∈ℝ𝐼(𝐼 positive definite, and O > 0 are given problem parameters.
As presented in [11], the problem in (14) can be applied to data flow in communication networks or currents in power grids, 

where there are 𝑈 subsystems and 𝐼 quantities distributed over such subsystems. The vector 𝑇𝑤 describes the 𝐼 quantities at subsystem 
𝑤, and the goal is to determine the solution vectors 𝑇𝑤 , 𝑤 = 1, 2, … , 𝑈.

7.1.2. Generation of parameters N𝑤 and 0𝑤
The details are presented in Appendix F.

7.1.3. Solution with ADMM
The problem presented in (14) has the same form as (2) in Section 3 based on which the ADMM updates for this case are expressed 

as

𝑇𝐺+1𝑤 = argmin
𝑇𝑤∈ℝ𝐼

⎩
𝐸𝑤(𝑇𝑤) + (𝑔%2)⎪𝑇𝑤 − 𝑍𝐺𝑤 ⎪22

|

𝑗𝐵𝐺+1 = argmin
𝑗𝐵∈ℝ𝐼

⎩
O⎪𝑈 𝑗𝐵⎪1 + (𝑈𝑔%2)⎪ 𝑗𝐵− 𝑗𝑇𝐺+1 − (1%𝑔)M𝐺⎪22

|

M𝐺+1 = M𝐺 + 𝑔
)
𝑗𝑇𝐺+1 − 𝑗𝐵𝐺+1

√ (15)
where 𝐸𝑤(𝑇𝑤) = (𝑇𝑤 − N𝑤)C0𝑤(𝑇𝑤 − N𝑤), 𝑗𝑇𝐺 = (1%𝑈) |𝑈

𝑤=1 𝑇
𝐺
𝑤 , 𝑗𝐵𝐺 = (1%𝑈) |𝑈

𝑤=1 𝐵
𝐺
𝑤 , and 𝑍𝐺𝑤 = 𝑇𝐺𝑤 − 𝑗𝑇𝐺 + 𝑗𝐵𝐺 − (1%𝑔)M𝐺.

Since the functions 𝐸𝑤 and the 𝑂1 norm are strongly convex, the ADMM updates for 𝑇𝐺+1𝑤 and 𝑗𝐵𝐺+1 are solutions to unconstrained 
convex optimization problems. Thus, those problems can be solved by calculating the derivatives of the objective functions in (15), 
and setting them equal to zero. Following this, 𝑇𝐺+1𝑤 can be expressed by the closed form solution

𝑇𝐺+1𝑤 =
)
20𝑤 + 𝑔E𝐼

√−1 )20𝑤N𝑤 + 𝑔(𝑇𝐺𝑤 − 𝑗𝑇𝐺 + 𝑗𝐵𝐺)− M𝐺
√
, (16)

where E𝐼 is the 𝐼 ( 𝐼 identity matrix.
Similarly, the 𝑗𝐵 update can expressed as

𝑗𝐵𝐺+1 =
⎧
⎪
⎨
⎪⎩

)
𝑗𝑇𝐺+1 + M𝐺%𝑔

√
− O

𝑔 , if 𝑗𝑇𝐺+1 + M𝐺%𝑔 > O
𝑔

0, if | 𝑗𝑇𝐺+1 + M𝐺%𝑔| ≤ O
𝑔

( 𝑗𝑇𝐺+1 + M𝐺%𝑔) + O
𝑔 , if 𝑗𝑇𝐺+1 + M𝐺%𝑔 < − O

𝑔 .
(17)
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Table 1
Elements associated with each of the proposed methods.

GP Reg LGP Reg Uni Quant Decoup Whitening Dithering

Sync:UniQuant
STEP-GP:Exact
STEP-LGP:UniAd
STEP-LGP:UniAd-Dec
STEP-LGP:UniAd-DecDit
STEP-LGP:UniAd-Whit
STEP-LGP:UniAd-WhitDit

7.2. Simulation implementation

We consider two cases where 𝑈 ∈ {10, 30}. The problem described in (14) is solved with four different methods:

1. Direct: this method uses a convex solver to solve the problem directly. The knowledge of the true solution is used to construct 
the comparative metric which is introduced in the following subsection.

2. Sync: this algorithm uses ADMM with proximal operator as in (15), which simplifies to (16) and (17) with 𝑔 = 10.
3. STEP-GP: the algorithm proposed in [15] combining ADMM with proximal operator with GP regression.
4. STEP-LGP: the hybrid algorithm proposed in this paper, which combines the regression algorithm developed in Section 6.2, the 

LMMSE approximation presented in Section 6.3, and the adaptive quantization method developed in Section 6.1.

