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Abstract

We show that a mod-`-representation of a p-adic group arising from the analogue
of Yu’s construction is supercuspidal if and only if it arises from a supercuspidal rep-
resentation of a finite reductive group. This has been previously shown by Henniart
and Vigneras under the assumption that the second adjointness holds.

1 Introduction

The exhaustive explicit construction and parametrization of supercuspidal irreducible repre-
sentations of p-adic groups with complex coefficients plays a key role in the complex repre-
sentation theory of p-adic groups and beyond. For number theoretic applications it is often
desirable to obtain analogous results for representations whose coefficients are valued in an
algebraically closed field R of characteristic ` different from p. In that setting one needs to
distinguish between cuspidal and supercuspidal representations. An exhaustive construction
of the former, more general notion, is known if the p-adic group is tame and p does not
divide the order of the Weyl group ([Fin22]). This paper concludes the exhaustive construc-
tion of supercuspidal irreducible representations for p-adic groups in the same setting by
determining which of the cuspidal representations are supercuspidal.

More precisely, we show that if an R-representation arising from the analogue of Yu’s con-
struction is supercuspidal, then the representation of a finite reductive group that forms part
of the input for the construction has to be supercuspidal as well (Theorem 1). Combined
with the reverse implication proved by Henniart and Vigneras [HV, Theorem 6.10 and §6.4.2]
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and the result that all cuspidal R-representations arise from the analogue of Yu’s construc-
tion under the above assumptions ([Fin22, Theorem 4.1]), we obtain an exhaustive explicit
construction of all supercuspidal irreducible R-representations.

Theorem 1 has previously been proven by Henniart and Vigneras ([HV, Theorem 6.10 and §6.4.2])
using different techniques, but only under the assumption that the second adjointness holds
in this setting. When the first version of this paper was posted on arxiv.org, the second
adjointness was only proven for depth-zero representations or if the p-adic group is a general
linear group, a classical group (with p 6= 2) or a group of relative rank 1 ([Dat09]). Recently
Dat, Helm, Kurinczuk and Moss ([DHKM]) proved that second adjointness holds for general
reductive groups, but their proof relies on the results of Fargues and Scholze ([FS21]). We
therefore believe that it is still desirable to have an entirely representation theoretic and
drastically shorter proof that does not rely on the second adjointness to hold, which is the
case for our approach.

Acknowledgments. The author thanks Guy Henniart and Marie-France Vigneras for help-
ful discussions related to the topic of this paper.

2 The main theorem and corollaries

Let F be a non-archimedian local field of residual characteristic p with ring of integers
O and residue field Fq. Let G be a (connected) reductive group over F . Let R be an
algebraically closed field of characteristic ` different from p. All representations in this paper
are representations with coefficient field R.

For a point x in the enlarged Bruhat–Tits building B(G,F ) of G over F , we write [x] for
the image of the point x in the reduced Bruhat–Tits building, G[x] for the stabilizer of [x],
Gx,0 for the parahoric subgroup, and Gx,r for the Moy–Prasad filtration subgroup of depth
r for a positive real number r.

Let ((Gi)1≤i≤n+1, x ∈ B(Gn+1, F ) ⊂ B(G,F ), (ri)1≤i≤n, ρ, (φi)1≤i≤n) be an input for the
construction of a cuspidal R-representation as in [Fin22, Section 2.2], i.e. following Yu’s
construction [Yu01] adapted to the mod-` setting. If n > 0, then we assume that Gn+1, and
hence also G, splits over a tamely ramified extension of F and p 6= 2, as in Yu’s construction.
In the case of n = 0, the construction recovers the depth-zero representations and we allow G
to be wildly ramified and/or p = 2. The irreducible R-representation ρ of (Gn+1)[x] is trivial
on (Gn+1)x,0+ and its restriction to (Gn+1)x,0, a maximal parahoric subgroup of Gn+1(F ), is
a cuspidal representation of (Gn+1)x,0/(Gn+1)x,0+. Note that the restriction of ρ to (Gn+1)x,0
is semisimple because (Gn+1)[x] normalizes (Gn+1)x,0. Hence it makes sense to talk about
the restriction being supercuspidal or not.

