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Abstract 

The rapid development of computation power and machine learning algorithms has paved the 

way for automating scientific discovery with a scanning probe microscope (SPM). The key 

elements towards operationalization of automated SPM are the interface to enable SPM control 

from Python codes, availability of high computing power, and development of workflows for 

scientific discovery. Here we build a Python interface library that enables controlling an SPM 

from either a local computer or a remote high-performance computer (HPC), which satisfies the 

high computation power need of machine learning algorithms in autonomous workflows. We 

further introduce a general platform to abstract the operations of SPM in scientific discovery into 

fixed-policy or reward-driven workflows. Our work provides a full infrastructure to build 

automated SPM workflows for both routine operations and autonomous scientific discovery with 

machine learning. 
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Introduction: 

The extensive application of scanning probe microscopy (SPM) has opened the doors to 

explore and modify the nanoworld. Compared to other materials characterization tools, SPM 

offers a desktop footprint, low cost, and versatility in operating in multiple environments [1, 2]. 

It provides a wide range of functional imaging capabilities, extending from basic topographic 

imaging [3-7] to probing of electronic [4, 8], magnetic [3, 9, 10], mechanical [3, 4], biological [7, 

11-15], and chemical [16, 17] properties. Furthermore, SPM supports multiple spectroscopy 

techniques in a variety of imaging modes, enabling comprehensive understanding and 

manipulation of materials at the nanoscale [18-20].  

However, since the early days of SPM, the principles of operation remained the same – 

image scans and point spectroscopy at locations chosen by operators. To systematically explore 

the variability of physical properties across the sample surface, hyperspectral measurements in 

which spectroscopy is performed on a grid was introduced. However, full-grid spectroscopy 

measurements are time-consuming and risky in terms of both probe and sample damage. In most 

scenarios, only spectroscopy around specific structural features such as step edges, domain 

boundaries, grain boundaries, strained regions, and other defects is of interest. One specific 

example is that in topological materials, only I-V spectroscopy around step edges is needed to 

distinguish topological edge states [21-24]. On the other hand, sometimes researchers are 

interested in the discovery of nanoscale structural elements that manifest specific functionalities 

that can be detected by spectroscopy measurements. Examples include searching for structural 

features that give rise to higher transition temperatures in superconductors [25], lower current 

onset voltage in semiconductors [26-28] and larger piezoresponse in ferroelectric materials [29, 

30]. 

With the development of computer vision and machine learning (ML) [31-34], attempts 

have been made to integrate machine learning methods and scanning probe microscopy. These 

were preponderantly realized in the form of workflows in which execution of the codes is driven 

by immediately available targets via fixed policies. For example, this can include the use of the 

deep convolutional networks or simpler image analysis tools for the identification of the a priori 

known object of interest such as atoms in scanning tunneling microscopy [35], identification of 

single DNA molecules [36], spectroscopy of grain boundaries [37], and ferroelectric domain 

walls [38-42]. More complex examples entail inverse workflows, in which the goal is to discover 

the structural features that maximize the desired aspect of the spectral response [29].  

The number of examples of ML integration into active SPM workflows has been growing 

rapidly over the last 2-3 years [18, 43-47]. Combined with the rapidly growing number of 

possible ML algorithms for computer vision and image segmentation, optimization, and other 

tasks, this suggests tremendous opportunities for much more complex developments. However, 

SPM generates imaging and spectral data at a high speed, which correspondingly requires 

substantive computational power to handle the data with advanced algorithms, necessitating the 

use of the external computational resources, ideally a high-performance cluster computing in real 

time. 

Here, we present a general framework for integrating SPM with high-performance 

computing (HPC). We introduce a Python interface that mimics the actions of human operators, 

allowing the SPM to be controlled from either a local computer or a remote cloud server. This 



interface allows users to build their own workflows for routine operations. With this interface, 

autonomous workflows based on fixed policy and reward-driven algorithms were implemented. 