For each of the above algorithms, different quantization methods, or no quantization at all, are considered as follows:

• Exact: this method does not employ any quantization but uses 64-bit floating point numbers.
• UniQuant: this uniform quantization adaptation scheme is proposed in [17] to quantize the communications between agents in 
a connected network using the Proximal Gradient Method (PGM). In case the quantizer’s input is a vector the quantization is 
performed element-wise. For each element of the quantizer’s input, an initial quantizer’s range is set which decreases at a linear 
rate over the algorithmic iterations and the quantizer’s mid-value is set to be the previous quantized value.

• UniAd: this is the adaptive uniform quantization method as presented in Section 6.1 and performed element-wise following the 
Uncorrelated Adaptive Scheme as presented in Section 5.2a.

• UniAd-Dec: this is the adaptive uniform quantization method as presented in Section 6.1 and following the Correlated Quantization 
Scheme as presented in Section 5.2b with decoupling.

• UniAd-DecDit: same as UniAd-Dec but adding the dithering procedure as presented in Section 6.4.
• UniAd-Whit: this is the adaptive uniform quantization method as presented in Section 6.1 and following the Correlated Quantization 
Scheme with whitening.

• UniAd-WhitDit: same as UniAd-Whit but adding the dithering procedure as presented in Section 6.4.

In our simulations, we consider the following combinations: Sync:Exact, Sync:UniQuant, STEP-GP:Exact, STEP-LGP:UniAd, STEP-
LGP:UniAd-Dec, STEP-LGP:UniAd-DecDit, STEP-LGP:UniAd-Whit, and STEP-LGP:UniAd-WhitDit. Table 1 summarizes each proposed 
combination’s algorithmic components.

The simulations were implemented in MATLAB. The solution of the minimization problems (14) is obtained directly using a convex 
solver from the YALMIP toolbox [30]. We used the GPstuff toolbox [31] for the regression training and inference. The computation 
was conducted with high-performance computational resources provided by Louisiana State University (http://www .hpc .lsu .edu).

7.3. Metrics and considerations

7.3.1. MAC metric
To consider a more realistic communication process, we include a simulation component to reflect the channel contention. By 

modifying the simulator in [32], we get that the total transmission time will be C𝑇> =
|P
𝐺=1 C

𝐺
round, where P is the number of iterations 

taken to reach convergence, and C 𝐺round is the expected transmission time in one iteration round. Appendix G presents the specifics of 
how this metric was obtained.

7.3.2. ADMM termination criterion
We propose a termination criterion for ADMM using the concept of primal-residual as shown in [7], having the form:

⎪ 𝑗𝑇𝐺 − 𝑗𝐵𝐺⎪+ ≤ 𝜄𝐼 )1 + ⎪M𝐺%𝑔⎪+
√
,

where 𝑇𝐺, 𝐵𝐺, and M𝐺 are the variables used in the ADMM (see Section 3) and 𝜄𝐼 is an adjustable tolerance whose value will affect 
the trade-off between communication reduction and accuracy.

http://www.hpc.lsu.edu
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Fig. 2. Performance in the LOT metric of the adaptive quantization methods at different bit resolutions for 10 agents (left) and 30 agents (right) with 𝐼 = 5. The plots 
show the median LOT of 100 simulations for different sets of parameters N𝑤 and 0𝑤 .

7.3.3. Performance metric
To compare our results, we propose the Log Optimality over Transmission time (LOT) performance metric

QRC = − log
(|||SG> − S∗

|||%SG>
)
%C𝑇>

where SG> is the true optimal value obtained by the Direct method, S∗ is the objective value obtained by a particular approach, and C𝑇>
the total transmission time defined in Section 7.3.1. This metric reflects both communication cost and efficacy of a given approach. 
In particular, we want both the absolute error in the numerator and the transmission time in the denominator to be small, hence a 
higher LOT value is better.

7.3.4. Querying mechanism
The coordinator decides if a query should be sent to agent 𝑤 using a heuristic criterion utilizing the maximum component of the 

diagonal of the covariance matrix of the gradients of the Moreau Envelope. Specifically, if max
)diag)Σ𝐺𝑤 (𝑍𝐺𝑤 )

√√
> K𝐺𝑤 then communica-

tion is needed, otherwise it is not. The threshold K𝐺𝑤 is adapted at the coordinator side based on the setting of an initial threshold which 
will decrease at each iteration according to a decay rate T, such that 0 < T < 1. At 𝐺0, which is the iteration where the GP regression 
is used for the first time, the initial threshold for agent 𝑤 (K𝐺0𝑤 ) is calculated following K𝐺0𝑤 = U max

(
diag

(
Σ𝐺0𝑤 (𝑍𝐺0𝑤 )

))
, where 0 < U < 1. 

