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Abstract 15 

Car following (CF) models are fundamental to describing traffic dynamics. However, the CF behavior of 16 
human drivers is highly stochastic and nonlinear. As a result, identifying the “best” CF model has been 17 
challenging and controversial despite decades of research. Introduction of automated vehicles has further 18 
complicated this matter as their CF controllers remain proprietary, though their behavior appears different 19 
than human drivers. This paper develops a stochastic learning approach to integrate multiple CF models, 20 
rather than relying on a single model. The framework is based on approximate Bayesian computation that 21 
probabilistically concatenates a pool of CF models based on their relative likelihood of describing 22 
observed behavior. The approach, while data-driven, retains physical tractability and interpretability. 23 
Evaluation results using two datasets show that the proposed approach can better reproduce vehicle 24 
trajectories for both human-driven and automated vehicles than any single CF model considered.  25 
 26 
Keywords: Car following, Stochastic calibration, Approximation Bayesian computation, Hybrid model, 27 
Model selection  28 
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1. Introduction 29 

Car-following (CF) behavior describes how one vehicle follows its nearest preceding vehicle. This 30 
fundamental driving behavior is deeply linked to system-level behavior such as traffic dynamics (i.e., 31 
spatial-temporal evolution of traffic) and has important implications for traffic safety, energy 32 
consumption, and emissions. A CF model for human driven vehicles (HDV) was first introduced by 33 
Pipe(Pipes, 1953) in the 1950s. Today a wealth of CF models exists in the literature, including stimulus-34 
response type models(Gazis et al., 1959; Herman et al., 1959), Newell’s simplified CF model(Newell, 35 
1961) and its extensions(Chen et al., 2014; Laval & Leclercq, 2010), statistical physics-based models 36 
such as optimal velocity model (OVM)(Bando et al., 1995) and intelligent driver’s model (IDM)(Kesting 37 
et al., 2010), and psycho physics based models such as Wiedemann model(Wiedemann, 1974). Notably, 38 
some of these models have been incorporated in various commercial microsimulations. For a detailed 39 
review of CF models, see Saifuzzaman & Zheng(2014).  40 

A plethora of CF models gave rise to persistent debates about which model best describes the real-world 41 
CF behavior. These debates continue today despite the nearly 70 years of history. These debates stem 42 
from the complexity of CF behavior, which is intrinsically nonlinear, heterogeneous, and stochastic. It has 43 
been challenging to replicate observed data with a single CF model, given that most existing CF models 44 
have deterministic formulations. Some exceptions exist to address the complexity in CF behavior through 45 
(1) probabilistic distributions of CF model parameters(Higgs & Abbas, 2015; Kerner, 2004; Treiber et al., 46 
2010) and (2) multi-regime CF models according to traffic conditions(Kerner, 2004; Kidando et al., 2020; 47 
Treiber et al., 2010). The former approach, however, is typically parametric, requiring an assumption of a 48 
theoretical distribution. This can lead to bias when there is a discrepancy between the assumed and true 49 
distributions. For the latter approach, different CF models are considered for different traffic conditions. 50 
These frameworks, however, are deterministic and consider a relatively narrow selection of CF models 51 
(e.g., 3-4 models). Some data-driven methods such as clustering(Higgs & Abbas, 2014) and 52 
regression(Papathanasopoulou & Antoniou, 2015) are considered to characterize stochasticity; however, 53 
they provide little physical interpretation. 54 

The emergence of automated vehicles (AVs) brings another level of complexity to traffic flow systems. In 55 
academic literature, AV CF control algorithms have been predominantly developed based on the 56 
principles of control theory (e.g., linear feedback(Makridis et al., 2021; Zhou et al., 2019), model 57 
predictive control (MPC)(Shi & Li, 2021 , Zhou et al., 2020), or artificial intelligence(Shi et al., 2021), 58 
distinct from the mathematical and physical approaches of the CF models of HDVs. Thus, the AV CF 59 
behavior could be different from the HDV behavior. Further, similar to HDVs, AV CF can be affected by 60 
actuation delay, uncertain vehicle dynamics, road conditions, and traffic conditions, leading to highly 61 
stochastic behavior. Finally, AVs manufactured by different car companies are available on the market 62 
today. Their control algorithms are likely different, yet unknown to the public, which hinders our ability 63 
to characterize the CF behavior of AVs.  64 

To better understand the CF behavior of AVs, several field experiments involving vehicles with adaptive 65 
cruise control (ACC) have been conducted(Li et al., 2022; Makridis et al., 2021; Shi & Li, 2021). The 66 
data from these experiments have been used by several studies to model and replicate the AV CF 67 
behavior, with two different approaches: (1) model-based and (2) data-driven. In the model-based 68 
approach, a CF model is assumed, and its parameters (and their distributions) are learned from 69 
observations. This approach readily offers physical interpretations of the behavior but suffers from 70 
potential model mismatch where the true model is different from the assumed model caused by 71 
unmodelled components. Further, efforts to capture stochasticity in CF behavior through estimating 72 
parameter distributions typically involve an assumption of distribution(Rahman et al., 2015). Thus, a 73 
mismatch in CF model and/or the parameter distributions can compromise the learning results and the 74 
descriptive power of the assumed CF model. In addition, learning the stochastic behavior with non-75 
analytical CF model (e.g., MPC) is computationally demanding, and thus an efficient tool is necessary. In 76 
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contrast, data-driven methods, such as neural network (NN) based methods(Hornik et al., 1989, 1990), are 77 
capable of describing any type of nonlinear functions given sufficient neurons and layers. However, the 78 
black-box nature of these methods hinders direct physical interpretation. Further, the learned NN is 79 
limited by the training dataset, and thus, it may not effectively handle corner cases not represented in the 80 
training data.  81 

The review above reveals the persistent challenges to address highly nonlinear and stochastic nature of 82 
CF behavior that has been further complicated by the arrival of AVs. The CF uncertainties could stem 83 
from multiple sources such as intra-driver and inter-driver heterogeneity, uncertain vehicle dynamics, and 84 
uncertain road conditions. To fill this major gap, this paper presents a comprehensive framework that 85 
systematically considers a pool of CF models and various uncertainties and stochasticity. Specifically, the 86 
proposed framework generates a hybrid CF model that represents the probabilistic concatenation of a pool 87 
of CF models based on their abilities to reproduce the real behavior measured from sensors. The general 88 
framework is illustrated in Fig. 1. The core method of the framework is approximate Bayesian 89 
computation (ABC), a computational method to approximate the posterior model parameter distributions 90 
through simulations without assuming a specific likelihood function (Toni et al., 2009). ABC has been 91 
originally used in population genetics(Beaumont et al., 2002; Tavaré et al., 1997), but has also been 92 
widely applied in biology(Liepe et al., 2014) and ecology(DiNapoli et al., 2021). Our recent study, Zhou 93 
et al. (2022), developed a methodology based on ABC to calibrate a single CF model or controller in a 94 
stochastic fashion. This approach serves as a foundation for the present work that probabilistically 95 
compares across different CF models and generates a stochastic hybrid model.  96 

In our framework, particles (i.e., sets of model parameter values) for each CF model are randomly 97 
generated in large quantity from an assumed prior joint distribution in an independent fashion. When only 98 
a single CF model is considered, all accepted particles from the model can be used to construct the 99 
posterior distribution of the model parameters. In contrast, when multiple CF models are considered, 100 
particles are evaluated based on the universal distance function (across CF models) that measures the 101 
discrepancy between simulated vehicle trajectories based on the particles and real trajectories. A universal 102 
threshold for the distance is then applied to accept only the particles that generate trajectories within the 103 
acceptable distance. Accordingly, the relative share of accepted particles represents the relative likelihood 104 
of the model describing the observed behavior. Then the accepted particles are used to approximate the 105 
posterior distribution of the hybrid CF model in a Bayesian fashion by concatenating the models 106 
according to the relative likelihoods. Thus, the learned hybrid CF model enhances the capability of 107 
describing nonlinear CF behavior while preserving the physical meaning of each CF model.  108 