From the tuple ((Gi)1≤i≤n+1, x ∈ B(Gn+1, F ) ⊂ B(G,F ), (ri)1≤i≤n, ρ, (φi)1≤i≤n) we obtain a
representation (ρ̃ = ρ⊗ κ, Vρ ⊗ Vκ) of

K̃ = (G1)x, r1
2
(G2)x, r2

2
. . . (Gn)x, rn

2
(Gn+1)[x],
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where ρ also denotes the extension of the depth-zero representation ρ from (Gn+1)[x] to K̃
that is trivial on (G1)x, r1

2
(G2)x, r2

2
. . . (Gn)x, rn

2
and κ is constructed from the characters φi

using the theory of mod-` Weil–Heisenberg representations ([Fin22, Section 2.3]), such that
the compactly induced representation c-indG

K̃
(ρ⊗ κ) is irreducible and cuspidal.

Theorem 1. With the above notation, if c-ind
G(F )

K̃
(ρ⊗κ) is supercuspidal, then the restriction

of ρ to (Gn+1)x,0 is supercuspidal as a representation of (Gn+1)x,0/(Gn+1)x,0+.

Combining Theorem 1 with the unconditional result of Henniart and Vigneras that c-indG
K̃
(ρ⊗

κ) is supercuspidal when the restriction of ρ to (Gn+1)x,0 is supercuspidal as a representation
of (Gn+1)x,0/(Gn+1)x,0+ ([HV, Theorem 6.10 and §6.4.2]), we obtain the following uncondi-
tional Corollary 2.

Corollary 2. With the above notation, c-ind
G(F )

K̃
(ρ ⊗ κ) is supercuspidal if and only if the

restriction of ρ to (Gn+1)x,0 is supercuspidal as a representation of (Gn+1)x,0/(Gn+1)x,0+.

Combined with [Fin22, Theorem 4.1] we obtain the following result.

Corollary 3. Suppose that G splits over a tamely ramified field extension of F and that p
does not divide the order of the (absolute) Weyl group of G. Then all supercuspidal irreducible

representations of G(F ) are of the form c-ind
G(F )

K̃
(ρ⊗ κ) as above where the restriction of ρ

to (Gn+1)x,0 is supercuspidal as a representation of (Gn+1)x,0/(Gn+1)x,0+.

3 Proof of Theorem 1

Let π := c-ind
G(F )

K̃
(ρ⊗ κ) be a cuspidal irreducible representation as in the previous section.

In the present section, Section 3, we will prove that π being supercuspidal implies that
ρ is supercuspidal, i.e. we prove Theorem 1. This statement is trivially true if Gn+1 is
anisotropic as in this case (Gn+1)x,0/(Gn+1)x,0+ is also anisotropic and hence all its semisimple
representations are supercuspidal. Thus we assume throughout this section that Gn+1 is not
anisotropic.

We will eventually prove the desired result by assuming that ρ is not supercuspidal and
proving that then π is a subquotient of a parabolically induced representation, i.e. is not
supercuspidal either. However, we will not make this assumption until the end of this section
to first prove a series of results that hold without this assumption and might be useful on
its own for other applications.

Let T be a maximally split, maximal torus of Gn+1 such that x is contained in the apartment
A (T, F ) of T . Let λ be a cocharacter of T , i.e. an F -homomorphism from Gm to T . We
write PGi

(λ) for the parabolic subgroup of Gi (1 ≤ i ≤ n+1) attached to λ as in Section 2.1
and 2.2, in particular Proposition 2.2.9, of [CGP15]. This means PGi

(λ)(F ) consists of the
elements g ∈ Gi(F ) for which the limit of λ(t)gλ(t)−1 as t goes to zero exists (i.e. extends
to a map from the affine line to Gi). Then the centralizer ZGi

(λ) of λ is a Levi subgroup

3
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of PGi
(λ), which we also denote by MGi

(λ). Let UGi
(λ) be the unipotent radical of PGi

(λ)
and ŪGi

(λ) the unipotent radical of the opposite parabolic P̄Gi
(λ) of PGi

(λ) with respect to
MGi

(λ).