At iteration 𝐺 > 𝐺0, no matter the communication decision made by agent 𝑤, the threshold will be updated as K𝐺𝑤 = K𝐺0𝑤 (T)𝐺−𝐺0 .

7.4. Simulation results with 𝐼 = 5

In this subsection, we present the results for 10 and 30 agents when the dimension of the variables is set to be 𝐼 = 5. We also 
set the variable U for the querying mechanism described in Section 7.3.4 to be 0.6 for all agents. Each algorithm with the different 
combinations of quantization methods was run 100 times with different sets of randomly generated N𝑤 and 0𝑤, and the results are 
shown in terms of the median statistic among all simulations. We used such metric to mitigate the effect of outliers. The median 
is taken considering only the convergent cases for each method across the considered quantization levels. We consider a case to be 
non-convergent when the ADMM algorithm do not stop before reaching the maximum number of iterations manually set by us. In 
our simulations, we considered a maximum iteration count of 250 for a network of 10 agents and 300 when considering 30 agents. 
This set of results considered values of V = 0.2, 𝜄 = O = 1, 𝑔 = 10, 𝐼 = 5, a tolerance value of 𝜄𝐼 = 10−6, 𝑇0𝑤 = 𝑗𝑍0 = M0 = 0, and constant 
𝛾 = 3 for quantization.

7.4.1. Results for 10 agents
Fig. 2 (left) shows the results of the median of the 100 simulations for ADMM, STEP-GP and STEP-LGP based methods using 

the metric presented in Section 7.3.3 through the various quantization resolutions tested. The minimum resolution for which any 
quantization method achieved convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better performance in all cases compared to the baseline approaches Sync:Uni-
Quant and Sync:Exact. Also, it can be seen that starting from a resolution of 9 bits the performance of any STEP-LGP based method was 
better than STEP-GP, Sync:UniQuant, and Sync:Exact, with the peak of performance occurring at 10 bits for STEP-LGP:UniAd-DecDit. 
For resolutions below 9 bits, STEP-LGP:UniAd outperformed the STEP-GP case starting from 7 bits while STEP-LGP:UniAd-Dec and 
STEP-LGP:UniAd-DecDit did it starting from 8 bits. For 8 and 7 bits, it is STEP-LGP:UniAd which achieved the best overall perfor-
mance while STEP-LGP:UniAd-Whit and STEP-LGP:UniAd-WhitDit could not beat the STEP-GP algorithm. Overall, STEP-LGP:UniAd 
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Fig. 3. Performance in the LOT metric of the adaptive quantization methods at different bit resolutions for 10 agents (left) and 30 agents (right) with 𝐼 = 10. The plots 
show the median LOT of 100 simulations for different sets of parameters N𝑤 and 0𝑤 .

performed consistently good for all the presented resolutions with STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit presenting the 
peak of performance starting from a quantization resolution of 9 bits.

7.4.2. Results for 30 agents
The performance, in this case, is different than the 10 agents case according to Fig. 2 (right) in terms of the LOT metric. It can be 

seen that STEP-GP presented a better performance in all cases compared to the baseline approaches Sync:UniQuant and Sync:Exact, 
however the difference in performance is not as notorious as in the previous case. Similarly to the 10 agents case, STEP-LGP:UniAd-
DecDit presented the peak of performance but this time it does for the 9 bits case. Between the 5-8 bits interval, STEP-LGP:UniAd-Whit 
and STEP-LGP:UniAd-WhitDit could not outperform STEP-GP, Sync:UniQuant, or Sync:Exact, while the rest of methods using LGP 
regression always outperformed Sync:Exact and were all able to outperform STEP-GP and Sync:UniQuant starting from the 8 bits 
case. For 9 and 10 bits, all LGP-based methods presented better performance than STEP-GP with STEP-LGP:UniAd-Dec and STEP-
LGP:UniAd-DecDit presenting the better LOT values by a significant margin. Between 11 and 14 bits, the best performance was always 
attained by a method involving quantization. However, it is noted that the margin between STEP-GP and the methods using LGP 
regression was significantly reduced compared to the 10 agents case.

7.5. Simulation results with 𝐼 = 10

In this subsection, we discuss the results for 10 and 30 agents when the dimension of the variables is set to be 𝐼 = 10. The 
initialization parameters and constant variables considered are the same as in the previous subsection. The corresponding graphs are 
presented in Fig. 3.

