

1 A Generic Stochastic Hybrid Car-following Model Based on Approximate
2 Bayesian Computation

3 **Author Information**

4 Jiwan Jiang^{1,3}, Yang Zhou², Xin Wang³, Soyoung Ahn^{1*}

5 **Affiliations**

6 **¹Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison,**
7 **WI, USA**

8 **²Zachry Department of Civil and Environmental Engineering, Texas A&M University, College**
9 **Station, TX, USA**

10 **³Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison,**
11 **WI, USA**

12 **Corresponding author**

13 Correspondence to: Soyoung (Sue) Ahn

14 ORCID:0000-0001-8038-4806

15 **Abstract**

16 Car following (CF) models are fundamental to describing traffic dynamics. However, the CF behavior of
17 human drivers is highly stochastic and nonlinear. As a result, identifying the “best” CF model has been
18 challenging and controversial despite decades of research. Introduction of automated vehicles has further
19 complicated this matter as their CF controllers remain proprietary, though their behavior appears different
20 than human drivers. This paper develops a stochastic learning approach to integrate multiple CF models,
21 rather than relying on a single model. The framework is based on approximate Bayesian computation that
22 probabilistically concatenates a pool of CF models based on their relative likelihood of describing
23 observed behavior. The approach, while data-driven, retains physical tractability and interpretability.
24 Evaluation results using two datasets show that the proposed approach can better reproduce vehicle
25 trajectories for both human-driven and automated vehicles than any single CF model considered.

26

27 **Keywords:** Car following, Stochastic calibration, Approximation Bayesian computation, Hybrid model,
28 Model selection

29 **1. Introduction**

30 Car-following (CF) behavior describes how one vehicle follows its nearest preceding vehicle. This
31 fundamental driving behavior is deeply linked to system-level behavior such as traffic dynamics (i.e.,
32 spatial-temporal evolution of traffic) and has important implications for traffic safety, energy
33 consumption, and emissions. A CF model for human driven vehicles (HDV) was first introduced by
34 Pipe(Pipes, 1953) in the 1950s. Today a wealth of CF models exists in the literature, including stimulus-
35 response type models(Gazis et al., 1959; Herman et al., 1959), Newell's simplified CF model(Newell,
36 1961) and its extensions(Chen et al., 2014; Laval & Leclercq, 2010), statistical physics-based models
37 such as optimal velocity model (OVM)(Bando et al., 1995) and intelligent driver's model (IDM)(Kesting
38 et al., 2010), and psycho physics based models such as Wiedemann model(Wiedemann, 1974). Notably,
39 some of these models have been incorporated in various commercial microsimulations. For a detailed
40 review of CF models, see Saifuzzaman & Zheng(2014).

41 A plethora of CF models gave rise to persistent debates about which model best describes the real-world
42 CF behavior. These debates continue today despite the nearly 70 years of history. These debates stem
43 from the complexity of CF behavior, which is intrinsically nonlinear, heterogeneous, and stochastic. It has
44 been challenging to replicate observed data with a single CF model, given that most existing CF models
45 have deterministic formulations. Some exceptions exist to address the complexity in CF behavior through
46 (1) probabilistic distributions of CF model parameters(Higgs & Abbas, 2015; Kerner, 2004; Treiber et al.,
47 2010) and (2) multi-regime CF models according to traffic conditions(Kerner, 2004; Kidando et al., 2020;
48 Treiber et al., 2010). The former approach, however, is typically parametric, requiring an assumption of a
49 theoretical distribution. This can lead to bias when there is a discrepancy between the assumed and true
50 distributions. For the latter approach, different CF models are considered for different traffic conditions.
51 These frameworks, however, are deterministic and consider a relatively narrow selection of CF models
52 (e.g., 3-4 models). Some data-driven methods such as clustering(Higgs & Abbas, 2014) and
53 regression(Papathanasopoulou & Antoniou, 2015) are considered to characterize stochasticity; however,
54 they provide little physical interpretation.

55 The emergence of automated vehicles (AVs) brings another level of complexity to traffic flow systems. In
56 academic literature, AV CF control algorithms have been predominantly developed based on the
57 principles of control theory (e.g., linear feedback(Makridis et al., 2021; Zhou et al., 2019), model
58 predictive control (MPC)(Shi & Li, 2021 , Zhou et al., 2020), or artificial intelligence(Shi et al., 2021),
59 distinct from the mathematical and physical approaches of the CF models of HDVs. Thus, the AV CF
60 behavior could be different from the HDV behavior. Further, similar to HDVs, AV CF can be affected by
61 actuation delay, uncertain vehicle dynamics, road conditions, and traffic conditions, leading to highly
62 stochastic behavior. Finally, AVs manufactured by different car companies are available on the market
63 today. Their control algorithms are likely different, yet unknown to the public, which hinders our ability
64 to characterize the CF behavior of AVs.

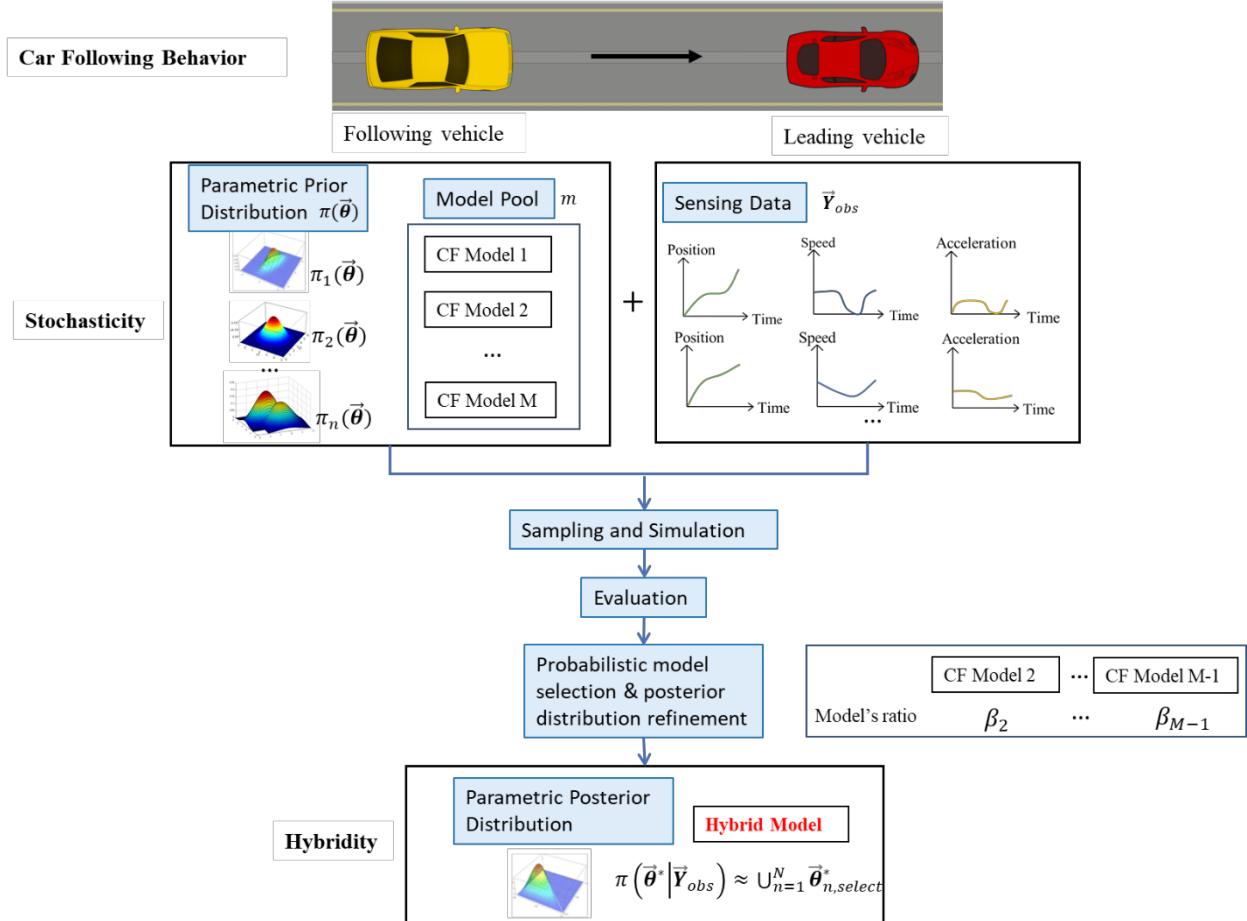
65 To better understand the CF behavior of AVs, several field experiments involving vehicles with adaptive
66 cruise control (ACC) have been conducted(Li et al., 2022; Makridis et al., 2021; Shi & Li, 2021). The
67 data from these experiments have been used by several studies to model and replicate the AV CF
68 behavior, with two different approaches: (1) model-based and (2) data-driven. In the model-based
69 approach, a CF model is assumed, and its parameters (and their distributions) are learned from
70 observations. [This approach readily offers physical interpretations of the behavior but suffers from potential model mismatch where the true model is different from the assumed model caused by unmodelled components](#). Further, efforts to capture stochasticity in CF behavior through estimating
71 parameter distributions typically involve an assumption of distribution(Rahman et al., 2015). Thus, a
72 mismatch in CF model and/or the parameter distributions can compromise the learning results and the
73 descriptive power of the assumed CF model. In addition, learning the stochastic behavior with non-
74 analytical CF model (e.g., MPC) is computationally demanding, and thus an efficient tool is necessary. In
75

77 contrast, data-driven methods, such as neural network (NN) based methods(Hornik et al., 1989, 1990), are
78 capable of describing any type of nonlinear functions given sufficient neurons and layers. However, the
79 black-box nature of these methods hinders direct physical interpretation. Further, the learned NN is
80 limited by the training dataset, and thus, it may not effectively handle corner cases not represented in the
81 training data.

82 The review above reveals the persistent challenges to address highly nonlinear and stochastic nature of
83 CF behavior that has been further complicated by the arrival of AVs. **The CF uncertainties could stem**
84 **from multiple sources such as intra-driver and inter-driver heterogeneity, uncertain vehicle dynamics, and**
85 **uncertain road conditions.** To fill this major gap, this paper presents a comprehensive framework that
86 systematically considers a pool of CF models and various uncertainties and stochasticity. Specifically, the
87 proposed framework generates a hybrid CF model that represents the probabilistic concatenation of a pool
88 of CF models based on their abilities to reproduce the real behavior measured from sensors. The general
89 framework is illustrated in Fig. 1. The core method of the framework is approximate Bayesian
90 computation (ABC), a computational method to approximate the posterior model parameter distributions
91 through simulations without assuming a specific likelihood function (Toni et al., 2009). ABC has been
92 originally used in population genetics(Beaumont et al., 2002; Tavaré et al., 1997), but has also been
93 widely applied in biology(Liepe et al., 2014) and ecology(DiNapoli et al., 2021). Our recent study, Zhou
94 et al. (2022), developed a methodology based on ABC to calibrate a single CF model or controller in a
95 stochastic fashion. This approach serves as a foundation for the present work that probabilistically
96 compares across different CF models and generates a stochastic hybrid model.

