

1 **Impacts of Thunderstorm-Generated Gravity Waves on the Ionosphere-Thermosphere using**
2 **TIEGCM-NG/MAGIC Simulations and Comparisons with GNSS TEC, ICON and COSMIC-II**
3 **Observations**

4 Xian Lu¹, Haonan Wu^{1,2}, Chris Heale³, Scott England⁴, Shunrong Zhang⁵

5 1. Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
6 2. High Altitude Observatory, NSF National Center for Atmospheric Research, Boulder, CO,
7 USA
8 3. Center for Space and Atmospheric Research, Embry-Riddle Aeronautical University, Daytona
9 Beach, FL, USA
10 4. Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State
11 University, Blacksburg, VA, USA
12 5. MLT Haystack Observatory, USA

13

14 **Abstract**

15 We use the TIEGCM-NG nudged by MAGIC gravity waves to study the impacts of a
16 severe thunderstorm system, with a hundred tornado touchdowns, on the ionospheric and
17 thermospheric disturbances. The generated waves induce a distinct concentric ring pattern on
18 GNSS TIDs with horizontal scales of 150–400 km and phase speeds of 150–300 m/s, which is
19 well simulated by the model. The waves show substantial vertical evolution in period, initially
20 dominated by 0.5 h at 200 km, shifting to 0.25 h at higher altitudes, and generating higher-
21 frequency modes at 400 km. The TADs reach amplitudes of 100 m/s, 60 m/s, 80 K, and 10% in
22 horizontal winds, vertical wind, temperature, and relative neutral density, respectively.
23 Significantly perturbations in electron density cause dramatic changes in its nighttime structure

24 around 200 km and near the EIA crest. The concentric TIDs are also simulated in ion drifts and
25 mapped from the Tornado region to the conjugate hemisphere likely due to neutral wind-induced
26 electric field perturbations. The waves manage to impact the ionosphere at altitudes of ICON and
27 COSMIC-II, which pass through the region of interest on a total of 8 separate orbits. In situ
28 ion density observations from these spacecrafts reveal periodic fluctuations that frequently show
29 good agreement with the TIEGCM-NG simulation. The O⁺ fraction observations from ICON
30 indicate that the density fluctuations are the result of vertical transport of the ions in this region,
31 which could result from either direct forcing by neutral winds or electrodynamic coupling.

32

33 **Plain Language**

34 The ubiquitous gravity waves are often generated in the lower atmosphere of the Earth by
35 activities associated with terrestrial weather and play an important role in transporting energy and
36 momentum to the upper atmosphere. Transient fluctuations and coupling to plasma motions
37 induced by gravity waves can cause significant disturbances to ionospheric scintillation, satellite
38 orbits, and space infrastructure. In this work, we couple a neutral wave model to an ionosphere-
39 thermosphere model through a nudging technique, to simulate the lifecycle of a gravity wave
40 packet generated by a severe thunderstorm system over the US continent. The simulated wave
41 characteristics match multi-layer observations including those in the stratosphere (AIRS), F-region
42 (GNSS TEC), and topside of the ionosphere (COSMIC-II, ICON), indicating a profound effect of
43 vertical wave coupling. The waves not only cause significant neutral and plasma fluctuations in
44 the near-field, but also reach the conjugate hemisphere, where salient TID features are mirrored
45 likely via the neutral wind-induced electric field perturbations. This work shows that the global
46 impact of regional terrestrial weather via plasma-neutral coupling and geomagnetic field-line

47 mapping mechanisms. Leveraging the nudging capability of the ionosphere-thermosphere model,
48 our approach provides a robust framework to incorporate lower-atmosphere waves realistically
49 and explore their far-reaching impacts.

50

51 **1. Introduction**

52 Gravity waves (GWs) are ubiquitous in the Earth's atmosphere and play an important role
53 in modulating the middle-atmosphere circulation and transporting momentum and energy (Fritts
54 and Alexander, 2003). One of the important wave sources is embedded in terrestrial weather such
55 as tornadoes, thunderstorms, and hurricanes, and the waves generated are often characterized by
56 concentric or semi-concentric ring patterns (Vadas et al., 2012; Yue et al., 2014; Gong et al., 2015;
57 Azeem et al., 2015). GWs propagate upward with increasing amplitudes due to the decrease of
58 atmospheric density. This increase typically counteracts wave dissipation allowing GWs to reach
59 significant magnitudes in the ionosphere and thermosphere region (Lu et al., 2009, 2015b; Chen
60 et al., 2013; 2016). The neutral perturbations couple to traveling ionospheric disturbances (TIDs)
61 with typical horizontal wavelengths of 100–400 km, phase speeds of 100–500 m/s, and amplitudes
62 of 0.1–3.5 TECu in Total Electron Content (TEC) (Azeem et al., 2015; Chou et al., 2017; Heale et
63 al. 2019). These perturbations also give rise to large vertical plasma drifts, seeding of equatorial
64 plasma bubbles, and increased radio scintillation (Nicholls and Kelley, 2005; Bishop et al., 2006;
65 Takahashi et al., 2020; Huba et al., 2023a). Satellite observations such as the Atmospheric Infrared
66 Sounder (AIRS), Cloud Imaging and Particle Size (CIPS) instrument, Global Ultraviolet Imager
67 (GUVI), Global-scale Observations of the Limb and Disk (GOLD), as well as ground-based
68 airglow imagers, are invoked to observe the neutral counterparts of GWs known as Traveling
69 Atmospheric Disturbances (TADs) (Yue et al., 2014; England et al., 2021; Bossert et al., 2022;

70 Cullens et al., 2023). Coherency of wave structure, timing, and location are often identified in the
71 concurrent Global Navigation Satellite System (GNSS) TEC measurements, suggesting the link
72 between them and the same origins (Azeem et al., 2015; England et al., 2021; Harvey et al., 2023).

73 Numerical modeling has been used to simulate GWs excited by convective sources and
74 examine the wave impacts in a more systematic way. Heale et al. (2019) studied GWs generated
75 by a thunderstorm system over the midwestern United States using Model for Acoustic-Gravity
76 wave Interactions and Coupling (MAGIC) (Snively & Pasko, 2008; Snively, 2013; Heale &
77 Snively, 2015) and the model results compared favorably with the multi-layer observations. Liu et
78 al. (2014) used the high-resolution Whole Atmosphere Community Climate Model (WACCM)
79 and simulated the GW generation by a tropical cyclone, which reached a planetary-scale extent in
80 the mesosphere and lower thermosphere. Liu et al. (2024) investigated resolved GWs (down to
81 ~200 km in horizontal wavelength) on circulation and composition using the high-resolution
82 WACCM with thermosphere/ionosphere extension (WACCM-X) and demonstrated significant
83 vertical evolution of the phase speed spectra. A similar range of GW spectra are also simulated by
84 the HIgh Altitude Mechanistic general Circulation Model (HIAMCM) in which medium-scale
85 GWs are shown to compare well with the AIRS observations (Becker et al., 2022).

86 Recent efforts have been devoted to coupling neutrals to ionosphere and thermosphere or
87 plasmasphere models for a detailed examination of the ionospheric consequential phenomena such
88 as plasma bubbles and TIDs with origins from below. Zhao et al. (2020) added a specified GW
89 matching the GPS-TEC measurements to the lower boundary of Global Ionosphere-Thermosphere
90 Model with local-grid refinement (GITM-R) and reproduced the tropical cyclone-induced
91 concentric GWs and TIDs. Wu et al. (2023) nudged high-resolution WACCM-X neutral winds
92 and temperatures to the Thermosphere-Ionosphere-Electrodynamics General Circulation Model

93 with a nested-grid extension (TIEGCM-NG) for the Hunga Tonga-Hunga Ha'apai (Tonga) volcano
94 eruption event. The model results capture large perturbations in vertical neutral winds (\sim 100 m/s)
95 and TIDs reaching over 10 TECu in amplitudes consistent with the GNSS observations. Huba et
96 al. (2023b) modeled the development of an equatorial plasma bubble during a midnight
97 temperature maximum via the coupled SAMI3/WACCM-X model. Vadas et al. (2023) and Huba
98 et al. (2023a) used the coupled SAMI3/HIAMCM/MESORAC (Model for gravity wavE SOurce,
99 Ray trAcing and reConstruction) model set and showed the effects of secondary GWs on the
100 ionospheric perturbations and instability.

101 Previous studies have shown the impressive ionospheric responses to waves originating
102 from the lower atmosphere. However, more case studies are still needed to enhance our
103 understanding and develop a comprehensive perspective on the relationship between wave sources
104 and their ionospheric impacts. Prominent science questions that remain to be addressed include
105 understanding why similar terrestrial weather events can trigger diverse TID structures and
106 magnitudes, how neutral background and ionospheric conditions affect wave propagation and
107 neutral-ion coupling, and how wave characteristics and impacts evolve with altitudes. In this work,
108 we couple the MAGIC (GW part in neutrals) to the TIEGCM-NG in a similar way as in Wu et al.
109 (2023) except the GWs are obtained from a high-resolution regional model, instead of a global
110 circulation model. We first compare the modeled TIDs with GNSS observations, using the model
111 results to systematically investigate the wave impacts on neutral winds, temperature, density,
112 electron density, and ion drifts. Additionally, we track the vertical evolution of the waves and
113 identify their imprints on ICON and COSMIC-II measurements near the topside of the ionosphere.

114 **2. Tornado Event, Data, and Model Runs**

115 During 12/13 April 2020, a severe storm system in the Southeastern United States led to a

116 deadly ‘Easter Tornado Outbreak’: throughout the two-day outbreak, a total of 141 tornadoes
117 touched down across 10 states, inflicting widespread and locally catastrophic damage. The
118 outbreak ranks 4th for producing the most tornadoes in a 24-hour period, with 132 tornadoes
119 occurring between 14:40 UTC April 12–13 (Figure 1a). Figure 1b shows the reflectivity
120 observations from the Next-Generation Radar (NEXRAD) network at 21:55 UTC on 12 April
121 2020, indicating the presence of a severe storm system over the southeastern United States that
122 propagates in a southeastern direction as time progresses. During a similar time period, the AIRS
123 observations show the concentric ring patterns in the stratosphere (~35 km altitude) at 18:00 UTC
124 (Figure 1c).

125 **2.1. GNSS dTEC Observations**

126 World-wide ground-based GNSS TEC data have been produced at MIT Haystack
127 Observatory using the MAPGPS software suite (Rideout et al., 2006; Vierinen et al., 2016), The
128 GNSS TEC processing utilizes 6000+ global receivers, 3000+ in the American sector, using both
129 the GPS and GLONASS constellations. TIDs are identified based on ionospheric disturbance
130 information as represented by differential TEC (dTEC) values, with background TEC variations
131 being detrended (Zhang et al., 2017). For this purpose, the background TEC is determined by using
132 a low-pass filter (Savitzky and Golay, 1964) with a linear basis function within a 30-minute sliding
133 window (Zhang et al., 2022; 2023). In order to be consistent with observations, once we obtain the
134 TEC from the model run, we apply the similar methodology here to retrieve the dTECs using the
135 model results.

136 The GNSS observations reveal the emergence of concentric TIDs around 22:00 UTC on
137 12 April, intensifying and reaching their peak by 01:00 UTC on 13 April, before gradually
138 weakening thereafter (Figures 3a1-a3 and movie S1). The presence of concentric ring patterns in

139 both the stratosphere and ionosphere, coinciding with the lower-atmosphere thunderstorm and
140 tornado outbreak, implies that the generation of GWs and TIDs stems from the convective source.