Note that the proposed framework is stochastic and hybrid, designed to provide a richer understanding of 109 
CF behavior while improving learning accuracy. It is stochastic in the senses that (1) it estimates the joint 110 
distributions of CF model parameters; and (2) it considers the relative likelihood of each CF model fitting 111 
the observed behavior. It is hybrid in the senses that (1) it concatenates various CF models, rather than 112 
relying on a single best-fitting model, as previously done, according to the relative likelihood; and (2) it 113 
deploys a data-driven method to estimate the joint distributions of physics-based CF models, thereby 114 
retaining physical interpretability while improving learning accuracy. The hybrid model is particularly 115 
useful in determining which control algorithm is most likely adopted for an AV and approximating its 116 
behavior in the absence of the controller knowledge. Our method is verified through a series of 117 
evaluations using synthetic and real data. The hybrid model is shown to significantly outperform any 118 
single model or deterministic models in reproducing vehicle trajectories. 119 
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 120 
Fig. 1 Scheme of the CF behavior learning framework. 121 

2.  Methodology 122 

2.1. General stochastic CF learning problem 123 

A general form of CF learning problem can be described as below: 124 

 125 
min
𝜽⃗⃗ 
𝑔(𝕪𝑓 − 𝕪̂𝑓) (1a) 

s.t.  
                 𝕪̂𝑓 = 𝑓(𝕪𝑙; 𝜽⃗⃗ ), (1b) 

where 𝕪𝑓 is a set of observed ground-truth state portfolios of the following vehicles, 𝕪𝑓 =126 
{𝒀⃗⃗ 𝑓,1,𝑜𝑏𝑠, 𝒀⃗⃗ 𝑓,2,𝑜𝑏𝑠 … , 𝒀⃗⃗ 𝑓,𝐼,𝑜𝑏𝑠}; we define the state portfolio for vehicle 𝑖 = 1,2, … , 𝐼, denoted by 𝒀⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠 =127 

[𝒑⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠, 𝒗⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠, 𝒂⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠 ]
T, to represent a vector of observed position, speed, and acceleration profiles 128 

over time. Similarly, we denote the set of simulated state portfolios for the following vehicles by 𝕪̂𝑓 =129 
{𝒀⃗⃗ 𝑓,𝑖,𝑠𝑖𝑚}𝑖=1,2,…,𝐼 . Here, we extend the operation “−” for the state portfolios set to define 𝑔(∙) as a 130 
predefined error (distance) function, measuring the deviation between the observed and learned state 131 
portfolios. Here Eq. (1a) is the objective function to measure the goodness of fit. In particular, the CF 132 
model, denoted by 𝑓(𝕪𝑙; 𝜽⃗⃗ ), is parameterized on vector 𝜽⃗⃗ , given the leading vehicle’s state portfolios 𝕪𝑙 133 
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= {𝒀⃗⃗ 𝑙,𝑖,𝑜𝑏𝑠}𝑖=1,2,…,𝐼. According to Eq. (1a) and Eq. (1b), the error function, CF model, and observed state 134 
portfolios are three critical components for model learning.  135 

For stochastic extension, we introduce uncertainty to parameter 𝜽⃗⃗ . In particular, we revise the CF model 136 
into 𝑓(𝕪𝑙; 𝜋(𝜽⃗⃗ )), where 𝜋(𝜽⃗⃗ ) indicates a sampled 𝜽⃗⃗  from a given random distribution 𝜋. Therefore, 137 
instead of finding the best 𝜽⃗⃗  value in deterministic CF models, the decision variable for stochastic CF 138 
model learning is the whole distribution 𝜋(𝜽⃗⃗ ). In addition, to explicitly reflect the variation of CF model 139 
forms, e.g., IDM or MPC, we denote 𝑀 to be the index set of all CF models, and 𝑓(𝕪𝑙; 𝜋(𝜽⃗⃗ ),𝑚) to be one 140 
specific CF model 𝑚 ∈ 𝑀. In our context, we further consider a hybrid stochastic CF model learning 141 
problem. In particular, stochasticity comes from not only the parameter 𝜽⃗⃗  but also the form of the CF 142 
model. We denote such a hybrid stochastic CF model by 𝑓 (𝕪𝑙; 𝜋(𝜽⃗⃗ ,𝑚)) to show the model and 143 
parameters can be random at the same time.  144 

Unlike the previous studies that rely on a single model, the hybrid stochastic CF model makes use of 145 
multiple CF models, providing rich model function representability. Further, the ABC-based model 146 
selection framework offers flexibility and interpretability. 147 

2.2. Approximate Bayesian computation mechanism 148 

We adopt the ABC-based learning of CF model parameters presented in our previous paper(Zhou et al., 149 
2022) as summarized below. The main focus of Bayesian inference is to obtain the posterior distribution 150 
when given observations and the prior distribution of parameters, written as: 151 
 152 

𝜋(𝜽⃗⃗ |𝒀⃗⃗ 𝑜𝑏𝑠) =
𝑙(𝒀⃗⃗ 𝑜𝑏𝑠|𝜽⃗⃗ )𝜋(𝜽⃗⃗ )

𝒀⃗⃗ 𝑜𝑏𝑠
,   

(2) 

                                                              153 

where 𝜋(𝜽⃗⃗ ) represents the prior distribution of parameters, 𝑙(𝒀⃗⃗ 𝑜𝑏𝑠|𝜽⃗⃗ ) represents the likelihood of 𝜽⃗⃗  given 154 
the observed state portfolio data 𝒀⃗⃗ 𝑜𝑏𝑠, and 𝜋(𝜽⃗⃗ |𝒀⃗⃗ 𝑜𝑏𝑠) is the posterior distribution.  155 

Although the prior distribution of CF model parameters can be given or assumed, Eq. (2) often presents a 156 
challenge as the likelihood function 𝑙(𝒀⃗⃗ 𝑜𝑏𝑠|𝜽⃗⃗ ) is often not accessible. In such cases, it becomes 157 
imperative to explore an alternative technique to circumvent the requirement of the likelihood function 158 
and empirically approximate the posterior distribution using the available prior distribution and observed 159 
data. To achieve this, ABC, relying on large-scale simulation, is applied here (Toni et al., 2009). Rather 160 
than deriving the likelihood based on specific assumptions (Hinsbergen et., 2009; Abodo et al., 2019), 161 
ABC approximates it through simulations, without necessitating a predefined function form of prior 162 
distribution or liklihood. Such likelihood-function-free structure renders ABC a powerful tool to learn 163 
complicated even non-analytical CF models such as model predictive control.  164 

A simple but important ABC approach is the ABC rejection sampling (ABC-RS) (Beaumont et al., 2002). 165 
It repeats the following simulation process: (1) randomly sample a parameter vector 𝜽⃗⃗ ∗, called a particle, 166 
from a given prior distribution 𝜋(𝜽⃗⃗ ); (2) plug 𝜽⃗⃗ ∗ into the CF model 𝑓(𝕪𝑙; 𝜽⃗⃗ ∗) to simulate state portfolios 167 
𝕪̂𝑓∗ ; (3) compare the simulated data against the real observation using a pre-defined distance function 168 
𝑔(𝕪𝑓 − 𝕪̂𝑓∗ ) and accept the particle 𝜽⃗⃗ ∗ if the distance is smaller than a certain threshold. Such distance is 169 
called the score of the particle. Lowering the threshold value typically necessitates an increase in the 170 
number of simulations and a decrease in the acceptance rate (Zhou et al., 2022). A large number of 171 
simulations are typically needed (e.g., 1 million times) to obtain a sufficient number of accepted particles. 172 
Finally, the posterior joint distribution is estimated using the 𝑁 accepted particles, written as: 173 
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𝜋(𝜽⃗⃗  ∗|𝒀⃗⃗ 𝑜𝑏𝑠) ≈ ⋃ 𝜽⃗⃗ 𝑛,𝑠𝑒𝑙𝑒𝑐𝑡∗𝑁
𝑛=1   (3) 

 174 

where 𝜽⃗⃗ 𝑛,𝑠𝑒𝑙𝑒𝑐𝑡∗ , 𝑛 = 1,2, … ,𝑁 is an accepted particle. Without loss of generality, we assume the particles 175 
selected are sorted in ascending order based on their score, and the index 𝑛 indicates the order. The 176 
central idea of ABC is that the particles that reproduce state portfolios close to the real observation should 177 
also have good proximity to the learned posterior distribution.  178 