Let ε > 0 be sufficiently small so that Gx,s+ ⊂ Gy,s ⊂ Gx,s for s ∈ { r1
2
, r2

2
, . . . , rn

2
, 0}

and y = x + ελ ∈ A (T, F ). While there is in general no canonical embedding of the
Bruhat–Tits building of Mn+1 := MGn+1

(λ) into the Bruhat–Tits building of Gn+1, the
embedding is unique up to translation by X∗(Z(Mn+1))⊗Z R, where X∗(Z(Mn+1)) denotes
the (F -)cocharacters of the center Z(Mn+1) of Mn+1. Note that the dimension of the real
vector space X∗(Z(Mn+1))⊗R is equal to the rank of the maximal split torus in the center
of Mn+1. We fix an embedding of Bruhat–Tits buildings throughout the paper to view
B(Mn+1, F ) as a subset of B(Gn+1, F ). More generally, we will fix a compatible system of
embeddings of the Bruhat–Tits buildings of all the below occurring twisted Levi subgroups
of G to view all Bruhat–Tits buildings over F as subsets of B(G,F ), i.e.

B(MGn+1
(λ), F ) �

�
//

� _

��

B(MGn
(λ), F ) �

�
//

� _

��

. . . �
�

//� _

��

B(MG(λ), F ) .
� _

��

B(Gn+1, F ) �
�

// B(Gn, F ) �
�

// . . . �
�

// B(G,F ) .

Then we have y = x+ ελ ∈ B(Mn+1, F ) ⊂ B(Gn+1, F ) ⊂ B(G,F ), and

(Gn+1)y,0/(Gn+1)y,0+ ' (Mn+1)y,0/(Mn+1)y,0+. (1)

For z ∈ {x, y} and s ∈ {0, 0+}, we set

Kz,s = (G1)z, r1
2
(G2)z, r2

2
. . . (Gn)z, rn

2
(Gn+1)z,s,

K+ = (G1)x, r1
2
+(G2)x, r2

2
+ . . . (Gn)x, rn

2
+(Gn+1)x,0+

We might abbreviate the groups Kx,0 and Kx,0+ by K0 and K0+, respectively, and write
P = PG(λ), M = MG(λ), U = UG(λ), P̄ = P̄G(λ) and Ū = ŪG(λ). Using that y = x + ελ
with ε sufficiently small we obtain that Ky,0 ⊂ K0 and

Ky,0 ∩ U(F ) = Ky,0+ ∩ U(F ) = K0 ∩ U(F ), (2)

Ky,0 ∩ Ū(F ) = Ky,0+ ∩ Ū(F ) = K+ ∩ Ū(F ), (3)

Ky,0 = (Ky,0 ∩ Ū(F ))(Ky,0 ∩M(F ))(Ky,0 ∩ U(F )). (4)

Here Equations (2) and (3) follow from the definitions of U = UG(λ) and Ū = ŪG(λ), and
Equation (4) follows from (2) and (3).

Lemma 4. (a) The space of (K0∩U(F ))-fixed vectors V
K0∩U(F )
κ of the representation (κ, Vκ)

is non-trivial.

(b) The representation (κ, Vκ) is trivial when restricted to the subgroup Ky,0 ∩ Ū(F ).

4
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(c) The subspace V
K0∩U(F )
κ is preserved under the action of Ky,0 via κ.

Proof.