141 **2.2. ICON and COSMIC-II Observations**

142 The Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) instrument is
143 described by Heelis et al. (2017), with its performance by Heelis et al. (2022). The IVM measures
144 the ion density, velocity, temperature, and fraction of the ions that are O⁺ or H⁺ at the spacecraft's
145 location with a 1 second cadence. ICON is in a near-circular orbit at 27° inclination orbit, with an
146 altitude between ~580 – 610 km. This study uses the Level 2, version 6 of the IVM data (the latest
147 available at the time of writing). Only values of the ion density and O⁺ fraction data that are
148 reported as good quality are used.

149 The COSMIC-2 FM4 constellation of satellites (referred to as COSMIC-II hereafter) each
150 carry similar IVM instruments to ICON, with its performance described by Chou et al. (2021).
151 This study uses the Level 2m COSMIC-II data (the latest available at the time of writing). The
152 COSMIC-II satellites have a near circular orbit at 24° inclination orbit, with an orbital altitude
153 between ~520–550 km.

154 **2.3. MAGIC Simulation**

155 The MAGIC model simulates the nonlinear, compressible Navier-Stokes equations using
156 a finite-volume approach through the clawpack routines (Leveque 2002) and applying the “f-wave
157 method’ of Bale et al. (2002). GWs within MAGIC are generated from NEXRAD precipitation
158 rates at each grid location which are converted to a latent heating profile using the Stephan and
159 Alexander (2015) algorithm. The latent heating profiles are then applied time-dependently to the
160 Navier-stokes energy equation to drive GWs. We note that this approximation assumes that all
161 GWs are driven by latent heating occurring due to precipitation within the storms. The simulation

162 for this event runs from 20:00 UTC on 12 April to 01:30 UTC on 13 April and includes a 45-
163 minute ramp up period to avoid unphysical acoustic waves being generated. The ambient
164 atmospheric state is determined as a mean over Alabama during this time period and is defined as
165 a combination of MERRA-2, HWM and MSIS winds, temperatures and densities. The simulation
166 domain covers most of the continental United States (CONUS) with a 4km horizontal resolution
167 and a 1km vertical resolution from the ground to 300 km altitude.

168 Figure 2 shows the MAGIC temperature at $z=50$ km, 100km, and 250 km at 21:55 UTC
169 on 12 April 2020 with the NEXRAD reflectivity overlaid. The plots show semi-concentric wave
170 patterns with preferential eastward propagation that originate from the storms below. A wavelet
171 analysis at $z=250$ km altitude suggests dominant horizontal wavelengths between 150–400 km and
172 amplitudes of ~ 80 K. At $z=100$ km, nonlinearity, instabilities, and wave breaking are present in
173 the wave field which can generate secondary waves. Therefore, the waves seen at $z=250$ km are
174 likely a mixture of primary waves propagating directly from the source and secondary waves
175 generated from primary wave breaking and/or momentum/energy deposition in the Mesosphere
176 and Lower Thermosphere. Secondary waves can be generated with a spectra of scales and periods
177 depending on the dominant mechanism that generated them. Typically, primary wave saturation
178 and dissipation can impart momentum and energy into the mean flow locally leading to re-
179 radiation of the energy as larger waves. In addition, strong nonlinearity and wave breaking of the
180 primary wave can lead to the transfer of energy to other wave modes typically of smaller scales.
181 Secondary waves generated by both of these mechanisms have the ability to carry further
182 momentum and energy upward into the thermosphere/ionosphere.

183 **2.4. TIEGCM-NG Nudged by MAGIC Gravity Wave Perturbations**

184 TIEGCM is a global 3D numerical model that simulates the coupled

185 thermosphere/ionosphere system from \sim 97 to \sim 600 km altitude. It self-consistently solves the fully
186 coupled nonlinear, hydrodynamic, thermodynamic and continuity equations of the neutral gas, the
187 ion and electron energy equations, the O^+ continuity equation and ion chemistry, and the neutral
188 wind dynamo (Richmond et al., 1992; Qian et al., 2014). Realistic F10.7 are used in all simulations.
189 Incorporating data assimilated aurora and electric fields (Wu and Lu, 2022; Wu et al., 2022) is
190 now available as an option for high-latitude drivers, providing an optimal setup during
191 geomagnetic storms (Lu et al., 2023). For simplicity, we use the Heelis model for high-latitude
192 electrical potential here due to the very quiet geomagnetic condition ($K_p < 2$). The output frequency
193 of the diagnostic terms is one minute.

194 TIEGCM with the nested grid module (TIEGCM-NG) has been developed and introduced
195 in Wu et al. (2023). For this event, we run a horizontal resolution of 1.25° for the global grid and
196 implement two levels of sub-grid meshes with horizontal resolutions of 0.6° and 0.3° , respectively.
197 The time step of the global grid is 10s and inner levels quadruple the sub-cycles (2.5s, 0.625s)
198 compared to the outer level. Vertical resolution of TIEGCM-NG is 1/8 scale height for all levels.
199 MAGIC has a higher resolution than the TIEGCM-NG which resolves much smaller scales (tens
200 of km). Since such small-scale phenomena are not dominant from the TEC observations (Section
201 3.1), and in order to avoid numerical instability induced by high-frequency fluctuations, we apply
202 a 2D horizontal Gaussian smoothing filter with standard deviation of 8 km on the MAGIC
203 perturbations before nudging them to the lower levels of TIEGCM-NG. Four scale heights of
204 MAGIC data (\sim 95–130 km) are used for the nudging and a vertical weighting function with an
205 exponential decaying rate of 0.4 scale height $-(z-z_0)/0.4$ is used. z is the log-pressure coordinate
206 used in the model ($-7 < z < -3$) and $z_0 = -7$ is the lower boundary of the model.

207 Since the MAGIC simulation is performed in the northern American sector instead of
208 globalwise, an additional horizontal weighting function is further implemented to minimize the
209 boundary effect. The horizontal weighting function is applied within 15° of the MAGIC domain
210 and takes a Gaussian form with a width of 5° and shape of $\exp^{-(\Delta x/5)^2}$ in which Δx is the shortest
211 great-circle distance to the edges of the MAGIC domain in degree. The total weighting function
212 applied to MAGIC fields is the product of vertical and horizontal weighting functions.

213 The TIEGCM-NG is also run with no GWs being nudged at the lower levels as a control
214 case. The difference fields between the control run and the GW-nudged run then represent the
215 wave-induced perturbations.

216 **3. Model Results**

217 **3.1. TID Simulations and Comparison with GNSS**

218 We show the results in the finest grid (level-2 nested grid) for the TIEGCM simulations
219 except for ion drifts, where the global grid is used (Figure 11). Figure 3 shows the GNSS dTEC
220 compared with the TIEGCM-NG simulations at three different times corresponding to the initial,
221 evolving, and peak phases of the event, delineated by the escalating magnitudes of TIDs. It can be
222 seen that the TIEGCM-NG reasonably simulates the concentric ring pattern, including the timing
223 of its development and the horizontal wave structure. The observations show a maximum TID
224 amplitude in dTEC of ~ 0.1 TECu, while the simulation slightly surpasses this reaching ~ 0.15
225 TECu. We select three trajectories from the GNSS and model simulated TIDs (shown as the black
226 dashed lines in Figures 3a3 and 3b3) to examine the spectrum of horizontal scale. The longitude
227 and latitude of each trajectory are used to calculate the real distance in kilometers prior to wavelet
228 estimation. Figure 4 shows the wavelet spectra in terms of wave amplitudes. Due to variations in
229 trajectories, the horizontal wavelengths can be slightly different. The dominant wave spectrum

230 typically ranges between 150–400 km, aligning with the findings from stand-alone MAGIC
231 simulations regarding temperature perturbations at 250 km (Section 2.3). In addition to this range,
232 a large scale with a horizontal wavelength of 600–800 km is also discernible, albeit with weaker
233 magnitudes. A movie showing the propagation of TIDs is included in the Supporting Information
234 (SI).

235 Figure 5 shows the dTEC keograms progressing with latitudes at longitudes of -95° , -88°
236 and -81° from the GNSS observations and model simulations during the same time window. The
237 general tilting of the phase fronts is consistent between them, indicating a northward wave
238 propagation above $\sim 35^\circ$ latitude. Southward propagation is seen below $\sim 35^\circ$ from simulation,
239 which is consistent with Figure 3 (right column) about the center of the concentric ring. Despite
240 significant gaps in observations below 30° , southward propagation can still be traced, as shown by
241 the downward phases from 20 to 21 UTC southward of 30° in Figure 5a. From Figures 3a3 and
242 3b3, the vertical slices at a longitude of 88° (black dashed lines 1 and 2) are nearly perpendicular
243 to the wave fronts, so we can use the keogram along this line to estimate the horizontal phase
244 speeds (middle column of Figure 5), which range from ~ 150 – 300 m/s. The model si mulations
245 and observations show good agreement about the phase speeds.

246 The stronger TIDs (absolute amplitudes) southward of 30° latitude are due to the amplified
247 mean TEC background as it approaches the Equatorial Ionization Anomaly (EIA). Relative dTEC
248 perturbations which remove such an asymmetry are derived by dividing the mean background
249 calculated as the longitudinal averaged TEC and shown in the last row of Figure 5. Relative dTEC
250 perturbations reach a maximum amplitude of ~ 4 – 5% from model results.

251 **3.2. Regional to Global Neutral and Ionospheric Responses**

252 Now the model has been shown to largely reproduce the TIDs as observed, we can use it
253 to systematically diagnose the wave impacts and their vertical evolution. Figure 6 illustrates the
254 wave-induced perturbations (TADs) in neutral zonal wind (UN), meridional wind (VN), vertical
255 wind (WN), and temperature (TN) at 200 and 400 km in top and bottom rows, respectively. Similar
256 concentric ring patterns are present, and larger-scale TADs tend to appear strongly at far-fields of
257 the domain compared with the smaller ones at the center. These larger-scale waves are the ones
258 emerging in the observational domains of the ICON and COSMIC-II measurements (Section 4).
259 In general, the wave amplitudes reach \sim 100 m/s for UN and VN, \sim 60 m/s for WN, and \sim 80 K for
260 TN. As altitude increases, small to medium-scale waves tend to weaken in horizontal winds and
261 temperatures (1st, 2nd and 4th columns), while become stronger in vertical winds (3rd column). The
262 movie showing the TAD evolution is included in the SI.

263 Figure 7 shows the vertical structures of the waves at a location of 85° longitude, 40°
264 latitude. The strongest horizontal wind and temperature perturbations are found below 300 km,
265 while obvious attenuations are found above it. Figures 7e and 7f show the neutral perturbations at
266 200 and 400 km, respectively. High-frequency waves appear and become strong in vertical winds,
267 which can be also seen clearly in Figure 7c. The vertical evolution of the wave spectra is consistent
268 with the GW's polarization relation, wherein the amplitude ratio of temperature to vertical wind is
269 nearly inversely proportional to the intrinsic frequency, therefore the higher-frequency waves
270 exhibit stronger perturbations in the vertical wind component (Vadas and Fritts 2005; Vadas, 2013;
271 Lu et al., 2015a, 2017). From the wavelet analyses (Figure 8), the dominant wave periods are about
272 0.5 h, with weaker yet visible ones around 0.25 h at 200 km. At 400 km, the 0.25-h waves
273 strengthen, and even higher-frequency modes appear, which may be generated internally from
274 nonlinear processes since they are barely seen at 200 km.