Regarding the distance function 𝑔 in Eq. (1a), multiple measures are applied to assess the learning 179 
accuracy, such as the sum of squared errors(Toni et al., 2009) and Euclidean distance(DiNapoli et al., 180 
2021). Here, we design our own distance function. We first define the deviations (errors) of vehicle 181 
position, (𝑒𝑝,𝜽⃗⃗ ∗), velocity (𝑒𝑣,𝜽⃗⃗ ∗), and acceleration (𝑒𝑎,𝜽⃗⃗ ∗): 182 

       183 
𝑒𝑝,𝜽⃗⃗ ∗ =

1
 𝐼
∑ ‖𝒑⃗⃗ 𝑓,𝑖,𝑠𝑖𝑚 − 𝒑⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠‖,𝐼
𝑖=1   (4a) 

𝑒𝑣,𝜽⃗⃗ ∗ =
1
 𝐼
∑ ‖𝒗⃗⃗ 𝑓,𝑖,𝑠𝑖𝑚 − 𝒗⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠‖𝐼
𝑖=1 ,  (4b) 

𝑒𝑎,𝜽⃗⃗ ∗ =
1
 𝐼
∑ ‖𝒂⃗⃗ 𝑓,𝑖,𝑠𝑖𝑚 − 𝒂⃗⃗ 𝑓,𝑖,𝑜𝑏𝑠‖,𝐼
𝑖=1   (4c) 

  184 
where 𝐼 is the total number all CF pairs chosen for learning. Then the distance function or the score of 185 
particle 𝜽⃗⃗  ∗, denoted by 𝑔𝜽⃗⃗ ∗, can be defined as the weighted sum of the error: 186 
 187 

𝑔𝜽⃗⃗ ∗ = 𝛼1𝑒𝑝,𝜽⃗⃗ ∗ + 𝛼2𝑒𝑣,𝜽⃗⃗ ∗ + 𝛼3𝑒𝑎,𝜽⃗⃗ ∗ . (5) 
 188 

The weights assigned to each error term, denoted as 𝛼1, 𝛼2, and 𝛼3, range from 0 to 1, with the constraint 189 
that 𝛼1 + 𝛼2 + 𝛼3 = 1. Given that position data typically exhibit greater reliability within state portfolios 190 
compared to speed and acceleration data, we establish a representative example and default values for 191 
these weights. Specifically, we set 𝛼1 = 0.5, 𝛼2 = 0.3, and 𝛼3 = 0.2  after tuning, reflecting the relative 192 
importance attributed to each error term in the model.  193 

In practice, when 𝐼 is a large number and the simulation of 𝑓(𝕪𝑙; 𝜽⃗⃗ ) is time-consuming (e.g., MPC), the 194 
evaluation of 𝑔𝜽⃗⃗ ∗ can be slow. To speed up, we can estimate  𝑒𝑝,𝜽⃗⃗ ∗, 𝑒𝑣,𝜽⃗⃗ ∗, 𝑒𝑎,𝜽⃗⃗ ∗  and 𝑔𝜽⃗⃗ ∗ by randomly 195 
sampling one CF pair 𝑖∗, e.g., 𝑒𝑝,𝜽⃗⃗ ∗

∗ = ‖𝒑⃗⃗ 𝑓,𝑖∗,𝑠𝑖𝑚 − 𝒑⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖, denoted by  𝑔𝜽⃗⃗ ∗
∗ . This down sampling 196 

process can be considered as the simulation uncertainty. Note that since 𝑔𝜽⃗⃗ ∗
∗  is randomly evaluated, pair 197 

selection 𝑖∗ can potentially dominate the impact of particle 𝜽⃗⃗ ∗. To avoid such an over-representing issue, 198 
we select particles based on their corresponding CF pairs, i.e., 𝜋(𝜽⃗⃗  ∗|𝒀⃗⃗ 𝑜𝑏𝑠) ≈ ⋃ ⋃ 𝜽⃗⃗ 𝑛𝑖,𝑠𝑒𝑙𝑒𝑐𝑡

∗𝑁𝑖
𝑛𝑖=1

𝐼
𝑖=1 , where 199 

𝑁𝑖 is the number of particles evaluated by CF pair 𝑖. Similarly, without loss of generality, we assume 𝑛𝑖 to 200 
be the order of sorted particles evaluated from each CF pair 𝑖, respectively. 201 

Therefore, the learning result of the stochastic CF model using the ABC method is a distribution 202 
estimated by the optimal particle set  𝚯𝑜𝑝𝑡 = ⋃ ⋃ 𝜽⃗⃗ 𝑛𝑖,𝑠𝑒𝑙𝑒𝑐𝑡

∗𝑁𝑖
𝑛𝑖=1

𝐼
𝑖=1 , i.e., a combination set of all selected 203 

particles. To reproduce the state portfolios using the learned stochastic CF model, one particle is 204 
randomly selected from 𝚯𝑜𝑝𝑡 to capture the uncertain nature of driving behavior.  205 

2.3. Hybrid CF model 206 

The above ABC framework can be adopted for a specific CF model form. Note that the learned result 207 
takes the form of a set of selected particles. Thus, it can be easily extended to incorporate multiple CF 208 
models for learning to enhance its representability. A hybrid model retains a subset of particles across 209 
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models, which can offer a richer understanding of CF behaviors of HDVs and AVs, and more refined 210 
micro-simulation. The detailed steps to obtain hybrid model are described below and shown in Fig. 2. 211 

Step 1: Initialization 212 

Define a set of candidate CF models, indexed by 𝑚 ∈ 𝑀, where both CF controllers for AVs and CF 213 
models for traditional HDVs are included. For each CF model/controller 𝑚, we denote a sampled particle 214 
by 𝜽⃗⃗ 𝑚∗  under the given prior distribution 𝜋𝑚(⋅). The prior distribution set for overall models is Π =215 
{𝜋1(⋅), 𝜋2(⋅),… , 𝜋𝑀(⋅)}.  216 

Step 2: Learning of each model through ABC 217 

We process ABC-RS independently for each model 𝑚. A large number of (e.g., >1 million) particles are 218 
independently sampled for each model. When all learning processes are completed, the optimal selected 219 
particle set for each model is obtained as 𝚯m(𝑁𝑚) = ⋃ ⋃ 𝜽⃗⃗ 𝑚,𝑛𝑖,𝑠𝑒𝑙𝑒𝑐𝑡

∗𝑁𝑚
𝑛𝑖=1

𝐼
𝑖=1 .  220 

Step 3: Model selection 221 

In the literature, model selection is typically performed by the likelihood ratio test combing with Bayesian 222 
methods, where competing models are ranked by the ratio of their posterior probabilities(Vyshemirsky & 223 
Girolami, 2008). However, since marginal likelihoods cannot be evaluated analytically for CF models, 224 
deriving exact posterior distributions is also impossible. Instead, we establish a probabilistic model 225 
selection approach based on the distance function in Eq. (5).  226 

Firstly, all particles from all models are merged and further selected with their corresponding particle 227 
scores: 228 

 229 
𝚯𝑚𝑒𝑟𝑔𝑒 = ⋃ 𝚯m(𝑁)𝑀

𝑚=1 ,   (6) 
 230 
where 𝚯𝑚𝑒𝑟𝑔𝑒 represents the merged particle set. Then we sort the score of particles in 𝚯𝑚𝑒𝑟𝑔𝑒 and select 231 
the best 𝑁𝐴 particles as the learned result, denoted by 𝚯ℎ𝑦𝑏𝑟𝑖𝑑. Note that we need to set 𝑁 ≫ 𝑁𝐴 to 232 
guarantee the over-representing issue is not prominent. Since 𝚯ℎ𝑦𝑏𝑟𝑖𝑑 may contain the particles from any 233 
CF models, we can calculate the percentage of particles selected from certain model to see its impact, 234 
denoted by: 235 

𝛽𝑚 =
1
𝑁𝐴 |

𝚯m ∩ 𝚯ℎ𝑦𝑏𝑟𝑖𝑑|. 
(7) 

 236 

It is intuitive that 𝛽𝑚 is the estimated probability of each model 𝑚 being selected in the hybrid model 237 
based on the estimated posterior distributions.   238 