97 In our framework, particles (i.e., sets of model parameter values) for each CF model are randomly
98 generated in large quantity from an assumed prior joint distribution in an independent fashion. When only
99 a single CF model is considered, all accepted particles from the model can be used to construct the
100 posterior distribution of the model parameters. In contrast, when multiple CF models are considered,
101 particles are evaluated based on the universal distance function (across CF models) that measures the
102 discrepancy between simulated vehicle trajectories based on the particles and real trajectories. A universal
103 threshold for the distance is then applied to accept only the particles that generate trajectories within the
104 acceptable distance. Accordingly, the relative share of accepted particles represents the relative likelihood
105 of the model describing the observed behavior. Then the accepted particles are used to approximate the
106 posterior distribution of the hybrid CF model in a Bayesian fashion by concatenating the models
107 according to the relative likelihoods. Thus, the learned hybrid CF model enhances the capability of
108 describing nonlinear CF behavior while preserving the physical meaning of each CF model.

109 Note that the proposed framework is stochastic and hybrid, designed to provide a richer understanding of
110 CF behavior while improving learning accuracy. It is *stochastic* in the senses that (1) it estimates the joint
111 distributions of CF model parameters; and (2) it considers the relative likelihood of each CF model fitting
112 the observed behavior. It is *hybrid* in the senses that (1) it concatenates various CF models, rather than
113 relying on a single best-fitting model, as previously done, according to the relative likelihood; and (2) it
114 deploys a data-driven method to estimate the joint distributions of physics-based CF models, thereby
115 retaining physical interpretability while improving learning accuracy. **The hybrid model is particularly**
116 **useful in determining which control algorithm is most likely adopted for an AV and approximating its**
117 **behavior in the absence of the controller knowledge.** Our method is verified through a series of
118 evaluations using synthetic and real data. The hybrid model is shown to significantly outperform any
119 single model or deterministic models in reproducing vehicle trajectories.



120

121 **Fig. 1 Scheme of the CF behavior learning framework.**122

2. Methodology

123

2.1. General stochastic CF learning problem

124 A general form of CF learning problem can be described as below:

125

$$\min_{\theta} g(\mathbf{y}_f - \hat{\mathbf{y}}_f) \quad (1a)$$

$$\text{s.t.} \quad \hat{\mathbf{y}}_f = f(\mathbf{y}_l; \theta), \quad (1b)$$

126 where \mathbf{y}_f is a set of observed ground-truth state portfolios of the following vehicles, $\mathbf{y}_f =$
 127 $\{\vec{\mathbf{Y}}_{f,1,obs}, \vec{\mathbf{Y}}_{f,2,obs}, \dots, \vec{\mathbf{Y}}_{f,I,obs}\}$; we define the state portfolio for vehicle $i = 1, 2, \dots, I$, denoted by $\vec{\mathbf{Y}}_{f,i,obs} =$
 128 $[\vec{\mathbf{p}}_{f,i,obs}, \vec{\mathbf{v}}_{f,i,obs}, \vec{\mathbf{a}}_{f,i,obs}]^T$, to represent a vector of observed position, speed, and acceleration profiles
 129 over time. Similarly, we denote the set of simulated state portfolios for the following vehicles by $\hat{\mathbf{y}}_f =$
 130 $\{\vec{\mathbf{Y}}_{f,i,sim}\}_{i=1,2,\dots,I}$. Here, we extend the operation “ $-$ ” for the state portfolios set to define $g(\cdot)$ as a
 131 predefined error (distance) function, measuring the deviation between the observed and learned state
 132 portfolios. Here Eq. (1a) is the objective function to measure the goodness of fit. In particular, the CF
 133 model, denoted by $f(\mathbf{y}_l; \theta)$, is parameterized on vector θ , given the leading vehicle’s state portfolios \mathbf{y}_l

134 $= \{\vec{Y}_{l,i,obs}\}_{i=1,2,\dots,l}$. According to *Eq. (1a)* and *Eq. (1b)*, the error function, CF model, and observed state
 135 portfolios are three critical components for model learning.

136 For stochastic extension, we introduce uncertainty to parameter $\vec{\theta}$. In particular, we revise the CF model
 137 into $f(\mathbf{y}_l; \pi(\vec{\theta}))$, where $\pi(\vec{\theta})$ indicates a sampled $\vec{\theta}$ from a given random distribution π . Therefore,
 138 instead of finding the best $\vec{\theta}$ value in deterministic CF models, the decision variable for stochastic CF
 139 model learning is the whole distribution $\pi(\vec{\theta})$. In addition, to explicitly reflect the variation of CF model
 140 forms, e.g., IDM or MPC, we denote M to be the index set of all CF models, and $f(\mathbf{y}_l; \pi(\vec{\theta}), m)$ to be one
 141 specific CF model $m \in M$. In our context, we further consider a hybrid stochastic CF model learning
 142 problem. In particular, stochasticity comes from not only the parameter $\vec{\theta}$ but also the form of the CF
 143 model. We denote such a hybrid stochastic CF model by $f(\mathbf{y}_l; \pi(\vec{\theta}, m))$ to show the model and
 144 parameters can be random at the same time.

145 Unlike the previous studies that rely on a single model, the hybrid stochastic CF model makes use of
 146 multiple CF models, providing rich model function representability. Further, the ABC-based model
 147 selection framework offers flexibility and interpretability.

148 *2.2. Approximate Bayesian computation mechanism*

149 We adopt the ABC-based learning of CF model parameters presented in our previous paper (Zhou et al.,
 150 2022) as summarized below. The main focus of Bayesian inference is to obtain the posterior distribution
 151 when given observations and the prior distribution of parameters, written as:

$$152 \quad \pi(\vec{\theta} | \vec{Y}_{obs}) = \frac{l(\vec{Y}_{obs} | \vec{\theta}) \pi(\vec{\theta})}{\vec{Y}_{obs}}, \quad (2)$$

153
 154 where $\pi(\vec{\theta})$ represents the prior distribution of parameters, $l(\vec{Y}_{obs} | \vec{\theta})$ represents the likelihood of $\vec{\theta}$ given
 155 the observed state portfolio data \vec{Y}_{obs} , and $\pi(\vec{\theta} | \vec{Y}_{obs})$ is the posterior distribution.

156 Although the prior distribution of CF model parameters can be given or assumed, *Eq. (2)* often presents a
 157 challenge as the likelihood function $l(\vec{Y}_{obs} | \vec{\theta})$ is often not accessible. In such cases, it becomes
 158 imperative to explore an alternative technique to circumvent the requirement of the likelihood function
 159 and empirically approximate the posterior distribution using the available prior distribution and observed
 160 data. To achieve this, ABC, relying on large-scale simulation, is applied here (Toni et al., 2009). Rather
 161 than deriving the likelihood based on specific assumptions (Hinsbergen et al., 2009; Abodo et al., 2019),
 162 ABC approximates it through simulations, without necessitating a predefined function form of prior
 163 distribution or likelihood. Such likelihood-function-free structure renders ABC a powerful tool to learn
 164 complicated even non-analytical CF models such as model predictive control.

165 A simple but important ABC approach is the ABC rejection sampling (ABC-RS) (Beaumont et al., 2002).
 166 It repeats the following simulation process: (1) randomly sample a parameter vector $\vec{\theta}^*$, called a *particle*,
 167 from a given prior distribution $\pi(\vec{\theta})$; (2) plug $\vec{\theta}^*$ into the CF model $f(\mathbf{y}_l; \vec{\theta}^*)$ to simulate state portfolios
 168 $\hat{\mathbf{y}}_f^*$; (3) compare the simulated data against the real observation using a pre-defined distance function
 169 $g(\mathbf{y}_f - \hat{\mathbf{y}}_f^*)$ and accept the particle $\vec{\theta}^*$ if the distance is smaller than a certain threshold. Such distance is
 170 called the *score of the particle*. Lowering the threshold value typically necessitates an increase in the
 171 number of simulations and a decrease in the acceptance rate (Zhou et al., 2022). A large number of
 172 simulations are typically needed (e.g., 1 million times) to obtain a sufficient number of accepted particles.
 173 Finally, the posterior joint distribution is estimated using the N accepted particles, written as:

$$\pi(\vec{\theta}^* | \vec{Y}_{obs}) \approx \cup_{n=1}^N \vec{\theta}_{n,select}^* \quad (3)$$

174

175 where $\vec{\theta}_{n,select}^*$, $n = 1, 2, \dots, N$ is an accepted particle. Without loss of generality, we assume the particles
 176 selected are sorted in ascending order based on their score, and the index n indicates the order. The
 177 central idea of ABC is that the particles that reproduce state portfolios close to the real observation should
 178 also have good proximity to the learned posterior distribution.

179 Regarding the distance function g in Eq. (1a), multiple measures are applied to assess the learning
 180 accuracy, such as the sum of squared errors(Toni et al., 2009) and Euclidean distance(DiNapoli et al.,
 181 2021). Here, we design our own distance function. We first define the deviations (errors) of vehicle
 182 position, $(e_{p,\vec{\theta}^*})$, velocity $(e_{v,\vec{\theta}^*})$, and acceleration $(e_{a,\vec{\theta}^*})$:

183

$$e_{p,\vec{\theta}^*} = \frac{1}{I} \sum_{i=1}^I \|\vec{p}_{f,i,sim} - \vec{p}_{f,i,obs}\|, \quad (4a)$$

$$e_{v,\vec{\theta}^*} = \frac{1}{I} \sum_{i=1}^I \|\vec{v}_{f,i,sim} - \vec{v}_{f,i,obs}\|, \quad (4b)$$

$$e_{a,\vec{\theta}^*} = \frac{1}{I} \sum_{i=1}^I \|\vec{a}_{f,i,sim} - \vec{a}_{f,i,obs}\|, \quad (4c)$$

184

185 where I is the total number all CF pairs chosen for learning. Then the distance function or the score of
 186 particle $\vec{\theta}^*$, denoted by $g_{\vec{\theta}^*}$, can be defined as the weighted sum of the error:

187

$$g_{\vec{\theta}^*} = \alpha_1 e_{p,\vec{\theta}^*} + \alpha_2 e_{v,\vec{\theta}^*} + \alpha_3 e_{a,\vec{\theta}^*}. \quad (5)$$

188

189 The weights assigned to each error term, denoted as α_1 , α_2 , and α_3 , range from 0 to 1, with the constraint
 190 that $\alpha_1 + \alpha_2 + \alpha_3 = 1$. Given that position data typically exhibit greater reliability within state portfolios
 191 compared to speed and acceleration data, we establish a representative example and default values for
 192 these weights. Specifically, we set $\alpha_1 = 0.5$, $\alpha_2 = 0.3$, and $\alpha_3 = 0.2$ after tuning, reflecting the relative
 193 importance attributed to each error term in the model.

194 In practice, when I is a large number and the simulation of $f(\vec{y}_l; \vec{\theta})$ is time-consuming (e.g., MPC), the
 195 evaluation of $g_{\vec{\theta}^*}$ can be slow. To speed up, we can estimate $e_{p,\vec{\theta}^*}$, $e_{v,\vec{\theta}^*}$, $e_{a,\vec{\theta}^*}$ and $g_{\vec{\theta}^*}$ by randomly
 196 sampling one CF pair i^* , e.g., $e_{p,\vec{\theta}^*}^* = \|\vec{p}_{f,i^*,sim} - \vec{p}_{f,i^*,obs}\|$, denoted by $g_{\vec{\theta}^*}^*$. This down sampling
 197 process can be considered as the simulation uncertainty. Note that since $g_{\vec{\theta}^*}^*$ is randomly evaluated, pair
 198 selection i^* can potentially dominate the impact of particle $\vec{\theta}^*$. To avoid such an over-representing issue,
 199 we select particles based on their corresponding CF pairs, i.e., $\pi(\vec{\theta}^* | \vec{Y}_{obs}) \approx \cup_{i=1}^I \cup_{n_i=1}^{N_i} \vec{\theta}_{n_i,select}^*$, where
 200 N_i is the number of particles evaluated by CF pair i . Similarly, without loss of generality, we assume n_i to
 201 be the order of sorted particles evaluated from each CF pair i , respectively.