Several exemplar scenarios that benefit from these autonomous workflows are then described, 

including optimization of domain writing voltage in the piezoelectric force microscopy (PFM) 

mode, combinatorial library exploration on a grid, performing spectroscopy only on selected 

features, and discovery of structural features based on spectral features of interest.  

 

I. Typical tasks in automated microscopy 

 As a first step, some of the most common tasks that emerge in the context of the scanning 

probe microscopy experiment are described.  

 

Figure 1. Tasks for autonomous SPM workflows. (a). To optimize an AC scan, it usually requires fine tuning of 

multiple scanning parameters. (b). Example scan lines with suboptimal and optimal scanning parameters. The 

sample is Asylum Research (AR) Height calibration grating sample. The inset shows the topography map in the 

same area as the line scans. (c). Topography map taken on ferroelectric PbTiO3. The colored dots mark three 

different structural features, including a higher grain (red), a normal grain (blue), and a grain boundary (orange). (d). 

Hysteresis loop of piezoresponse measured in (c) at the locations with corresponding color codes. The spectra are 

correlated with the local structural features around the measurement location. A common task necessitates 

identification of certain structural features in a fast topography map to select locations for time consuming 

measurements. 

 

 Imaging optimization: Imaging optimization for different scanning modes is an essential 

automated workflow in SPM [3, 4]. Conventionally, users take a lot of time and effort to fine 

tune the scanning parameters for a specific material and imaging mode. For example, to optimize 

the scanning parameters for the AC tapping mode, the most widely used imaging mode in SPM, 



there are many factors to consider, as shown in Figure 1(a). A high-resolution scan in the tapping 

mode usually requires a slow scan speed, a small oscillation amplitude of the probe and gentle 

setpoint. However, the roughness of the surface can limit the smallest oscillation amplitude of 

the probe. Similarly, a larger integral gain (I Gain) in the PID loop ensures the probe responds 

faster to the change in the height, but too large of a gain will lead to instabilities and positional 

oscillations [48-50]. These factors can lead to poor images and probe or sample damage. In 

particular, even a single high-force interaction with the sample can irreversibly damage the 

probe, requiring replacement, or worse, leading to poor data.  Practically, users must balance the 

imaging quality, acquisition time and safety of the probe. The complexity of these various 

choices can lead to poor reproducibility, even with experienced users. 

 Spectroscopy on selected objects – including both spectroscopies and high-resolution 

images: Another typical task for automated microscopy is to acquire time-consuming 

spectroscopic or high-resolution imaging measurements only on selected features. These features 

can be step edges, specific types of defects, certain domain boundaries or grain boundaries, etc. 

as shown in Figure 1(c). The conventional approach of acquiring spectroscopy data on a grid is 

unnecessarily time consuming and unsafe to the probe as most of the measurement time is 

wasted on the background. Thus, it’s advantageous to take spectroscopy data only on selected 

features. This concept can be applied to any situations where fast measurements are used to 

locate the features of interest, and then time-consuming measurements like spectroscopy, high-

resolution scans, and other advanced imaging modes are performed only around these features.  

 Discovery based on spectral features: Sometimes, the areas of interest are based on 

spectral features related to the sample physical properties, rather than structural features. For 

example, the size of the superconducting gap around the Fermi level in the I-V curve reflects the 

superconducting transition temperature of the material. Therefore, regions of the sample with 

large superconducting gap size can then be used to discover the relation between large gap size 

and underlying structural features. The same concept also applies to many other scenarios: 

correlating large loop areas in the hysteresis loop spectroscopy with the domain and grain 

structure in ferroelectric materials or correlating a small switch-on voltage with the structural 

features in semiconductors. In this type of workflow, the discovery of physics is based on 

detection of specific spectral features. 