275 Figure 9 shows the wave-induced perturbations in the absolute electron density. Significant
276 responses are seen at 200 and 250 km at later stages, especially in the night-time sector at 200 km
277 (Figure 9c1) and inside of the EIA crest at 250 km (Figure 9c2). The waves become less efficient
278 in perturbing the overall structure of electron density at 400 km. The significant perturbations in
279 relative neutral densities are also observed (Figure 10). The initial and evolving phases show a
280 preferential propagation towards the east, with waves appearing stronger on the eastern side of the
281 domain. At the peak phase, the wave magnitude reaches an order of $\sim 10\%$ in some regions at 250
282 km and this magnitude of perturbations becomes more typical at 400 km (Figure 10, 3rd column),
283 which has the potential to induce non-trivial orbital deviations for satellites due to the drag effect.
284 To give a reference, Leonard et al. (2012) studied the operational consequences of longitude-
285 dependent tides through a series of orbital and reentry predictions. They found that the in-track
286 prediction differences by tidal effects are of order 200 ± 100 m for satellites in 400-km orbits and
287 15 ± 10 km for satellites in 200-km orbits for a 24-hour prediction. The maximum tidal amplitudes
288 in relative neutral densities in their case reach 10-15% in the mesosphere and lower thermosphere
289 region and become about half in the region of 300–400 km. The detailed analysis of the impacts
290 from this tornado event featured by small-scale GWs is beyond the scope but deserves a further
291 investigation.

292 To further analyze the wave impacts on the ionosphere, we show the perturbations in ion
293 drifts in the zonal, meridional, and vertical directions (UI, VI, and WI) in Figure 11. The
294 geographic coordinate in the global grid is used for the TIEGCM outputs. The near-field
295 perturbations show concentric ring patterns while the planetary-scale perturbations are visible at
296 lower latitudes, especially at later stages (a movie showing the time evolution is included in the
297 SI). The conjugate hemispheric disturbances in ion drifts are likely caused by the electric fields

298 originating in the Northern-Hemisphere tornado region. Neutral wind perturbations in GWs over
299 this region can excite electric fields on the nightside which are mapped to the conjugate hemisphere
300 through the Earth's magnetic field lines, producing plasma density fluctuations (i.e., MSTIDs).
301 The GW induced electric fields were reported previously in both observations and simulations
302 (e.g., Varney et al., 2009; Huba et al., 2015; Zhang et al., 2021). The similar conjugate effect and
303 the resultant interhemispheric coupling are also simulated by the high-resolution WACCM-X for
304 the Hunga Tonga-Hunga Ha'apai volcano eruption event (Liu et al., 2023). Liu et al. (2023)
305 attributed the underestimation of the magnitude of the total $E \times B$ drift perturbations to the model's
306 inability to capture small scales as observed (Shinbori et al., 2022). A similar issue exists, and the
307 underestimation is also expected in our case.

308 It should be noted that the nested module hasn't implemented the neutral wind dynamo yet,
309 thus the neutral perturbations must propagate to the global grid and then influence plasma motions,
310 during which the perturbations are largely smoothed when mapped to a coarser grid. The use of a
311 global grid with a resolution of 1.25° in this study would lead to a significant underestimation
312 compared to the finer grid (0.3°), which is nearly one order of magnitude smaller. This suggests
313 that much more significant perturbations in ion drifts (on the order of 100 m/s) and smaller-scale
314 TIDs are anticipated responding to this event. It remains to be uncovered in the future how
315 significant small-scale GWs can impact the neutral wind dynamo, and further model development
316 is underway.

317 **4. Wave Imprints in ICON and COSMIC-II Observations**

318 While ground-based TEC observations are well suited to reveal the 2D horizontal structure
319 of TIDs and their motion, these data represent an integral of the wave's impact across the entire
320 ionosphere. By contrast, in situ ion measurements provide the wave characteristics at a single

321 altitude (e.g., topside ionosphere), but not usually the 2D horizontal structure or motion of TIDs,
322 and thus are a good complement to the TEC observations. Both ICON and COSMIC-II IVM data
323 have been shown to be suitable for identifying TIDs in the topside ionosphere (e.g., Feggeler and
324 England, 2024). The in-situ ion observations from ICON and COSMIC-II can be compared to the
325 TIEGCM-NG simulations of the TIDs produced during this event. It is worth noting here that the
326 uppermost level of the model is around the altitude of COSMIC-II, but never reaches the altitude
327 of ICON. For that reason, the comparison will focus on the perturbations to the ions, rather than
328 the absolute magnitudes of the densities.

329 ICON passes through the region of the simulation on 3 successive orbits, with the relevant
330 segment of each of those shown in Figure 12a. Each of these orbit segments includes the day/night
331 terminator as well as changes in latitude. Thus, there are significant changes in the value of the ion
332 density along each track that are not the focus of this analysis. To isolate the TID-induced
333 perturbations from this large-scale variation, the ion measurements are detrended by producing a
334 low-pass dataset using a 15 degree along-track boxcar smooth (which is large compared to most
335 of the perturbations seen in the TIEGCM-NG) and subtracting this from the original 1-second data.
336 The detrended data is shown in Figure 12b–d for the ion density and Figure 12h–j for the O⁺
337 fraction. As ICON is near the O⁺ to H⁺ transition altitude, the fraction of the ionosphere that is O⁺
338 is a good proxy for vertical transport of the ions. Comparing the corresponding plots for the ion
339 density and O⁺ fraction, it is clear that many of the small to medium scale fluctuations in the total
340 density correspond to changes in the O⁺ fraction, and thus are likely the result of vertical transport
341 of ions, either from advection by the winds or electrodynamic coupling. As each of the paths of
342 the spacecraft through the region of interest are necessarily curved tracks, it is not possible to
343 directly identify horizontal wavelengths from these plots, and so the horizontal scale sizes of

344 features as seen along these curved tracks are examined. Comparing the orbit tracks in Figure 12
345 to the electron density perturbations shown in Figure 9, it can be seen that the orbit tracks are quasi
346 parallel to the density enhancements, thus we expect the along-track spatial scales seen by both
347 ICON and TIEGCM-NG when sampled along the ICON track to be significantly larger than
348 wavelength of the TID.

349 A comparison to the TIEGCM-NG model densities can help to identify if the spatial
350 scales of the fluctuations seen by ICON are in general agreement with those in the model. To do
351 this, the model data at the closest point in time are interpolated to the ICON latitude and longitude
352 using a simple bilinear interpolation. All model data are taken from the uppermost level of the
353 model, which is still \sim 100 km below the altitude of ICON, but provides the closest point for
354 comparison, with the two datasets shown in Figure 12. To avoid windowing effects, wherever
355 ICON is outside the TIEGCM-NG domain, the global model is sampled. The data are then
356 detrended in the same manner as the observations. Following this, both detrended datasets are
357 trimmed to include only the region inside the nested grid. As the spacecraft do not fly along a
358 cardinal direction, the data in either longitude or latitude are not evenly spaced, so a Lomb-Scargle
359 periodogram is used to identify the dominant spatial scales. These are shown in Figure 12e–g.

360 The same process described above is then repeated with each of the COSMIC-II spacecraft.
361 For these, a total of 5 passes are found to intersect the region of interest, 3 from spacecraft 1,
362 2 from spacecraft 4. Figure 13 shows these passes, the corresponding detrended densities and
363 periodograms comparing these to the TIEGCM-NG. As COSMIC-II is much lower, the O⁺ fraction
364 is of less utility and is not included. The ICON and COSMIC-II passes are in regions southward
365 of the center of the tornado event, which fall within the far-fields of the wave domains. Therefore,
366 relatively larger scales of waves, on the order of a thousand kilometers (\sim 5–10 degrees) instead

367 of the 150–400 km range observed around the center, are expected to show favorable comparisons
368 between the model and observations.

369 In comparing the in situ data to the model, it is worth remembering that the COSMIC-II
370 spacecraft are just slightly above the model top boundary (~20-50 km) whereas ICON is higher
371 still (~80-110 km above the model boundary). Given that, we may expect generally better
372 agreement between the model and COSMIC-II, compared to ICON, which is the case. Examining
373 the detrended ion density (Figure 13 panels b-f), the approximate magnitude of the fluctuations
374 seen in the data and model are overall similar. The model displays a higher fluctuation on some
375 orbits (e.g. panel d) and the data on others (e.g. panel e), but over the five they are comparable.
376 Given the difference in altitudes and perhaps minor differences in the exact timing of wave
377 generation and propagation, it is perhaps not surprising that the phase of the features don't show
378 good alignment (while individual features certainly do, many do not). Instead we examine the
379 spatial scales of the fluctuations, as seen along the curved orbit tracks (referred to as along-track
380 wavelength), to determine the similarity between the fluctuations seen by the spacecraft and those
381 simulated in the model. The first orbit shows no apparent agreement between the model and data,
382 the reason for which is not known. The second orbit shows more similarity, both in the detrended
383 densities (panel c) and spectra (panel h). Both model and data see a feature with a scale of around
384 7.5 degrees, and the model sees a feature with a scale of around 10.5 degrees, which is bracketed
385 by features in the model at around 9 and 11.5 degrees. The amplitudes of these features are also
386 relatively similar. Both model and data see a feature with a scale of around 14.5 degrees, which is
387 close to the 15 degree window used for detrending the data. In the third orbit, the model and data
388 both see a feature around 7 - 8 degrees, although this is of higher amplitude in the model than the
389 data. The model sees a second feature near 11.5 degrees which may be related to that seen in the

390 data at 13 degrees. In the fourth orbit, the detrended ion densities show a high degree of visual
391 similarity (panel e), with clear fluctuations of around 10 degrees in scale. The spectrum in panel j
392 shows this clearly for the data, whereas the model has a peak near 13 degrees, that is of a similar
393 magnitude. In the fifth orbit, the fluctuations in the detrended ion densities again show some visual
394 similarity in terms of amplitude of fluctuation (panel f), but those seen in the data are more broadly
395 spaced than those in the model, as is reflected in the spectrum (panel k). Again, the magnitude of
396 the fluctuations in panel k is similar between the model and data. Examining the ICON orbits, the
397 first orbit does not show clear similarity in the detrended ion densities or the spectrum (Figure 12
398 panels b, e), which may be the result of the orbit being relatively close to the edge of the high
399 resolution domain (Figure 12 panel a). The second and third orbits pass through much more of the
400 high resolution domain, and of these the second orbit shows reasonable agreement between the
401 model and data. The detrended ion densities have some visible similarity (panel c), and the spectra
402 with the two strongest peaks around 9 and 12-13 degrees. The amplitude of the spectra are different
403 with the observations showing a much stronger peak at the longer wavelength, which could be
404 related to the altitude difference and changing ionospheric conditions over this region. The third
405 orbit from ICON starts 6 minutes after the model simulation ends, and continues until 34 minutes
406 after its end, with all data compared to the final time step of the model. While the range of the
407 fluctuation in the data and model (panel d) are similar, there is not good agreement in their spatial
408 scales (panel g). Taken as a whole, we see a reasonable degree of similarity between the model
409 and in situ observations, with the exception of cases near the edge of the simulated domain (in
410 time and space), and the first orbit of COSMIC-II. This suggests that the model is capturing much
411 of the TAD/TID spectrum that is present and which reaches the topside ionosphere.

