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Abstract

Car following (CF) models are fundamental to describing traffic dynamics. However, the CF behavior of
human drivers is highly stochastic and nonlinear. As a result, identifying the “best” CF model has been
challenging and controversial despite decades of research. Introduction of automated vehicles has further
complicated this matter as their CF controllers remain proprietary, though their behavior appears different
than human drivers. This paper develops a stochastic learning approach to integrate multiple CF models,
rather than relying on a single model. The framework is based on approximate Bayesian computation that
probabilistically concatenates a pool of CF models based on their relative likelihood of describing
observed behavior. The approach, while data-driven, retains physical tractability and interpretability.
Evaluation results using two datasets show that the proposed approach can better reproduce vehicle
trajectories for both human-driven and automated vehicles than any single CF model considered.

Keywords: Car following, Stochastic calibration, Approximation Bayesian computation, Hybrid model,
Model selection
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1. Introduction

Car-following (CF) behavior describes how one vehicle follows its nearest preceding vehicle. This
fundamental driving behavior is deeply linked to system-level behavior such as traffic dynamics (i.e.,
spatial-temporal evolution of traffic) and has important implications for traffic safety, energy
consumption, and emissions. A CF model for human driven vehicles (HDV) was first introduced by
Pipe(Pipes, 1953) in the 1950s. Today a wealth of CF models exists in the literature, including stimulus-
response type models(Gazis et al., 1959; Herman et al., 1959), Newell’s simplified CF model(Newell,
1961) and its extensions(Chen et al., 2014; Laval & Leclercq, 2010), statistical physics-based models
such as optimal velocity model (OVM)(Bando et al., 1995) and intelligent driver’s model (IDM)(Kesting
et al., 2010), and psycho physics based models such as Wiedemann model(Wiedemann, 1974). Notably,
some of these models have been incorporated in various commercial microsimulations. For a detailed
review of CF models, see Saifuzzaman & Zheng(2014).

A plethora of CF models gave rise to persistent debates about which model best describes the real-world
CF behavior. These debates continue today despite the nearly 70 years of history. These debates stem
from the complexity of CF behavior, which is intrinsically nonlinear, heterogeneous, and stochastic. It has
been challenging to replicate observed data with a single CF model, given that most existing CF models
have deterministic formulations. Some exceptions exist to address the complexity in CF behavior through
(1) probabilistic distributions of CF model parameters(Higgs & Abbas, 2015; Kerner, 2004; Treiber et al.,
2010) and (2) multi-regime CF models according to traffic conditions(Kerner, 2004; Kidando et al., 2020;
Treiber et al., 2010). The former approach, however, is typically parametric, requiring an assumption of a
theoretical distribution. This can lead to bias when there is a discrepancy between the assumed and true
distributions. For the latter approach, different CF models are considered for different traffic conditions.
These frameworks, however, are deterministic and consider a relatively narrow selection of CF models
(e.g., 3-4 models). Some data-driven methods such as clustering(Higgs & Abbas, 2014) and
regression(Papathanasopoulou & Antoniou, 2015) are considered to characterize stochasticity; however,
they provide little physical interpretation.

The emergence of automated vehicles (AVs) brings another level of complexity to traffic flow systems. In
academic literature, AV CF control algorithms have been predominantly developed based on the
principles of control theory (e.g., linear feedback(Makridis et al., 2021; Zhou et al., 2019), model
predictive control (MPC)(Shi & Li, 2021 , Zhou et al., 2020), or artificial intelligence(Shi et al., 2021),
distinct from the mathematical and physical approaches of the CF models of HDVs. Thus, the AV CF
behavior could be different from the HDV behavior. Further, similar to HDVs, AV CF can be affected by
actuation delay, uncertain vehicle dynamics, road conditions, and traffic conditions, leading to highly
stochastic behavior. Finally, AVs manufactured by different car companies are available on the market
today. Their control algorithms are likely different, yet unknown to the public, which hinders our ability
to characterize the CF behavior of AVs.

To better understand the CF behavior of AVs, several field experiments involving vehicles with adaptive
cruise control (ACC) have been conducted(Li et al., 2022; Makridis et al., 2021; Shi & Li, 2021). The
data from these experiments have been used by several studies to model and replicate the AV CF
behavior, with two different approaches: (1) model-based and (2) data-driven. In the model-based
approach, a CF model is assumed, and its parameters (and their distributions) are learned from
observations. This approach readily offers physical interpretations of the behavior but suffers from
potential model mismatch where the true model is different from the assumed model caused by
unmodelled components. Further, efforts to capture stochasticity in CF behavior through estimating
parameter distributions typically involve an assumption of distribution(Rahman et al., 2015). Thus, a
mismatch in CF model and/or the parameter distributions can compromise the learning results and the
descriptive power of the assumed CF model. In addition, learning the stochastic behavior with non-
analytical CF model (e.g., MPC) is computationally demanding, and thus an efficient tool is necessary. In
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contrast, data-driven methods, such as neural network (NN) based methods(Hornik et al., 1989, 1990), are
capable of describing any type of nonlinear functions given sufficient neurons and layers. However, the
black-box nature of these methods hinders direct physical interpretation. Further, the learned NN is
limited by the training dataset, and thus, it may not effectively handle corner cases not represented in the
training data.

The review above reveals the persistent challenges to address highly nonlinear and stochastic nature of
CF behavior that has been further complicated by the arrival of AVs. The CF uncertainties could stem
from multiple sources such as intra-driver and inter-driver heterogeneity, uncertain vehicle dynamics, and
uncertain road conditions. To fill this major gap, this paper presents a comprehensive framework that
systematically considers a pool of CF models and various uncertainties and stochasticity. Specifically, the
proposed framework generates a hybrid CF model that represents the probabilistic concatenation of a pool
of CF models based on their abilities to reproduce the real behavior measured from sensors. The general
framework is illustrated in Fig. 1. The core method of the framework is approximate Bayesian
computation (ABC), a computational method to approximate the posterior model parameter distributions
through simulations without assuming a specific likelihood function (Toni et al., 2009). ABC has been
originally used in population genetics(Beaumont et al., 2002; Tavaré et al., 1997), but has also been
widely applied in biology(Liepe et al., 2014) and ecology(DiNapoli et al., 2021). Our recent study, Zhou
et al. (2022), developed a methodology based on ABC to calibrate a single CF model or controller in a
stochastic fashion. This approach serves as a foundation for the present work that probabilistically
compares across different CF models and generates a stochastic hybrid model.