202 Therefore, the learning result of the stochastic CF model using the ABC method is a distribution
 203 estimated by the optimal particle set $\Theta^{opt} = \cup_{i=1}^I \cup_{n_i=1}^{N_i} \vec{\theta}_{n_i,select}^*$, i.e., a combination set of all selected
 204 particles. To reproduce the state portfolios using the learned stochastic CF model, one particle is
 205 randomly selected from Θ^{opt} to capture the uncertain nature of driving behavior.

206 2.3. Hybrid CF model

207 The above ABC framework can be adopted for a specific CF model form. Note that the learned result
 208 takes the form of a set of selected particles. Thus, it can be easily extended to incorporate multiple CF
 209 models for learning to enhance its representability. A hybrid model retains a subset of particles across

210 models, which can offer a richer understanding of CF behaviors of HDVs and AVs, and more refined
211 micro-simulation. The detailed steps to obtain hybrid model are described below and shown in Fig. 2.

212 **Step 1: Initialization**

213 Define a set of candidate CF models, indexed by $m \in M$, where both CF controllers for AVs and CF
214 models for traditional HDVs are included. For each CF model/controller m , we denote a sampled particle
215 by $\vec{\theta}_m^*$ under the given prior distribution $\pi_m(\cdot)$. The prior distribution set for overall models is $\Pi =$
216 $\{\pi_1(\cdot), \pi_2(\cdot), \dots, \pi_M(\cdot)\}$.

217 **Step 2: Learning of each model through ABC**

218 We process ABC-RS independently for each model m . A large number of (e.g., >1 million) particles are
219 independently sampled for each model. When all learning processes are completed, the optimal selected
220 particle set for each model is obtained as $\Theta_m(N_m) = \bigcup_{i=1}^I \bigcup_{n_i=1}^{N_m} \vec{\theta}_{m,n_i,select}^*$.

221 **Step 3: Model selection**

222 In the literature, model selection is typically performed by the likelihood ratio test combining with Bayesian
223 methods, where competing models are ranked by the ratio of their posterior probabilities(Vyshemirsky &
224 Girolami, 2008). However, since marginal likelihoods cannot be evaluated analytically for CF models,
225 deriving exact posterior distributions is also impossible. Instead, we establish a probabilistic model
226 selection approach based on the distance function in *Eq. (5)*.

227 Firstly, all particles from all models are merged and further selected with their corresponding particle
228 scores:

229

$$\Theta_{merge} = \bigcup_{m=1}^M \Theta_m(N), \quad (6)$$

230 where Θ_{merge} represents the merged particle set. Then we sort the score of particles in Θ_{merge} and select
231 the best N^A particles as the learned result, denoted by Θ_{hybrid} . Note that we need to set $N \gg N^A$ to
232 guarantee the over-representing issue is not prominent. Since Θ_{hybrid} may contain the particles from any
233 CF models, we can calculate the percentage of particles selected from certain model to see its impact,
234 denoted by:

235

$$\beta_m = \frac{1}{N^A} |\Theta_m \cap \Theta_{hybrid}|. \quad (7)$$

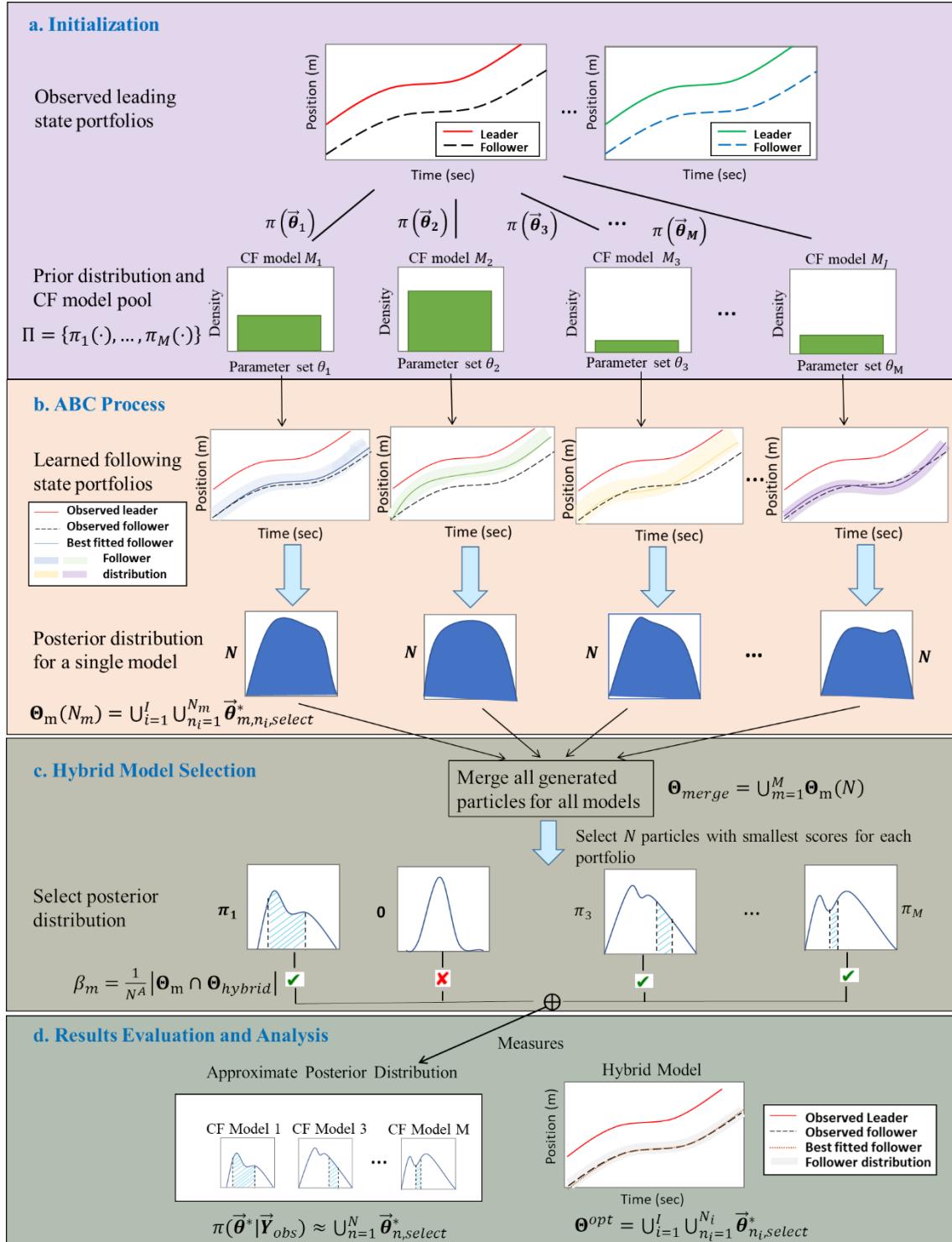
236

237 It is intuitive that β_m is the estimated probability of each model m being selected in the hybrid model
238 based on the estimated posterior distributions.

239 *2.4. Stochastic and deterministic metrics*

240 Given the learned hybrid particles Θ_{hybrid} , we evaluate the performance of the learned hybrid stochastic
241 CF model in reproducing CF behaviors. Specifically, we aim to evaluate the distribution-wise goodness-
242 of-fit, in addition to the deterministic assessment based on the particle score.

243



244

245 **Fig. 2 General framework of ABC with model selection on CF learning.** Inset shows the four main
 246 procedures: **a** Initialization work including defining CF model candidates and corresponding prior
 247 distribution. **b** Apply ABC – RS (Beaumont et al., 2002) process for each CF model independently. **c**
 248 Conduct a probabilistic hybrid model selection based on predefined scores and acquire estimated
 249 posterior distribution. **d** Evaluate the goodness of fit of learned parameter posterior distributions via
 250 multiple measures.

251 To measure the trajectory-level goodness-of-fit in a stochastic fashion, we introduce the Wasserstein
 252 distance (WS). The WS distance is widely used to measure the distance of two probabilistic measures,
 253 achieved through the solution of a linear programming problem pertaining to optimal transport. There are
 254 a few benefits of using WS distance over other distance measures like the Euclidean distance. For
 255 example, it can handle distributions that have heavy tails and is more resistant to outliers. Here, we use
 256 WS distance as a way of measuring the similarity between the observed posterior distributions and the
 257 learned posterior distributions, which can be formulated as:

$$W(\mathbf{y}_f, \mathbf{y}_l, \Theta_{hybrid}) = \inf_{\{\gamma_{i^*, \vec{\theta}^*}\}} \sum_{i^* \in \{1, 2, \dots, I\}, \vec{\theta}^* \in \Theta_{hybrid}} \gamma_{i^*, \vec{\theta}^*} \begin{bmatrix} \alpha_1 \|\vec{p}_{f, i^*, lrn}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{p}_{f, i^*, obs}\| + \\ \alpha_2 \|\vec{v}_{f, i^*, lrn}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{v}_{f, i^*, obs}\| + \\ \alpha_3 \|\vec{a}_{f, i^*, lrn}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{a}_{f, i^*, obs}\| \end{bmatrix} \quad (8)$$

258 s.t.

$$\sum_{\vec{\theta}^* \in \Theta_{hybrid}} \gamma_{i^*, \vec{\theta}^*} = \frac{1}{I}, \forall i^*, \quad (8a)$$

$$\sum_{i^*=1}^I \gamma_{i^*, \vec{\theta}^*} = \frac{1}{|\Theta_{hybrid}|}, \forall \vec{\theta}^*. \quad (8b)$$

259 where $\gamma_{i^*, \vec{\theta}^*} \in [0, 1]$ is a joint probability to be determined for each i^* and $\vec{\theta}^*$, whose marginals are
 260 constrained by Eq. (8a) (state portfolio constraint) and Eq. (8b) (particle constraint). We explicitly write
 261 out the state portfolio component simulated by particle $\vec{\theta}^*$ given a leading vehicle i^* , e.g., vehicle position
 262 as $\vec{p}_{f, i^*, sim}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs})$.

263 To be more reliable to extreme values, we further refine the WS distance by partially matching the two
 264 distribution and define β – Wasserstein (WS) distance as follows:

$$W_\beta(\mathbf{y}_f, \mathbf{y}_l, \Theta_{hybrid}) = \inf_{\{\gamma_{i^*, \vec{\theta}^*}\}} \sum_{i^* \in \{1, 2, \dots, I\}, \vec{\theta}^* \in \Theta_{hybrid}} \gamma_{i^*, \vec{\theta}^*} \begin{bmatrix} \alpha_1 \|\vec{p}_{f, i^*, sim}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{p}_{f, i^*, obs}\| + \\ \alpha_2 \|\vec{v}_{f, i^*, sim}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{v}_{f, i^*, obs}\| + \\ \alpha_3 \|\vec{a}_{f, i^*, sim}(\vec{\theta}^*, \vec{Y}_{l, i^*, obs}) - \vec{a}_{f, i^*, obs}\| \end{bmatrix} \quad (9)$$

265 where $\gamma_{i^*, \vec{\theta}^*} \in [0, 1]$ for each i^* and $\vec{\theta}^*$ is a coupling with the following two marginal distribution
 266 constraints:

$$\sum_{\vec{\theta}^* \in \Theta_{hybrid}} \gamma_{i^*, \vec{\theta}^*} = \frac{1}{I}, \forall i^*, \quad (9a)$$

$$\sum_{i^*=1}^I \gamma_{i^*, \vec{\theta}^*} \geq \beta \cdot \frac{1}{|\Theta_{hybrid}|}, \forall \vec{\theta}^*. \quad (9b)$$

267 *Eq. (9a)* and *Inequality (9b)* are state portfolio constraint and particle constraint, respectively, where $\beta \in$
 268 $(0, 1)$ is the percentage of samples selected from each distribution for matching. If β is 1, it is the original
 269 WS distance, where all samples of both distributions are considered to calculate the distance. The lower
 270 value of β reflects a higher degree of screening out long tails and outliers.