If π has depth-zero, κ is the trivial one-dimensional representation, and hence all statements
are trivially true. Thus we may assume n > 0 and hence that we are in the setting where
Gn+1 splits over a tamely ramified field extension. Moreover, if λ is trivial, the statement
is trivial, so we assume that λ is nontrivial. Let E be the splitting field of T . Note that
λ viewed as a map from Gm to T factors through the maximally split subtorus Tsplit of T .
Since T is maximally split, Tsplit is a maximal split torus of Gn+1 and is therefore contained
in a maximal torus T ′ that splits over a tamely ramified extension. By replacing T by T ′

above, we may assume without loss of generality that T is tamely ramified, i.e. that its
splitting field E is a tamely ramified field extension of F . For 1 ≤ i ≤ n, we define

Ui = G(F ) ∩
〈
Uα(E)x, ri

2

|α ∈ Φ(Gi, T ) \ Φ(Gi+1, T ), λ(α) > 0
〉
,

Un+1 = G(F ) ∩ 〈Uα(E)x,0 |α ∈ Φ(Gn+1, T ), λ(α) > 0〉 ,

where Φ(Gi, T ) denotes the root system of Gi with respect to T over the field E (for 1 ≤
i ≤ n + 1) and Uα(E)x, ri

2

denotes the depth- ri
2
filtration subgroup of the root group Uα(E)

of G(E) corresponding to α and normalized with respect to the valuation on E that extends
the valuation on F used to define the Moy–Prasad filtration. Then

K0 ∩ U(F ) = U1U2 . . . Un+1.

Following [Fin21a, Section 2.5] we write Vκ = ⊗n
i=1Vωi

so that the action of κ restricted to

Uj (1 ≤ j ≤ n) is given by Uj acting on Vωk
for k 6= j via the character φ̂k defined in loc.

cit. and on Vωj
via a Heisenberg representation. The action of κ restricted to Un+1 arises

from Un+1 acting on Vωk
via φk tensored with a composition with a Weil representation, see

loc. cit. for a precise definition. For 1 ≤ j < k ≤ n, the restriction of φ̂k to Uj is trivial

by the construction of φ̂k. For 1 ≤ k < j ≤ n + 1, the restriction of φ̂k to Uj equals the
restriction of the character φk from Gk+1(F ) to Uj. Since Uj is contained in the unipotent
radical of a parabolic subgroup of Gk+1(F ), we conclude that the restriction of φk to Uj is
trivial ([Tit64,Tit78]). Thus

V U1U2...Un

κ =
n⊗

i=1

(Vωi
)Ui .

Using the same arguments as in the proof of [Fin21a, Theorem 3.1], we obtain that the space
(Vωi

)Ui is nontrivial and that Un+1 acts on (Vωi
)Ui via the restriction of the character φi to

Un+1 for 1 ≤ i ≤ n, which we observed above is trivial. Hence

V K0∩U(F )
κ = V U1U2...UnUn+1

κ =
n⊗

i=1

(Vωi
)Ui 6' {0}.

5
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For (b) recall that κ restricted to K+ acts via the character
∏

1≤i≤n φ̂i (times identity). For
1 ≤ i ≤ n, we define

Ū+
i = G(F ) ∩

〈
Uα(E)x, ri

2
+ |α ∈ Φ(Gi, T ) \ Φ(Gi+1, T ), λ(α) < 0

〉
,

Ū+
n+1 = G(F ) ∩ 〈Uα(E)x,0+ |α ∈ Φ(Gn+1, T ), λ(α) < 0〉 .

Then
Ky,0 ∩ Ū(F ) = K+ ∩ Ū(F ) = Ū+

1 Ū
+
2 . . . Ū+

n+1.

For 1 ≤ j ≤ i ≤ n, the restriction of φ̂i to Ū+
j is trivial by the construction of φ̂i and the

definition of Ū+
j . For 1 ≤ i < j ≤ n+ 1, the restriction of φ̂i to Ū+

j equals the restriction of
the character φi from Gi+1(F ) to Ū+

j . Since Ū+
j is contained in the unipotent radical of a

parabolic subgroup of Gk+1(F ), the restriction of φi to Ū+
j is trivial ([Tit64,Tit78]). Hence

the restriction of (κ, Vκ) to Ky,0 ∩ Ū(F ) = Ū+
1 Ū

+
2 . . . Ū+

n+1 is trivial.