In our framework, particles (i.e., sets of model parameter values) for each CF model are randomly
generated in large quantity from an assumed prior joint distribution in an independent fashion. When only
a single CF model is considered, all accepted particles from the model can be used to construct the
posterior distribution of the model parameters. In contrast, when multiple CF models are considered,
particles are evaluated based on the universal distance function (across CF models) that measures the
discrepancy between simulated vehicle trajectories based on the particles and real trajectories. A universal
threshold for the distance is then applied to accept only the particles that generate trajectories within the
acceptable distance. Accordingly, the relative share of accepted particles represents the relative likelihood
of the model describing the observed behavior. Then the accepted particles are used to approximate the
posterior distribution of the hybrid CF model in a Bayesian fashion by concatenating the models
according to the relative likelihoods. Thus, the learned hybrid CF model enhances the capability of
describing nonlinear CF behavior while preserving the physical meaning of each CF model.

Note that the proposed framework is stochastic and hybrid, designed to provide a richer understanding of
CF behavior while improving learning accuracy. It is stochastic in the senses that (1) it estimates the joint
distributions of CF model parameters; and (2) it considers the relative likelihood of each CF model fitting
the observed behavior. It is 4ybrid in the senses that (1) it concatenates various CF models, rather than
relying on a single best-fitting model, as previously done, according to the relative likelihood; and (2) it
deploys a data-driven method to estimate the joint distributions of physics-based CF models, thereby
retaining physical interpretability while improving learning accuracy. The hybrid model is particularly
useful in determining which control algorithm is most likely adopted for an AV and approximating its
behavior in the absence of the controller knowledge. Our method is verified through a series of
evaluations using synthetic and real data. The hybrid model is shown to significantly outperform any
single model or deterministic models in reproducing vehicle trajectories.
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Fig. 1 Scheme of the CF behavior learning framework.

2. Methodology

2.1. General stochastic CF learning problem

A general form of CF learning problem can be described as below:

mﬁin 9g¥r—95) (1a)
s.t.

97 = f(vi; 0), (1b)
where V¢ is a set of observed ground-truth state portfolios of the following vehicles, yr =
{?f,l,obs'?f,z,obs ,?fl,,obs}; we define the state portfolio for vehicle i = 1,2, ..., I, denoted by ?f,i,obs =
[To’f,i,obs, 17f,i,ob5, Tif,i,obs ]T, to represent a vector of observed position, speed, and acceleration profiles
over time. Similarly, we denote the set of simulated state portfolios for the following vehicles by § =

9

{Vf'i’Sim}i=1,2,...,I . Here, we extend the operation for the state portfolios set to define g(*) as a

predefined error (distance) function, measuring the deviation between the observed and learned state
portfolios. Here £q. (1a) is the objective function to measure the goodness of fit. In particular, the CF

model, denoted by f(y;; 5), is parameterized on vector 9, given the leading vehicle’s state portfolios y;
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= {?l,i,obs}iﬂ_ T According to Eg. (1a) and Eq. (1b), the error function, CF model, and observed state

portfolios are three critical components for model learning.

For stochastic extension, we introduce uncertainty to parameter 6.In particular, we revise the CF model
into f(yy; n(ﬁ)), where n(a) indicates a sampled 0 from a given random distribution 7. Therefore,
instead of finding the best 6 value in deterministic CF models, the decision variable for stochastic CF
model learning is the whole distribution n(a). In addition, to explicitly reflect the variation of CF model
forms, e.g., IDM or MPC, we denote M to be the index set of all CF models, and f(y;; n(a), m) to be one
specific CF model m € M. In our context, we further consider a hybrid stochastic CF model learning
problem. In particular, stochasticity comes from not only the parameter 0 but also the form of the CF
model. We denote such a hybrid stochastic CF model by f (yl; n(a, m)) to show the model and
parameters can be random at the same time.

Unlike the previous studies that rely on a single model, the hybrid stochastic CF model makes use of

multiple CF models, providing rich model function representability. Further, the ABC-based model
selection framework offers flexibility and interpretability.

2.2. Approximate Bayesian computation mechanism

We adopt the ABC-based learning of CF model parameters presented in our previous paper(Zhou et al.,
2022) as summarized below. The main focus of Bayesian inference is to obtain the posterior distribution
when given observations and the prior distribution of parameters, written as:

(¥ o15|0)(®) (2)

Yobs

ﬂ(ﬁl?obs) =

where n(ﬁ) represents the prior distribution of parameters, l(?obs|§) represents the likelihood of 0 given
the observed state portfolio data 701,5, and n(5|170bs) is the posterior distribution.

Although the prior distribution of CF model parameters can be given or assumed, Eq. (2) often presents a

challenge as the likelihood function l(?obs|5) is often not accessible. In such cases, it becomes
imperative to explore an alternative technique to circumvent the requirement of the likelihood function
and empirically approximate the posterior distribution using the available prior distribution and observed
data. To achieve this, ABC, relying on large-scale simulation, is applied here (Toni et al., 2009). Rather
than deriving the likelihood based on specific assumptions (Hinsbergen et., 2009; Abodo et al., 2019),
ABC approximates it through simulations, without necessitating a predefined function form of prior
distribution or liklihood. Such likelihood-function-free structure renders ABC a powerful tool to learn
complicated even non-analytical CF models such as model predictive control.