2.4. Stochastic and deterministic metrics 239 

Given the learned hybrid particles 𝚯ℎ𝑦𝑏𝑟𝑖𝑑, we evaluate the performance of the learned hybrid stochastic 240 
CF model in reproducing CF behaviors. Specifically, we aim to evaluate the distribution-wise goodness-241 
of-fit, in addition to the deterministic assessment based on the particle score.  242 

 243 
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 244 
Fig. 2 General framework of ABC with model selection on CF learning. Inset shows the four main 245 
procedures: a Initialization work including defining CF model candidates and corresponding prior 246 
distribution. b Apply ABC – RS (Beaumont et al., 2002) process for each CF model independently. c 247 
Conduct a probabilistic hybrid model selection based on predefined scores and acquire estimated 248 
posterior distribution. d Evaluate the goodness of fit of learned parameter posterior distributions via 249 
multiple measures.  250 
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To measure the trajectory-level goodness-of-fit in a stochastic fashion, we introduce the Wasserstein 251 
distance (WS). The WS distance is widely used to measure the distance of two probabilistic measures, 252 
achieved through the solution of a linear programming problem pertaining to optimal transport. There are 253 
a few benefits of using WS distance over other distance measures like the Euclidean distance. For 254 
example, it can handle distributions that have heavy tails and is more resistant to outliers. Here, we use 255 
WS distance as a way of measuring the similarity between the observed posterior distributions and the 256 
learned posterior distributions, which can be formulated as: 257 

𝑊(𝕪𝑓, 𝕪𝑙, 𝚯ℎ𝑦𝑏𝑟𝑖𝑑) = inf
{𝛾𝑖∗,𝜽⃗⃗ ∗}

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
 
𝑖∗∈{1,2,…,𝐼},𝜽⃗⃗ ∗∈𝚯ℎ𝑦𝑏𝑟𝑖𝑑

[
𝛼1‖𝒑⃗⃗ 𝑓,𝑖∗,𝑙𝑟𝑛( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒑⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖ +
𝛼2‖𝒗⃗⃗ 𝑓,𝑖∗,𝑙𝑟𝑛( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒗⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖ +
𝛼3‖𝒂⃗⃗ 𝑓,𝑖∗,𝑙𝑟𝑛( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒂⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖    

],   

(8) 

s.t. 258 

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
 
𝜽⃗⃗ ∗∈𝚯ℎ𝑦𝑏𝑟𝑖𝑑

= 1
𝐼
, ∀𝑖∗,  (8a) 

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
𝐼
𝑖∗=1 = 1

|𝚯ℎ𝑦𝑏𝑟𝑖𝑑|
, ∀𝜽⃗⃗ ∗.  (8b) 

where 𝛾𝑖∗,𝜽⃗⃗ ∗ ∈ [0,1] is a joint probability to be determined for each 𝑖∗ and 𝜽⃗⃗ ∗ , whose marginals are 259 
constrained by Eq. (8a) (state portfolio constraint) and Eq. (8b) (particle constraint). We explicitly write 260 
out the state portfolio component simulated by particle 𝜽⃗⃗ ∗ given a leading vehicle 𝑖∗, e.g., vehicle position 261 
as 𝒑⃗⃗ 𝑓,𝑖∗,𝑠𝑖𝑚( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠). 262 

To be more reliable to extreme values, we further refine the WS distance by partially matching the two 263 
distribution and define  𝛽 −Wasserstein (WS) distance as follows: 264 

𝑊𝛽(𝕪𝑓, 𝕪𝑙, 𝚯ℎ𝑦𝑏𝑟𝑖𝑑) = inf
{𝛾𝑖∗,𝜽⃗⃗ ∗}

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
 
𝑖∗∈{1,2,…,𝐼},𝜽⃗⃗ ∗∈𝚯ℎ𝑦𝑏𝑟𝑖𝑑

[
𝛼1‖𝒑⃗⃗ 𝑓,𝑖∗,𝑠𝑖𝑚( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒑⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖ +
𝛼2‖𝒗⃗⃗ 𝑓,𝑖∗,𝑠𝑖𝑚( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒗⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖ +
𝛼3‖𝒂⃗⃗ 𝑓,𝑖∗,𝑠𝑖𝑚( 𝜽⃗⃗ ∗, 𝒀⃗⃗ 𝑙,𝑖∗,𝑜𝑏𝑠) − 𝒂⃗⃗ 𝑓,𝑖∗,𝑜𝑏𝑠‖    

],  

(9) 

where 𝛾𝑖∗,𝜽⃗⃗ ∗ ∈ [0,1] for each 𝑖∗ and 𝜽⃗⃗ ∗ is a coupling with the following two marginal distribution 265 
constraints: 266 

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
 
𝜽⃗⃗ ∗∈𝚯ℎ𝑦𝑏𝑟𝑖𝑑

= 1
𝐼
, ∀𝑖∗,  (9a) 

∑ 𝛾𝑖∗,𝜽⃗⃗ ∗
𝐼
𝑖∗=1 ≥ 𝛽 ∙ 1

|𝚯ℎ𝑦𝑏𝑟𝑖𝑑|
, ∀𝜽⃗⃗ ∗.  (9b) 

Eq. (9a) and Inequality (9b) are state portfolio constraint and particle constraint, respectively, where 𝛽 ∈267 
(0,1) is the percentage of samples selected from each distribution for matching. If 𝛽 is 1, it is the original 268 
WS distance, where all samples of both distributions are considered to calculate the distance. The lower 269 
value of 𝛽 reflects a higher degree of screening out long tails and outliers.  270 

Further, we define the minimum distance by dropping the particle constraint (i.e., Inequality (9b)), i.e., 271 
𝛽 = 0. The minimum distance aims to be more inclusive and measure the goodness-of-fit by selecting the 272 
smallest score for each state portfolio, permitting the possibility of a single particle being chosen multiple 273 
times.   274 
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3. Composition of Hybrid Model 275 

Since considering all CF models and control algorithms is not feasible or insightful, eight models have 276 
been carefully selected, including four well-known HDV CF models and four state-of-the-art AV 277 
controllers. For HDVs, contemporary statistical physics-based models, OVM (Bando et al., 1995) and 278 
IDM(Kesting et al., 2010), are selected. Additionally, two CF models that extend the OVM have also 279 
been included: the Generalized Force Model (GFM) (Helbing & Tilch, 1998) and the Full Velocity 280 
Difference Model (FVDM)(Jiang et al., 2001). Notably, GFM addresses the issue of unrealistic high 281 
acceleration present in OVM, while FVDM considers both positive and negative velocity differences to 282 
describe CF behaviors more comprehensively, especially in cases when the speed of leading vehicle is 283 
faster than that of following vehicle. These models are known for theoretical soundness, good agreement 284 
with real data, and ability to reproduce key traffic features(Saifuzzaman et al., 2015).  Detailed notations 285 
and formulas for the selected HDV CF models can be found in Tables 1-3 in Appendix 1. With regard to 286 
AVs, CF controllers can mainly differ in three aspects: (1) spacing policy (e.g., constant time gap 287 
(CTG)(Swaroop & Hedrick, 1996), constant spacing (CS)(Swaroop & Hedrick, 1996) ); (2) controller 288 
type (e.g., linear(Zhou et al., 2020), MPC(Zhou et al., 2019) ); and (3) approximation of vehicle dynamics 289 
(e.g., second-order(Zhou et al., 2017) or third-order dynamics(Zhou et al., 2020a) ). After thorough 290 
consideration, lower-order linear feedback controller with constant time gap policy (LLCTG)(Swaroop et 291 
al., 1994), lower-order linear feedback controller with constant spacing policy (LLCS)(Swaroop et al., 292 
1994), higher-order  linear (HL)feedback controller(Zhou et al., 2020), and model predictive controller 293 
(MPC)(Zhou et al., 2019) have been selected. More information can be found in Appendix 1. 294 

Notably our ABC-based framework does not require a specific distribution for a CF model parameter, as 295 
the posterior distribution is approximated in a numerical fashion. Thus, we assume a simple, uniform 296 
prior distribution within a reasonable range for each parameter reported in the literature(Bando et al., 297 
1995; Helbing & Tilch, 1998; Jiang et al., 2001; Kesting et al., 2010; Swaroop et al., 1994; Zhou et al., 298 
2019, 2020). The lower bounds and upper bounds of learning parameter sets for all models are included in 299 
Table 1.  300 