271 Further, we define the minimum distance by dropping the particle constraint (i.e., *Inequality (9b)*), i.e.,
 272 $\beta = 0$. The minimum distance aims to be more inclusive and measure the goodness-of-fit by selecting the
 273 smallest score for each state portfolio, permitting the possibility of a single particle being chosen multiple
 274 times.

275 **3. Composition of Hybrid Model**

276 Since considering all CF models and control algorithms is not feasible or insightful, eight models have
277 been carefully selected, including four well-known HDV CF models and four state-of-the-art AV
278 controllers. For HDVs, contemporary statistical physics-based models, OVM (Bando et al., 1995) and
279 IDM(Kesting et al., 2010), are selected. Additionally, two CF models that extend the OVM have also
280 been included: the Generalized Force Model (GFM) (Helbing & Tilch, 1998) and the Full Velocity
281 Difference Model (FVDM)(Jiang et al., 2001). Notably, GFM addresses the issue of unrealistic high
282 acceleration present in OVM, while FVDM considers both positive and negative velocity differences to
283 describe CF behaviors more comprehensively, especially in cases when the speed of leading vehicle is
284 faster than that of following vehicle. These models are known for theoretical soundness, good agreement
285 with real data, and ability to reproduce key traffic features(Saifuzzaman et al., 2015). Detailed notations
286 and formulas for the selected HDV CF models can be found in Tables 1-3 in Appendix 1. With regard to
287 AVs, CF controllers can mainly differ in three aspects: (1) spacing policy (e.g., constant time gap
288 (CTG)(Swaroop & Hedrick, 1996), constant spacing (CS)(Swaroop & Hedrick, 1996)); (2) controller
289 type (e.g., linear(Zhou et al., 2020), MPC(Zhou et al., 2019)); and (3) approximation of vehicle dynamics
290 (e.g., second-order(Zhou et al., 2017) or third-order dynamics(Zhou et al., 2020a)). After thorough
291 consideration, lower-order linear feedback controller with constant time gap policy (LLCTG)(Swaroop et
292 al., 1994), lower-order linear feedback controller with constant spacing policy (LLCS)(Swaroop et al.,
293 1994), higher-order linear (HL)feedback controller(Zhou et al., 2020), and model predictive controller
294 (MPC)(Zhou et al., 2019) have been selected. More information can be found in Appendix 1.

295 Notably our ABC-based framework does not require a specific distribution for a CF model parameter, as
296 the posterior distribution is approximated in a numerical fashion. Thus, we assume a simple, uniform
297 prior distribution within a reasonable range for each parameter reported in the literature(Bando et al.,
298 1995; Helbing & Tilch, 1998; Jiang et al., 2001; Kesting et al., 2010; Swaroop et al., 1994; Zhou et al.,
299 2019, 2020). The lower bounds and upper bounds of learning parameter sets for all models are included in
300 Table 1.

301

Table 1 Parameters and corresponding prior distribution bounds for each model

Parameter	Lower bound	Upper bound
OVM		
Sensitive parameter, κ (sec^{-1})	0.5	2
Speed factor, v_1 (m/s)	5	8
Speed factor, v_2 (m/s)	20	25
Form factor, $c_1(m^{-1})$	0.05	0.2
Form factor, $c_2(m^{-1})$	1.5	1.7
GFM		
Proportionality factor, K	0	2
Sensitivity factor, λ	0	2
Speed factor, v_1 (m/s)	0	10
Speed factor, v_2 (m/s)	0	30
Form factor, $c_1(m^{-1})$	0	0.2
Form factor, $c_2(m^{-1})$	1	2
FVDM		
Relaxation time, τ (s^{-1})	600	2000
Sensitivity parameter, λ (s)	0	2
Speed $V_1(m/s)$	0	40
Speed $V_2(m/s)$	0	40
Interaction length, l_{int} (m)	0	40
Unitless parameter, β	0	40
IDM		
Desired speed, v_{max} (m/s)	20	40
Desired time gap, T (s)	0.8	2.5
Minimum gap (jam distance), s_0 (m)	0.5	3
Maximum acceleration, a (m/s^2)	0.5	2
Desired deceleration, b (m/s^2)	1	4
Free acceleration exponent, δ	2	5
LLCTG		
Desired time gap, $\tau^*(s)$	0.8	1.2
Spacing deviation feedback gain, k_s	0.3	2.3
Speed difference feedback gain, k_v	0.3	2.3
Standstill distance, $l(m)$	1	11
LLCS		
Desired spacing, $s_0(m)$	5	25
Spacing deviation feedback gain, k_s	0.3	2.3
Speed difference feedback gain, k_v	0.3	2.3
HL		
Desired time gap, $\tau^*(s)$	0.8	1.2
Actuation lag, TT (s)	0.1	0.5
Spacing deviation feedback gain, k_s	0.1	2.3
Speed difference feedback gain, k_v	0.1	2.3
Acceleration feedback gain, k_a	-3	0
Standstill distance, $l(m)$	3	8
MPC		
Desired time gap, $\tau^*(s)$	0.6	1.4
Comfort and fuel consumption, R	0.3	1.7
Control efficiency coefficient, α	0.3	1.7
Standstill distance, $l(m)$	3	7
Deceleration limit, a_{min} (m/s^2)	-5	-3
Acceleration limit, a_{max} (m/s^2)	3	5

303 **4. Experiments and Learning Results**

304 *4.1. Data sources*

305 To train the proposed stochastic hybrid model, two datasets have been selected to train the model for
306 HDVs and AVs. Specifically, the widely used NGSIM dataset has been selected to train the model for
307 HDVs, while the Massachusetts (MA) Experiment dataset (Li et al., 2022) has been selected to train for
308 AVs. Note that the MA experimental dataset has been further categorized into two datasets: CAR
309 MODEL I and CAR MODEL II, representing two different AV controllers. The actual car models are
310 omitted here to avoid potential conflicts of interest. In each dataset, the movements of leading-following
311 vehicle pairs are recorded by sensors that measure the vehicle position, speed, and acceleration.

312 In particular, we focus on trajectory pairs between 4:00 – 4:15 PM on I-80 for NGSIM. After simple data
313 processing, 150 CF-pairs are randomly selected as our input, each with a 35-second duration. The MA
314 dataset consists of 96 and 64 trajectories for CAR MODEL I and CAR MODEL II, respectively. The
315 duration of each trajectory pair is 54.1 seconds for CAR MODEL I and 57.6 seconds for CAR MODEL
316 II. The original field data may also include longitudinal speed and acceleration data. However, due to the
317 limitation of the experiments, only the position data are reliable. Therefore, a finite difference method is
318 applied to numerically calculate the speed and acceleration.

319 *4.2. Learning results for HDVs*

320 First, we apply our ABC-based framework to learn HDV CF behaviors using the NGSIM dataset. To
321 mitigate the potential bias inherent in single train-test splits, we employ cross-validation. Specifically, the
322 dataset is evenly divided into three parts. We train the model based on two of these parts and evaluate its
323 performance on the remaining part, thereby establishing a training-to-testing ratio of the 2:1. This process
324 is iterated three times, and the results are aggregated by calculating the average of chosen metrics. During
325 the training, 1 million particles (i.e., parameter sets) were sampled from the assumed prior distributions
326 for each model and accepted/rejected based on the predefined distance function.

327 The training result for HDVs is shown in Fig. 3a. It can be observed that the HDV CF models (GFM,
328 FVDM, OVM and IDM) overshadow the AV controllers (MPC and LLCTG) in the hybrid model, making
329 up more than 97% of accepted particles. Among them, GFM has the highest share of approximately 65%.
330 GFM, FVDM, and OVM, which belong to the same model family, all take nonnegligible shares,
331 indicating that this model family can effectively describe the HDV CF behavior. In contrast, HL and
332 LLCS are completely dropped in the hybrid model, suggesting that the CF behavior of AVs is different
333 from the behavior of human drivers.

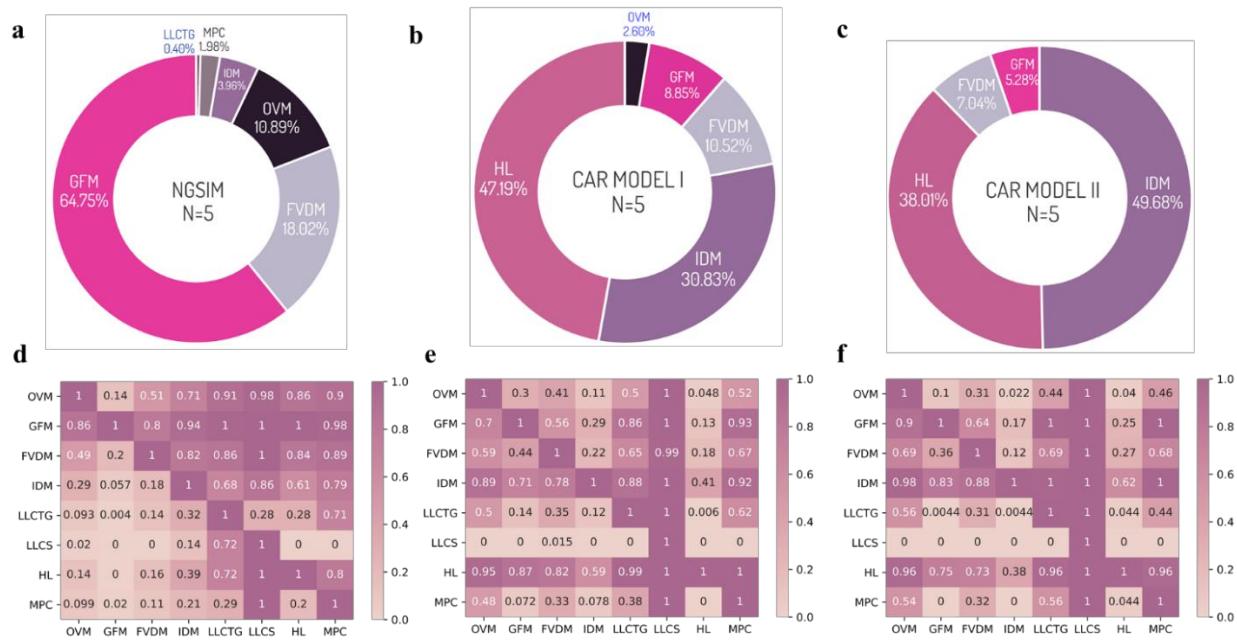
334 The hybrid model distributions in Fig. 3a offers a comprehensive overview of the proportions of particles
335 selected from each CF model when all CF models in the pool are considered together. For a more direct
336 comparison of the selected models, we further examined the pair-wise relative likelihood of one CF
337 model fitting the observed behavior better than the other. Specifically, we replicated the training process
338 for each pair of CF models (out of 28 enumerated pairs). Since only two models are compared, the model
339 with more than 50% is considered preferable. Fig. 3d presents the pair-wise comparison results in the
340 form of a heat map, where the value indicates the relative likelihood (i.e., proportion of accepted
341 particles) for one model (row) against the other (column). The darker color of a cell indicates higher
342 dominance of one model/controller against the other. For example, when GFM and OVM are compared
343 (row 2, column 1 of Fig. 3d), 86% of the accepted particles come from GFM, while the remaining 14%
344 are from OVM, indicating significant dominance by GFM against OVM. The result further confirms that
345 GFM, FVDM, and OVM are strongly favored, with GFM showing the clearest preference when
346 compared to the other models one-on-one.