A simple but important ABC approach is the ABC rejection sampling (ABC-RS) (Beaumont et al., 2002).
It repeats the following simulation process: (1) randomly sample a parameter vector _é*, called a particle,
from a given prior distribution n(a); (2) plug 6" into the CF model (v 5*) to simulate state portfolios
@}; (3) compare the simulated data against the real observation using a pre-defined distance function

9 (s — §5) and accept the particle 6" if the distance is smaller than a certain threshold. Such distance is

called the score of the particle. Lowering the threshold value typically necessitates an increase in the
number of simulations and a decrease in the acceptance rate (Zhou et al., 2022). A large number of
simulations are typically needed (e.g., 1 million times) to obtain a sufficient number of accepted particles.
Finally, the posterior joint distribution is estimated using the N accepted particles, written as:
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n(a*lyobs) ~ Uﬁ=15;1,select (3)

where 5;‘15313“, n =1,2,..,N is an accepted particle. Without loss of generality, we assume the particles
selected are sorted in ascending order based on their score, and the index n indicates the order. The
central idea of ABC is that the particles that reproduce state portfolios close to the real observation should
also have good proximity to the learned posterior distribution.

Regarding the distance function g in Eq. (1a), multiple measures are applied to assess the learning
accuracy, such as the sum of squared errors(Toni et al., 2009) and Euclidean distance(DiNapoli et al.,
2021). Here, we design our own distance function. We first define the deviations (errors) of vehicle

position, (ep'g*), velocity (e, g-), and acceleration (e, 5-):

€,6* :l, =1l risim — Priobsl)s (4a)
ev,ﬁ* = 112£=1”1_7)f,i,sim - ij,i,obs”: (4b)
€.6* :l, {=1||af,i,sim — Gf i ops||s (40)

where [ is the total number all CF pairs chosen for learning. Then the distance function or the score of
particle 8", denoted by g, can be defined as the weighted sum of the error:

Jg = me,5 T aze 5 + aze, 5. ®)

The weights assigned to each error term, denoted as a4, a5, and a5, range from 0 to 1, with the constraint
that @y + a, + a3 = 1. Given that position data typically exhibit greater reliability within state portfolios
compared to speed and acceleration data, we establish a representative example and default values for
these weights. Specifically, we set a; = 0.5, a; = 0.3, and a3 = 0.2 after tuning, reflecting the relative
importance attributed to each error term in the model.

In practice, when [ is a large number and the simulation of f(y;; 5) is time-consuming (e.g., MPC), the
evaluation of gg. can be slow. To speed up, we can estimate €5 €vg Cap and gg- by randomly

6"
process can be considered as the simulation uncertainty. Note that since gg»* is randomly evaluated, pair

sampling one CF pair i*, e.g., e . = ||Bsi*sim — Br.i*obs||s denoted by g.. This down sampling

selection i* can potentially dominate the impact of particle 6*. To avoid such an over-representing issue,
N.
N; is the number of particles evaluated by CF pair i. Similarly, without loss of generality, we assume n; to
be the order of sorted particles evaluated from each CF pair i, respectively.

we select particles based on their corresponding CF pairs, i.e., n(a* |l7obs) ~ Ui, U 15;“”,56[6“, where

Therefore, the learning result of the stochastic CF model using the ABC method is a distribution
estimated by the optimal particle set ®°P = U!_, Url\:-i=1 0}, celect» 1-€., @ combination set of all selected
i 1%

particles. To reproduce the state portfolios using the learned stochastic CF model, one particle is
randomly selected from @°Pt to capture the uncertain nature of driving behavior.

2.3. Hybrid CF model

The above ABC framework can be adopted for a specific CF model form. Note that the learned result
takes the form of a set of selected particles. Thus, it can be easily extended to incorporate multiple CF
models for learning to enhance its representability. A hybrid model retains a subset of particles across
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models, which can offer a richer understanding of CF behaviors of HDVs and AVs, and more refined
micro-simulation. The detailed steps to obtain hybrid model are described below and shown in Fig. 2.

Step 1: Initialization

Define a set of candidate CF models, indexed by m € M, where both CF controllers for AVs and CF
models for traditional HDVs are included. For each CF model/controller m, we denote a sampled particle

by 5;‘,1 under the given prior distribution 1, (). The prior distribution set for overall models is I1 =
{T’:l ()' T ()l o Ty ()}
Step 2: Learning of each model through ABC

We process ABC-RS independently for each model m. A large number of (e.g., >1 million) particles are
independently sampled for each model. When all learning processes are completed, the optimal selected

particle set for each model is obtained as @, (N,,) = Ul_; Uf{:’;l a%,ni,select-

Step 3: Model selection

In the literature, model selection is typically performed by the likelihood ratio test combing with Bayesian
methods, where competing models are ranked by the ratio of their posterior probabilities(Vyshemirsky &
Girolami, 2008). However, since marginal likelihoods cannot be evaluated analytically for CF models,
deriving exact posterior distributions is also impossible. Instead, we establish a probabilistic model
selection approach based on the distance function in £g. (5).

Firstly, all particles from all models are merged and further selected with their corresponding particle
scores:

Omerge = U%:l O (N), (6)

where 0,4 represents the merged particle set. Then we sort the score of particles in @,y 4e and select
the best N4 particles as the learned result, denoted by © hybrid- Note that we need to set N >> N 410
guarantee the over-representing issue is not prominent. Since @pypr;q may contain the particles from any

CF models, we can calculate the percentage of particles selected from certain model to see its impact,
denoted by:

1 (7
Bm = W |0m N @hybridl-

It is intuitive that [3,, is the estimated probability of each model m being selected in the hybrid model
based on the estimated posterior distributions.