7.5.1. Results for 10 agents
We generated results of the median of 100 simulations for ADMM, STEP-GP and STEP-LGP-based methods using the metric 

presented in Section 7.3.3 through the various quantization resolutions tested. The minimum resolution at which any quantization 
method achieved convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better performance compared to Sync:Exact but it was outperformed by Sync:Uni-
Quant in the cases where such a method had a quantization resolution between 5 and 10 bits. Also, it is observed a stable performance 
of all the methods using LGP regression through all the quantization resolutions tested as shown in Fig. 3 (left). In all the cases, those 
methods consistently beated STEP-GP. The peak of performance was attained by STEP-LGP:UniAd-Whit at 7 bits beating by a small 
margin its own result for the 9 bits case. Through all the results it is either STEP-LGP:UniAd-Whit or STEP-LGP:UniAd-WhitDit the 
method that presented the best performance, with the only exception being the 6 bits case. Starting from 10 bits, the methods 
using whitening presented a significantly better performance compared to all the other methods. Finally, STEP-LGP:UniAd, STEP-
LGP:UniAd-Dec, and STEP-LGP:UniAd-DecDit presented a similar behavior through the different quantization resolutions.

7.5.2. Results for 30 agents
Also, we generated the results for 30 agents following the same procedure as in the previous subsection. In Fig. 3 (right) we can 

see that the performance, in this case, was similar to the 10 agents case in terms of the LOT metric. The most notorious difference was 
that STEP-GP was outperformed by Sync:UniQuant for all the tested quantization resolutions. In all the cases, LGP-based methods 
consistently outperformed STEP-GP. Different from the 10 agents case, the methods STEP-LGP:UniAd-Whit and STEP-LGP:UniAd-
WhitDit did not present the same notorious improvement in performance compared to the rest of the methods, however, they still 
attained the best performance for the 7 bits case.
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7.6. Overall remarks

The behavior of methods using whitening transformation reflects that a more complex algorithm can achieve the best results 
under certain conditions but it lacks the robustness shown (especially at lower quantization bits) by the less complex method STEP-
LGP:UniAd. The LGP-based algorithms were able to further reduce the communication expenditure compared to the base STEP-GP 
algorithm. The best behavior in terms of performance and robustness of any of the proposed quantization-based algorithms is achieved 
for a resolution greater than 8 bits.

The results showed the potential of our proposed methods to achieve a really good accuracy while significantly reducing the 
communication cost in comparison to the baseline methods Sync:Exact, Sync:UniQuant, and STEP-GP. Even the less complex proposed 
method STEP-LGP:UniAd is good enough for reducing significantly the communication cost while reaching an acceptable accuracy 
level with consistent performance. The peak of performance in any of the testing scenarios was achieved by a quantization-based 
method using orthogonal transformation, either Decoupling or whitening.

8. Discussion on convergence behavior

In our recent technical note in [33], we present a convergence analysis for the STEP-GP and LGP algorithms when the querying 
mechanism is performed comparing the trace of the covariance matrix Σ𝐺𝑤 (𝑍𝐺𝑤 ) to a decaying threshold instead of the maximum element 
of the diagonal of Σ𝐺𝑤 (𝑍𝐺𝑤 ) as presented in Section 7.3.4. This querying mechanism can be expressed in the following optimization 
problem for the STEP-GP algorithm:

minimize
W𝐺

⎪W𝐺⎪1

subject to W𝐺𝑤 ∈ {0,1}.
𝑈(
𝑤=1

[
(1− W𝐺𝑤 )trace(Σ𝐺𝑤 (𝑍𝐺𝑤 ))

]
< K𝐺> ,

(18)

where W𝐺𝑤 is the local communication decision variable being 1 if communication is needed and 0 otherwise, K𝐺> =̃(T)𝐺, T ∈ [0, 1], 
and is a positive constant.

Lemma 3. Under the querying mechanism presented in Section 7.3.4, the STEP-GP algorithm converges and does so at a geometric rate.

Proof. The querying mechanism presented in Section 7.3.4 determines if communication is required following

W𝐺𝑤 =
{

0, if max
)diag)Σ𝐺𝑤 (𝑍𝐺𝑤 )

√√ ≤ K𝐺𝑤
1, otherwise, (19)

with local threshold K𝐺𝑤 = K𝐺0𝑤 (T)𝐺−𝐺0 .
Since the trace of Σ𝐺𝑤 (𝑍𝐺𝑤 ) is the sum of its diagonal entries, we can establish the following relationship on the constraints presented 

in (18) and (19)

trace )Σ𝐺𝑤 (𝑍𝐺𝑤 )
√ ≤ 𝐼max

)diag)Σ𝐺𝑤 (𝑍𝐺𝑤 )
√√ ≤ 𝐼K𝐺𝑤 .