347 For the goodness of fit evaluation at the vehicle trajectory level, we compare the deviation between the
348 learned (based on accepted particles) and observed vehicle positions. To highlight the performance of the

349 proposed hybrid model, we compare with the best single CF model for each dataset: GFM (for NGSIM),
 350 HL (for CAR MODEL I), and IDM (for CAR MODEL II) (refer to Fig. 3). Fig. 4a shows an example of
 351 the evolution of position error for the hybrid model, as compared to these best single models (Fig. 4d). In
 352 these figures, we plot the error evolution for the 5% best fitted particles (red/blue/green/purple) and all
 353 selected particles (light green). Comparing these figures, we observe that the hybrid model has lower
 354 errors in general than a single model and shows a stable trend over time. **Table 2 presents the Root Mean**
 355 **Square Error (RMSE) outcomes corresponding to Figure 4, affirming the superior performance of the**
 356 **hybrid model over the individual best-performing model.**

357 Further, we compare its training results against those of individual models that are stochastically learned
 358 with the incorporation of only one CF model in the learning process. The evaluation metrics consist of
 359 two types: (1) absolute errors and (2) distribution-wise similarity. Specifically, (1) comprises errors in
 360 average position, average speed, and average acceleration. More importantly, (2) is measured using the
 361 goodness-of-fit metrics, Wasserstein (WS) Distance, 0.15-WS Distance ($\beta = 0.15$), and minimum
 362 distance, specially designed in this study. In principle, these distances measure the deviations between the
 363 state portfolios generated based on accepted particles and the corresponding observed ones, using
 364 different constraints and weights on the position, speed, and acceleration. Detailed numerical results of
 365 these three cross-validation trials are included in Appendix Tables 4-6 in Appendix 2. Here, we focus on
 366 the general performance trend for each model across the six metrics. To address the scale inconsistency
 367 across the metrics, a linear normalization step is taken. Fig. 5 visually presents the results for the NGSIM
 368 dataset through a series of hexagonal-based diagrams. Within each hexagon, the aforementioned six
 369 metrics are positioned as six vertices, constrained within the normalized range of 0 to 1. A larger shaded
 370 area signifies a higher level of performance. The results reveal that among the single models, the GFM
 371 model performs the best in general, but not in all metrics, and clear deficiency is notable. The hybrid
 372 model exhibits the largest shaded (blue) area when compared to other single models, showcasing superior
 373 performance across all metrics. This highlights the hybrid model can better capture HDV CF behavior
 374 considering stochasticity than other conventional CF models.

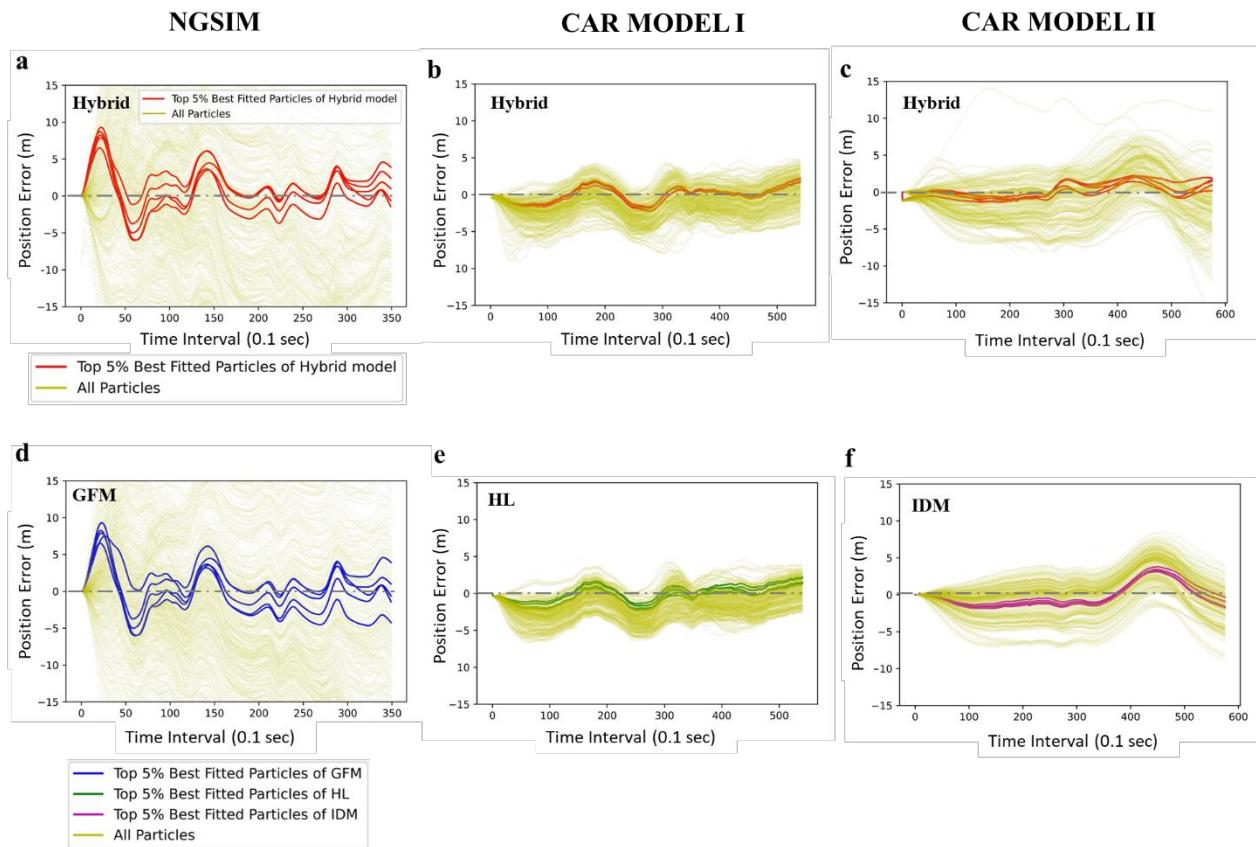
375



376
 377 **Fig. 3 Training results.** **a** Hybrid model distribution – NGSIM. **b** Hybrid model distribution - CAR
 378 MODEL I. **c** Hybrid model distribution – CAR MODEL II. **d** Heatmap of pairwise model selection
 379 probabilities – NGSIM. **e** Heatmap of pairwise model selection probabilities – CAR MODEL I. **f**

380 Heatmap of pairwise model selection probabilities – CAR MODEL II. The selected number of particles in
 381 testing set is 5.

382



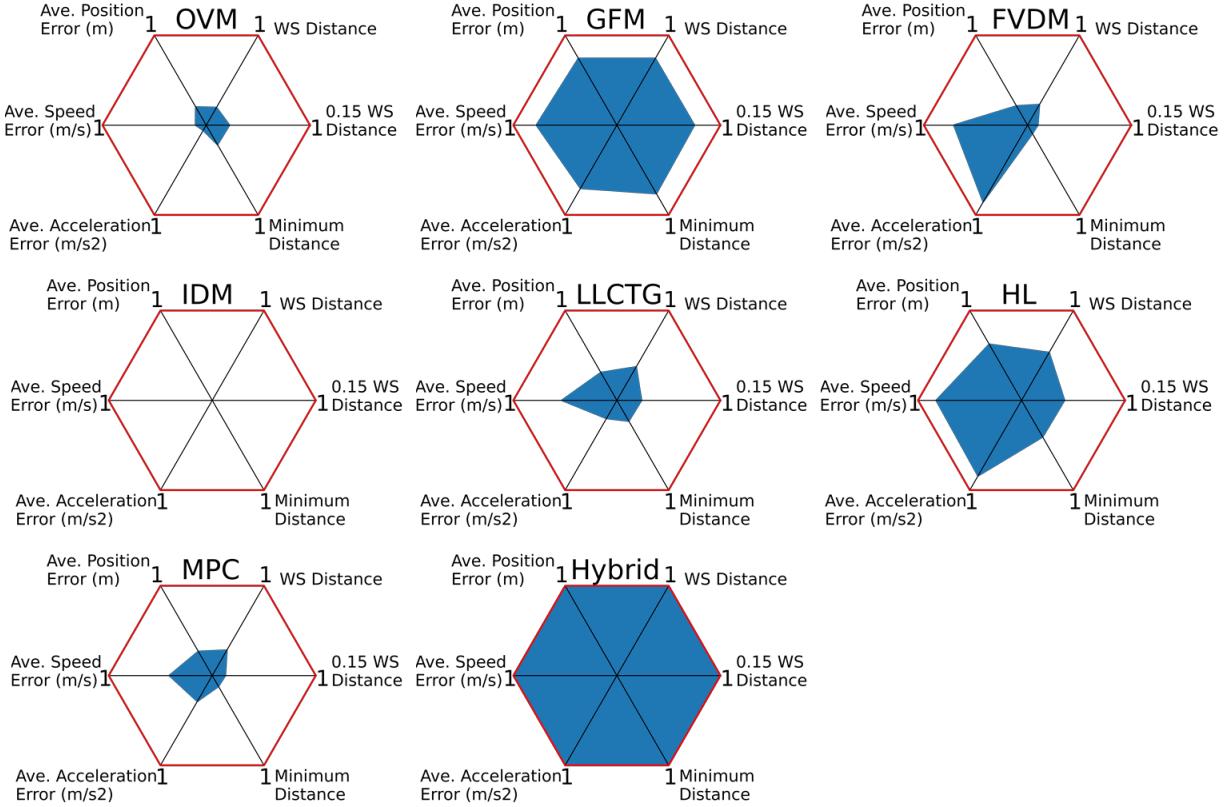
383

384 **Fig. 4 Goodness of fit evaluation results.** **a** Hybrid model position error evolution – NGSIM (#27). **b**
 385 Hybrid model position error evolution – CAR MODEL I (#1). **c** Hybrid model position error evolution –
 386 CAR MODEL II (#8). **d** Single model position error evolution (GFM) – NGSIM (#27). **e** Single model
 387 position error evolution (HL, IDM) – CAR MODEL I (#1). **f** Single model position error evolution (HL,
 388 IDM) – CAR MODEL II (#8). Note: the numbers in parentheses indicate a specific sampled state
 389 portfolio in the testing set.