412

413

414 **5. Conclusions**

415 We nudge the GWs generated by the MAGIC model to TIEGCM-NG and symmetrically
416 evaluate the impacts of a severe thunderstorm-focused event on the IT system. We first compare
417 the model results with the GNSS TEC observations and find reasonable agreement in the structure
418 and evolution of TIDs, characterized by horizontal wavelengths of 150–400 km and phase speeds
419 of 150–300 m/s. The dominant wave periods are around 0.5h and 0.25h at 200 km altitude, with
420 higher-frequency waves more prominent at higher altitudes. The maximum wave amplitudes in
421 neutral horizontal winds (UN and VN), vertical wind (WN), and neutral temperature (TN) are
422 about 100 m/s, 60 m/s, and 80 K, respectively. Significant perturbations in the absolute electron
423 density are seen at night-time and near the EIA crest close to the F-region peak. Wave-induced
424 neutral density perturbations peak ~10% at 250 km, and such magnitude becomes typical at 400
425 km, which can potentially cause significant deviations in satellite orbits. The conjugate effect is
426 simulated and TIDs are reproduced in both hemispheres, whereas their magnitude is
427 underestimated in the current model run due to limited resolution.

428 This is the first-time that the GW signatures originating from a convective source below
429 have been identified in the ICON and COSMIC-II observations. Both ICON and COSMIC-II
430 provide ion measurements in the topside ionosphere. These show periodic signatures along their
431 respective orbit tracks that show a good degree of agreement with the TIEGCM-NG model. The
432 ICON density and O⁺ fraction fluctuations show a high degree of similarity, which is indicative of
433 the density changes originating from vertical transport of the plasma, either by direct advection
434 from neutral winds or electrodynamic coupling to the neutral wave signatures.

435 This study showcases the potential of combining a high-resolution regional wave model
436 for source modeling with a global IT general circulation model to study the subsequent variability

437 in the ionosphere perturbed by terrestrial weather from below. The waves, nudged at the lower
438 levels (E-region and lower F-region) of the IT model, cover a broad wave spectrum, with the
439 dominant wave signals matching the F region ionospheric observations. Given the capability of
440 the IT model to also simulate the influences of space storms realistically on the IT from above (Lu
441 et al., 2023), this setup can be used to explore the relative contribution, interplay, and
442 preconditioning effects of these two important sources in determining the variability of the
443 geospace system.

444

445 **Acknowledgement**

446 X. Lu and H. Wu's work is supported by NASA grants 80NSSC22K0018, NNX17AG10G,
447 80NSSC22K1010, 80NSSCK19K0810, and NSF grants AGS-2012994, CAREER-1753214. The
448 team acknowledges the NSF/ANSWERS grants AGS-2149695, AGS-2149696, AGS-2149697,
449 and AGS-2149698, which foster this collaborative work. GNSS TEC data processing and Madrigal
450 database system are provided to the community by MIT under NSF grant AGS-1952737 support.
451 S. Zhang's work was supported by NASA grants 80GSFC22CA011, 80NSSC21K1310, and
452 80NSSC22K1074.

453

454 **Open Research**

455 The data from the TIEGCN-NG simulation and the codes used to read and plot the figures are
456 available at <https://data.mendeley.com/datasets/689dzcy8wv>. The ICON data were obtained from
457 <https://icon.ssl.berkeley.edu/Data/Data-Product-Matrix>. The COSMIC-II data were obtained from
458 <http://formosat7.earth.ncku.edu.tw/>. The National Center for Atmospheric Research is sponsored
459 by the National Science Foundation.

460

461 **Reference**

462 Azeem, I., J. Yue, L. Hoffmann, S. D. Miller, W. C. Straka III, and G. Crowley (2015), Multisensor
463 profiling of a concentric gravity wave event propagating from the troposphere to the
464 ionosphere, *Geophys. Res. Lett.*, 42, 7874–7880, doi:10.1002/2015GL065903.

465 Bale, D. S., LeVeque, R. J., Mitran, S., & Rossmanith, J. A. (2002). A wave propagation method
466 for conservation laws and balance laws with spatially varying flux functions. *Journal of
467 Scientific Computing*, 24(3), 955–978.

468 Becker, E., Vadas, S. L., Bossert, K., Harvey, V. L., Zülicke, C., & Hoffmann, L. (2022). A High-
469 resolution whole- atmosphere model with resolved gravity waves and specified large-scale
470 dynamics in the troposphere and stratosphere. *Journal of Geophysical Research: Atmospheres*, 127, e2021JD035018. <https://doi.org/10.1029/2021JD035018>

471

472 Bishop, R. L., Aponte, N., Earle, G. D., Sulzer, M., Larsen, M. F., and Peng, G. S. (2006), Arecibo
473 observations of ionospheric perturbations associated with the passage of Tropical Storm
474 Odette, *J. Geophys. Res.*, 111, A11320, doi:10.1029/2006JA011668.

475 Bossert, K., Paxton, L. J., Matsuo, T., Goncharenko, L., Kumari, K., & Conde, M. (2022). Large-
476 scale traveling atmospheric and ionospheric disturbances observed in GUVI with multi-
477 instrument validations. *Geophysical Research Letters*, 49, e2022GL099901. <https://doi.org/10.1029/2022GL099901>

478

479 Chen, C., X. Chu, A. J. McDonald, S. L. Vadas, Z. Yu, W. Fong, and X. Lu (2013), Inertia-gravity
480 waves in Antarctica: A case study with simultaneous lidar and radar measurements at
481 McMurdo/Scott Base(77.8S, 166.7E), *J. Geophys. Res. Atmos.*, 118, doi:10.1002/jgrd.50318.

482 Chen, C., X. Chu, J. Zhao, B. R. Roberts, Z. Yu, W. Fong, X. Lu, J. A. Smith (2016), Lidar
483 observations of persistent inertia-gravity waves with periods of 3–10 h in the Antarctic middle
484 and upper atmosphere at McMurdo, *J. Geophys. Res. Space Physics.*, 121,
485 doi:10.1002/2015JA022127.

486 Chou, M. Y., Lin, C. C. H., Yue, J., Tsai, H. F., Sun, Y. Y., Liu, J. Y., and Chen, C. H. (2017),
487 Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016),
488 *Geophys. Res. Lett.*, 44, 1219–1226, doi:10.1002/2016GL072205

489 Chou M-Y, Braun JJ, Wu Q, Heelis RA, Zakharenkova I, Cherniak I, Pedatella NM, Stoneback
490 RA. (2021). Validation of FORMOSAT-7/COSMIC2 IVM ion density and TGRS orbit
491 electron density. *Terr Atmos Ocean Sci* 32:939–951.
492 <https://doi.org/10.3319/TAO.2021.06.22.01>

493 Cullens, C. Y., Thurairajah, B., England, S. L., Randall, C. E., Yue, J., & Wright, C. (2023).
494 Observations of typhoon generated gravity waves from the CIPS and AIRS instruments and
495 comparison to the high-resolution ECMWF model. *Journal of Geophysical Research: Atmospheres*, 128, e2022JD038170. <https://doi.org/10.1029/2022JD038170>

496 England, S. L., Greer, K. R., Zhang, S.-R., Evans, S., Solomon, S. C., Eastes, R. W., et al. (2021).
497 First comparison of traveling atmospheric disturbances observed in the middle thermosphere
498 by Global-scale Observations of the Limb and Disk to traveling ionospheric disturbances seen
499 in ground-based total electron content observations. *Journal of Geophysical Research: Space
500 Physics*, 126, e2021JA029248. <https://doi.org/10.1029/2021JA029248>

501 Feggeler, M., and England, S.L., (2024), Ionospheric observations from formation flying
502 spacecraft, *Advances in Space Research*, 0273-1177,
503 <https://doi.org/10.1016/j.asr.2024.03.054>. Fritts, D., and Alexander, M., (2003), Gravity wave

505 dynamics and effects in the middle atmosphere, *Rev. Geophys.*, 41(1), 1003,
506 doi:10.1029/2001RG000106.

507 Gong, J., Yue, J., and Wu, D. L. (2015), Global survey of concentric gravity waves in AIRS images
508 and ECMWF analysis, *J. Geophys. Res. Atmos.*, 120, 2210–2228,
509 doi:10.1002/2014JD022527.

510 Harvey, V. L., Randall, C. E., Goncharenko, L. P., Becker, E., Forbes, J. M., Carstens, J., et al.
511 (2023). CIPS observations of gravity wave activity at the edge of the polar vortices and
512 coupling to the ionosphere. *Journal of Geophysical Research: Atmospheres*, 128,
513 e2023JD038827. <https://doi.org/10.1029/2023JD038827>

514 Heale, C. J., Snively, J. B., Bhatt, A. N., Hoffmann, L., Stephan, C. C., & Kendall, E. A. (2019).
515 Multilayer observations and modeling of thunderstorm-generated gravity waves over the
516 Midwestern United States. *Geophysical Research Letters*, 46, 14,164–14,174.
517 <https://doi.org/10.1029/2019GL085934>

518 Heale, C. J., and J. B. Snively (2015), Gravity wave propagation through a vertically and
519 horizontally inhomogeneous background wind, *J. Geophys. Res. Atmos.*, 120,
520 doi:10.1002/2015JD023505.

521 Heelis, R.A, R.A. Stoneback, M.D. Perdue, M.P. Depew, Z.A. Morgan, M.D. Mankey, C.R.
522 Lippincott, L.L. Harmon, B.J. Holt (2017), Ion velocity measurements for the Ionospheric
523 Connections Explorer. *Space Sci. Rev.*, doi:10.1007/s11214-017-0383-3

524 Heelis, R.A., Depew, M.D., Chen, Y.J. and Perdue, M.D., (2022). Ionospheric Connections
525 (ICON) Ion Velocity Meter (IVM) Observations of the Equatorial Ionosphere at Solar
526 Minimum. *Space Science Reviews*, 218(8), pp.1-16. DOI: 10.1007/s11214-022-00936-w

527 Huba, J. D., D. P. Drob, T.-W. Wu, and J. J. Makela (2015), Modeling the ionospheric impact of
528 tsunami-driven gravity waves with SAMI3: Conjugate effects, *Geophys. Res. Lett.*, 42, 5719–
529 5726, doi:10.1002/2015GL064871.

530 Huba, J. D., Becker, E., & Vadas, S. L. (2023a). Simulation study of the 15 January 2022 Tonga
531 event: Development of super equatorial plasma bubbles. *Geophysical Research Letters*, 50,
532 e2022GL101185. <https://doi.org/10.1029/2022GL101185>

533 Huba, J. D., Liu, H.-L., & McInerney, J. (2023b). Modeling the development of an equatorial
534 plasma bubble during a midnight temperature maximum with SAMI3/WACCM-X.
535 *Geophysical Research Letters*, 50, e2023GL104388. <https://doi.org/10.1029/2023GL104388>

536 Leonard, J. M., J. M. Forbes, and G. H. Born (2012), Impact of tidal density variability on orbital
537 and reentry predictions, *Space Weather*, 10, S12003, doi:10.1029/2012SW000842.

538 LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge University
539 Press (ISBN: ISBN-0-521-00924-3).

540 Liu, H.-L., J. M. McInerney, S. Santos, P. H. Lauritzen, M. A. Taylor, and N. M. Pedatella (2014),
541 Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model,
542 *Geophys. Res. Lett.*, 41, doi:10.1002/2014GL062468.