Assuming that the assessment to determine W𝐺𝑤 for each agent was already made, we take the sum over all agents:
𝑈(
𝑤=1

[
(1− W𝐺𝑤 )trace

)
Σ𝐺𝑤 (𝑍

𝐺
𝑤 )
√] ≤ 𝐼 𝑈(

𝑤=1

[
(1− W𝐺𝑤 )max

)diag)Σ𝐺𝑤 (𝑍𝐺𝑤 )
√√] ≤ 𝐼 𝑈(

𝑤=1
K𝐺𝑤 .

The bound imposed on |𝑈
𝑤=1

[
(1− W𝐺𝑤 )trace(Σ𝐺𝑤 (𝑍𝐺𝑤 ))

] (the same term used in Section 4 in [33]) follows the same form of a constant 
multiplied by a geometrically decaying term. Since the sum of the maximum variances is bounded by this form of threshold, Theorem 
3 and 4 in [33] also apply to the querying mechanism presented in Section 7.3.4. This communication strategy imposes a tighter 
bound than the one using the trace. □

Section 5 in [33] presents a convergence analysis for the LGP algorithm. Theorems 5 and 6 show the convergence of the LGP 
algorithm using trace for the communication decision when the coordinator can vary the quantization resolution at each iteration 
and there is no bound on the value such resolution can take. For the case when the quantization resolution is bounded, we present 
a discussion in Section 5.4 of [33] where convergence is not concluded but it is shown that the expectation of the ADMM residual 
is bounded by a decaying bound. We are currently working on the convergence analysis when quantization is present and the 
querying method presented in this work is used. Those results will be presented in a future work. However, the empirical evidence 
of the extensive simulations performed suggests that the LGP algorithm converges to an acceptable solution while not dramatically 
increasing the number of iterations required to reach convergence.
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9. Conclusion

In this paper, we developed a hybrid approach that combined the Gaussian Process-based learning approach with an adaptive 
uniform quantization approach to achieve further reduction of the communication cost required in distributed optimization. The 
resulting quantization error did not follow a Gaussian distribution, so we proposed a new regression algorithm. This algorithm, 
inspired by GP, resulted in a Linear Minimum Mean Square-error Estimator named LGP-R, which considered the resulting quantization 
error statistics. Communication was also reduced by refining the uniform quantizer with an orthogonalization process of the quantizer 
input to handle the inherent correlation of the quantizer’s input components, and with dithering to ensure the uncorrelation between 
the quantizer’s introduced noise and the quantizer’s input. Simulations of a distributed sharing problem showed that our hybrid 
approaches significantly decreased total communication cost when compared to baseline methods, being able to find the global 
solution at even low quantization resolutions.
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Appendix A. Proof of Proposition 1

Define 𝑇 = 𝐵 − 𝜓𝐵 ∼  (
0,𝜂2𝐵

)
. The output of the adaptive uniform quantizer is given by the standard uniform quantizer 

ℚu

(
𝐵;𝜓𝐵,

2𝛾𝜂𝐵
2𝛼

)
, which is equivalent to 𝜓𝐵 + ℚu

(
𝑇; 0, 2𝛾𝜂𝐵2𝛼

)
. Using the result presented in [27, Section V-A] on the quantization 

error of a uniform quantizer on a zero-mean Gaussian random variable, we can derive the above equations of #[𝜄ℚ] and #[𝜄ℚ𝜄)ℚ].The correlation between 𝐵 and 𝜄ℚ is

#[𝐵𝜄ℚ] = #[(𝑇+ 𝜓𝐵)𝜄ℚ] = #[𝑇𝜄ℚ] + 𝜓𝐵#[𝜄ℚ] = #[𝑇𝜄ℚ].

Using the result presented in [27, Section V-B] on the correlation between a zero-mean Gaussian random variable and its uniform 
quantization error, we have that

#[𝑇𝜄ℚ] = 2𝜂𝐵
+(
⊳=1

(−1)⊳ exp
)
−2̃2⊳2<2

√
,

which results in the same equation for #[𝐵𝜄ℚ].

Appendix B. Proof of Lemmas 1 and 2

We first need the following result.

Proposition 4. For < > 1√
2̃
,

+(
⊳=1

(−1)⊳⊳2 exp
)
−2̃2⊳2<2

√
< 0.

Proof. Define X(⊳) =⊳2 exp
)
−2̃2⊳2<2

√. Then the series is |+
⊳=1(−1)⊳X(⊳). We have

dX(⊳)
d⊳ = 2⊳ exp

)
−2̃2⊳2<2

√
− 4̃2<2⊳3 exp

)
−2̃2⊳2<2

√

= 2⊳ exp
)
−2̃2⊳2<2

√)
1− 2̃2<2⊳2√ .