  301 



12 
 

Table 1 Parameters and corresponding prior distribution bounds for each model 302 

Parameter Lower bound Upper bound 

OVM 
Sensitive parameter,𝜅 (𝑠𝑒𝑐−1) 0.5 2 
Speed factor, 𝑣1  (𝑚/𝑠) 5 8 
Speed factor, 𝑣2  (𝑚/𝑠) 20 25 
Form factor, 𝑐1(𝑚−1)  0.05 0.2 
Form factor, 𝑐2(𝑚−1) 1.5 1.7 
GFM 
Proportionality factor, 𝐾 0 2 
Sensitivity factor, 𝜆 0 2 
Speed factor, 𝑣1  (𝑚/𝑠) 0 10 
Speed factor, 𝑣2  (𝑚/𝑠) 0 30 
Form factor, 𝑐1(𝑚−1)  0 0.2 
Form factor, 𝑐2(𝑚−1) 1 2 
FVDM 
Relaxation time, 𝜏 (𝑠−1) 600 2000 
Sensitivity parameter, 𝜆 (𝑠) 0 2 
Speed 𝑉1(𝑚/𝑠) 0 40 
Speed 𝑉2(𝑚/𝑠) 0 40 
Interaction length, 𝑙𝑖𝑛𝑡 (𝑚) 0 40 
Unitless parameter, 𝛽 0 40 
IDM 
Desired speed, 𝑣𝑚𝑎𝑥 (𝑚/𝑠) 20 40 
Desired time gap, 𝑇 (𝑠) 0.8 2.5 
Minimum gap (jam distance), 𝑠0 (𝑚) 0.5 3 
Maximum acceleration, 𝑎 (𝑚/𝑠2) 0.5 2 
Desired deceleration, 𝑏 (𝑚/𝑠2) 1 4 
Free acceleration exponent, 𝛿 2 5 
LLCTG 
Desired time gap, 𝜏∗(𝑠) 0.8 1.2 
Spacing deviation feedback gain, 𝑘𝑠 0.3 2.3 
Speed difference feedback gain, 𝑘𝑣 0.3 2.3 
Standstill distance, 𝑙(𝑚) 1 11 
LLCS   
Desired spacing, 𝑠0(𝑚) 5 25 
Spacing deviation feedback gain, 𝑘𝑠 0.3 2.3 
Speed difference feedback gain, 𝑘𝑣 0.3 2.3 
HL 
Desired time gap, 𝜏∗ (𝑠) 0.8 1.2 
Actuation lag, 𝑇𝑇 (𝑠) 0.1 0.5 
Spacing deviation feedback gain, 𝑘𝑠 0.1 2.3 
Speed difference feedback gain, 𝑘𝑣 0.1 2.3 
Acceleration feedback gain, 𝑘𝑎 -3 0 
Standstill distance, 𝑙(m) 3 8 
MPC 
Desired time gap, 𝜏∗ (𝑠) 0.6 1.4 
Comfort and fuel consumption, 𝑅 0.3 1.7 
Control efficiency coefficient, 𝛼 0.3 1.7 
Standstill distance, 𝑙(𝑚) 3 7 
Deceleration limit, 𝑎𝑚𝑖𝑛  (𝑚/𝑠2) -5 -3 
Acceleration limit, 𝑎𝑚𝑎𝑥(𝑚/𝑠2) 3 5 
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4. Experiments and Learning Results 303 

4.1. Data sources 304 

To train the proposed stochastic hybrid model, two datasets have been selected to train the model for 305 
HDVs and AVs. Specifically, the widely used NGSIM dataset has been selected to train the model for 306 
HDVs, while the Massachusetts (MA) Experiment dataset (Li et al., 2022) has been selected to train for 307 
AVs. Note that the MA experimental dataset has been further categorized into two datasets: CAR 308 
MODEL I and CAR MODEL II, representing two different AV controllers. The actual car models are 309 
omitted here to avoid potential conflicts of interest. In each dataset, the movements of leading-following 310 
vehicle pairs are recorded by sensors that measure the vehicle position, speed, and acceleration. 311 

In particular, we focus on trajectory pairs between 4:00 – 4:15 PM on I-80 for NGSIM. After simple data 312 
processing, 150 CF-pairs are randomly selected as our input, each with a 35-second duration. The MA 313 
dataset consists of 96 and 64 trajectories for CAR MODEL 1 and CAR MODEL II, respectively. The 314 
duration of each trajectory pair is 54.1 seconds for CAR MODEL I and 57.6 seconds for CAR MODEL 315 
II. The original field data may also include longitudinal speed and acceleration data. However, due to the 316 
limitation of the experiments, only the position data are reliable. Therefore, a finite difference method is 317 
applied to numerically calculate the speed and acceleration.  318 

4.2. Learning results for HDVs 319 

First, we apply our ABC-based framework to learn HDV CF behaviors using the NGSIM dataset. To 320 
mitigate the potential bias inherent in single train-test splits, we employ cross-validation. Specifically, the 321 
dataset is evenly divided into three parts. We train the model based on two of these parts and evaluate its 322 
performance on the remaining part, thereby establishing a training-to-testing ratio of the 2:1. This process 323 
is iterated three times, and the results are aggregated by calculating the average of chosen metrics. During 324 
the training, 1 million particles (i.e., parameter sets) were sampled from the assumed prior distributions 325 
for each model and accepted/rejected based on the predefined distance function.  326 

The training result for HDVs is shown in Fig. 3a. It can be observed that the HDV CF models (GFM, 327 
FVDM, OVM and IDM) overshadow the AV controllers (MPC and LLCTG) in the hybrid model, making 328 
up more than 97% of accepted particles. Among them, GFM has the highest share of approximately 65%. 329 
GFM, FVDM, and OVM, which belong to the same model family, all take nonnegligible shares, 330 
indicating that this model family can effectively describe the HDV CF behavior. In contrast, HL and 331 
LLCS are completely dropped in the hybrid model, suggesting that the CF behavior of AVs is different 332 
from the behavior of human drivers.  333 

The hybrid model distributions in Fig. 3a offers a comprehensive overview of the proportions of particles 334 
selected from each CF model when all CF models in the pool are considered together. For a more direct 335 
comparison of the selected models, we further examined the pair-wise relative likelihood of one CF 336 
model fitting the observed behavior better than the other. Specifically, we replicated the training process 337 
for each pair of CF models (out of 28 enumerated pairs). Since only two models are compared, the model 338 
with more than 50% is considered preferable. Fig. 3d presents the pair-wise comparison results in the 339 
form of a heat map, where the value indicates the relative likelihood (i.e., proportion of accepted 340 
particles) for one model (row) against the other (column). The darker color of a cell indicates higher 341 
dominance of one model/controller against the other. For example, when GFM and OVM are compared 342 
(row 2, column 1 of Fig. 3d), 86% of the accepted particles come from GFM, while the remaining 14% 343 
are from OVM, indicating significant dominance by GFM against OVM. The result further confirms that 344 
GFM, FVDM, and OVM are strongly favored, with GFM showing the clearest preference when 345 
compared to the other models one-on-one.   346 

For the goodness of fit evaluation at the vehicle trajectory level, we compare the deviation between the 347 
learned (based on accepted particles) and observed vehicle positions. To highlight the performance of the 348 
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proposed hybrid model, we compare with the best single CF model for each dataset: GFM (for NGSIM), 349 
HL (for CAR MODEL I), and IDM (for CAR MODEL II) (refer to Fig. 3). Fig. 4a shows an example of 350 
the evolution of position error for the hybrid model, as compared to these best single models (Fig. 4d). In 351 
these figures, we plot the error evolution for the 5% best fitted particles (red/blue/green/purple) and all 352 
selected particles (light green). Comparing these figures, we observe that the hybrid model has lower 353 
errors in general than a single model and shows a stable trend over time. Table 2 presents the Root Mean 354 
Square Error (RMSE) outcomes corresponding to Figure 4, affirming the superior performance of the 355 
hybrid model over the individual best-performing model. 356 