Claim (c) follows now from Equation (4) and the observation that Ky,0 ∩M(F ) normalizes
Ky,0 ∩ U(F ) = K0 ∩ U(F ).

Lemma 5. Let (ρ′, Vρ′) be a representation of Ky,0K0+ that is trivial on K0+. Then there

exists a surjection of K̃-representations

pr : c-indK̃
Ky,0

(
Vρ′ ⊗ V K0∩U(F )

κ

)
�

(
c-indK̃

Ky,0K0+
Vρ′

)
⊗ Vκ.

We thank Guy Henniart for suggesting to replace our previous explicit proof by the following
shorter one.

Proof of Lemma 5.

Since
(
c-indK̃

Ky,0K0+
Vρ′

)
⊗ Vκ '

(
c-indK̃

Ky,0K0+
Vρ′ ⊗ Vκ

)
, it suffices to prove that there exists

a surjection
c-ind

Ky,0K0+

Ky,0

(
Vρ′ ⊗ V K0∩U(F )

κ

)
� Vρ′ ⊗ Vκ

of Ky,0K0+-representations. The inclusion Vρ′ ⊗ V
K0∩U(F )
κ ↪→ Vρ′ ⊗ Vκ yields via Frobenius

reciprocity a morphism c-ind
Ky,0K0+

Ky,0

(
Vρ′ ⊗ V

K0∩U(F )
κ

)
→ Vρ′⊗Vκ of Ky,0K0+-representations

whose image contains Vρ′⊗V
K0∩U(F )
κ . Since the restriction of (κ, Vκ) toK0+ is irreducible and

K0+ acts trivially on Vρ′ , the image also contains Vρ′⊗Vκ, i.e. the above map is surjective.

This allows us to prove the following key lemma for the proof of Theorem 1.

Lemma 6. If ρ is not supercuspidal, then there exists a maximally split, maximal torus T of
Gn+1 whose apartment contains x, a cocharacter λ of T and a representation (ρ′, Vρ′) of Ky,0

(with y = x+ελ as above) that is trivial on Ky,0+ such that the representation (ρ⊗κ, Vρ⊗Vκ)

is a subquotient of c-indK̃
Ky,0

(Vρ′ ⊗ V
K0∩U(F )
κ ).

6
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The cocharacter λ can be chosen so that M := MG(λ) is a proper subgroup of G and the
centralizer of the maximal split torus in the center of Mn+1 := MGn+1

(λ). The number ε > 0
can be chosen so that the point y = x+ ελ ∈ B(Mn+1, F ) ⊂ B(G,F ) is contained in a facet
of minimal dimension of B(Mn+1, F ) and

n∑

i=1

(
dim

(
(Gi)y, ri

2

/(Gi)y,r ri
2
+

)
− dim

(
(MGi

(λ))y, ri
2

/(MGi
(λ))y, ri

2
+

))
= 0. (5)

Proof.

Suppose ρ is not supercuspidal. Recall that ρ|(Gn+1)x,0 is semisimple as (Gn+1)x,0 is normal
inside (Gn+1)[x]. Moreover, since at least one of the irreducible quotients of ρ|(Gn+1)x,0 is not
supercuspidal, we obtain that none of the irreducible quotients is supercuspidal. Let ρ1 be
an irreducible quotient of ρ|(Gn+1)x,0 , viewed as a representation of (Gn+1)x,0/(Gn+1)x,0+. We
denote by G the connected reductive group over Fq that satisfies for any unramified field
extension E of F with residue field fE that G(fE) = Gn+1(E)x,0/Gn+1(E)x,0+. Let P be a
proper parabolic subgroup of G with Levi subgroup M, and ρ′ a representation of M(Fq)

such that ρ1 is a subquotient of the parabolic induction Ind
(Gn+1)x,0/(Gn+1)x,0+
P(Fq)