390

391 Table 2 RMSE outcomes for hybrid model and best single model

392	Dataset	Model	5% best fitted particles (RMSE)	All particles (RMSE)
393	NGSIM	Hybrid Model	10.05	16.82
394		GFM	11.98	31.75
395	CAR MODEL I	Hybrid Model	1.33	1.58
396		HL	1.40	2.15
397	CAR MODEL II	Hybrid Model	2.20	3.35
398		IDM	2.50	5.37



399

400 **Fig. 5 Hexagonal based Multiple Metric Performance Evaluation for HDV.**

401 *4.3. Learning results for AVs*

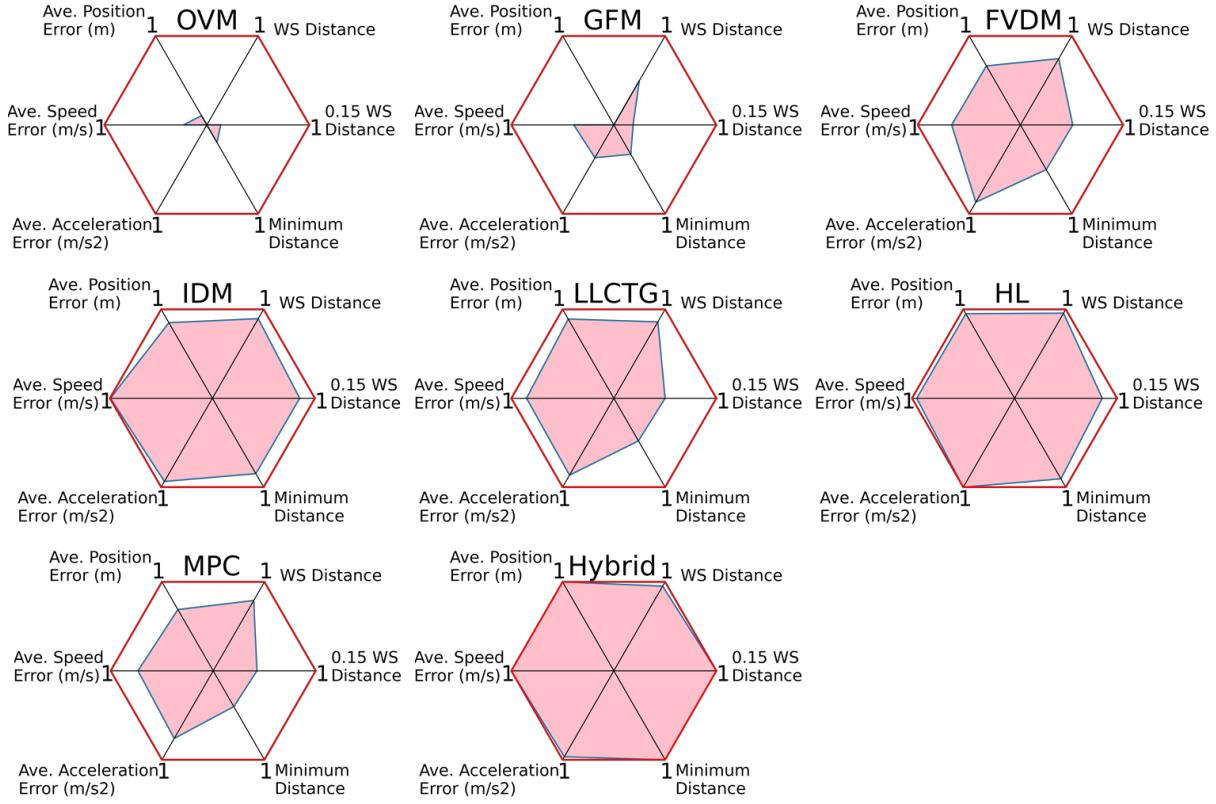
402 Here we turn our attention to learning AV CF behavior from the CAR MODEL I dataset. The results in
 403 Fig. 3b show that two AV controllers, LLCS and MPC, are not selected in the hybrid model. Of the
 404 remaining models, HL has the largest share of the distribution at 47.19%, and IDM (a HDV CF model)
 405 also takes up a sizable share at 30.83%. The lack of dominance by HL suggests that the CF control
 406 algorithm of the AV in this dataset is similar to, but not necessarily the same as, HL. Given the limited
 407 controller information available, there exists the possibility of missing the actual CF controller for CAR
 408 MODEL I. Therefore, selecting HL (deterministically) to approximate the behavior of the AV can give us
 409 erroneous insights. The hybrid model, however, fills this gap by identifying a set of models that can
 410 together approximate the AV behavior in the absence of controller knowledge. The heatmap in Fig. 3e
 411 further corroborates the findings in Fig. 3b that the two models (HL and IDM) show strong preference
 412 over the other models, but HL shows mild preference over IDM. Figs. 4b & 4e depict an example of the
 413 deviation evolution between the observed and learned position. The position generated by the hybrid
 414 model's top 5% of the best fitted particles exhibits better accuracy, as the position errors display a more
 415 centralized trend to zero compared to the best single model (HL).

416 The learning results from the CAR MODEL II dataset, shown in Fig. 3c, also show split preference with
 417 no clear dominance, particularly between IDM and HL, with IDM accounting for the largest proportion.
 418 This suggests a great possibility that the true controller of CAR MODEL II might not be included in the
 419 CF candidate pool. When comparing the training results with CAR MODEL I, the composition of the
 420 hybrid model is similar, except for the exclusion of OVM. **The corresponding heatmap in Fig. 3f also**
 421 **displays high similarity with Fig. 3e.** The evaluation results in Figs. 4c and 4f also demonstrate
 422 comparable error ranges with the CAR MODEL I dataset. However, we observe that the CF behavior may
 423 not be well approximated by a single IDM due to its larger error than the hybrid model. Therefore, when

424 true controller is absent, the hybrid model obtained by concatenation can generate a more accurate CF
 425 behavior description.

426 Fig. 6 illustrates the general performances across the six metrics for each model and the hybrid model for
 427 two AV datasets. The results are weighted by the sample size (i.e., number of state portfolios) in each
 428 dataset. The hybrid model demonstrates the best overall performance, though some exceptions in certain
 429 metrics are observed (e.g., average acceleration). Among the single models, HL shows the best overall
 430 performance. The results demonstrate the effectiveness of the hybrid model for capturing the behavior of
 431 AVs, particularly when the controller information is unavailable.

432



433
 434 **Fig. 6 Hexagonal based Multiple Metric Performance Evaluation for AV.**

435 **5. Conclusion and Discussion**

436 Learning the real-world CF behavior has been challenging due to inherent stochasticity and nonlinearity
 437 that arise from driver heterogeneity. Traditional approaches that rely on a single (deterministic) model
 438 often fail to capture these characteristics sufficiently, leaving room for persisting debates about the best
 439 CF model. The proposed hybrid model based on stochastic learning of ABC addresses these challenges
 440 by integrating different CF models in a systematic and stochastic fashion. The evaluation of the proposed
 441 framework using two different datasets demonstrated the ability to learn the CF behavior while
 442 accounting for stochasticity, outperforming traditional CF models. In addition, when the actual CF model
 443 or controller is absent from the candidate pool, the hybrid model is still able to replicate the CF behavior
 444 by probabilistically concatenating several models.

445 The proposed framework is generalizable in the sense that it is highly adaptable to various datasets and
 446 different CF model pools. This has several important implications and contributions for traffic modelling

447 and can enhance realism in simulations. First, its ability to systematically draw from multiple models can
448 be particularly useful in traffic simulations, where generating traffic flow mimicking the real-world traffic
449 is of high priority. Further, it is able to provide more accurate representation of a range of possible CF
450 behavior through estimated posterior distributions. Thirdly, hybrid model renders more flexibility in
451 describing inter-vehicle heterogeneity by not constrained to a single model. Therefore, our stochastic
452 approach addresses the gap between simulated and real following behavior to a certain degree.

453 Beyond its immediate application in stochastic learning of CF behavior, our approach can be applied to
454 various learning problems in traffic contexts, such as learning of lane changing and merging behavior,
455 and AV behavior under diverse traffic scenarios (Feng et al., 2021), where high degrees of non-linearity
456 and stochasticity in behavior are expected. However, it should be noted that the learning performance of
457 our method depends on the data quality as with any data-driven approaches. If the CF model pool does
458 not include the true CF (control) model or similar models, the hybrid model would lack interpretability as
459 well as ability to replicate the observed behavior. Future research is needed to design a good pool of
460 candidate models in the event that the true model is unknown. For example, preliminary learning may be
461 conducted to identify the most promising model family. Furthermore, we acknowledge trade-offs in
462 setting the weights for the error terms in our framework. Obtaining the optimal combination of these
463 weights presents a considerable challenge. However, to enhance the robustness and adaptability of this
464 methodology across diverse traffic conditions, it is imperative to incorporate a more systematic approach
465 in the future.

466

467 **Contributions**

468 J.J., Y.Z., X.W., and S.A., conceptualized and designed the study. J.J. and X.W. processed the data and
469 wrote codes of ABC – hybrid model framework. J.J prepared for the draft manuscript. X.W., Y.Z., and
470 S.A. provided feedback during the manuscript revisions and results discussion. All authors approved the
471 final version of the manuscript. S.A. approved the submission and accepted responsibility for the overall
472 integrity of the paper.

473 **Acknowledgements**

474 This research is supported by the National Science Foundation CNS #1739869 and CMMI #2129765.
475 We also sincerely thank Dr. Danjue Chen for sharing the Massachusetts AV Experiment data.

476

477 **Appendix**

478 **Appendix 1: Notations and Formulas for CF Models and Controllers**

479 Table A1 shows the corresponding variable and parameter notations of CF models and controllers in the
480 candidate pool as described in Section 3 of the main manuscript.

481 Table A2 and Table A3 present the detailed formulations of CF models and controllers, respectively.
482 They employ the variables and parameters defined in Table A1. Specifically, for traditional HDV CF
483 models, acceleration is formulated combining with a predefined desired speed or spacing policy. For AV
484 controllers, the system updates itself using the state-space formulation. Therefore, aside from the desired
485 spacing policy, the system state is also defined.