For < > 1√
2̃

and ⊳ ≥ 1, we have 1 − 2̃2<2⊳2 < 0, thus dX(⊳)d⊳ < 0, which implies that X(⊳) is strictly decreasing with ⊳, i.e., X(1) >
X(2) > X(3) > X(4) >… . Therefore, the series is |+

⊳=1(−1)⊳X(⊳) = (−X(1) +X(2)) + (−X(3) +X(4)) +⋯ < 0. □

We will now prove Lemmas 1 and 2. Consider the series 𝐿(<) = |+
⊳=1

(−1)⊳
⊳2 exp

)
−2̃2⊳2<2

√ as a function of <. Define 𝐿⊳(<) =
1
⊳2 exp

)
−2̃2⊳2<2

√. Then 𝐿(<) =|+
⊳=1(−1)⊳𝐿⊳(<). For an integer ⊳ ≥ 1, we have that 𝐿⊳(<) > 𝐿⊳+1(<) because
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𝐿⊳+1(<) =
1

(⊳+ 1)2
exp

)
−2̃2(⊳+ 1)2<2

√

< 1
⊳2 exp

)
−2̃2(⊳+ 1)2<2

√

= 1
⊳2 exp

)
−2̃2⊳2<2

√
exp

)
−2̃2(2⊳+ 1)<2

√

< 1
⊳2 exp

)
−2̃2⊳2<2

√

= 𝐿⊳(<),

where the last inequality holds due to exp )−2̃2(2⊳+ 1)<2
√
< 1. Therefore

𝐿(<) = (−𝐿1(<) + 𝐿2(<)) + (−𝐿3(<) + 𝐿4(<)) +⋯ < 0.

Using the same approach, we can show that |+
⊳=1(−1)⊳ exp

)
−2̃2⊳2<2

√
< 0.

To show that 𝐿(<) is increasing with <, we differentiate it with respect to <:
d𝐿(<)
d< = −4̃2<

+(
⊳=1

(−1)⊳ exp
)
−2̃2⊳2<2

√

which is positive because we have just shown that |+
⊳=1(−1)⊳ exp

)
−2̃2⊳2<2

√
< 0. Therefore, 𝐿(<) is increasing with <.

Similarly, for the series in Lemma 2, we have

d
d<

+(
⊳=1

(−1)⊳ exp
)
−2̃2⊳2<2

√
= −4̃2<

+(
⊳=1

(−1)⊳⊳2 exp
)
−2̃2⊳2<2

√
> 0

for all < > 1√
2̃
, due to Proposition 4. Therefore, the series |+

⊳=1(−1)⊳ exp
)
−2̃2⊳2<2

√ is increasing with < for all < > 1√
2̃
.

Appendix C. Proof of Proposition 3

The dequantized value .𝐵 will be .𝐵 =𝐻−1ℚua
)
𝐵𝐻; 0,𝜂̃, 𝛾,𝛼

√
+ 𝜓(𝑇), but can be also expressed as

.𝐵 =𝐻−1 [𝐻(𝐵− 𝜓𝐵) + 𝜄ℚ
]
+ 𝜓𝐵

= 𝐵+𝐻−1𝜄ℚ = 𝐵+ .𝜄ℚ.

Analyzing the auto correlation of .𝜄ℚ we have:

#[ .𝜄ℚ .𝜄)ℚ] = (𝐻)−1#[𝜄ℚ𝜄)ℚ]
)
(𝐻)−1

√)

= (𝐻)−1Λ𝜄ℚ
)
(𝐻)−1

√) ,
where #[𝜄ℚ𝜄)ℚ] is the auto correlation of the quantization error and Λ𝜄ℚ is a diagonal matrix with its diagonal given by the vector 
𝑆(2𝛼%2𝛾)

12 𝐽2, with 𝑆(2𝛼%2𝛾) as defined in Proposition 1.
If 𝐻1 is used then 𝐽 will be 𝐽 = 2𝛾

2𝛼 E𝐼+1 = 1(𝛼, 𝛾)E𝐼+1, where 1(𝛼, 𝛾) = 2𝛾
2𝛼 .