Further, we compare its training results against those of individual models that are stochastically learned 357 
with the incorporation of only one CF model in the learning process. The evaluation metrics consist of 358 
two types: (1) absolute errors and (2) distribution-wise similarity. Specifically, (1) comprises errors in 359 
average position, average speed, and average acceleration. More importantly, (2) is measured using the 360 
goodness-of-fit metrics, Wasserstein (WS) Distance, 0.15-WS Distance (𝛽 = 0.15), and minimum 361 
distance, specially designed in this study. In principle, these distances measure the deviations between the 362 
state portfolios generated based on accepted particles and the corresponding observed ones, using 363 
different constraints and weights on the position, speed, and acceleration. Detailed numerical results of 364 
these three cross-validation trials are included in Appendix Tables 4-6 in Appendix 2. Here, we focus on 365 
the general performance trend for each model across the six metrics. To address the scale inconsistency 366 
across the metrics, a linear normalization step is taken. Fig. 5 visually presents the results for the NGSIM 367 
dataset through a series of hexagonal-based diagrams. Within each hexagon, the aforementioned six 368 
metrics are positioned as six vertices, constrained within the normalized range of 0 to 1. A larger shaded 369 
area signifies a higher level of performance. The results reveal that among the single models, the GFM 370 
model performs the best in general, but not in all metrics, and clear deficiency is notable. The hybrid 371 
model exhibits the largest shaded (blue) area when compared to other single models, showcasing superior 372 
performance across all metrics. This highlights the hybrid model can better capture HDV CF behavior 373 
considering stochasticity than other conventional CF models.   374 

 375 

376 
Fig. 3 Training results. a Hybrid model distribution – NGSIM. b Hybrid model distribution - CAR 377 
MODEL I. c Hybrid model distribution – CAR MODEL II. d Heatmap of pairwise model selection 378 
probabilities – NGSIM. e Heatmap of pairwise model selection probabilities – CAR MODEL I. f 379 
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Heatmap of pairwise model selection probabilities – CAR MODEL II. The selected number of particles in 380 
testing set is 5.  381 

 382 

 383 
Fig. 4 Goodness of fit evaluation results. a Hybrid model position error evolution – NGSIM (#27). b 384 
Hybrid model position error evolution – CAR MODEL I (#1). c Hybrid model position error evolution – 385 
CAR MODEL II (#8). d Single model position error evolution (GFM) – NGSIM (#27). e Single model 386 
position error evolution (HL, IDM) – CAR MODEL I (#1). f Single model position error evolution (HL, 387 
IDM) – CAR MODEL II (#8). Note: the numbers in parentheses indicate a specific sampled state 388 
portfolio in the testing set. 389 

 390 

Table 2 RMSE outcomes for hybrid model and best single model 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

Dataset Model 5% best fitted particles (RMSE) All particles (RMSE) 

NGSIM Hybrid Model 10.05 16.82 

GFM 11.98 31.75 

CAR 
MODEL I 

Hybrid Model 1.33 1.58 

HL 1.40 2.15 

CAR 
MODEL II 

Hybrid  Model 2.20 3.35 

IDM 2.50 5.37 
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 399 
Fig. 5 Hexagonal based Multiple Metric Performance Evaluation for HDV.  400 

4.3. Learning results for AVs  401 

Here we turn our attention to learning AV CF behavior from the CAR MODEL I dataset. The results in 402 
Fig. 3b show that two AV controllers, LLCS and MPC, are not selected in the hybrid model. Of the 403 
remaining models, HL has the largest share of the distribution at 47.19%, and IDM (a HDV CF model) 404 
also takes up a sizable share at 30.83%. The lack of dominance by HL suggests that the CF control 405 
algorithm of the AV in this dataset is similar to, but not necessarily the same as, HL. Given the limited 406 
controller information available, there exists the possibility of missing the actual CF controller for CAR 407 
MODEL I. Therefore, selecting HL (deterministically) to approximate the behavior of the AV can give us 408 
erroneous insights. The hybrid model, however, fills this gap by identifying a set of models that can 409 
together approximate the AV behavior in the absence of controller knowledge. The heatmap in Fig. 3e 410 
further corroborates the findings in Fig. 3b that the two models (HL and IDM) show strong preference 411 
over the other models, but HL shows mild preference over IDM. Figs. 4b & 4e depict an example of the 412 
deviation evolution between the observed and learned position. The position generated by the hybrid 413 
model’s top 5% of the best fitted particles exhibits better accuracy, as the position errors display a more 414 
centralized trend to zero compared to the best single model (HL).   415 

The learning results from the CAR MODEL II dataset, shown in Fig. 3c, also show split preference with 416 
no clear dominance, particularly between IDM and HL, with IDM accounting for the largest proportion. 417 
This suggests a great possibility that the true controller of CAR MODEL II might not be included in the 418 
CF candidate pool. When comparing the training results with CAR MODEL I, the composition of the 419 
hybrid model is similar, except for the exclusion of OVM. The corresponding heatmap in Fig. 3f also 420 
displays high similarity with Fig. 3e. The evaluation results in Figs. 4c and 4f also demonstrate 421 
comparable error ranges with the CAR MODEL I dataset. However, we observe that the CF behavior may 422 
not be well approximated by a single IDM due to its larger error than the hybrid model. Therefore, when 423 
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true controller is absent, the hybrid model obtained by concatenation can generate a more accurate CF 424 
behavior description.  425 

Fig. 6 illustrates the general performances across the six metrics for each model and the hybrid model for 426 
two AV datasets. The results are weighted by the sample size (i.e., number of state portfolios) in each 427 
dataset. The hybrid model demonstrates the best overall performance, though some exceptions in certain 428 
metrics are observed (e.g., average acceleration). Among the single models, HL shows the best overall 429 
performance. The results demonstrate the effectiveness of the hybrid model for capturing the behavior of 430 
AVs, particularly when the controller information is unavailable.  431 

 432 

 433 
Fig. 6 Hexagonal based Multiple Metric Performance Evaluation for AV. 434 

5. Conclusion and Discussion 435 

Learning the real-world CF behavior has been challenging due to inherent stochasticity and nonlinearity 436 
that arise from driver heterogeneity. Traditional approaches that rely on a single (deterministic) model 437 
often fail to capture these characteristics sufficiently, leaving room for persisting debates about the best 438 
CF model. The proposed hybrid model based on stochastic learning of ABC addresses these challenges 439 
by integrating different CF models in a systematic and stochastic fashion. The evaluation of the proposed 440 
framework using two different datasets demonstrated the ability to learn the CF behavior while 441 
accounting for stochasticity, outperforming traditional CF models. In addition, when the actual CF model 442 
or controller is absent from the candidate pool, the hybrid model is still able to replicate the CF behavior 443 
by probabilistically concatenating several models. 444 

The proposed framework is generalizable in the sense that it is highly adaptable to various datasets and 445 
different CF model pools. This has several important implications and contributions for traffic modelling 446 
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and can enhance realism in simulations. First, its ability to systematically draw from multiple models can 447 
be particularly useful in traffic simulations, where generating traffic flow mimicking the real-world traffic 448 
is of high priority. Further, it is able to provide more accurate representation of a range of possible CF 449 
behavior through estimated posterior distributions. Thirdly, hybrid model renders more flexibility in 450 
describing inter-vehicle heterogeneity by not constrained to a single model. Therefore, our stochastic 451 
approach addresses the gap between simulated and real following behavior to a certain degree.  452 

Beyond its immediate application in stochastic learning of CF behavior, our approach can be applied to 453 
various learning problems in traffic contexts, such as learning of lane changing and merging behavior, 454 
and AV behavior under diverse traffic scenarios (Feng et al., 2021), where high degrees of non-linearity 455 
and stochasticity in behavior are expected. However, it should be noted that the learning performance of 456 
our method depends on the data quality as with any data-driven approaches. If the CF model pool does 457 
not include the true CF (control) model or similar models, the hybrid model would lack interpretability as 458 
well as ability to replicate the observed behavior. Future research is needed to design a good pool of 459 
candidate models in the event that the true model is unknown. For example, preliminary learning may be 460 
conducted to identify the most promising model family. Furthermore, we acknowledge trade-offs in 461 
setting the weights for the error terms in our framework. Obtaining the optimal combination of these 462 
weights presents a considerable challenge. However, to enhance the robustness and adaptability of this 463 
methodology across diverse traffic conditions, it is imperative to incorporate a more systematic approach 464 
in the future. 465 
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Appendix 477 