486

Appendix Table 1 Variable and parameter notations of CF models and controllers

HDV Model Notations	Description
$p_i(t)$	Position of vehicle i at time t
L_{i-1}	Length of vehicle $i-1$
$v_i(t)$	Speed of vehicle i at time t
$s_i(t)$	Gap between vehicle i and $i-1$ at time t
$v_i^*(s_i(t))$	Optimal velocity of vehicle i in OVM and GFM
$\Delta v_i(t)$	Speed difference, can be $v_{i-1}(t) - v_i(t)$ or $v_i(t) - v_{i-1}(t)$ depended on model
$V(s_i(t))$	Optimal velocity of vehicle i in FVDM
$s^*(t)$	Desired spacing in IDM
CAV Controller Notations	Description
$x_i(t)$	System state of vehicle i at time t
$u_i(t)$	System input of vehicle i at time t , can be viewed as acceleration
$x_{i,t}$	Discretized system state of vehicle i at time t
$u_{i,t}$	Discretized system input of vehicle i at time t
$s_i^*(t)$	Desired spacing
τ_i^*	Desired time headway
l_i	Minimum standstill spacing
$s_i(t)$	Actual spacing
$\Delta s_i(t)$	Deviation from the desired spacing
$\Delta v_i(t)$	Relative speed
k_{di}	Discretized feedback gains
k_{si}, k_{vi}, k_{ai}	Feedback gains for deviation from the desired spacing, relative speed, and acceleration
A_{di}, B_{di}, D_{di}	Discretized system weight matrices
$a_{i-1}(t)$	Acceleration of vehicle $i-1$ (leading vehicle)
t_s	Control frequency (interval)
s_0	A fixed positive value for desired spacing
TT_i	Actuation lag for vehicle i to realize the acceleration
J	Optimal objective function
Q_i	Control efficiency function
R_i	Comfort and fuel consumption function
$a_{i,min}$	Lower bound of acceleration
$a_{i,max}$	Upper bound of acceleration

Appendix Table 2 Formulations of CF models and controllers

HDV Model	Desired Speed/Spacing	Acceleration Formulation
OVM	$v_i^*(s_i(t)) = v_1 + v_2[\tanh(c_1 * (s_i(t)) - c_2)]$ where $s_i(t) = p_{i-1}(t) - p_i(t) - L_{i-1}$	$\frac{dv_i}{dt}(t) = \kappa[v_i^*(s_i(t)) - v_i(t)]$
GFM	Same as OVM	$\frac{dv_i}{dt}(t) = K[v_i^*(s_i(t)) - v_i(t)] + \lambda\theta(-\Delta v)\Delta v$ where $\theta := \begin{cases} 1, & -\Delta v > 0 \\ 0, & -\Delta v \leq 0 \end{cases}$ $\Delta v = v_{i-1}(t) - v_i(t)$
FVDM	$V(s_i(t)) = V_1 + V_2 \tanh\left[\frac{s_i(t) - L_{i-1}}{l_{int}} - \beta\right]$ $s_i(t) = p_{i-1}(t) - p_i(t)$	$\frac{dv_i}{dt}(t) = \frac{1}{\tau}[V(s_i(t)) - v_i(t)] + \lambda\Delta v$
IDM	$s^*(t) = s_0 + v(t) * T + \frac{v(t)\Delta v(t)}{2\sqrt{ab}}$ where $\Delta v(t) = v_i(t) - v_{i-1}(t)$ $s_i(t) = p_{i-1}(t) - p_i(t)$	$\frac{dv_i}{dt}(t) = a\left[1 - \left(\frac{v_i(t)}{v_{max}}\right)^\delta - \left(\frac{s^*(t)}{s_i(t)}\right)^2\right]$

Appendix Table 3 Formulations of CF controllers

AV Controller	Desired Spacing Policy	System State	State-Space Formulation
LLCTG	$s_i^*(t) = v_i(t) \times \tau_i^* + l_i$	$x_i(t) = [\Delta s_i(t), \Delta v_i(t)]^T$ where $\Delta s_i(t) = s_i(t) - s_i^*(t)$, $\Delta v_i(t) = v_{i-1}(t) - v_i(t)$ $k_{di} = [k_{si}, k_{vi}]^T$	$x_{i,t+1} = A_{di}x_{i,t} + B_{di}u_{i,t} + D_{di}a_{i-1,t}$ where $A_{di} = \begin{pmatrix} 1 & t_s \\ 0 & 1 \end{pmatrix}$, $B_{di} = \begin{pmatrix} -t_s \tau_i^* - t_s^2/2 \\ -t_s \end{pmatrix}$, $D_{di} = \begin{pmatrix} t_s + t_s^2/2 \\ t_s \end{pmatrix}$ $u_{i,t} = k_{di}x_{i,t}$
LLCS	$s_i^*(t) = s_0$	Same as LL	$x_{i,t+1} = A_{di}x_{i,t} + B_{di}u_{i,t} + D_{di}a_{i-1,t}$ where $A_{di} = \begin{pmatrix} 1 & t_s \\ 0 & 1 \end{pmatrix}$, $B_{di} = \begin{pmatrix} -\frac{t_s^2}{2} \\ -t_s \end{pmatrix}$, $D_{di} = \begin{pmatrix} t_s^2/2 \\ t_s \end{pmatrix}$ $u_{i,t} = k_{di}x_{i,t}$
HL	$s_i^*(t) = v_i(t) \times \tau_i^* + l_i$	$x_i(t) = [\Delta s_i(t), \Delta v_i(t), a_i(t)]^T$, $\dot{a}_i(t) = -\frac{1}{TT_i}a_i(t) + \frac{1}{TT_i}u_i(t)$ $k_{di} = [k_{si}, k_{vi}, k_{ai}]^T$	$x_{i,t+1} = A_{di}x_{i,t} + B_{di}u_{i,t} + D_{di}a_{i-1,t}$ where $A_{di} = \begin{pmatrix} 1 & t_s & TT_i(\tau_i^* - TT_i)(e^{-\frac{t_s}{TT_i}} - 1) - t_s \cdot TT_i \\ 0 & 1 & TT_i(e^{-\frac{t_s}{TT_i}} - 1) \\ 0 & 0 & e^{-\frac{t_s}{TT_i}} \end{pmatrix}$, $B_{di} = \begin{pmatrix} -TT_i(\tau_i^* - TT_i)(e^{-\frac{t_s}{TT_i}} + \frac{t_s}{TT_i} - 1) - \frac{t_s^2}{2} \\ TT_i(1 - e^{-\frac{t_s}{TT_i}}) - t_s \\ 1 - e^{-\frac{t_s}{TT_i}} \end{pmatrix}$, $D_{di} = \begin{pmatrix} \frac{t_s^2}{2} \\ t_s \\ 0 \end{pmatrix}$
MPC	$s_i^*(t) = v_i(t) \times \tau_i^* + l_i$	$x_i(t)$ same as HL $\min J = (x_{i,t})^T \cdot Q_i \cdot x_{i,t} + R_i \cdot (u_{i,t-1})^2$ s.t. $a_{i,min} \leq u_i(t) \leq a_{i,max}$ where $Q_i = \begin{bmatrix} 1 & 0 \\ 0 & \alpha \end{bmatrix}$, $R_i > 0$	$x_{i,t+1} = A_{di}x_{i,t} + B_{di}u_{i,t} + D_{di}a_{i-1,t}$ $A_{di} = \begin{pmatrix} 1 & t_s \\ 0 & 1 \end{pmatrix}$, $B_{di} = \begin{pmatrix} -\tau^* \cdot t_s - t_s - \frac{t_s^2}{2} \\ -t_s \end{pmatrix}$, $D_{di} = \begin{pmatrix} t_s + \frac{t_s^2}{2} \\ t_s \end{pmatrix}$

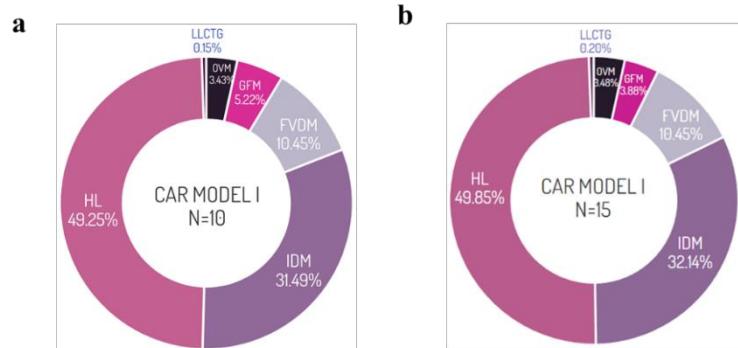
493 **Appendix 2: Supplementary learning results**494 1. *Sensitivity Analysis of the Number of Selected Particles*

495 Appendix Fig. 1 illustrates the learned hybrid model distributions with varying numbers of selected
 496 particles, as obtained from the NGSIM dataset. In comparison with Fig. 3a in the main manuscript, the
 497 learning results are relatively robust against the number of particles being selected.

498

499 **Appendix Fig. 1. Hybrid model distribution – NGSIM.** **a** The selected number of particles (N) = 10. **b**
500 The selected number of particles (N) = 15.

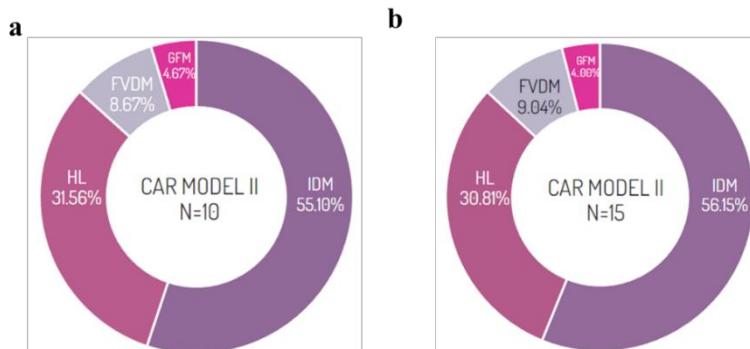
501 Similarly, the hybrid model distribution trained by CAR MODEL I is shown in Appendix Fig. 2. Compared
502 with Fig. 3b in the main manuscript, the overall composition of the hybrid model remains consistent.
503 However, with an increase in the number of particles being selected for each state portfolio, a quite small
504 proportion of LLCTG is also included.



505

506 **Appendix Fig. 2. Hybrid model distribution – CAR MODEL I.** **a** The selected number of particles (N)
507 = 10. **b** The selected number of particles (N) = 15.

508 Appendix Fig. 3 shows the hybrid model distribution for CAR MODEL II. Same conclusion can be
509 drawn that hybrid model distribution is relatively stable with the changing of selected particle numbers
510 for each state portfolio.



511

512 **Appendix Fig. 3. Hybrid model distribution – CAR MODEL II.** **a** The selected number of particles (N)
513 = 10. **b** The selected number of particles (N) = 15.

514

515 2. Errors and stochastic solution distances

516 We bold the minimum value in each column to indicate the model with the optimal performance for each
517 metric.518 **Appendix Table 4 Errors and stochastic solution distances: single model vs. hybrid model for
519 NGSIM dataset**

Model	Average position error (m)	Average speed error (m/s)	Average acceleration error (m/s ²)	Minimum distance	0.15 β -WS distance	WS distance
OVM	25.532	2.923	1.520	12.041	12.074	14.168
GFM	14.703	2.050	1.287	6.498	6.789	8.477
FVDM	25.308	2.137	1.232	13.309	13.335	13.831
IDM	30.553	3.051	1.470	14.261	14.328	16.215
LLCTG	23.386	2.367	1.468	11.908	11.934	12.330
LLCS	35.649	2.857	1.501	19.197	19.209	19.299
HL	17.100	1.989	1.237	10.113	10.153	10.664
MPC	24.218	2.520	1.437	13.030	13.050	13.266
Hybrid	9.575	1.763	1.180	4.088	4.219	5.809

520
521
522Appendix Table 5 Errors and stochastic solution distances: single model vs. hybrid model for CAR
MODEL I

Model	Average position error (m)	Average speed error (m/s)	Average acceleration error (m/s ²)	Minimum distance	0.15 β -WS distance	WS distance
OVM	3.287	0.637	1.838	1.662	1.678	2.217
GFM	3.293	0.550	1.813	1.788	1.791	1.807
FVDM	2.194	0.564	1.794	1.465	1.476	1.638
IDM	2.001	0.429	1.789	1.352	1.360	1.524
LLCTG	1.897	0.511	1.790	1.383	1.389	1.463
LLCS	3.644	0.686	1.817	2.413	2.419	2.531
HL	1.940	0.511	1.783	1.316	1.332	1.493
MPC	2.004	0.537	1.797	1.440	1.441	1.530
Hybrid	1.839	0.503	1.785	1.269	1.286	1.436

523
524
525Appendix Table 6 Errors and stochastic solution distances: single model vs. hybrid model for CAR
MODEL II

Model	Average position error (m)	Average speed error (m/s)	Average acceleration error (m/s ²)	0.15 β -WS distance	Minimum distance	WS distance
OVM	4.145	0.716	0.903	1.940	2.098	3.790
GFM	4.764	1.250	0.879	1.251	1.656	2.736
FVDM	3.475	0.443	0.805	1.750	1.783	2.041
IDM	2.826	0.310	0.802	1.218	1.299	1.676
LLCTG	2.834	0.572	0.817	2.040	2.048	2.163
LLCS	11.154	0.772	0.856	6.098	6.107	6.163
HL	2.357	0.332	0.802	1.180	1.367	1.453
MPC	3.804	0.577	0.824	2.066	2.073	2.258
Hybrid	2.308	0.305	0.805	1.079	1.154	1.738

526 **References**

527 Abodo, F., Berthaume, A., Zitzow-Childs, S., & Bobadilla, L. (2019, October). Strengthening the case for
528 a bayesian approach to car-following model calibration and validation using probabilistic
529 programming. In *2019 IEEE Intelligent Transportation Systems Conference (ITSC)* (pp. 4360-4367).
530 *IEEE*.