543 Liu, H.-L., Wang, W., Huba, J. D., Lauritzen, P. H., & Vitt, F. (2023). Atmospheric and
544 ionospheric responses to Hunga-Tonga volcano eruption simulated by WACCM-X.
545 *Geophysical Research Letters*, 50, e2023GL103682. <https://doi.org/10.1029/2023GL103682>

546 Liu, H.-L., Lauritzen, P. H., & Vitt, F. (2024). Impacts of gravity waves on the thermospheric
547 circulation and composition. *Geophysical Research Letters*, 51, e2023GL107453. <https://doi.org/10.1029/2023GL107453>

549 Lu, X., A. Z. Liu, G. R. Swenson, T. Li, T. Leblanc, and I. S. McDermid (2009), Gravity wave
550 propagation and dissipation from the stratosphere to the lower thermosphere, *J. Geophys.*
551 *Res.*, 114, D11101, doi:10.1029/2008JD010112.

552 Lu, X., C. Chen, W. Huang, J. A. Smith, X. Chu, T. Yuan, P.-D. Pautet, M. J. Taylor, J. Gong, and
553 C. Y. Cullens (2015a), A coordinated study of 1 h mesoscale gravity waves propagating from
554 Logan to Boulder with CRRL Na Doppler lidars and temperature mapper, *J. Geophys. Res.*
555 *Atmos.*, 120, doi:10.1002/2015JD023604.

556 Lu, X., X. Chu, W. Fong, C. Chen, Z. Yu, B. R. Roberts, and A. J. McDonald (2015b), Vertical
557 evolution of potential energy density and vertical wave number spectrum of Antarctic gravity
558 waves from 35 to 105 km at McMurdo (77.8°S, 166.7°E), *J. Geophys. Res. Atmos.*, 120,
559 2719–2737. doi: 10.1002/2014JD022751.

560 Lu, X., X. Chu, H. Li, C. Chen, J. Smith, S. Vadas (2017), Statistical characterization of high-to-
561 medium frequency mesoscale gravity waves by lidar-measured vertical winds and
562 temperatures in the MLT, *J. Atmos. Solar-Terr. Phys.*, 162, 3-15
563 doi:10.1016/j.jastp.2016.10.009.

564 Lu, X., Wu, H., Kaepler, S., Meriwether, J., Nishimura, Y., Wang, W., et al. (2023).
565 Understanding strong neutral vertical winds and ionospheric responses to the 2015 St.
566 Patrick's Day storm using TIEGCM driven by data-assimilated aurora and electric fields.
567 *Space Weather*, 21, e2022SW003308. <https://doi.org/10.1029/2022SW003308>

568 Nicolls, M. J., and Kelley, M. C. (2005). Strong evidence for gravity wave seeding of an
569 ionospheric plasma instability, *Geophys. Res. Lett.*, 32, L05108, doi:10.1029/2004GL020737.

570 Qian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., Richmond, A. D., Roble, R.
571 G., Solomon, S. C., and Wang, W. (2014), The NCAR TIE-GCM: A Community Model of

572 the Coupled Thermosphere/Ionosphere System, Geophysical Monograph Series, American
573 Geophysical Union, doi:10.1002/9781118704417.ch7

574 Richmond, A. D., Ridley, E. C., and Roble, R. G. (1992), A thermosphere/ionosphere general
575 circulation model with coupled electrodynamics, *Geophysical Research Letters*, 19(6), 601-
576 604, doi:10.1029/92GL00401

577 Rideout, W. & Coster, A. (2006). Automated GPS processing for global total electron content data.
578 *GPS Solutions*, 10(3), 219–228. <https://doi.org/10.1007/s10291-006-0029-5>

579 Savitzky, A. & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least
580 Squares Procedures. *Analytical Chemistry*, 36(8), 1627–1639.
581 <https://doi.org/10.1021/ac60214a047>

582 Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Perwitasari, S., Tsuda, T., & Nishitani, N. (2022).
583 Electromagnetic conjugacy of ionospheric disturbances after the 2022 Hunga Tonga-Hunga
584 Ha'apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars
585 observations. *Earth Planets and Space*, 74(1), 106. <https://doi.org/10.1186/s40623-022-01665-8>

587 Snively, J. B. (2013). Mesospheric hydroxyl airglow signatures of acoustic and gravity waves
588 generated by transient tropospheric forcing. *Geophysical Research Letters*, 40, 4533–4537.
589 <https://doi.org/10.1002/grl.50886>

590 Snively, J. B., & Pasko, V. P. (2008). Excitation of ducted gravity waves in the lower thermosphere
591 by tropospheric sources. *Journal of Geophysical Research*, 113, A06303.
592 <https://doi.org/10.1029/2007JA012693>

593 Stephan, C. C., & Alexander, M. J. (2015). Realistic simulations of atmospheric gravity waves
594 over the continental U.S. using precipitation radar data. *Journal of Advances in Modeling
595 Earth Systems*, 7, 823–835. <https://doi.org/10.1002/2014MS000396>

596 Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Paulino, I., Essien, P., et al.
597 (2020). Equatorial plasma bubble occurrence under propagation of MSTID and MLT gravity
598 waves. *Journal of Geophysical Research: Space Physics*, 125, e2019JA027566.
599 <https://doi.org/10.1029/2019JA027566>

600 Vadas, S. L., Figueiredo, C., Becker, E., Huba, J. D., Themens, D. R., Hindley, N. P., et al. (2023).
601 Traveling ionospheric disturbances induced by the secondary gravity waves from the Tonga
602 eruption on 15 January 2022: Modeling with MESORAC-HIAMCM-SAMI3 and comparison
603 with GPS/TEC and ionosonde data. *Journal of Geophysical Research: Space Physics*, 128,
604 e2023JA031408. <https://doi.org/10.1029/2023JA031408>

605 Vadas, S.L., Fritts, D.C. (2005). Thermospheric responses to gravity waves: influences of
606 increasing viscosity and thermal diffusivity. *J. Geophys. Res.* 110, D15103. [http://
607 dx.doi.org/10.1029/2004JD005574](http://dx.doi.org/10.1029/2004JD005574).

608 Vadas, S.L. (2013). Compressible f-plane solutions to body forces, heatings, and coolings, and
609 application to the primary and secondary gravity waves generated by a deep convective
610 plume. *J. Geophys. Res. Space Phys.* 118, 2377–2397. <http://dx.doi.org/10.1002/jgra.50163>.

611 Vadas, S., J. Yue, and T. Nakamura (2012), Mesospheric concentric gravity waves generated by
612 multiple convective storms over the North American Great Plain, *J. Geophys. Res.*, 117,
613 D07113, doi:10.1029/2011JD017025

614 Varney, R. H., Kelley, M. C. , and Kudeki, E. (2009), Observations of electric fields associated
615 with internal gravity waves, *J. Geophys. Res.*, 114, A02304, doi:10.1029/2008JA013733.

616 Vierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J. & Norberg, J. (2016). Statistical
617 framework for estimating GNSS bias. *Atmos. Meas. Tech.*, 9, 1303–1312,
618 <https://doi.org/10.5194/amt-9-1303-2016>.

619 Wu, H., and Lu, X. (2022), Data assimilation of high-latitude electric fields: Extension of a multi-
620 resolution Gaussian process model (Lattice Kriging) to vector fields, *Space Weather*, 20(1),
621 e2021SW002880, doi:10.1029/2021SW002880

622 Wu, H., Tan, X., Zhang, Q., Huang, W., Lu, X., Nishimura, Y., & Zhang, Y. (2022).
623 Multiresolution data assimilation for auroral energy flux and mean energy using DMSP
624 SSUSI, THEMIS ASI, and an empirical model. *Space Weather*, 20, e2022SW003146.
625 <https://doi.org/10.1029/2022SW003146>.

626 Wu, H., Lu, X., Wang, W., & Liu, H.-L. (2023). Simulation of the propagation and effects of
627 gravity waves generated by Tonga volcano eruption in the thermosphere and ionosphere using
628 nested-grid TIEGCM. *Journal of Geophysical Research: Space Physics*, 128,
629 e2023JA031354. <https://doi.org/10.1029/2023JA031354>

630 Yue, J., B. Thurairajah, L. Hoffmann, J. Alexander, A. Chandran, M. J. Taylor, J. M. Russell III,
631 C. E. Randall, and S. M. Bailey (2014), Concentric gravity waves in polar mesospheric clouds
632 from the Cloud Imaging and Particle Size experiment, *J. Geophys. Res. Atmos.*, 119, 5115–
633 5127, doi:10.1002/2013JD021385.

634 Zhao, Y., Deng, Y., Wang, J.-S., Zhang, S.-R., Lin, C. Y. (2020). Tropical cyclone-induced gravity
635 wave perturbations in the upper atmosphere: GITM-R simulations. *Journal of Geophysical*
636 *Research: Space Physics*, 125, e2019JA027675. <https://doi.org/10.1029/2019JA027675>

637 Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W. & Vierinen, J. (2017).

638 Ionospheric Bow Waves and Perturbations Induced by the 21 August 2017 Solar Eclipse.

639 *Geophysical Research Letters*, 44(24), 12,067-12,073. <https://doi.org/10.1002/2017gl076054>

640 Zhang, S., Erickson, P. J., Gasque, L. C., Aa, E., Rideout, W., Vierinen, J., Goncharenko, L. P. &

641 Coster, A. J. (2021). Electrified Postsunrise Ionospheric Perturbations at Millstone Hill.

642 *Geophysical Research Letters*, 48(18), e2021GL095151.

643 <https://doi.org/10.1029/2021gl095151>

644 Zhang, S.-R., Nishimura, Y., Erickson, P. J., Aa, E., Kil, H., Deng, Y., Thomas, E. G., Rideout,

645 W., Coster, A. J., Kerr, R. & Vierinen, J. (2022). Traveling Ionospheric Disturbances in the

646 Vicinity of Storm-Enhanced Density at Midlatitudes. *Journal of Geophysical Research: Space Physics*, 127(8), e2022JA030429. <https://doi.org/10.1029/2022ja030429>

647 Zhang, S.-R., Nishimura, Y., Vierinen, J., Lyons, L. R., Knipp, D. J., Gustavsson, B. J., Waghule,

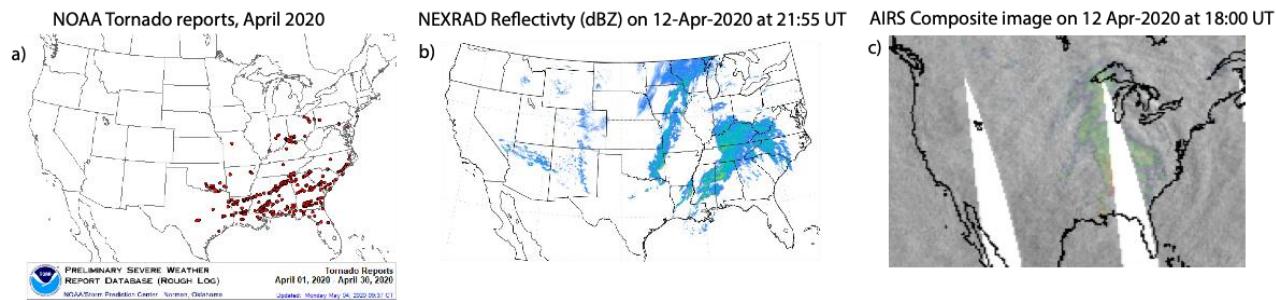
648 B. V., Erickson, P. J., Coster, A. J., Aa, E. & Spicher, A. (2023). Simultaneous Global

649 Ionospheric Disturbances Associated With Penetration Electric Fields During Intense and

650 Minor Solar and Geomagnetic Disturbances. *Geophysical Research Letters*, 50(19),

651 e2023GL104250. <https://doi.org/10.1029/2023gl104250>

652


653

654

655

656 Figure 1. (a) NOAA Tornado reports in April 2020. (b) NEXRAD Reflectivity at 21:55 UTC. (c)
657 AIRS composite 4.3- and 8.1-micron observations at 18:00 UTC on 12 April 2020.