2.4. Stochastic and deterministic metrics

Given the learned hybrid particles @y, yiq, We evaluate the performance of the learned hybrid stochastic

CF model in reproducing CF behaviors. Specifically, we aim to evaluate the distribution-wise goodness-
of-fit, in addition to the deterministic assessment based on the particle score.
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Fig. 2 General framework of ABC with model selection on CF learning. Inset shows the four main
procedures: a Initialization work including defining CF model candidates and corresponding prior
distribution. b Apply ABC — RS (Beaumont et al., 2002) process for each CF model independently. ¢
Conduct a probabilistic hybrid model selection based on predefined scores and acquire estimated
posterior distribution. d Evaluate the goodness of fit of learned parameter posterior distributions via
multiple measures.
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To measure the trajectory-level goodness-of-fit in a stochastic fashion, we introduce the Wasserstein
distance (WS). The WS distance is widely used to measure the distance of two probabilistic measures,
achieved through the solution of a linear programming problem pertaining to optimal transport. There are
a few benefits of using WS distance over other distance measures like the Euclidean distance. For
example, it can handle distributions that have heavy tails and is more resistant to outliers. Here, we use
WS distance as a way of measuring the similarity between the observed posterior distributions and the
learned posterior distributions, which can be formulated as:

al”T’},i*,lrn(5*:?l,i*,obs) - T’)f,i*,obs” + (8)
Vi g a2||1_jf,i*.lrn(0*:71,1'*.0175) - ﬁf'i*ﬂbS” T

as ||af,i*,lrn( 5*, )_;l,i*,obs) - Zif,i",obs ”

€Onyprid

W(yfl yll Ghybrid) = {yll;lﬁf*} Zi*E{l,Z,...,I},a*

s.t.
o= g 8a
ZB*EOhybrid Yig = I'Vl ’ (8a)
I _ 1 it 8b
Vi = ———,VO". (8b)
Zl =1V [®hybridl

where y;. 5. € [0,1] is a joint probability to be determined for each i* and 0 , whose marginals are
constrained by Eq. (8a) (state portfolio constraint) and Eq. (8b) (particle constraint). We explicitly write
out the state portfolio component simulated by particle 0 given a leading vehicle i*, e.g., vehicle position
as I—’)f,i*,sim( 5*» f;l,i*,obs)-

To be more reliable to extreme values, we further refine the WS distance by partially matching the two
distribution and define 8 —Wasserstein (WS) distance as follows:

a’l”ﬁf,i*,sim(ﬁ*il—;l,i*,obs) - ﬁf,i*,obs” + )
Vi | @2llBrinsim (07 Yiie0ns) = Briv ons|| + |

WB (yf; Y Ohybrid) = {]/11;1;} Zi*e{l,z,...,l},ﬁ*
r, — Pl —
as||ar i sim( 0%, Yii obs) — @i obs]|

€Onyprid

where y;. 5. € [0,1] for each i* and 0" isa coupling with the following two marginal distribution
constraints:

=Ly 9a
Z:5*50hybriaz Yig- = I’Vl ’ ©a)

ShorVig 2B g——,VO". (%)

1®hybrial’

Eq. (92) and Inequality (9b) are state portfolio constraint and particle constraint, respectively, where f§ €
(0,1) is the percentage of samples selected from each distribution for matching. If § is 1, it is the original
WS distance, where all samples of both distributions are considered to calculate the distance. The lower
value of f§ reflects a higher degree of screening out long tails and outliers.

Further, we define the minimum distance by dropping the particle constraint (i.e., Inequality (9b)), i.e.,

B = 0. The minimum distance aims to be more inclusive and measure the goodness-of-fit by selecting the
smallest score for each state portfolio, permitting the possibility of a single particle being chosen multiple
times.

10
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3. Composition of Hybrid Model

Since considering all CF models and control algorithms is not feasible or insightful, eight models have
been carefully selected, including four well-known HDV CF models and four state-of-the-art AV
controllers. For HDVs, contemporary statistical physics-based models, OVM (Bando et al., 1995) and
IDM(Kesting et al., 2010), are selected. Additionally, two CF models that extend the OVM have also
been included: the Generalized Force Model (GFM) (Helbing & Tilch, 1998) and the Full Velocity
Difference Model (FVDM)(Jiang et al., 2001). Notably, GFM addresses the issue of unrealistic high
acceleration present in OVM, while FVDM considers both positive and negative velocity differences to
describe CF behaviors more comprehensively, especially in cases when the speed of leading vehicle is
faster than that of following vehicle. These models are known for theoretical soundness, good agreement
with real data, and ability to reproduce key traffic features(Saifuzzaman et al., 2015). Detailed notations
and formulas for the selected HDV CF models can be found in Tables 1-3 in Appendix 1. With regard to
AVs, CF controllers can mainly differ in three aspects: (1) spacing policy (e.g., constant time gap
(CTG)(Swaroop & Hedrick, 1996), constant spacing (CS)(Swaroop & Hedrick, 1996) ); (2) controller
type (e.g., linear(Zhou et al., 2020), MPC(Zhou et al., 2019) ); and (3) approximation of vehicle dynamics
(e.g., second-order(Zhou et al., 2017) or third-order dynamics(Zhou et al., 2020a) ). After thorough
consideration, lower-order linear feedback controller with constant time gap policy (LLCTG)(Swaroop et
al., 1994), lower-order linear feedback controller with constant spacing policy (LLCS)(Swaroop et al.,
1994), higher-order linear (HL)feedback controller(Zhou et al., 2020), and model predictive controller
(MPC)(Zhou et al., 2019) have been selected. More information can be found in Appendix 1.

Notably our ABC-based framework does not require a specific distribution for a CF model parameter, as
the posterior distribution is approximated in a numerical fashion. Thus, we assume a simple, uniform
prior distribution within a reasonable range for each parameter reported in the literature(Bando et al.,
1995; Helbing & Tilch, 1998; Jiang et al., 2001; Kesting et al., 2010; Swaroop et al., 1994; Zhou et al.,
2019, 2020). The lower bounds and upper bounds of learning parameter sets for all models are included in
Table 1.