On the other hand, if 𝐻2 is used then 𝐽 = 2𝛾
2𝛼
√
Λ = 1(𝛼, 𝛾)

√
Λ. Therefore we will have that

#[ .𝜄ℚ .𝜄)ℚ] =𝐻
−1Λ𝜄ℚ (𝐻

−1))

= 12(𝛼, 𝛾)𝑆(2𝛼%2𝛾)
12 (𝐻−1Λ̃𝜄ℚ (𝐻

−1))),

with Λ̃𝜄ℚ being E𝐼+1 or Λ depending on the selection of A.
Finally, we have that since 𝐻−1Λ̃𝜄ℚ (𝐻

−1)) = Σ𝐵, then no matter the selection of A the result will be

#[ .𝜄ℚ .𝜄)ℚ] =
12(𝛼, 𝛾)𝑆(2𝛼%2𝛾)

12 Σ𝐵 =Δ.

Appendix D. Proof of Theorem 1

The proposed LMMSE will be given by the linear combination

𝜓(𝑇∗) =Z .D . (D.1)
Then, if (D.1) is a LMMSE then it must follow the orthogonal principle which will be given by # 

[
(𝜓(𝑇∗)− .𝐵∗)( .D ))

]
= 0. From this 

point we can obtain an expression for Z
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#
[
(Z .D − .𝐵∗)( .D ))

]
= 0

Z#
[
(D + 𝜄𝑈 + 𝜄ℚ)(D + 𝜄𝑈 + 𝜄ℚ))

]
=Φ(𝑇∗,𝜆). (D.2)

Since 𝜄𝑈 is independent from the rest, all cross products involving 𝜄𝑈 will be turn to zero by the expectation. Therefore we can 
simplify the expression to

Z
)
Φ(𝜆,𝜆) + #[𝜄ℚ𝜄)ℚ] + 𝜂𝑈E⊳(𝐼+1) + 2#[D 𝜄)ℚ]

√
=Φ(𝑇∗,𝜆). (D.3)

Defining #[𝜄ℚ𝜄)ℚ] = Δ, we have the expression

Z =Φ(𝑇∗,𝜆)
)
Φ(𝜆,𝜆) +Δ+ 𝜂𝑈E⊳(𝐼+1) + 2#[D 𝜄)ℚ]

√−1 . (D.4)
The term #[D 𝜄)ℚ] expresses the correlation between the input of the quantizer and the quantization error. In Proposition 1 a way 
to calculate this correlation is presented when the input of the quantizer is zero mean. Because we subtract the mean of the input 
of the quantizer before performing the quantization, we have #[𝜄)ℚ] = 0, following Proposition 1. Thus, the following holds true, 
#[D 𝜄)ℚ] = #[(D − 𝜓(D ))𝜄)ℚ] + 𝜓(D )#[𝜄

)
ℚ] = #[(D − 𝜓(D ))𝜄)ℚ]. This means that the results of Proposition 1 can be extended to calculate the elements conforming matrix #[D 𝜄)ℚ]. This is done directly for the diagonal terms that come from the same dimension, for example, 

#[D[1]𝜄)ℚ[1]] where D[1] and 𝜄)ℚ[1] refer to the first element of vectors D and 𝜄)ℚ, respectively. In case we want to calculate #[D[𝑤]𝜄)ℚ[J]], 
𝑤 ≠ J, we define D̃[𝑤] = D[𝑤] − 𝜓(D[𝑤]) and do the following:

#
[
D[𝑤]𝜄)ℚ[J]

]
= #

[
D̃[𝑤]𝜄)ℚ[J]

]
= #

[
(D̃[𝑤] − [𝑤J D̃[J] + [𝑤J D̃[J])𝜄)ℚ[J]

]

= #
[
(D̃[𝑤] − [𝑤J D̃[J])𝜄)ℚ[J]

]
+ [𝑤J#

[
D̃[J]𝜄)ℚ[J]

]
,

where [𝑤J D̃[J] is the MMSE of D̃[𝑤] with [𝑤J being the operator to estimate D̃[𝑤] from D̃[J]. Since the error of the MMSE is given by 
𝜄𝑤J = D̃[𝑤] − [𝑤J D̃[J], then 𝜄𝑤J is independent of D̃[J]. Therefore,

#
[
(D̃[𝑤] − [𝑤J D̃[J])𝜄)ℚ[J]

]
= #

[
D̃[𝑤] − [𝑤J D̃[J]

]
#
[
𝜄)ℚ[J]

]
= 0.

Thus,

#
[
D[𝑤]𝜄)ℚ[J]

]
= [𝑤J#

[
D̃[J]𝜄)ℚ[J]

]
.

Consequently, we can calculate any correlation #[D[𝑤]𝜄)ℚ[J]] following the correlation expression presented in Proposition 1.
Finally, the error covariance of the estimator will be given by

Σ(𝑇∗) = #
[
( .𝐵∗ −Z .D )( .𝐵∗ −Z .D )C

]
.