ρ′. Let S be a
maximal split torus of M and S the split torus defined over O contained in the parahoric
group scheme attached to Gn+1 and x such that the special fiber of S is S. We denote the
generic fiber SF of S by S. Note that S is a maximal split torus of Gn+1. Let C be the
split subtorus of S whose special fiber C := CFq

is the maximal split torus in the center
of M. Let M be the centralizer of C := CF in G. Then M is a Levi subgroup of a proper
parabolic subgroup of G and there exists a cocharachter λ ∈ X∗(S) such that M = MG(λ)
(e.g. by [CGP15, Proposition 2.2.9] combined with the fact that Levi subgroups of a fixed
parabolic are rationally conjugate). Choosing a maximally split, maximal torus T of Gn+1

containing S, we can perform the above constructions to obtain a parabolic subgroup PGi
(λ)

of Gi (1 ≤ i ≤ n+ 1) with Levi subgroup Mi := MGi
(λ) = ZGi

(λ) and a point y = x+ ελ in
the apartment A (T, F ). Note that Mn+1 is the centralizer of C in Gn+1, because M is the
centralizer of C in G. Hence by Equation (1) and [MP96, Proposition 6.4(1)], the point y is
a minimal facet of the building B(Mn+1, F ). Moreover, since C is the maximal split torus in
the center of M and M(Fq) = (Mn+1)y,0/(Mn+1)y,0+, the torus C is the maximal split torus
in the center of Mn+1. Hence M is the centralizer of the maximal split torus in the center of
Mn+1, as desired. Moreover, by the definition of MGi

(λ), Equation (5) is satisfied by all but
finitely many ε in the open interval (0, 1). Hence we may choose ε > 0 such that Equation
(5) holds true.

Since we have
M(Fq) = Ky,0/Ky,0+ = Ky,0K0+/Ky,0+K0+,

we may view ρ′ as a representation of Ky,0K0+ via inflation. Note that the image of Ky,0K0+

in Kx,0/K0+ ' (Gn+1)x,0/(Gn+1)x,0+ is P(Fq). Viewing ρ and ρ1 as representations of K̃ and
Kx,0, respectively, by asking them to be trivial on (G1)x, r1

2
(G2)x, r2

2
. . . (Gn)x, rn

2
, we have by

Frobenius reciprocity that the irreducible representation ρ is a quotient of c-indK̃
Kx,0

ρ1 and

7
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therefore a subquotient of

c-indK̃
Kx,0

c-ind
Kx,0

Ky,0K0+
ρ′ = c-indK̃

Ky,0K0+
ρ′.

Therefore (ρ ⊗ κ, Vρ ⊗ Vκ) is a subquotient of ((c-indK̃
Ky,0K0+

ρ′) ⊗ κ, (c-indK̃
Ky,0K0+

V ′
ρ) ⊗ Vκ).

From Lemma 5, we deduce that (ρ⊗κ, Vρ⊗Vκ) is a subquotient of c-indK̃
Ky,0

(Vρ′ ⊗V
K0∩U(F )
κ ).

Proof of Theorem 1.

Suppose ρ is not supercuspidal. We need to prove that π := c-ind
G(F )

K̃
(ρ ⊗ κ) is not super-

cuspidal. We let λ be as given by Lemma 6, which provides us with a point y = x+ ελ and a
proper parabolic subgroup P = PG(λ) of G with LeviM = MG(λ) and unipotent radical U as

above. Then the representation (ρ⊗κ, Vρ⊗Vκ) is a subquotient of c-indK̃
Ky,0

(Vρ′ ⊗V
K0∩U(F )
κ ).

Hence π is a subquotient of c-ind
G(F )
Ky,0

(Vρ′ ⊗ V
K0∩U(F )
κ ). We will show that the latter is iso-

morphic to a parabolic induction of a smooth representation from P (F ), which will imply
that π is not supercuspidal and hence finish the proof.