11
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Table 1 Parameters and corresponding prior distribution bounds for each model

Parameter Lower bound Upper bound
OVM

Sensitive parameter,k (sec™1) 0.5 2
Speed factor, v; (m/s) 5 8
Speed factor, v, (m/s) 20 25
Form factor, ¢; (m™1) 0.05 0.2
Form factor, ¢,(m™1) 1.5 1.7
GFM

Proportionality factor, K 0 2
Sensitivity factor, A 0 2
Speed factor, v; (m/s) 0 10
Speed factor, v, (m/s) 0 30
Form factor, ¢; (m™1) 0 0.2
Form factor, c,(m™1) 1 2
FVDM

Relaxation time, 7 (s™1) 600 2000
Sensitivity parameter, A (s) 0 2
Speed V;(m/s) 0 40
Speed V,(m/s) 0 40
Interaction length, l;,; (M) 0 40
Unitless parameter, f§ 0 40
IDM

Desired speed, vp,q, (M/S) 20 40
Desired time gap, T (s) 0.8 2.5
Minimum gap (jam distance), s, (m) 0.5 3
Maximum acceleration, a (m/s?) 0.5 2
Desired deceleration, b (m/s?) 1 4
Free acceleration exponent, § 2 5
LLCTG

Desired time gap, 7" (s) 0.8 1.2
Spacing deviation feedback gain, k; 0.3 2.3
Speed difference feedback gain, k, 0.3 23
Standstill distance, [(m) 1 11
LLCS

Desired spacing, so(m) 5 25
Spacing deviation feedback gain, k; 0.3 23
Speed difference feedback gain, k,, 0.3 2.3
HL

Desired time gap, T° (s) 0.8 1.2
Actuation lag, TT (s) 0.1 0.5
Spacing deviation feedback gain, k; 0.1 23
Speed difference feedback gain, k,, 0.1 23
Acceleration feedback gain, k,, -3 0
Standstill distance, [(m) 3 8
MPC

Desired time gap, T* (s) 0.6 14
Comfort and fuel consumption, R 0.3 1.7
Control efficiency coefficient, 0.3 1.7
Standstill distance, I(m) 3 7
Deceleration limit, d,,;,, (m/s?) -5 -3
Acceleration limit, a,,, (m/s?) 3 5
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4. Experiments and Learning Results

4.1. Data sources

To train the proposed stochastic hybrid model, two datasets have been selected to train the model for
HDVs and AVs. Specifically, the widely used NGSIM dataset has been selected to train the model for
HDVs, while the Massachusetts (MA) Experiment dataset (Li et al., 2022) has been selected to train for
AVs. Note that the MA experimental dataset has been further categorized into two datasets: CAR
MODEL I and CAR MODEL II, representing two different AV controllers. The actual car models are
omitted here to avoid potential conflicts of interest. In each dataset, the movements of leading-following
vehicle pairs are recorded by sensors that measure the vehicle position, speed, and acceleration.

In particular, we focus on trajectory pairs between 4:00 — 4:15 PM on [-80 for NGSIM. After simple data
processing, 150 CF-pairs are randomly selected as our input, each with a 35-second duration. The MA
dataset consists of 96 and 64 trajectories for CAR MODEL 1 and CAR MODEL II, respectively. The
duration of each trajectory pair is 54.1 seconds for CAR MODEL I and 57.6 seconds for CAR MODEL
II. The original field data may also include longitudinal speed and acceleration data. However, due to the
limitation of the experiments, only the position data are reliable. Therefore, a finite difference method is
applied to numerically calculate the speed and acceleration.

4.2. Learning results for HDVs

First, we apply our ABC-based framework to learn HDV CF behaviors using the NGSIM dataset. To
mitigate the potential bias inherent in single train-test splits, we employ cross-validation. Specifically, the
dataset is evenly divided into three parts. We train the model based on two of these parts and evaluate its
performance on the remaining part, thereby establishing a training-to-testing ratio of the 2:1. This process
is iterated three times, and the results are aggregated by calculating the average of chosen metrics. During
the training, 1 million particles (i.e., parameter sets) were sampled from the assumed prior distributions
for each model and accepted/rejected based on the predefined distance function.

The training result for HDVs is shown in Fig. 3a. It can be observed that the HDV CF models (GFM,
FVDM, OVM and IDM) overshadow the AV controllers (MPC and LLCTG) in the hybrid model, making
up more than 97% of accepted particles. Among them, GFM has the highest share of approximately 65%.
GFM, FVDM, and OVM, which belong to the same model family, all take nonnegligible shares,
indicating that this model family can effectively describe the HDV CF behavior. In contrast, HL and
LLCS are completely dropped in the hybrid model, suggesting that the CF behavior of AVs is different
from the behavior of human drivers.

The hybrid model distributions in Fig. 3a offers a comprehensive overview of the proportions of particles
selected from each CF model when all CF models in the pool are considered together. For a more direct
comparison of the selected models, we further examined the pair-wise relative likelihood of one CF
model fitting the observed behavior better than the other. Specifically, we replicated the training process
for each pair of CF models (out of 28 enumerated pairs). Since only two models are compared, the model
with more than 50% is considered preferable. Fig. 3d presents the pair-wise comparison results in the
form of a heat map, where the value indicates the relative likelihood (i.e., proportion of accepted
particles) for one model (row) against the other (column). The darker color of a cell indicates higher
dominance of one model/controller against the other. For example, when GFM and OVM are compared
(row 2, column 1 of Fig. 3d), 86% of the accepted particles come from GFM, while the remaining 14%
are from OVM, indicating significant dominance by GFM against OVM. The result further confirms that
GFM, FVDM, and OVM are strongly favored, with GFM showing the clearest preference when
compared to the other models one-on-one.

