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Abstract

The rapid development of computation power and machine learning algorithms has paved the
way for automating scientific discovery with a scanning probe microscope (SPM). The key
elements towards operationalization of automated SPM are the interface to enable SPM control
from Python codes, availability of high computing power, and development of workflows for
scientific discovery. Here we build a Python interface library that enables controlling an SPM
from either a local computer or a remote high-performance computer (HPC), which satisfies the
high computation power need of machine learning algorithms in autonomous workflows. We
further introduce a general platform to abstract the operations of SPM in scientific discovery into
fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build
automated SPM workflows for both routine operations and autonomous scientific discovery with
machine learning.
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Introduction:

The extensive application of scanning probe microscopy (SPM) has opened the doors to
explore and modify the nanoworld. Compared to other materials characterization tools, SPM
offers a desktop footprint, low cost, and versatility in operating in multiple environments [1, 2].
It provides a wide range of functional imaging capabilities, extending from basic topographic
imaging [3-7] to probing of electronic [4, 8], magnetic [3, 9, 10], mechanical [3, 4], biological [7,
11-15], and chemical [16, 17] properties. Furthermore, SPM supports multiple spectroscopy
techniques in a variety of imaging modes, enabling comprehensive understanding and
manipulation of materials at the nanoscale [18-20].

However, since the early days of SPM, the principles of operation remained the same —
image scans and point spectroscopy at locations chosen by operators. To systematically explore
the variability of physical properties across the sample surface, hyperspectral measurements in
which spectroscopy is performed on a grid was introduced. However, full-grid spectroscopy
measurements are time-consuming and risky in terms of both probe and sample damage. In most
scenarios, only spectroscopy around specific structural features such as step edges, domain
boundaries, grain boundaries, strained regions, and other defects is of interest. One specific
example is that in topological materials, only I-V spectroscopy around step edges is needed to
distinguish topological edge states [21-24]. On the other hand, sometimes researchers are
interested in the discovery of nanoscale structural elements that manifest specific functionalities
that can be detected by spectroscopy measurements. Examples include searching for structural
features that give rise to higher transition temperatures in superconductors [25], lower current
onset voltage in semiconductors [26-28] and larger piezoresponse in ferroelectric materials [29,
30].

With the development of computer vision and machine learning (ML) [31-34], attempts
have been made to integrate machine learning methods and scanning probe microscopy. These
were preponderantly realized in the form of workflows in which execution of the codes is driven
by immediately available targets via fixed policies. For example, this can include the use of the
deep convolutional networks or simpler image analysis tools for the identification of the a priori
known object of interest such as atoms in scanning tunneling microscopy [35], identification of
single DNA molecules [36], spectroscopy of grain boundaries [37], and ferroelectric domain
walls [38-42]. More complex examples entail inverse workflows, in which the goal is to discover
the structural features that maximize the desired aspect of the spectral response [29].

The number of examples of ML integration into active SPM workflows has been growing
rapidly over the last 2-3 years [18, 43-47]. Combined with the rapidly growing number of
possible ML algorithms for computer vision and image segmentation, optimization, and other
tasks, this suggests tremendous opportunities for much more complex developments. However,
SPM generates imaging and spectral data at a high speed, which correspondingly requires
substantive computational power to handle the data with advanced algorithms, necessitating the
use of the external computational resources, ideally a high-performance cluster computing in real
time.

Here, we present a general framework for integrating SPM with high-performance
computing (HPC). We introduce a Python interface that mimics the actions of human operators,
allowing the SPM to be controlled from either a local computer or a remote cloud server. This



interface allows users to build their own workflows for routine operations. With this interface,
autonomous workflows based on fixed policy and reward-driven algorithms were implemented.
Several exemplar scenarios that benefit from these autonomous workflows are then described,
including optimization of domain writing voltage in the piezoelectric force microscopy (PFM)
mode, combinatorial library exploration on a grid, performing spectroscopy only on selected
features, and discovery of structural features based on spectral features of interest.