658

660

661

662

663

664

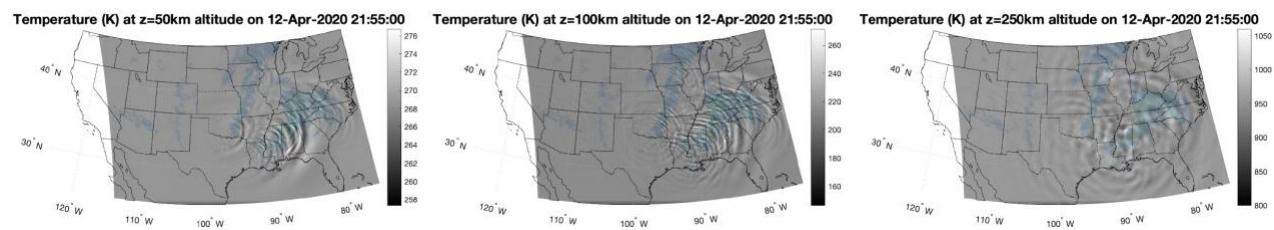
665

666

667

668

669


670

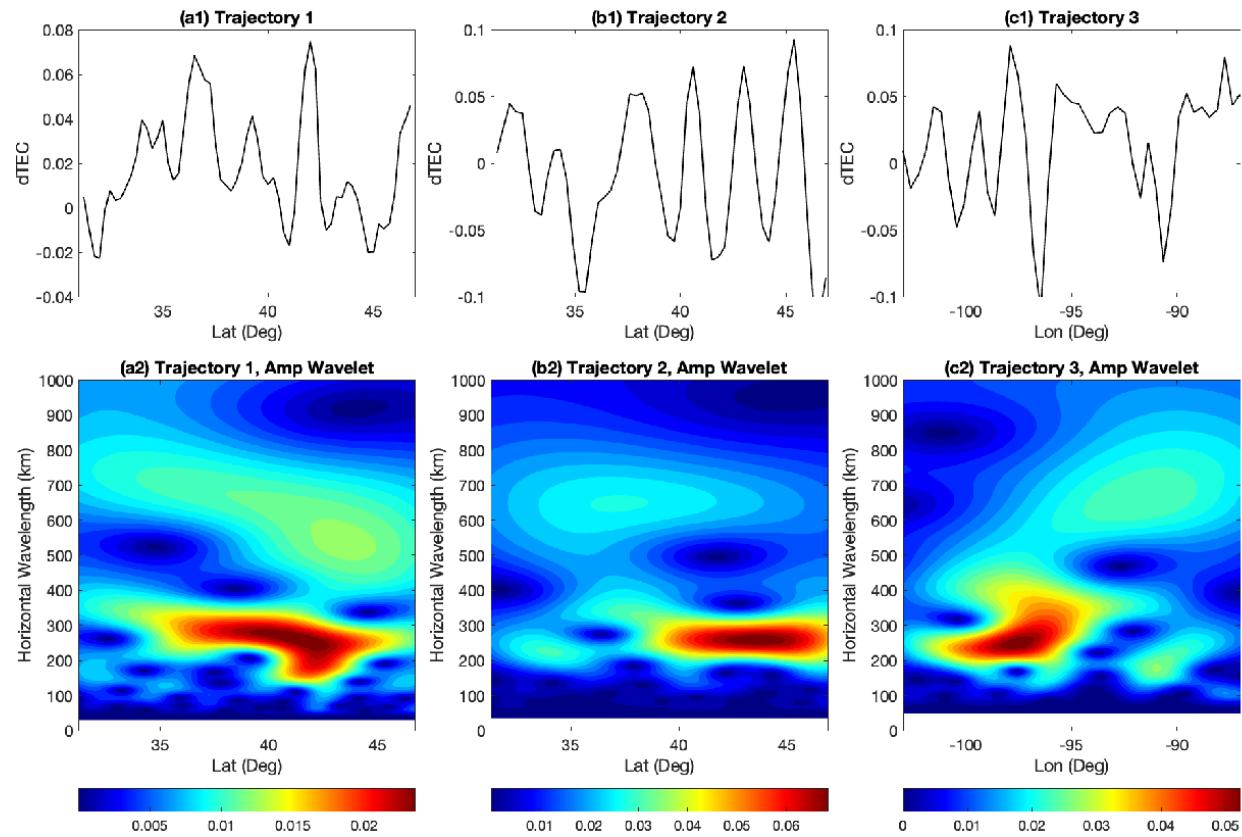
671

672 Figure 2. MAGIC simulated temperatures at $z=50$ km, 100km, and 250 km at 21:55 UTC with the
673 NEXRAD reflectivity maps overlaid.

674

675

676 Figure 3. (a1-a3) GNSS dTEC observations at the initial (21:50 UTC), evolving (23:45 UTC), and
 677 peak (25:15 UTC) phases, respectively. (b1-b3) are similar except for the TIEGCM-NG
 678 simulations. Three black dashed lines in (a3) and (b3) are the three slices for the wavelet analysis
 679 in Figure 4.


680

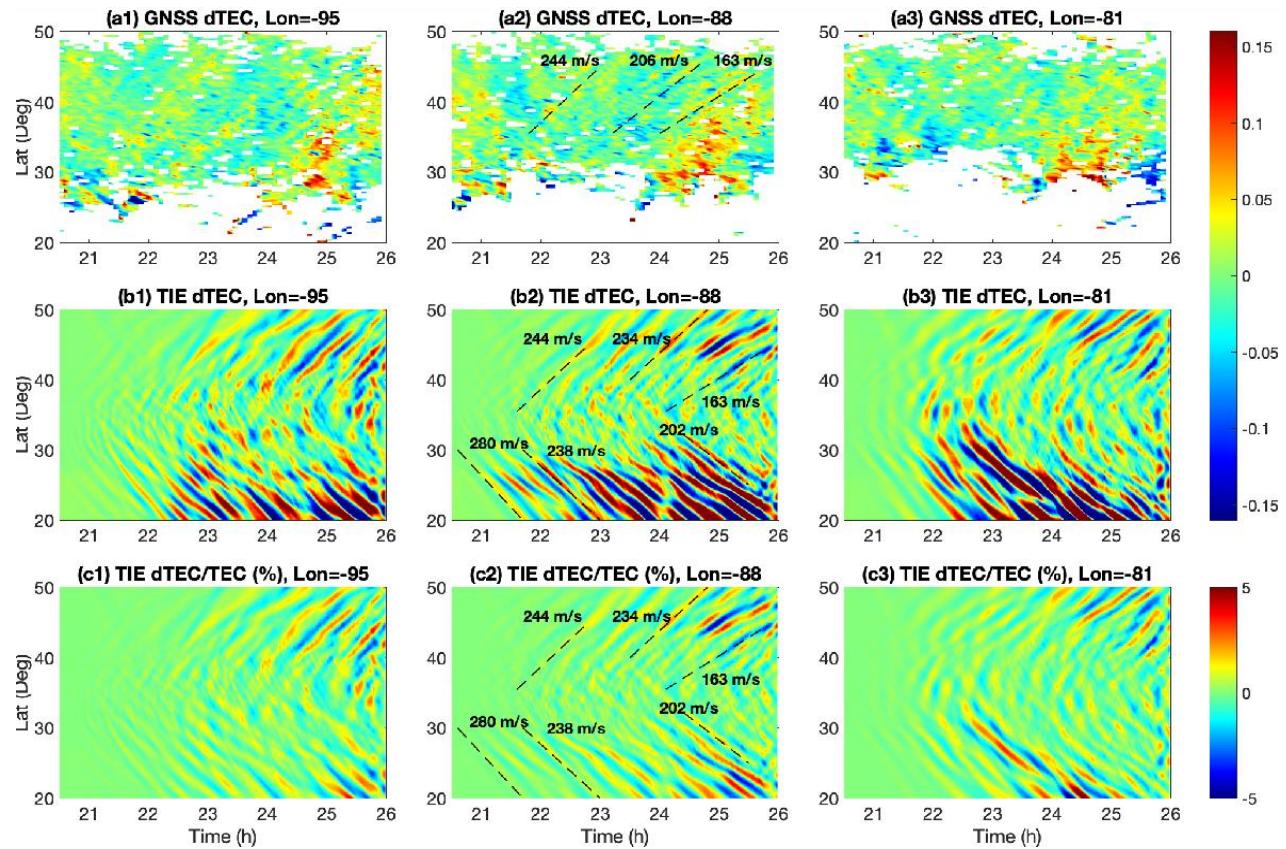
681

682

683 Figure 4. (a1–c1) dTECs along the trajectories 1, 2, and 3 (dashed black lines in Figures 3a3 and
684 3b3). (a2–c2) their corresponding wavelet spectra in amplitudes.

685

686

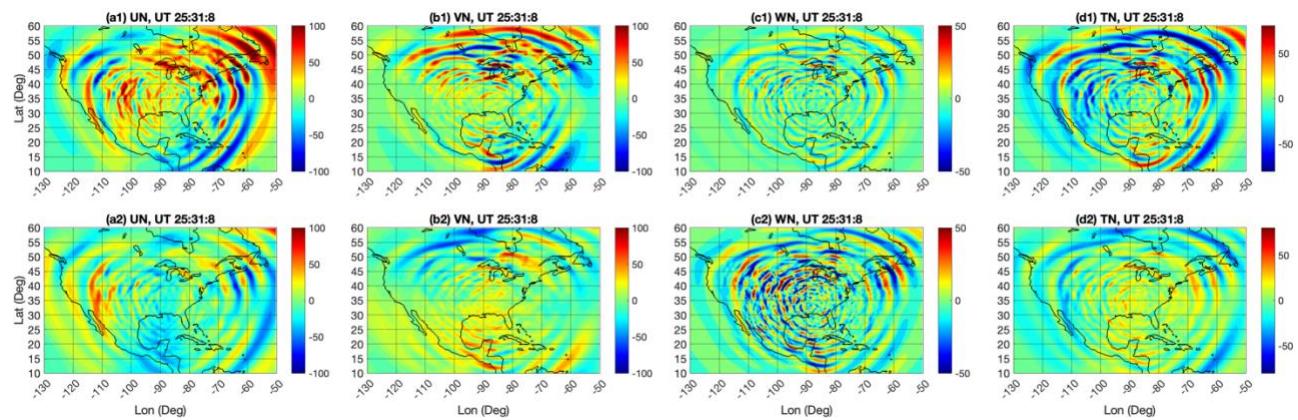

687

688

689

690 Figure 5. (a1-a3) Keograms of dTECs from GNSS observations along longitudes of -95° , -88° ,
 691 and -81° , respectively. (b1-b3) are the same except for dTECs obtained from TIEGCM-NG. (c1-
 692 c3) are the same as (b1-b3) except for relative dTECs (unit of %) derived as dTEC/background
 693 TEC. Dashed lines in the middle column highlight wave fronts used for the calculation of
 694 horizontal phase speeds.

695



696

697

698 Figure 6. (a1-d1) Differential wave fields in zonal, meridional, vertical winds, and temperature at
699 200 km. (a2-d2) are the same except for 400 km. Unit is m/s for wind and K for temperature.