For the goodness of fit evaluation at the vehicle trajectory level, we compare the deviation between the
learned (based on accepted particles) and observed vehicle positions. To highlight the performance of the
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proposed hybrid model, we compare with the best single CF model for each dataset: GFM (for NGSIM),
HL (for CAR MODEL I), and IDM (for CAR MODEL II) (refer to Fig. 3). Fig. 4a shows an example of
the evolution of position error for the hybrid model, as compared to these best single models (Fig. 4d). In
these figures, we plot the error evolution for the 5% best fitted particles (red/blue/green/purple) and all
selected particles (light green). Comparing these figures, we observe that the hybrid model has lower
errors in general than a single model and shows a stable trend over time. Table 2 presents the Root Mean
Square Error (RMSE) outcomes corresponding to Figure 4, affirming the superior performance of the
hybrid model over the individual best-performing model.

Further, we compare its training results against those of individual models that are stochastically learned
with the incorporation of only one CF model in the learning process. The evaluation metrics consist of
two types: (1) absolute errors and (2) distribution-wise similarity. Specifically, (1) comprises errors in
average position, average speed, and average acceleration. More importantly, (2) is measured using the
goodness-of-fit metrics, Wasserstein (WS) Distance, 0.15-WS Distance (f = 0.15), and minimum
distance, specially designed in this study. In principle, these distances measure the deviations between the
state portfolios generated based on accepted particles and the corresponding observed ones, using
different constraints and weights on the position, speed, and acceleration. Detailed numerical results of
these three cross-validation trials are included in Appendix Tables 4-6 in Appendix 2. Here, we focus on
the general performance trend for each model across the six metrics. To address the scale inconsistency
across the metrics, a linear normalization step is taken. Fig. 5 visually presents the results for the NGSIM
dataset through a series of hexagonal-based diagrams. Within each hexagon, the aforementioned six
metrics are positioned as six vertices, constrained within the normalized range of 0 to 1. A larger shaded
area signifies a higher level of performance. The results reveal that among the single models, the GFM
model performs the best in general, but not in all metrics, and clear deficiency is notable. The hybrid
model exhibits the largest shaded (blue) area when compared to other single models, showcasing superior
performance across all metrics. This highlights the hybrid model can better capture HDV CF behavior
considering stochasticity than other conventional CF models.
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Fig. 3 Training results. a Hybrid model distribution — NGSIM. b Hybrid model distribution - CAR
MODEL I. ¢ Hybrid model distribution — CAR MODEL II. d Heatmap of pairwise model selection
probabilities — NGSIM. e Heatmap of pairwise model selection probabilities — CAR MODEL I. f
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380  Heatmap of pairwise model selection probabilities — CAR MODEL II. The selected number of particles in
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384  Fig. 4 Goodness of fit evaluation results. a Hybrid model position error evolution — NGSIM (#27). b
385  Hybrid model position error evolution — CAR MODEL I (#1). ¢ Hybrid model position error evolution —
386 CAR MODEL II (#8). d Single model position error evolution (GFM) — NGSIM (#27). e Single model
387  position error evolution (HL, IDM) — CAR MODEL I (#1). f Single model position error evolution (HL,
388 IDM) - CAR MODEL II (#8). Note: the numbers in parentheses indicate a specific sampled state

389  portfolio in the testing set.

390
391 Table 2 RMSE outcomes for hybrid model and best single model
392 Dataset Model 5% best fitted particles (RMSE)  All particles (RMSE)
393 NGSIM Hybrid Model 10.05 16.82
394 GFM 11.98 31.75
395 CAR Hybrid Model 1.33 1.58

MODELI HL 1.40 2.15
396

CAR Hybrid Model 2.20 3.35

397

MODEL I IDM 2.50 5.37
398
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Fig. 5 Hexagonal based Multiple Metric Performance Evaluation for HDV.
4.3. Learning results for AVs

Here we turn our attention to learning AV CF behavior from the CAR MODEL I dataset. The results in
Fig. 3b show that two AV controllers, LLCS and MPC, are not selected in the hybrid model. Of the
remaining models, HL has the largest share of the distribution at 47.19%, and IDM (a HDV CF model)
also takes up a sizable share at 30.83%. The lack of dominance by HL suggests that the CF control
algorithm of the AV in this dataset is similar to, but not necessarily the same as, HL. Given the limited
controller information available, there exists the possibility of missing the actual CF controller for CAR
MODEL I. Therefore, selecting HL (deterministically) to approximate the behavior of the AV can give us
erroneous insights. The hybrid model, however, fills this gap by identifying a set of models that can
together approximate the AV behavior in the absence of controller knowledge. The heatmap in Fig. 3e
further corroborates the findings in Fig. 3b that the two models (HL and IDM) show strong preference
over the other models, but HL shows mild preference over IDM. Figs. 4b & 4e depict an example of the
deviation evolution between the observed and learned position. The position generated by the hybrid
model’s top 5% of the best fitted particles exhibits better accuracy, as the position errors display a more
centralized trend to zero compared to the best single model (HL).

The learning results from the CAR MODEL II dataset, shown in Fig. 3¢, also show split preference with
no clear dominance, particularly between IDM and HL, with IDM accounting for the largest proportion.
This suggests a great possibility that the true controller of CAR MODEL Il might not be included in the
CF candidate pool. When comparing the training results with CAR MODEL I, the composition of the
hybrid model is similar, except for the exclusion of OVM. The corresponding heatmap in Fig. 3f also
displays high similarity with Fig. 3e. The evaluation results in Figs. 4c and 4f also demonstrate
comparable error ranges with the CAR MODEL I dataset. However, we observe that the CF behavior may
not be well approximated by a single IDM due to its larger error than the hybrid model. Therefore, when
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true controller is absent, the hybrid model obtained by concatenation can generate a more accurate CF
behavior description.