531 Bando, M., Hasebe, K., Nakayama, A., Shibata, A., & Sugiyama, Y. (1995). Dynamical model of traffic
532 congestion and numerical simulation. *Physical Review E*, 51(2), 1035–1042.

533 Beaumont, M. A., Zhang, W., & Balding, D. J. (2002a). Approximate Bayesian computation in
534 population genetics. *Genetics*, 162(4), 2025–2035.

535 Chen, D., Ahn, S., Laval, J., & Zheng, Z. (2014). On the periodicity of traffic oscillations and capacity
536 drop: The role of driver characteristics. *Transportation Research Part B: Methodological*, 59, 117–
537 136. <https://doi.org/https://doi.org/10.1016/j.trb.2013.11.005>

538 DiNapoli, R. J., Crema, E. R., Lipo, C. P., Rieth, T. M., & Hunt, T. L. (2021). Approximate Bayesian
539 Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa
540 Nui (Easter Island). *Nature Communications*, 12(1). <https://doi.org/10.1038/s41467-021-24252-z>

541 Feng, S., Yan, X., Sun, H., Feng, Y., & Liu, H. X. (2021). Intelligent driving intelligence test for
542 autonomous vehicles with naturalistic and adversarial environment. *Nature Communications*, 12(1).
543 <https://doi.org/10.1038/s41467-021-21007-8>

544 Gazis, D. C., Herman, R., & Potts, R. B. (1959). Car-Following Theory of Steady-State Traffic Flow.
545 *Operations Research*, 7(4), 499–505. <https://doi.org/10.1287/opre.7.4.499>

546 Halkias, J., & Colyar, J. (2007). *Us Highway i-80 Dataset*. *Federal Highway Administration (FHWA)*.
547 Tech. Rep. FHWA-HRT-06-137. December 2006. Available online: <https://www....>

548 Helbing, D., & Tilch, B. (1998). Generalized force model of traffic dynamics. *Physical Review E*, 58(1),
549 133–138. <https://doi.org/10.1103/PhysRevE.58.133>

550 Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic Dynamics: Analysis of
551 Stability in Car Following. *Operations Research*, 7(1), 86–106. <https://doi.org/10.1287/opre.7.1.86>

552 Higgs, B., & Abbas, M. (2014). Segmentation and clustering of car-following behavior: Recognition of
553 driving patterns. *IEEE Transactions on Intelligent Transportation Systems*, 16(1), 81–90.

554 Higgs, B., & Abbas, M. (2015). Segmentation and Clustering of Car-Following Behavior: Recognition of
555 Driving Patterns. *IEEE Transactions on Intelligent Transportation Systems*, 16(1), 81–90.

556 Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal
557 approximators. *Neural Networks*, 2(5), 359–366.

558 Hornik, K., Stinchcombe, M., & White, H. (1990). Universal approximation of an unknown mapping and
559 its derivatives using multilayer feedforward networks. *Neural Networks*, 3(5), 551–560.

560 Jiang, R., Wu, Q., & Zhu, Z. (2001). Full velocity difference model for a car-following theory. *Physical*
561 *Review E*, 64(1), 17101. <https://doi.org/10.1103/PhysRevE.64.017101>

562 Kerner, B. S. (2004). Three-phase traffic theory and highway capacity. *Physica A: Statistical Mechanics
563 and Its Applications*, 333, 379–440. <https://doi.org/https://doi.org/10.1016/j.physa.2003.10.017>

564 Kesting, A., Treiber, M., & Helbing, D. (2010). Enhanced intelligent driver model to access the impact of
565 driving strategies on traffic capacity. *Philosophical Transactions of the Royal Society A*:

566 *Mathematical, Physical and Engineering Sciences*, 368(1928), 4585–4605.
567 <https://doi.org/10.1098/rsta.2010.0084>

568 Kidando, E., Karaer, A., Kutela, B., Kitali, A. E., Moses, R., Ozguven, E. E., & Sando, T. (2020). Novel
569 Approach for Calibrating Freeway Highway Multi-Regimes Fundamental Diagram. *Transportation
570 Research Record*, 2674(9), 561–574. <https://doi.org/10.1177/0361198120930221>

571 Laval, J. A., & Leclercq, L. (2010). A mechanism to describe the formation and propagation of stop-and-
572 go waves in congested freeway traffic. *Philosophical Transactions of the Royal Society A:
573 Mathematical, Physical and Engineering Sciences*, 368(1928), 4519–4541.
574 <https://doi.org/10.1098/rsta.2010.0138>

575 Li, T., Chen, D., Zhou, H., Laval, J., & Xie, Y. (2021). Car-following behavior characteristics of adaptive
576 cruise control vehicles based on empirical experiments. *Transportation research part B:
577 methodological*, 147, 67–91.

578 Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., & Stumpf, M. P. H. (2014). A framework for
579 parameter estimation and model selection from experimental data in systems biology using
580 approximate Bayesian computation. *Nature Protocols*, 9(2), 439–456.
581 <https://doi.org/10.1038/nprot.2014.025>

582 Makridis, M., Mattas, K., Anesiadou, A., & Ciuffo, B. (2021). OpenACC. An open database of car-
583 following experiments to study the properties of commercial ACC systems. *Transportation
584 Research Part C: Emerging Technologies*, 125, 103047.

585 Newell, G. F. (1961). Nonlinear Effects in the Dynamics of Car Following. *Operations Research*, 9(2),
586 209–229. <https://doi.org/10.1287/opre.9.2.209>

587 Papathanasopoulou, V., & Antoniou, C. (2015). Towards data-driven car-following models.
588 *Transportation Research Part C: Emerging Technologies*, 55, 496–509.

589 Pipes, L. A. (1953). An operational analysis of traffic dynamics. *Journal of Applied Physics*, 24(3), 274–
590 281.

591 Rahman, M., Chowdhury, M., Khan, T., & Bhavsar, P. (2015). Improving the Efficacy of Car-Following
592 Models With a New Stochastic Parameter Estimation and Calibration Method. *IEEE Transactions
593 on Intelligent Transportation Systems*, 16(5), 2687–2699.
594 <https://doi.org/10.1109/TITS.2015.2420542>

595 Saifuzzaman, M., & Zheng, Z. (2014). Incorporating human-factors in car-following models: A review of
596 recent developments and research needs. *Transportation Research Part C: Emerging Technologies*,
597 48, 379–403. [https://doi.org/https://doi.org/10.1016/j.trc.2014.09.008](https://doi.org/10.1016/j.trc.2014.09.008)

598 Saifuzzaman, M., Zheng, Z., Mazharul Haque, Md., & Washington, S. (2015). Revisiting the Task–
599 Capability Interface model for incorporating human factors into car-following models.
600 *Transportation Research Part B: Methodological*, 82, 1–19.
601 <https://doi.org/https://doi.org/10.1016/j.trb.2015.09.011>

602 Shi, H., Zhou, Y., Wu, K., Wang, X., Lin, Y., & Ran, B. (2021). Connected automated vehicle
603 cooperative control with a deep reinforcement learning approach in a mixed traffic environment.
604 *Transportation Research Part C: Emerging Technologies*, 133, 103421.

605 Shi, X., & Li, X. (2021). Empirical study on car-following characteristics of commercial automated
606 vehicles with different headway settings. *Transportation Research Part C: Emerging Technologies*,
607 128, 103134.

608 Swaroop, D., & Hedrick, J. K. (1996). String stability of interconnected systems. *IEEE Transactions on*
609 *Automatic Control*, 41(3), 349–357. <https://doi.org/10.1109/9.486636>

610 SWAROOP, D., HEDRICK, J. K., CHIEN, C. C., & IOANNOU, P. (1994). A Comparison of Spacing
611 and Headway Control Laws for Automatically Controlled Vehicles. *Vehicle System Dynamics*,
612 23(1), 597–625. <https://doi.org/10.1080/00423119408969077>

613 Tavaré, S., Balding, D. J., Griffiths, R. C., & Donnelly, P. (1997). Inferring coalescence times from DNA
614 sequence data. *Genetics*, 145(2), 505–518.

615 Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. H. (2009). Approximate Bayesian
616 computation scheme for parameter inference and model selection in dynamical systems. *Journal of*
617 *the Royal Society Interface*, 6(31), 187–202. <https://doi.org/10.1098/rsif.2008.0172>

618 Treiber, M., Kesting, A., & Helbing, D. (2010). Three-phase traffic theory and two-phase models with a
619 fundamental diagram in the light of empirical stylized facts. *Transportation Research Part B:*
620 *Methodological*, 44(8), 983–1000. <https://doi.org/https://doi.org/10.1016/j.trb.2010.03.004>

621 van Hinsbergen, C. P. I., van Lint, H. W., Hoogendoorn, S. P., & van Zuylen, H. J. (2009). Bayesian
622 calibration of car-following models. *IFAC Proceedings*, Volumes, 42(15), 91-97.

623 Vyshe mirsky, V., & Girolami, M. A. (2008). Bayesian ranking of biochemical system models.
624 *Bioinformatics*, 24(6), 833–839. <https://doi.org/10.1093/bioinformatics/btm607>

625 Wiedemann, R. (1974). Simulation des Strassenverkehrsflusses. *Transportation Research Board*.

626 Zhou, Y., Ahn, S., Chitturi, M., & Noyce, D. A. (2017). Rolling horizon stochastic optimal control
627 strategy for ACC and CACC under uncertainty. *Transportation Research Part C: Emerging*
628 *Technologies*, 83, 61–76. <https://doi.org/https://doi.org/10.1016/j.trc.2017.07.011>

629 Zhou, Y., Ahn, S., Wang, M., & Hoogendoorn, S. (2020). Stabilizing mixed vehicular platoons with
630 connected automated vehicles: An H-infinity approach. *Transportation Research Part B:*
631 *Methodological*, 132, 152–170. <https://doi.org/10.1016/j.trb.2019.06.005>

632 Zhou, Y., Jafarsalehi, G., Jiang, J., Wang, X., Ahn, S., & Lee, J. D. (2022). *Stochastic Calibration of*
633 *Automated Vehicle Car-Following Control: An Approximate Bayesian Computation Approach*.
634 <https://doi.org/http://dx.doi.org/10.2139/ssrn.4084970>

635 Zhou, Y., Wang, M., & Ahn, S. (2019). Distributed model predictive control approach for cooperative
636 car-following with guaranteed local and string stability. *Transportation Research Part B:*
637 *Methodological*, 128, 69–86. <https://doi.org/10.1016/j.trb.2019.07.001>

638