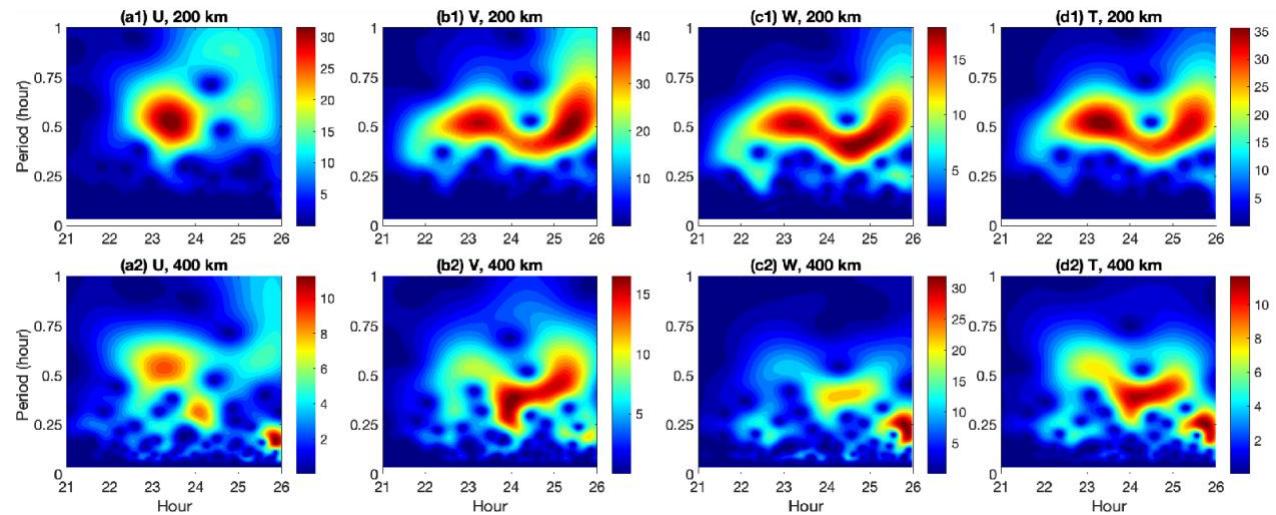
700

701

702

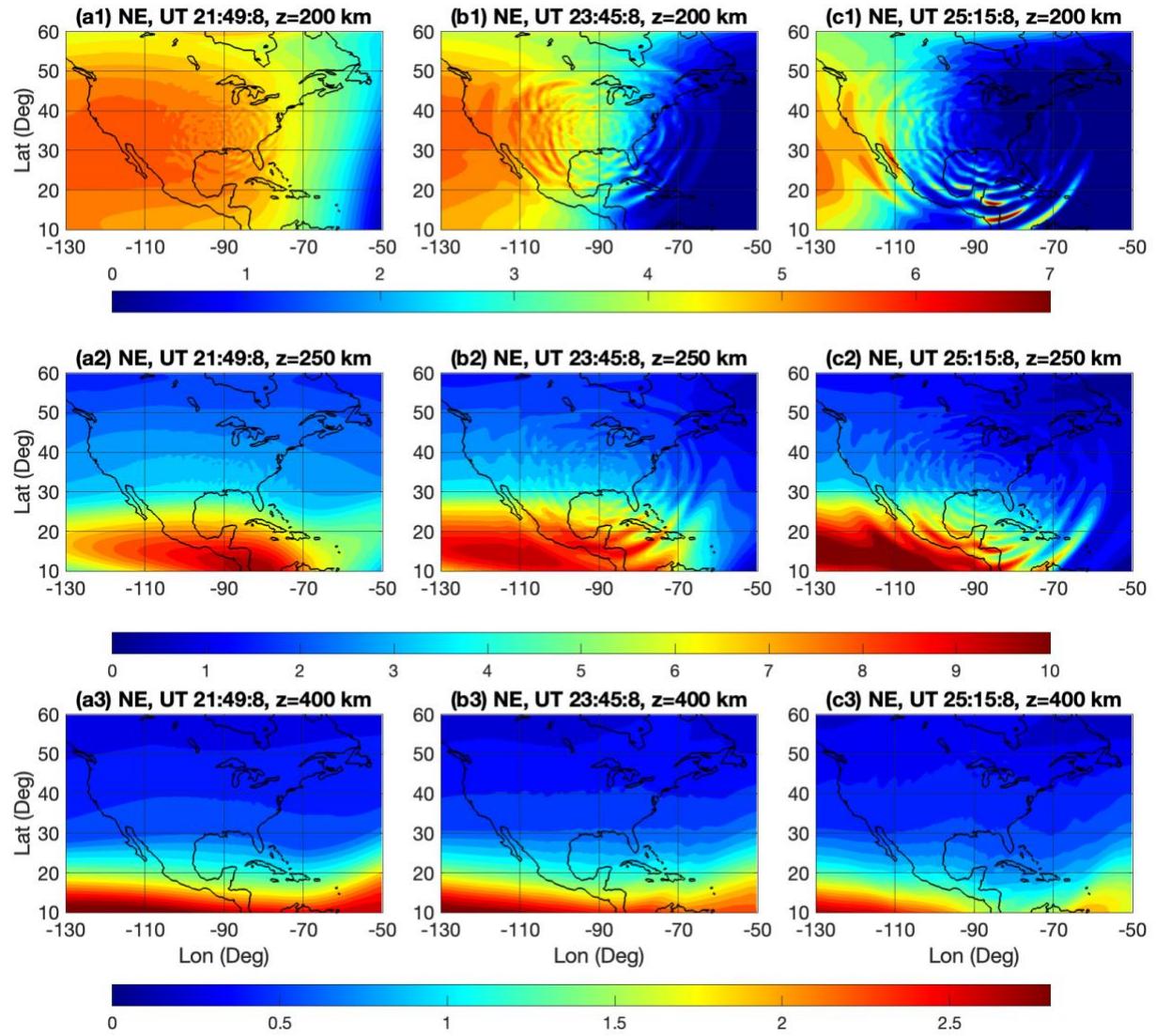
703

704 Figure 7. Wave-induced perturbations in (a) zonal wind, (b) meridional wind, (c) vertical wind,
705 and (d) temperature at the location of $\text{lon} = -85^\circ$, $\text{lat} = 40^\circ$. (e) and (f) show the horizontal slices of
706 these perturbations with time at 200 and 400 km, respectively.


707

708

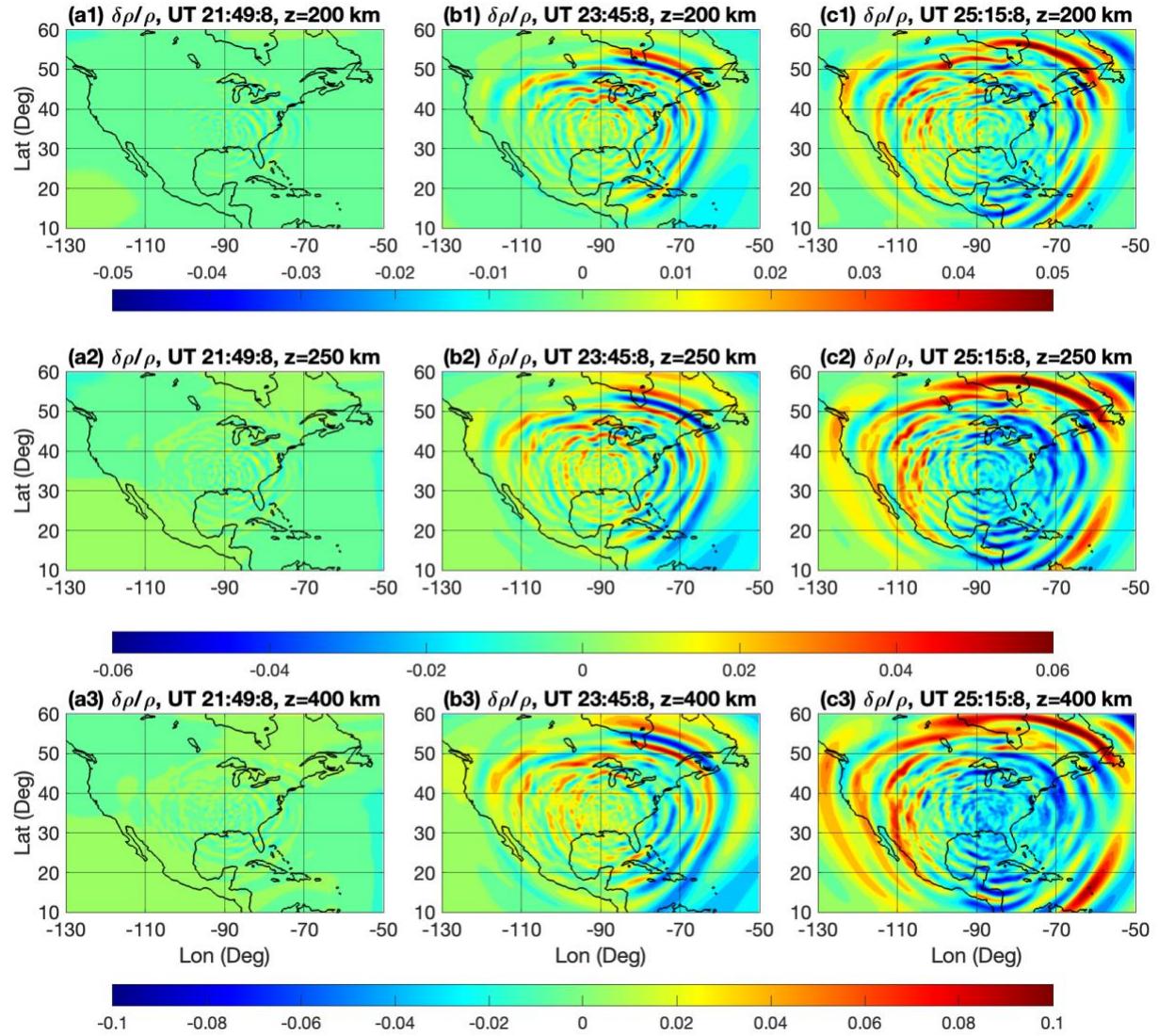
709


710 Figure 8. (a1-d1) Wavelet amplitude spectra for neutral winds (unit: m/s) and temperature (unit:
711 K) based on the wave perturbations in Figure 7e at 200 km. (a2-d2) are the same except for Figure
712 7f at 400 km.

713

714

715 Figure 9. (a1-c1) Absolute electron density distributions at the same timings, corresponding to the
 716 initial, evolving, and peak phases, as Figure 3 at 200 km. (a2-c2) and (a3-c3) are the same except
 717 for 250 and 400 km, respectively. Unit is $10^5/\text{cm}^3$.