Fig. 6 illustrates the general performances across the six metrics for each model and the hybrid model for
two AV datasets. The results are weighted by the sample size (i.e., number of state portfolios) in each
dataset. The hybrid model demonstrates the best overall performance, though some exceptions in certain
metrics are observed (e.g., average acceleration). Among the single models, HL shows the best overall
performance. The results demonstrate the effectiveness of the hybrid model for capturing the behavior of
AVs, particularly when the controller information is unavailable.
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Fig. 6 Hexagonal based Multiple Metric Performance Evaluation for AV.
5. Conclusion and Discussion

Learning the real-world CF behavior has been challenging due to inherent stochasticity and nonlinearity
that arise from driver heterogeneity. Traditional approaches that rely on a single (deterministic) model
often fail to capture these characteristics sufficiently, leaving room for persisting debates about the best
CF model. The proposed hybrid model based on stochastic learning of ABC addresses these challenges
by integrating different CF models in a systematic and stochastic fashion. The evaluation of the proposed
framework using two different datasets demonstrated the ability to learn the CF behavior while
accounting for stochasticity, outperforming traditional CF models. In addition, when the actual CF model
or controller is absent from the candidate pool, the hybrid model is still able to replicate the CF behavior
by probabilistically concatenating several models.

The proposed framework is generalizable in the sense that it is highly adaptable to various datasets and
different CF model pools. This has several important implications and contributions for traffic modelling
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and can enhance realism in simulations. First, its ability to systematically draw from multiple models can
be particularly useful in traffic simulations, where generating traffic flow mimicking the real-world traffic
is of high priority. Further, it is able to provide more accurate representation of a range of possible CF
behavior through estimated posterior distributions. Thirdly, hybrid model renders more flexibility in
describing inter-vehicle heterogeneity by not constrained to a single model. Therefore, our stochastic
approach addresses the gap between simulated and real following behavior to a certain degree.

Beyond its immediate application in stochastic learning of CF behavior, our approach can be applied to
various learning problems in traffic contexts, such as learning of lane changing and merging behavior,
and AV behavior under diverse traffic scenarios (Feng et al., 2021), where high degrees of non-linearity
and stochasticity in behavior are expected. However, it should be noted that the learning performance of
our method depends on the data quality as with any data-driven approaches. If the CF model pool does
not include the true CF (control) model or similar models, the hybrid model would lack interpretability as
well as ability to replicate the observed behavior. Future research is needed to design a good pool of
candidate models in the event that the true model is unknown. For example, preliminary learning may be
conducted to identify the most promising model family. Furthermore, we acknowledge trade-offs in
setting the weights for the error terms in our framework. Obtaining the optimal combination of these
weights presents a considerable challenge. However, to enhance the robustness and adaptability of this
methodology across diverse traffic conditions, it is imperative to incorporate a more systematic approach
in the future.
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Appendix

Appendix 1: Notations and Formulas for CF Models and Controllers

Table A1l shows the corresponding variable and parameter notations of CF models and controllers in the
candidate pool as described in Section 3 of the main manuscript.

Table A2 and Table A3 present the detailed formulations of CF models and controllers, respectively.
They employ the variables and parameters defined in Table A1l. Specifically, for traditional HDV CF
models, acceleration is formulated combining with a predefined desired speed or spacing policy. For AV
controllers, the system updates itself using the state-space formulation. Therefore, aside from the desired
spacing policy, the system state is also defined.
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Appendix Table 1 Variable and parameter notations of CF models and controllers

HDV Model Notations Description

pi(t) Position of vehicle i at time ¢

Li_4 Length of vehicle i — 1

v;(t) Speed of vehicle i at time ¢

s;(t) Gap between vehicle i and i — 1 at time t

v; (s5:(0) Optimal velocity of vehicle i in OVM and GFM
Av;(t) Speed difference, can be v;_4 (t) — v;(t) or v;(t) — v;_1(t) depended on model
V(si(t)) Optimal velocity of vehicle i in FVDM

s*(t) Desired spacing in IDM

CAYV Controller Notations Description

x;(t) System state of vehicle i at time t

u; (t) System input of vehicle i at time ¢, can be viewed as acceleration
Xit Discretized system state of vehicle i at time ¢
Ut Discretized system input of vehicle i at time ¢t
si (@) Desired spacing

T; Desired time headway

l; Minimum standstill spacing

s:(t) Actual spacing

As;(t) Deviation from the desired spacing

Av;(t) Relative speed

ki Discretized feedback gains

ksi' kvi: kai
Agi, Bai, Da;

Feedback gains for deviation from the desired spacing, relative speed, and acceleration

Discretized system weight matrices

a;_1(t) Acceleration of vehicle i — 1 (leading vehicle)
ts Control frequency (interval)
So A fixed positive value for desired spacing
TT; Actuation lag for vehicle i to realize the acceleration
] Optimal objective function
Q; Control efficiency function
R; Comfort and fuel consumption function
Qi min Lower bound of acceleration
i max Upper bound of acceleration
Appendix Table 2 Formulations of CF models and controllers
HDYV Model Desired Speed/Spacing Acceleration Formulation
OVM v{ (5:(8)) = v1 + vy[tanh(c; * (5;(1)) — ¢3] %(t) = k[v}(s:(£)) — vi(1)]
where s;(t) = p;-1(t) — pi(t) — Li—y
GFM Same as OVM (1) = K[v; (si(®) — vi(®)] + 20 (—Av)Av
where 0 = {3’ __AA1177><%’
Av =v;_4(8) —vi(t)
i®)—-Li- dv; 1
FVDM V(si(©)) = Vy + Votanh [s(tl)lTl - [3] d—vt(t) == [V(si(®)) —v(D] + 24v
si(t) = pi—1(8) —p:i(0)
IDM * _ v()Av(t) dv; 10) S5 s*(6) 2
t)=so+v(t)*T +—— Wiy = — (i) (s
s*(t) = so +v(t) * Vb - (t)—a[l (vmx) (S(t)) ]

where Av(t) = v;(t) — v;_1(t)
si(t) = pi—1(8) — pi(©)
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491 Appendix Table 3 Formulations of CF controllers