I. Typical tasks in automated microscopy

As a first step, some of the most common tasks that emerge in the context of the scanning
probe microscopy experiment are described.
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Figure 1. Tasks for autonomous SPM workflows. (a). To optimize an AC scan, it usually requires fine tuning of
multiple scanning parameters. (b). Example scan lines with suboptimal and optimal scanning parameters. The
sample is Asylum Research (AR) Height calibration grating sample. The inset shows the topography map in the
same area as the line scans. (¢). Topography map taken on ferroelectric PbTiO;. The colored dots mark three
different structural features, including a higher grain (red), a normal grain (blue), and a grain boundary (orange). (d).
Hysteresis loop of piezoresponse measured in (¢) at the locations with corresponding color codes. The spectra are
correlated with the local structural features around the measurement location. A common task necessitates
identification of certain structural features in a fast topography map to select locations for time consuming
measurements.

Imaging optimization: Imaging optimization for different scanning modes is an essential
automated workflow in SPM [3, 4]. Conventionally, users take a lot of time and effort to fine
tune the scanning parameters for a specific material and imaging mode. For example, to optimize
the scanning parameters for the AC tapping mode, the most widely used imaging mode in SPM,



there are many factors to consider, as shown in Figure 1(a). A high-resolution scan in the tapping
mode usually requires a slow scan speed, a small oscillation amplitude of the probe and gentle
setpoint. However, the roughness of the surface can limit the smallest oscillation amplitude of
the probe. Similarly, a larger integral gain (I Gain) in the PID loop ensures the probe responds
faster to the change in the height, but too large of a gain will lead to instabilities and positional
oscillations [48-50]. These factors can lead to poor images and probe or sample damage. In
particular, even a single high-force interaction with the sample can irreversibly damage the
probe, requiring replacement, or worse, leading to poor data. Practically, users must balance the
imaging quality, acquisition time and safety of the probe. The complexity of these various
choices can lead to poor reproducibility, even with experienced users.

Spectroscopy on selected objects — including both spectroscopies and high-resolution
images: Another typical task for automated microscopy is to acquire time-consuming
spectroscopic or high-resolution imaging measurements only on selected features. These features
can be step edges, specific types of defects, certain domain boundaries or grain boundaries, etc.
as shown in Figure 1(c). The conventional approach of acquiring spectroscopy data on a grid is
unnecessarily time consuming and unsafe to the probe as most of the measurement time is
wasted on the background. Thus, it’s advantageous to take spectroscopy data only on selected
features. This concept can be applied to any situations where fast measurements are used to
locate the features of interest, and then time-consuming measurements like spectroscopy, high-
resolution scans, and other advanced imaging modes are performed only around these features.

Discovery based on spectral features: Sometimes, the areas of interest are based on
spectral features related to the sample physical properties, rather than structural features. For
example, the size of the superconducting gap around the Fermi level in the I-V curve reflects the
superconducting transition temperature of the material. Therefore, regions of the sample with
large superconducting gap size can then be used to discover the relation between large gap size
and underlying structural features. The same concept also applies to many other scenarios:
correlating large loop areas in the hysteresis loop spectroscopy with the domain and grain
structure in ferroelectric materials or correlating a small switch-on voltage with the structural
features in semiconductors. In this type of workflow, the discovery of physics is based on
detection of specific spectral features.

Combinatorial libraries/large sample exploration: Combinatorial library exploration is
another application that can benefit greatly from automated microscopy [51-56]. In a
combinatorial library, multiple compositions are produced on the substrate during growth, as
shown in Figure 2(a). Thus, continuous variation of composition can be explored on the same
substrate, which offers a high-throughput approach to correlating properties with composition. In
the example shown in Figure 2(b), the composition of the combinatorial library changes linearly
along the horizontal direction of a pseudo-binary composed of (CrVTaW)xMoix. As a result, the
topography scans taken at three different locations on the library show systematic evolution in
the structural features (Figure 2(c-e)), reflecting the underlying crystal phase and structure
evolution with composition. Automated workflows ideally can map the composition-property
relation without the need for taking time-consuming high-resolution scans and spectroscopy on



the full grid. Ultimately, information from different channels like imaging and spectroscopy or
different instruments like SPM and X-ray diffraction (XRD) can be unified to provide in-depth
knowledge about the combinatorial library.
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Figure 2. Combinatorial library exploration on a grid. (a). Schematic illustration of a combinatorial library. The
constituents A and B vary along the longitudinal direction of the substrate. The physical properties measured at any
location on the library can be directly related to the composition by the location of the measurement. (b). A picture
of (CrVTaW)Mo,.x combinatorial library. (c-e). Topography maps measured at three locations labeled in (b). At
different locations, the structural features change systematically as the composition varies, reflecting the underling
phase and crystal structure evolve with the composition.