Expanding this expression and operating the expectations we get

Σ(𝑇∗) =Φ(𝜆∗,𝜆∗)−ZCΦ(𝜆,𝜆∗)−Φ(𝜆∗,𝜆)Z −ZCΦ(𝜆,𝜆)Z . (D.5)
Finally, introducing the expression of Z in (D.4) we get

Σ(𝑇∗) =Φ(𝜆∗,𝜆∗)−Φ(𝜆∗,𝜆)
)
Φ(𝜆,𝜆) + 𝜂2𝑈E⊳(𝐼+1) +Δ+ 2#[D 𝜄)ℚ]

√−1Φ(𝜆,𝜆∗).

Appendix E. Proof of Theorem 2

The expression for our estimator will be defined as

𝑗𝐵∗ − 𝜓(𝑇∗) =F
)
.𝐵∗ − 𝜓(𝑇∗)

√
,

where F is the matrix determined by resorting to the orthogonal principle. Using the orthogonal principle for this LMMSE like in the 
LGP case the expression for F will be

F B
[
( .𝐵∗ − 𝜓(𝑇∗))( .𝐵∗ − 𝜓(𝑇∗)))

]
= #

[
( .𝐵∗ − 𝜓(𝑇∗))( .𝐵∗ − 𝜓(𝑇∗)))

]
. (E.1)

So, inserting the definition of 𝜓(𝑇∗) and Σ(𝑇∗) from Theorem 1 into (E.1) will lead to the simplified version

F = Σ(𝑇∗)
)
Σ(𝑇∗) + 𝜂𝑈E𝐼+1 +Δ𝐼+1 + 2#[𝐵∗𝜄)ℚ∗]

√−1

Appendix F. Details on the calculation of variables !" and %" in Section 7.1.1

In [11] the variables N𝑤 and 0𝑤 are updated at each iteration of the ADMM algorithm. In this work, those variables are fixed 
by following the variable’s initialization for the first iteration made in [11]. As such, to calculate each N𝑤 we first create N0𝑤 which 
is a p-dimensional vector with entries randomly generated and uniformly distributed on [-1,1]. Then, the value of N𝑤 to be used is 
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N𝑤 = N0𝑤 + V,𝑤, where V is some small positive number, ,𝑤 is a p-dimensional vector for agent 𝑤 whose entries are randomly generated 
and uniformly distributed on [-1,1].

Next, to calculate each 0𝑤 we first create 00
𝑤 = 𝐻𝐻

) as a symmetric 𝐼 ( 𝐼 matrix, where the entries of 𝐻 ∈ ℝ𝐼(𝐼 are randomly 
generated and uniformly distributed on [-1,1]. Then, we generate 0̃𝑤 =00

𝑤 + VB𝑤, where B𝑤 is a symmetric 𝐼 ( 𝐼 matrix whose entries 
are randomly generated and uniformly distributed on [-1,1]. Subsequently, 0𝑤 is constructed as

0𝑤 =
{

0̃𝑤, if M⊳𝑤𝑈(0̃𝑤) > 𝜄
0̃𝑤 +

)
𝜄 − M⊳𝑤𝑈(0̃𝑤)

√
E𝐼, otherwise,

where M⊳𝑤𝑈(0̃𝑤) denotes the smallest eigenvalue of 0̃𝑤 and 𝜄 > 0 is some positive constant.

Appendix G. Details of MAC metric presented in Section 7.3.1

Assuming that the coordinator communicates with the agents wirelessly following the IEEE 802.11 specification, a MAC layer sim-
ulator was implemented. The 802.11 CSMA/CA simulator presented in [32] was chosen because of its simplicity, which was modified 
to our purposes. The simulator implemented in MATLAB will return the number of total transmissions, successful transmissions, and 
an efficiency value defined by [ = 𝐿>%>>, where 𝐿> is the successful transmissions observed and >> the total amount of transmissions 
performed. The simulation was run o*ine 1000 times to obtain an average efficiency [. Once the average values are obtained for 
different payloads and number of agents, those values will be used with the results given by the distributed optimization simulation 
to calculate the communication time for each round. In particular, at the 𝐺-th iteration, the coordinator will receive a certain amount 
of simultaneous responses which are expressed in the variable C 𝐺simul. The expected transmission time in one iteration round will be 
C 𝐺round = C

𝐺
simul%[

∗, where [∗ is the average efficiency in the MAC simulation for the given scenario. The total transmission time will 
be C𝑇> =

|P
𝐺=1 C

𝐺
round, where P is the number of iterations taken to reach convergence. This metric is not only affected by the total 

number of communications that were performed but also the number of agents communicating at each iteration and the payload size, 
thereby making it a more robust metric to compare the performance of the proposed methods.
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