AV Desired System State State-Space Formulation
Controller Spacing Policy
LLCTG si(t) x;(£) = [Asy (1), Avy(D)]" Xipe1 = AaiXie + Bailie + Dai@i—1 ¢
=v;(t) x 1} where (1t _(—teTi* —tSZ/Z)
+1; Bsi(t) = s,(t) = 57 (0), where A = (g 7). Bac= (T %),
Av;(t) = vi1 (t) = vi() D = (ts + tE/Z)
kgi = [ksi' kvi]T a ts
U = KaiXie
LLCS si(®) = s Same as LL Xiep1 = AqiXie + Bailie + Dgi@i_q ¢
2
1t _E
where A4; = (O f),Bdi = (—ti)‘
2
b= (17
ts
U = KaiXie
HL si (£) xi(t) = Xips1 = AqiXie + Baillie + Dai@i—1¢
=v ) x 17 [As(t), Avi(t), a; (D], where
+1; . 1 Ay =
‘ al(t) = _ﬁai(t) & s
t 1 /1 te TT(t;" —TT)(e m_l t TTL\‘
+ —u;(t)
r T | 0 1 TT; (e_T_;i - 1) |
kai = [ksi, kvi, kail \ /
ts
0 e TTI.

—TT;(z;* TT)(e TT1+——1

By = ( TT, (1 - e_”l) —t, )

N |u,~

s

1 e TT
&
Ddi - ts
0
MPC si(t) x;(t) same as HL Xipr1 = AgiXie + Baiiy + Dgia;_1 ¢
= Ui(t) X Ti* min] = (Xi't)T . Qi "Xt + Ri . 1 —T* it —t. — g
+h (1) Aai = (0 1) Bai = ( e 2>’
s.t. 2 *
Aimin = ul(t) < A max Dgi = (ts + 7)
oo ts
where Q; = [0 a],R,- >0
492
493  Appendix 2: Supplementary learning results
494 1. Sensitivity Analysis of the Number of Selected Particles

495  Appendix Fig. 1 illustrates the learned hybrid model distributions with varying numbers of selected
496  particles, as obtained from the NGSIM dataset. In comparison with Fig. 3a in the main manuscript, the
497  learning results are relatively robust against the number of particles being selected.
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Appendix Fig. 1. Hybrid model distribution — NGSIM. a The selected number of particles (N) = 10. b
The selected number of particles (N) = 15.

Similarly, the hybrid model distribution trained by CAR MODEL I is shown in Appendix Fig. 2. Compared
with Fig. 3b in the main manuscript, the overall composition of the hybrid model remains consistent.
However, with an increase in the number of particles being selected for each state portfolio, a quite small
proportion of LLCTG is also included.

a b

LLCTG
0.15%

e

CAR MODEL I
N=10

LLCTG
020%

W

CAR MODEL |
N=15

Appendix Fig. 2. Hybrid model distribution - CAR MODEL I. a The selected number of particles (N)
=10. b The selected number of particles (N) = 15.

Appendix Fig. 3 shows the hybrid model distribution for CAR MODEL II. Same conclusion can be
drawn that hybrid model distribution is relatively stable with the changing of selected particle numbers
for each state portfolio.

a

-

CARMODEL!I ek CAR MODEL Il
N=10 5510% N=I5

Appendix Fig. 3. Hybrid model distribution — CAR MODEL II. a The selected number of particles (N)
=10. b The selected number of particles (N) = 15.
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515 2. Errors and stochastic solution distances

516  We bold the minimum value in each column to indicate the model with the optimal performance for each
517  metric.

518 Appendix Table 4 Errors and stochastic solution distances: single model vs. hybrid model for
519 NGSIM dataset
Average Average Average WS
Model  position speed error  acceleration Minimum  0.158-WS  gstance
error (m)  (m/s) error (m/s?) distance distance
OoVvM 25.532 2.923 1.520 12.041 12.074 14.168
GFM 14.703 2.050 1.287 6.498 6.789 8.477
FVDM  25.308 2.137 1.232 13.309 13.335 13.831
IDM 30.553 3.051 1.470 14.261 14.328 16.215
LLCTG 23.386 2.367 1.468 11.908 11.934 12.330
LLCS 35.649 2.857 1.501 19.197 19.209 19.299
HL 17.100 1.989 1.237 10.113 10.153 10.664
MPC 24218 2.520 1.437 13.030 13.050 13.266
Hybrid 9.575 1.763 1.180 4.088 4.219 5.809
520
521 Appendix Table S Errors and stochastic solution distances: single model vs. hybrid model for CAR
522 MODEL I
Average Average Average .
Model  position speed error  acceleration Minimum  0.158-WS  gjs¢ance
error (m)  (m/s) error (m/s?) distance distance
OoVvM 3.287 0.637 1.838 1.662 1.678 2.217
GFM 3.293 0.550 1.813 1.788 1.791 1.807
FVDM  2.194 0.564 1.794 1.465 1.476 1.638
IDM 2.001 0.429 1.789 1.352 1.360 1.524
LLCTG 1.897 0.511 1.790 1.383 1.389 1.463
LLCS 3.644 0.686 1.817 2.413 2.419 2.531
HL 1.940 0.511 1.783 1.316 1.332 1.493
MPC 2.004 0.537 1.797 1.440 1.441 1.530
Hybrid  1.839 0.503 1.785 1.269 1.286 1.436
523
524 Appendix Table 6 Errors and stochastic solution distances: single model vs. hybrid model for CAR
525 MODEL II
Average Average Average WS
Model  Pposition speed error  acceleration 0.15-WS  Minimum  giseapce
error m)  (m/s) error (m/s?) distance distance
OovM 4.145 0.716 0.903 1.940 2.098 3.790
GFM 4.764 1.250 0.879 1.251 1.656 2.736
FVDM 3475 0.443 0.805 1.750 1.783 2.041
IDM 2.826 0.310 0.802 1.218 1.299 1.676
LLCTG 2.834 0.572 0.817 2.040 2.048 2.163
LLCS 11.154 0.772 0.856 6.098 6.107 6.163
HL 2.357 0.332 0.802 1.180 1.367 1.453
MPC 3.804 0.577 0.824 2.066 2.073 2.258
Hybrid 2.308 0.305 0.805 1.079 1.154 1.738
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