Appendix 1: Notations and Formulas for CF Models and Controllers 478 

Table A1 shows the corresponding variable and parameter notations of CF models and controllers in the 479 
candidate pool as described in Section 3 of the main manuscript. 480 

Table A2 and Table A3 present the detailed formulations of CF models and controllers, respectively. 481 
They employ the variables and parameters defined in Table A1. Specifically, for traditional HDV CF 482 
models, acceleration is formulated combining with a predefined desired speed or spacing policy. For AV 483 
controllers, the system updates itself using the state-space formulation. Therefore, aside from the desired 484 
spacing policy, the system state is also defined. 485 

  486 
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Appendix Table 1 Variable and parameter notations of CF models and controllers 487 
HDV Model Notations Description 
𝑝𝑖(𝑡)  Position of vehicle 𝑖 at time 𝑡  
𝐿𝑖−1  Length of vehicle 𝑖 − 1 
𝑣𝑖(𝑡)  Speed of vehicle 𝑖 at time 𝑡 
𝑠𝑖(𝑡)  Gap between vehicle 𝑖 and 𝑖 − 1 at time 𝑡 
𝑣𝑖∗(𝑠𝑖(𝑡))  Optimal velocity of vehicle 𝑖 in OVM and GFM 
∆𝑣𝑖(𝑡)  Speed difference, can be 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡) or 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡)  depended on model 
𝑉(𝑠𝑖(𝑡))  Optimal velocity of vehicle 𝑖 in FVDM 
𝑠∗(𝑡)  Desired spacing in IDM 
CAV Controller Notations Description 
𝑥𝑖(𝑡)  System state of vehicle 𝑖 at time 𝑡 
𝑢𝑖(𝑡)  System input of vehicle 𝑖 at time 𝑡, can be viewed as acceleration 
𝑥𝑖,𝑡   Discretized system state of vehicle 𝑖 at time 𝑡 
𝑢𝑖,𝑡  Discretized system input of vehicle 𝑖 at time 𝑡 
𝑠𝑖∗(𝑡)  Desired spacing 
𝜏𝑖∗  Desired time headway 
𝑙𝑖  Minimum standstill spacing 
𝑠𝑖(𝑡)  Actual spacing 
Δ𝑠𝑖(𝑡)  Deviation from the desired spacing 
∆𝑣𝑖(𝑡)  Relative speed  
𝑘𝑑𝑖  Discretized feedback gains 
𝑘𝑠𝑖, 𝑘𝑣𝑖, 𝑘𝑎𝑖  Feedback gains for deviation from the desired spacing, relative speed, and acceleration 
𝐴𝑑𝑖,  𝐵𝑑𝑖, 𝐷𝑑𝑖  Discretized system weight matrices 
𝑎𝑖−1(𝑡)  Acceleration of vehicle 𝑖 − 1 (leading vehicle) 
𝑡𝑠  Control frequency (interval) 
𝑠0  A fixed positive value for desired spacing 
𝑇𝑇𝑖  Actuation lag for vehicle 𝑖 to realize the acceleration 
𝐽  Optimal objective function 
𝑄𝑖  Control efficiency function 
𝑅𝑖  Comfort and fuel consumption function 
𝑎𝑖,𝑚𝑖𝑛   Lower bound of acceleration 
𝑎𝑖,𝑚𝑎𝑥   Upper bound of acceleration 
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Appendix Table 2 Formulations of CF models and controllers 489 

HDV Model  Desired Speed/Spacing Acceleration Formulation 

OVM 𝑣𝑖∗(𝑠𝑖(𝑡)) = 𝑣1 + 𝑣2[tanh(𝑐1 ∗ (𝑠𝑖(𝑡)) − 𝑐2]  

where 𝑠𝑖(𝑡) = 𝑝𝑖−1(𝑡) − 𝑝𝑖(𝑡) − 𝐿𝑖−1 

𝑑𝑣𝑖
𝑑𝑡
(𝑡) = 𝜅[𝑣𝑖∗(𝑠𝑖(𝑡)) − 𝑣𝑖(𝑡)]  

GFM Same as OVM 𝑑𝑣𝑖
𝑑𝑡
(𝑡) = 𝐾[𝑣𝑖∗(𝑠𝑖(𝑡)) − 𝑣𝑖(𝑡)] + 𝜆𝛩(−∆𝑣)∆𝑣  

where  𝛩 ≔ {1,  − ∆𝑣 > 00,   − ∆𝑣 ≤ 0,  

∆𝑣 = 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡)                                          

FVDM 𝑉(𝑠𝑖(𝑡)) = 𝑉1 + 𝑉2𝑡𝑎𝑛ℎ [
𝑠𝑖(𝑡)−𝐿𝑖−1

𝑙𝑖𝑛𝑡
− 𝛽]    

𝑠𝑖(𝑡) = 𝑝𝑖−1(𝑡) − 𝑝𝑖(𝑡)  

𝑑𝑣𝑖
𝑑𝑡
(𝑡) = 1

𝜏
[𝑉(𝑠𝑖(𝑡))  − 𝑣𝑖(𝑡)] + 𝜆∆𝑣                                             

IDM 𝑠∗(𝑡) = 𝑠0 + 𝑣(𝑡) ∗ 𝑇 +
𝑣(𝑡)∆𝑣(𝑡)
2√𝑎𝑏

  

where ∆𝑣(𝑡) = 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡)  
𝑠𝑖(𝑡) = 𝑝𝑖−1(𝑡) − 𝑝𝑖(𝑡)  

𝑑𝑣𝑖
𝑑𝑡
(𝑡) = 𝑎 [1 − (𝑣𝑖(𝑡)

𝑣𝑚𝑎𝑥
)
𝛿
− (𝑠

∗(𝑡)
𝑠(𝑡)
)
2
]  
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Appendix Table 3 Formulations of CF controllers 491 

AV 
Controller  

Desired 
Spacing Policy 

System State  State-Space Formulation 

LLCTG 𝑠𝑖∗(𝑡)
= 𝑣𝑖(𝑡) ×  𝜏𝑖∗
+ 𝑙𝑖 

𝑥𝑖(𝑡) = [Δ𝑠𝑖(𝑡), Δ𝑣𝑖(𝑡)]𝑇  
where 
Δ𝑠𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑖∗(𝑡),  
Δ𝑣𝑖(𝑡) = 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡)   
𝑘𝑑𝑖 = [𝑘𝑠𝑖, 𝑘𝑣𝑖]𝑇  
  

𝑥𝑖,𝑡+1 = 𝐴𝑑𝑖𝑥𝑖,𝑡 + 𝐵𝑑𝑖𝑢𝑖,𝑡 + 𝐷𝑑𝑖𝑎𝑖−1,𝑡  

where 𝐴𝑑𝑖 = (
1 𝑡𝑠
0 1), 𝐵𝑑𝑖 = (

−𝑡𝑠𝜏𝑖∗ − 𝑡𝑠2/2
−𝑡𝑠

), 

 𝐷𝑑𝑖 = (
𝑡𝑠 + 𝑡𝑠2/2

𝑡𝑠
) 

𝑢𝑖,𝑡 = 𝑘𝑑𝑖𝑥𝑖,𝑡  

LLCS 𝑠𝑖∗(𝑡) = 𝑠0 Same as LL 𝑥𝑖,𝑡+1 = 𝐴𝑑𝑖𝑥𝑖,𝑡 + 𝐵𝑑𝑖𝑢𝑖,𝑡 + 𝐷𝑑𝑖𝑎𝑖−1,𝑡   

where 𝐴𝑑𝑖 = (
1 𝑡𝑠
0 1) , 𝐵𝑑𝑖 = (

− 𝑡𝑠2

2
−𝑡𝑠

), 

𝐷𝑑𝑖 = (
𝑡𝑠2/2
𝑡𝑠
)  