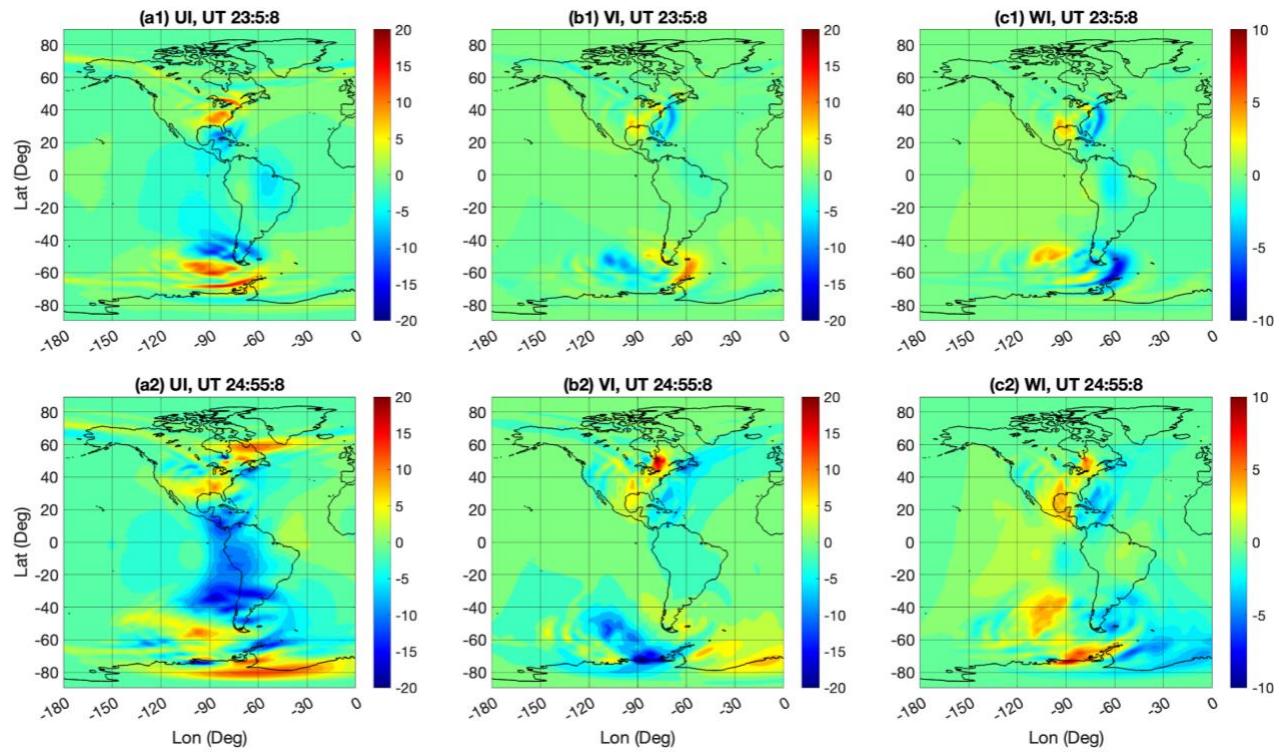


718

719

720

721 Figure 10. Same as Figure 9 except for the relative perturbations in neutral density. Note that the
 722 color bars are different for the three rows.


723

724

725

726 Figure 11. (a1-c1) Perturbations in zonal, meridional, and vertical ion drifts (UI, VI, and WI) at
727 23:05 UTC. (a2-c2) are the same except for 24:55 UTC. Unit is m/s.

728

729

730

731

732

733

734

735

736

737

738 Figure 12. In situ ion observations from ICON and their comparison to the TIEGCM-NG results.

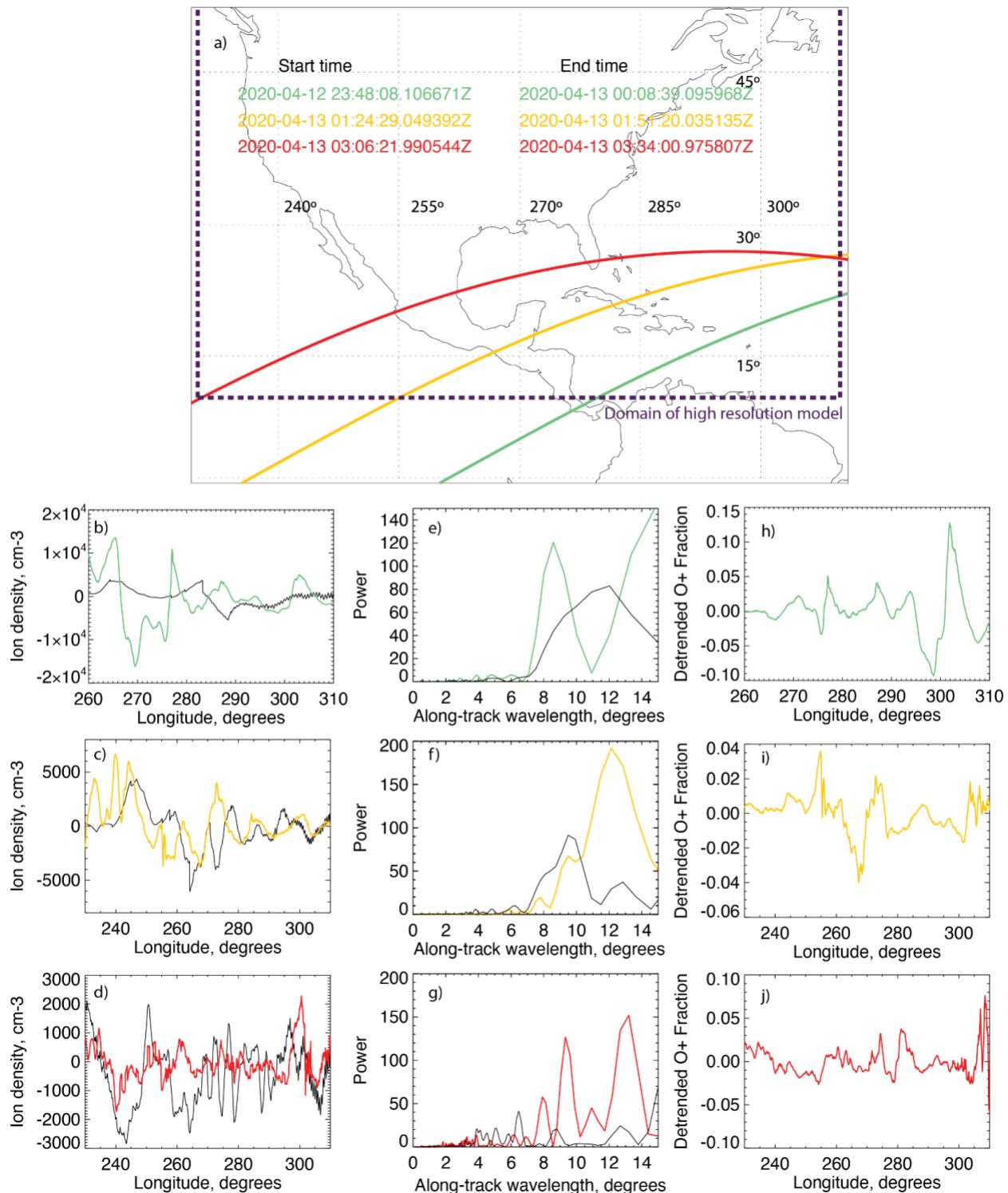
739 (a) 3 segments of orbits during which ICON is in the vicinity of the event. The color coding of

740 each of the 3 segments is reflected in the remaining panels. The purple dashed line marks the

741 boundary of the high resolution nested grid (b-d) Detrended in situ ion densities observed with

742 ICON and simulated with TIEGCM-NG at the closest available point (see text). Each corresponds

743 to the measurements along the curved orbit tracks shown, and as a function of longitude. (e-g)

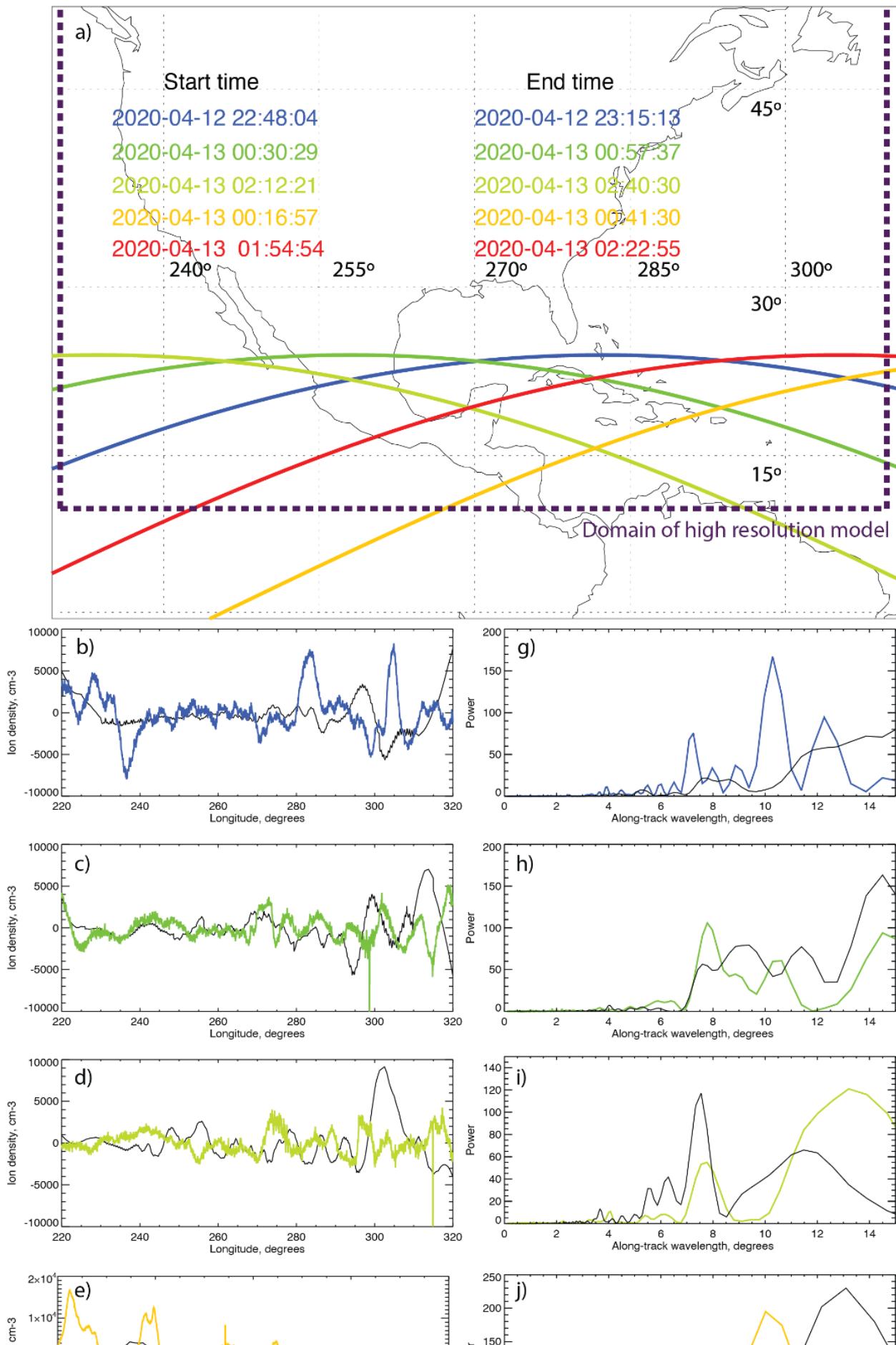

744 Lomb-Scargle periodograms of the detrended ion densities from ICON (color) and the TIEGCM-

745 NG model (black). The scale for each is as seen along the curved orbit, shown in degrees longitude.

746 (h-j) Detrended O⁺ fraction (relative to the total number of ions) observed.

747

ICON Location



749

750 Figure 13. Same as Figure 12, but for COSMIC-2 FM1 and FM4. Panels b-f shows the
751 detrended in situ ion densities and panels g -k show the corresponding periodograms.

752

C1 & C4 Locations

754

755