II. General framework

We introduce two types of automated workflows—fixed-policy and reward-driven
workflows. Generally, a policy is defined as the rule by which machine learning algorithm
selects action based on the collected data. Reward is defined as a numerical measure of
experimental success derived from the collected data. If the reward is available each step of the
process, this is a myopic reward-driven workflow. Otherwise, this is a non-myopic workflow.
Note for development of the ML driven workflows, the reward has to be available at least at the
end of the experiment. This differentiates the reward form objective, representing the broader
goal of the experiment.

Most of the research to date has been based on the fixed-policy workflows. In this case,
the nature of the policy is defined before the experiment as a rigid decision-making process. It
can be a conditional policy in which an operation will be executed once the conditions are met or
a probabilistic one in which decisions are made with certain probability once conditions are met.
As an example of workflow with a conditional fixed-policy, after acquisition of a scan image, a
computer vision (CV) algorithm like a Canny filter or variational autoencoder (VAE) is
employed to detect the location of certain features. Then the workflow will move the probe only



to these locations to take spectroscopy measurements. Here, the condition is the presence of
specific structural features in the image and the policy is that once a specific feature is detected
by CV algorithms, the workflow will move the probe to its location to take spectroscopy.

Reward-driven workflows are more natural to human operators. Here the policies are
tuned to maximize the reward. The reward function can be either automatically derived from the
collected data, which leads to an optimization problem, or based on human feedback of the
collected data, for human-in-the-loop workflows [57, 58]. Examples of reward-driven workflows
include tuning the microscope to achieve a better performance. Human operators define a reward
function reflecting the scan quality based on the acquired image. Then the workflow will
optimize the scan automatically by maximizing the reward function in the parameter space. In
reward-driven workflows, human operators focus on creative activities like defining the goal of
the experiment and the corresponding reward function. Such repetitive, subjective fine-tuning
processes cab be replaced by the workflow and algorithms.

A critical bottleneck in implementing reward-driven workflows is definition of the
appropriate reward functions to reflect the goals of the experiment. This requires users to have a
deep understanding of the domain knowledge. In addition, in many applications, there are more
than one local minima in the reward function. Users need to evaluate the optimization results to
make sure they are reasonable. In other applications, the goal of the experiment cannot be
defined by a single reward function. Instead, users must consider multiple reward functions,
sometimes defined by different types of measurements.

Fixed-policy workflows Reward-driven workflows
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Figure 3. Algorithms with fixed-policy and driven by rewards. (a). A general diagram of fixed-policy workflow.
Here the subsequent action will only be executed when the condition is met, where conditions are based on the
acquired data and can be detection of a specific feature or flatness of the scan. (b). A general diagram of reward-
driven algorithms. Here the workflow is myopic as the reward from the previous measurement will be used to tune
the parameter in the next measurement, which is closer to the nature of human operators.



ITI. Implementation of the Jupiter-HPC workflows

To enable automated workflows for SPM, we consider the general scheme for the
implementation, as shown in Figure 4(a). First, users need to provide the fixed-policy and/or
reward functions to define the goal of the experiment. Second, users define the optimization
parameter space and institute programmatic control of these parameters. Third, users search
parameter space to understand the behavior of the instrument interacting with the sample and
identify parametric danger zones. Fourth, users determine appropriate myopic algorithms to
optimize the reward functions in the parameter space. Finally, users will deploy the automated
workflows on the instrument and evaluate their performance.