𝑢𝑖,𝑡 = 𝑘𝑑𝑖𝑥𝑖,𝑡 

HL 𝑠𝑖∗(𝑡)
= 𝑣𝑖(𝑡) ×  𝜏𝑖∗
+ 𝑙𝑖 

𝑥𝑖(𝑡) =
[Δ𝑠𝑖(𝑡), Δ𝑣𝑖(𝑡), 𝑎𝑖(𝑡)]𝑇, 

𝑎𝑖̇(𝑡) = −
1
𝑇𝑇𝑖

𝑎𝑖(𝑡)

+
1
𝑇𝑇𝑖

𝑢𝑖(𝑡) 

𝑘𝑑𝑖 = [𝑘𝑠𝑖, 𝑘𝑣𝑖, 𝑘𝑎𝑖]𝑇  

𝑥𝑖,𝑡+1 = 𝐴𝑑𝑖𝑥𝑖,𝑡 + 𝐵𝑑𝑖𝑢𝑖,𝑡 + 𝐷𝑑𝑖𝑎𝑖−1,𝑡  
where 
𝐴𝑑𝑖 =

(

  
 
1 𝑡𝑠 𝑇𝑇𝑖(𝜏𝑖∗ − 𝑇𝑇𝑖) (𝑒

− 𝑡𝑠
𝑇𝑇𝑖 − 1) − 𝑡𝑠 ∙ 𝑇𝑇𝑖

0 1 𝑇𝑇𝑖 (𝑒
− 𝑡𝑠
𝑇𝑇𝑖 − 1)

0 0 𝑒
− 𝑡𝑠
𝑇𝑇𝑖 )

  
 
, 

𝐵𝑑𝑖 =

(

  
 
−𝑇𝑇𝑖(𝜏𝑖∗ − 𝑇𝑇𝑖) (𝑒

− 𝑡𝑠
𝑇𝑇𝑖 + 𝑡𝑠

𝑇𝑇𝑖
− 1) − 𝑡𝑠2

2

𝑇𝑇𝑖 (1 − 𝑒
− 𝑡𝑠
𝑇𝑇𝑖) − 𝑡𝑠

1 − 𝑒
− 𝑡𝑠
𝑇𝑇𝑖 )

  
 
,  

𝐷𝑑𝑖 = (
𝑡𝑠2

2
𝑡𝑠
0
)  

 
MPC 𝑠𝑖∗(𝑡)

= 𝑣𝑖(𝑡) ×  𝜏𝑖∗
+ 𝑙𝑖 

𝑥𝑖(𝑡) same as HL 
min 𝐽 = (𝑥𝑖,𝑡 )𝑇 ∙ 𝑄𝑖 ∙ 𝑥𝑖,𝑡 + 𝑅𝑖 ∙
(𝑢𝑖,𝑡−1 )2   
       𝑠. 𝑡. 
𝑎𝑖,𝑚𝑖𝑛 ≤ 𝑢𝑖(𝑡) ≤ 𝑎𝑖,𝑚𝑎𝑥     

where 𝑄𝑖 = [
1 0
0 𝛼] , 𝑅𝑖 > 0  

𝑥𝑖,𝑡+1 = 𝐴𝑑𝑖𝑥𝑖,𝑡 + 𝐵𝑑𝑖𝑢𝑖,𝑡 + 𝐷𝑑𝑖𝑎𝑖−1,𝑡  

𝐴𝑑𝑖 = (
1 𝑡𝑠
0 1) , 𝐵𝑑𝑖 = (

−𝜏∗ ∙ 𝑡𝑠 − 𝑡𝑠 −
𝑡𝑠2

2
−𝑡𝑠

), 

 𝐷𝑑𝑖 = (
𝑡𝑠 +

𝑡𝑠2

2
𝑡𝑠

) 
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Appendix 2: Supplementary learning results 493 

1. Sensitivity Analysis of the Number of Selected Particles  494 

Appendix Fig. 1 illustrates the learned hybrid model distributions with varying numbers of selected 495 
particles, as obtained from the NGSIM dataset. In comparison with Fig. 3a in the main manuscript, the 496 
learning results are relatively robust against the number of particles being selected.  497 
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 498 

Appendix Fig. 1. Hybrid model distribution – NGSIM. a The selected number of particles (N) = 10. b 499 
The selected number of particles (N) = 15. 500 

Similarly, the hybrid model distribution trained by CAR MODEL I is shown in Appendix Fig. 2. Compared 501 
with Fig. 3b in the main manuscript, the overall composition of the hybrid model remains consistent. 502 
However, with an increase in the number of particles being selected for each state portfolio, a quite small 503 
proportion of LLCTG is also included. 504 

 505 

Appendix Fig. 2. Hybrid model distribution – CAR MODEL I. a The selected number of particles (N) 506 
= 10. b The selected number of particles (N) = 15. 507 

Appendix Fig. 3 shows the hybrid model distribution for CAR MODEL II. Same conclusion can be 508 
drawn that hybrid model distribution is relatively stable with the changing of selected particle numbers 509 
for each state portfolio. 510 

 511 
Appendix Fig. 3. Hybrid model distribution – CAR MODEL II. a The selected number of particles (N) 512 
= 10. b The selected number of particles (N) = 15. 513 

 514 
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2. Errors and stochastic solution distances 515 

We bold the minimum value in each column to indicate the model with the optimal performance for each 516 
metric.  517 

Appendix Table 4 Errors and stochastic solution distances: single model vs. hybrid model for 518 
NGSIM dataset 519 

Model 
Average 
position 
error (𝒎) 

Average 
speed error 
(𝒎/𝒔) 

Average 
acceleration 
error (𝒎/𝒔𝟐) 

Minimum 
distance  

0.15𝜷-WS 
distance  

WS 
distance 

OVM 25.532 2.923 1.520 12.041 12.074 14.168 
GFM 14.703 2.050 1.287 6.498 6.789 8.477 
FVDM 25.308 2.137 1.232 13.309 13.335 13.831 
IDM 30.553 3.051 1.470 14.261 14.328 16.215 
LLCTG 23.386 2.367 1.468 11.908 11.934 12.330 
LLCS 35.649 2.857 1.501 19.197 19.209 19.299 
HL 17.100 1.989 1.237 10.113 10.153 10.664 
MPC 24.218 2.520 1.437 13.030 13.050 13.266 
Hybrid 9.575 1.763 1.180 4.088 4.219 5.809 

 520 
Appendix Table 5 Errors and stochastic solution distances: single model vs. hybrid model for CAR 521 

MODEL I 522 

Model 
Average 
position 
error (𝒎) 

Average 
speed error 
(𝒎/𝒔) 

Average 
acceleration 
error (𝒎/𝒔𝟐) 

Minimum 
distance  

0.15𝜷-WS 
distance  

WS 
distance 

OVM 3.287 0.637 1.838 1.662 1.678 2.217 
GFM 3.293 0.550 1.813 1.788 1.791 1.807 
FVDM 2.194 0.564 1.794 1.465 1.476 1.638 
IDM 2.001 0.429 1.789 1.352 1.360 1.524 
LLCTG 1.897 0.511 1.790 1.383 1.389 1.463 
LLCS 3.644 0.686 1.817 2.413 2.419 2.531 
HL 1.940 0.511 1.783 1.316 1.332 1.493 
MPC 2.004 0.537 1.797 1.440 1.441 1.530 
Hybrid 1.839 0.503 1.785 1.269 1.286 1.436 

 523 
Appendix Table 6 Errors and stochastic solution distances: single model vs. hybrid model for CAR 524 

MODEL II 525 

Model 
Average 
position 
error (𝒎) 

Average 
speed error 
(𝒎/𝒔) 

Average 
acceleration 
error (𝒎/𝒔𝟐) 

0.15𝜷-WS 
distance  

Minimum 
distance 

WS 
distance 

OVM 4.145 0.716 0.903 1.940 2.098 3.790 
GFM 4.764 1.250 0.879 1.251 1.656 2.736 
FVDM 3.475 0.443 0.805 1.750 1.783 2.041 
IDM 2.826 0.310 0.802 1.218 1.299 1.676 
LLCTG 2.834 0.572 0.817 2.040 2.048 2.163 
LLCS 11.154 0.772 0.856 6.098 6.107 6.163 
HL 2.357 0.332 0.802 1.180 1.367 1.453 
MPC 3.804 0.577 0.824 2.066 2.073 2.258 
Hybrid 2.308 0.305 0.805 1.079 1.154 1.738 
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