Recall from Equations (2), (3) and (4) that

Ky,0 = (Ky,0 ∩ Ū(F ))(Ky,0 ∩M(F ))(Ky,0 ∩ U(F ))

and that Ky,0∩Ū(F ) = Ky,0+∩Ū(F ) and Ky,0∩U(F ) = Ky,0+∩U(F ). Moreover, by Lemma

4(b) and since K0 ⊃ Ky,0 and (ρ′, Vρ′) is trivial on Ky,0+, the restriction of Vρ′ ⊗ V
K0∩U(F )
κ

to Ky,0 ∩ Ū(F ) and to Ky,0 ∩ U(F ) is trivial. Hence the pair

(Ky,0, (ρ
′ ⊗ κ, Vρ′ ⊗ V K0∩U(F )

κ ))

is decomposed over the pair

(Ky,0 ∩M(F ), ((ρ′ ⊗ κ)|Ky,0∩M(F ), Vρ′ ⊗ V K0∩U(F )
κ ))

with respect to P̄ as in the notation of [Blo05, p. 245].

We write
Ky,+ = (G1)y, r1

2
+(G2)y, r2

2
+ . . . (Gn)y, rn

2
+(Gn+1)y,0+

and note that the action of Ky,+ on Vρ′ ⊗ V
K0∩U(F )
κ via ρ′ ⊗ κ is given by

∏
1≤i≤n φ̂i (times

identity). Let (π′, V ′) be an irreducible smooth representation of G(F ). Then we write

V ′(Ky,+,
∏

φ̂i) for the subspace of V ′ on which Ky,+ acts via
∏

1≤i≤n φ̂i. Since y is contained
in a facet of minimal dimension of B(Mn+1, F ) and Equation (5) holds by Lemma 6 (which
ensures that the embedding of the Bruhat–Tits buildings is (0, rn

2
, . . . , r1

2
)-generic relative to

y as defined by [KY17, 3.5 Definition], see also [Fin21b, p. 341]) we can apply the proof of
[KY17, 6.3 Theorem] to obtain that the restriction of the Jacquet functor with respect to

Ū to the subspace V ′(Ky,+,
∏

φ̂i) is injective. Note that while Kim and Yu work with complex
coefficients in [KY17], their proof and [MP96, Proposition 6.7], on which the proof relies,

8
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also work with coefficients in the field R. Hence the Jacquet functor with respect to Ū is
also injective when restricted to the maximal subspace of V ′ that is isomorphic to a direct
sum of copies of (ρ′ ⊗ κ, Vρ′ ⊗ V

K0∩U(F )
κ ) as a Ky,0-representation. Therefore, the pair

(Ky,0, (ρ
′ ⊗ κ, Vρ′ ⊗ V K0∩U(F )

κ ))

is a cover of
(Ky,0 ∩M(F ), ((ρ′ ⊗ κ)|Ky,0∩M(F ), Vρ′ ⊗ V K0∩U(F )

κ ))

with respect to P̄ as in [Blo05, p. 246 and Corollaire de Proposition 2]. Thus by [Blo05,
Théorème 2] we have an isomorphism of G(F )-representations

c-ind
G(F )
Ky,0

(Vρ′ ⊗ V K0∩U(F )
κ ) ' c-ind

G(F )
(Ky,0∩M(F ))U(F )(Vρ′ ⊗ V K0∩U(F )

κ ),

where U(F ) acts trivially on Vρ′ ⊗ V
K0∩U(F )
κ . Therefore π is a subquotient of

c-ind
G(F )
(Ky,0∩M(F ))U(F )(Vρ′ ⊗ V K0∩U(F )

κ ) ' c-ind
G(F )
P (F ) c-ind

M(F )U(F )
(Ky,0∩M(F ))U(F )(Vρ′ ⊗ V K0∩U(F )

κ )

' Ind
G(F )
P (F )

(
c-ind

M(F )
Ky,0∩M(F )(Vρ′ ⊗ V K0∩U(F )

κ )
)
,

where Ind
G(F )
P (F ) denotes the (unnormalized) parabolic induction. This is a contradiction to π

being supercuspidal.
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