To automate operation of the microscope, we have developed an interface enabling
Python-based control of the instrument from either local computers or remote supercomputers in
Figure 4(b). Control is achieved by Python notebook that encodes sequences of operations into a
buffer command file in a hyper-language format. Subsequently, the Python code invokes the
SPM controller to execute these operations. To retrieve the status of the instrument, the Python
code instructs the SPM controller to write the corresponding parameters in a buffer data file,
from which the status can be read. Since communication between code and instrument occurs via
buffer files, seamless integration of supercomputers into the workflow is feasible by
manipulating these files from the cluster.

Implementation of a workflow Control SPM with code
for i in range(num_points):
(a) Define pOHCy and/or (b) print("Working on Location: {}/{}".for
reward function # Skip the first point
if i
# Move the stage to the next grid point
exp.execute('stage’, value=[displacement])
Y
# AC scan
Define the parameter exp.execute('start_ac_scan', value=['BSFO_AC{:03
Space # Change to DART mode
exp.execute_sequence(operation=dart_init)
! X 1
Acquire grid search Command
data and identify Data buffer buifrar
sage zone i
: i
1

Y

-
Choose myopic algorithm
to optimize reward

\d

Deploy the workflow on
real instrument and
evaluate performance

Figure 4. Implementation and setup. (a). A general scheme of implementing a new workflow. (b). The
communication between the Python notebook running on a remote supercomputer and the SPM controller is realized
through an interface library which consists of a data buffer and a command buffer.

This interface library is designed to emulate the actions of human operators. It offers
basic actions as LEGO-style building blocks for users to construct their own workflows to



automate repetitive, time-consuming works. The interface library and all the following
workflows are tested on a Jupiter SPM by Asylum Research, Oxford Instruments. However, by
writing a custom layer that translates the hyper-language commands into a set of controller-
specific commands, this interface and all the implemented workflows should be able to run
seamlessly on other SPM controllers.

In addition to the normal image and spectroscopy data saved on the disk, the interface
library also has access to the intermediate data stored in the controller memory. For example, it
can access the scanning trace and retrace lines in real time, which enables tuning the scanning
parameters in real time, instead of waiting for completion of the whole image. Another example
is that it can initiate and read the tuning data, which facilitates automation of all contact-mode
based imaging modes. To summarize, the interface library offers code control for the SPM
beyond what a human operator can do. Table 1 lists the delay time for common operations on the
Jupiter SPM.

Table 1. Timing of different actions by code from both a local computer (conventional way of
control) and a remote supercomputer (ISAAC).

Actions Control from local computer | Control from remote server
Write commands to buffer 3 ms 9 ms

Execute commands in 70 ms 75 ms

controller

Read the status of SPM 45 ms 62 ms

Start a scan 1.5s 1.63 s

IV. Examples

This section describes four examples of automated workflows. The focus is on definition
of the reward functions, how to determine the parameter space and what optimization algorithms
can be used. Most importantly, the section also highlights how the interface library makes these
automated instrument controls possible.

IV.a. Gain optimization in PFM

These automated workflows offer an opportunity to study the interplay between the
driving voltage and writing voltage in the PFM study of ferroelectric materials. To switch
domain orientations in a ferroelectric material, a DC voltage between the probe and sample is
required to align the polarization of the domains with the applied electric field. It is also
necessary to apply an AC drive voltage to read out the domain orientation. Therefore, we build a




workflow to test the minimum DC voltage required to flip ferroelectric domains for different
read-out drive voltages. The parameter space in this experiment is hence two-dimensional space
of sample voltage and drive voltage.

To define the reward during the experiment, we use the flipping rate as defined in the
Figure 5. Movement of the probe along the slow-scan direction was disabled to avoid artifacts.
Different combinations of drive voltage and sample voltage are swept in each measurement
cycle. At the start of the cycle, the domain structure along the scan line is erased at a large DC
voltage of 12.5 V to make sure the starting phase is uniform. After that, a combination of drive
voltage and sample voltage is applied to write the domains, followed by a reading cycle at drive
voltage =1 V and sample voltage =0 V. The flipping rate is computed as how many phase
pixels have changed from the before and after writing (based on PFM phase data). The reward
function at different drive and sample voltages, i.e. the Viip = Vsample + Vidrive cos(wt), is shown in
Figure 6 (e, g). From this workflow, we conclude that with a higher AC drive voltage, it requires
a smaller sample voltage to flip the domains.
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Figure 5. Domain writing optimization on a ~150 nm thick Pby g95(Zr.45T10.55)0.99Nbo 0103 film in the PFM mode.
(a-c). Domain poling at +5 V DC tip voltage. (a) height, (b) amplitude and (c) phase channels of the dual amplitude
resonance tracking (DART) map taken around a poled pattern. (d). The trace lines of the DART phase after erasing



the area with +12.5 V (blue line) and after writing at — 8 V (orange line) of the surface voltage. The reward function
is defined as the percent of phase pixels that has flipped from the blue line to the orange line. (e). The reward
function plotted at different writing sample DC voltage and writing drive voltage. It shows that the required sample
DC voltage becomes smaller at larger drive voltage. (f-g). Similar grid measurements taken for positive sample
writing voltage.

IV.b. Combinatorial library

As shown in Figure 2, the interface library was used to construct a grid search workflow
on a large combinatorial library sample (approximately 10 cm in diameter). In this workflow, the
sample was divided into 20 grid points along the direction of composition gradient. At each grid
point, the workflow brings the probe to the sample surface, tunes the probe if the imaging mode
requires, and takes several topographic scans at different sizes and resolutions. After that, the
probe is retracted to a safe distance from the sample surface and the sample moved to the next
grid point for the next cycle of measurement.
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Figure 6. Discovery based on structural features. The sample used here is an AR Height calibration grating sample
and the patterns are 100 nm deep holes fabricated on a silicon substrate. (a). Edge detection by a Canny filter from a
local computer. All the edge points around the circular holes are detected and labeled with blue points. (b).
Structural feature extraction with VAE running on a remote HPC. Compared to the simple Canny filter, VAE offers
more control knobs, but requires higher computing power. Only the edge points at the lower right side of the circular
holes are selected by VAE and labeled with red markers. (¢). An amplitude-phase vs z curve measured at an edge
location detected by Canny filter in (a). (d). Similar amplitude-phase vs z curve measured at an edge location
detected by VAE in (b).

IV.c. Discovery based structural features

In this example, a fixed-policy workflow is shown to take spectroscopy measurements
only on selected features. To illustrate this capability, we use the standard grid sample
representing circular holes in Si and demonstrate simple feature finding to identify object of



interest. In Figure 6(a), the acquired topographic image on a calibration silicon grating sample
from Asylum Research (AR) is fed through a Canny filter to detect the presence of edges on a
local computer. Then the workflow guides the probe to take force-distance spectroscopy only at
these edge points. In Figure 6(b), the acquired topographic image is streamed to the code running
on a remote supercomputer (Infrastructure for Scientific Applications and Advanced Computing,
or ISAAC). After that, the workflow extracts the structural features in the image into a 2D latent
space, from where human operators can subsequently select the edge points only at a specific
angle. Finally, the workflow on the ISAAC will move the probe only to these selected locations
to take spectroscopy (Figure 6(c-d)). In this example workflow, the policy is fixed upon the
detection of edge points and taking force-distance data on them. Note that the force-distance
spectroscopy measured on the edges of the silicon grating sample is not intended to provide any
physical insights. Instead, it serves as a demonstration of our capability to perform similar tasks,
such as [-V curve measurements, hysteresis loop analysis, and force-distance spectroscopy,
specifically on domain boundaries or around specific defects as long as these can be identified
from topographic, phase, or other imaging channels in SPM.
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Figure 7. Discovery based on spectral features. (a). The topographic image taken on ferroelectric PbTiOs.

(b-d). Example of segmented topographic patches and corresponding hysteresis loop spectra. On selection, the probe
is moved to the center of the topographic patch to take a hysteresis loop. Then the loop height will be extracted as
the scalarizer. DKL learns the relation between all the measured spectra (scalarizers) and their corresponding
topographic patches. The trained model will subsequently be used to predict the distribution of loop height in the
whole topographic image in (a). (e). Predicted loop height by DKL after 58 steps of seeding plus 200 steps of
exploration. (f). The DKL uncertainty about its prediction in (e). (g). The DKL exploration trajectory shows all the
visited points in the seeding (black) and training process (colored).



IV.d. Deep Kernel Learning

We also reproduced the Deep Kernel Leaning (DKL) workflow from previous work [29].
In this workflow, a topographic scan is first taken on the sample surface. Then the acquired
image is streamed to the ISAAC, where the image is segmented into small patches. In the
seeding stage, the codes running on ISAAC move the probe to the center of seeding patches and
initiate a hysteresis loop spectroscopy measurement, from which the physical property — the
maximum piezoresponse (PR) — can be derived as the scalarizer. Here, the scalarizer is a
parameter derived from the spectrum that can be correlated with the property of the material.
Then the DKL algorithm will train a model to learn the correlation between the measured
maximum PR and the structural features in the corresponding patch. Subsequently, this model
can be used to predict the distribution of the maximum PR based on the acquired topographic
image. In this example, the policy is to search for structural features that can give rise to the
maximum PR and the reward function is the PR computed from the measured hysteresis loop. In
the active learning stage, the workflow decides where to measure next based on the predicted PR
distribution, and it will re-train the model to include the newly acquired spectrum. In the end, we
obtain a model that can predict the distribution of PR (Figure 6(d)) based on the topographic
image and the accompanying model uncertainty (Figure 6(¢)).

V. From single task to workflow optimization

In the examples above, we have illustrated the integration between the Jupiter AFM and
the HPC, the deployment of the workflows that allow grid-based exploration of the image quality
as a function of control parameters, image-based spectroscopic measurements, grid based
combinatorial library exploration, and ultimately implementation of the deep kernel learning
workflow. These are the examples of tasks that are most common in the SPM exploration of real-
world systems. These single task workflows with fixed policy or driven by reward functions can
be further extended to active learning optimization frameworks.

We further note that the availability of the engineering controls and single task
workflows allows a straightforward extension to more complex multi-step discovery workflows
that can be driven either by a human operator or organized to pursue reward functions
established using human heuristics or large language models. With these, we believe that the
connection between the active learning and experimental physical sciences is now possible.

Methods
Sample growth

The (CrVTaW)Mo thin film was grown via dc magnetron co-sputtering from a 50 mm diameter Mo
and an equiatomic CrVTaW target at 500°C substrate temperature. The system was pumped to ~ 3x107
Torr and backfilled with Ar to 5 mTorr and the sputtering powers (200 W for CrVTaW and 100 W for
Mo) were adjusted to give approximately equivalent sputtering rates (10 nm/min determined via x-ray
reflectance) of the two targets at the substrate center. The pseudo binary (CrVTaW)Moi.x composition



varies from 15 <x <88 at. % across the 100 mm diameter substrate with a roughly linear composition
gradient.

The PbTiO3 (PTO) thin films were grown on Lag 7Sr3MnO3 (LSMO) buffered (110)-oriented SrTiO3
(STO) substrates using pulsed laser deposition (PLD) with a KrF excimer laser (A =248 nm). The
LSMO/PTO layers were deposited at temperatures of 650 °C/690 °C with oxygen pressures of 90
mtorr/150 mtorr, respectively. After deposition, the samples were cooled to room temperature under an
oxygen pressure of 600 Torr. The thicknesses of the PTO and LSMO layers are approximately 150 nm
and 30 nm, respectively.

Pb0.995(Z10.45T10.55)0.99Nb0.0103 films were grown by pulsed laser deposition using a KrF excimer
laser from a ceramic target onto a SrRuOs-electroded (001) SrTiOs single crystal. The SrRuOs3
film was grown from a target from Kojundo Chemical Lab. Co. Ltd., using a laser energy density
of 1.5 J/cm?, a substrate temperature of 660°C, an oxygen pressure of 120 mTorr, a target-to-
substrate distance of 6.7 mm, and a frequency of 5 Hz. The SrRuOs3 film thickness was around
50 nm. The PZT film was grown from a target with 20% excess PbO to compensate for lead loss
during growth, using a laser energy density of 1.5 J/cm?, a substrate temperature of 630°C, an
oxygen pressure of 120 mTorr, a target-to-substrate distance of 6.2 mm, and a frequency of 5 Hz.
The PZT film thickness was around147 nm.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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