 Combinatorial libraries/large sample exploration: Combinatorial library exploration is 

another application that can benefit greatly from automated microscopy [51-56]. In a 

combinatorial library, multiple compositions are produced on the substrate during growth, as 

shown in Figure 2(a). Thus, continuous variation of composition can be explored on the same 

substrate, which offers a high-throughput approach to correlating properties with composition. In 

the example shown in Figure 2(b), the composition of the combinatorial library changes linearly 

along the horizontal direction of a pseudo-binary composed of (CrVTaW)xMo1-x. As a result, the 

topography scans taken at three different locations on the library show systematic evolution in 

the structural features (Figure 2(c-e)), reflecting the underlying crystal phase and structure 

evolution with composition. Automated workflows ideally can map the composition-property 

relation without the need for taking time-consuming high-resolution scans and spectroscopy on 



the full grid. Ultimately, information from different channels like imaging and spectroscopy or 

different instruments like SPM and X-ray diffraction (XRD) can be unified to provide in-depth 

knowledge about the combinatorial library. 

 

Figure 2. Combinatorial library exploration on a grid. (a). Schematic illustration of a combinatorial library. The 

constituents A and B vary along the longitudinal direction of the substrate. The physical properties measured at any 

location on the library can be directly related to the composition by the location of the measurement. (b). A picture 

of (CrVTaW)xMo1-x combinatorial library. (c-e). Topography maps measured at three locations labeled in (b). At 

different locations, the structural features change systematically as the composition varies, reflecting the underling 

phase and crystal structure evolve with the composition. 
 

II. General framework 

We introduce two types of automated workflows–fixed-policy and reward-driven 

workflows. Generally, a policy is defined as the rule by which machine learning algorithm 

selects action based on the collected data. Reward is defined as a numerical measure of 

experimental success derived from the collected data. If the reward is available each step of the 

process, this is a myopic reward-driven workflow. Otherwise, this is a non-myopic workflow. 

Note for development of the ML driven workflows, the reward has to be available at least at the 

end of the experiment. This differentiates the reward form objective, representing the broader 

goal of the experiment. 

 Most of the research to date has been based on the fixed-policy workflows. In this case, 

the nature of the policy is defined before the experiment as a rigid decision-making process. It 

can be a conditional policy in which an operation will be executed once the conditions are met or 

a probabilistic one in which decisions are made with certain probability once conditions are met. 

As an example of workflow with a conditional fixed-policy, after acquisition of a scan image, a 

computer vision (CV) algorithm like a Canny filter or variational autoencoder (VAE) is 

employed to detect the location of certain features. Then the workflow will move the probe only 



to these locations to take spectroscopy measurements. Here, the condition is the presence of 

specific structural features in the image and the policy is that once a specific feature is detected 

by CV algorithms, the workflow will move the probe to its location to take spectroscopy.  

 Reward-driven workflows are more natural to human operators. Here the policies are 

tuned to maximize the reward. The reward function can be either automatically derived from the 

collected data, which leads to an optimization problem, or based on human feedback of the 

collected data, for human-in-the-loop workflows [57, 58]. Examples of reward-driven workflows 

include tuning the microscope to achieve a better performance. Human operators define a reward 

function reflecting the scan quality based on the acquired image. Then the workflow will 

optimize the scan automatically by maximizing the reward function in the parameter space. In 

reward-driven workflows, human operators focus on creative activities like defining the goal of 

the experiment and the corresponding reward function. Such repetitive, subjective fine-tuning 

processes cab be replaced by the workflow and algorithms. 

A critical bottleneck in implementing reward-driven workflows is definition of the 

appropriate reward functions to reflect the goals of the experiment. This requires users to have a 

deep understanding of the domain knowledge. In addition, in many applications, there are more 

than one local minima in the reward function. Users need to evaluate the optimization results to 

make sure they are reasonable. In other applications, the goal of the experiment cannot be 

defined by a single reward function. Instead, users must consider multiple reward functions, 

sometimes defined by different types of measurements. 

 

Figure 3. Algorithms with fixed-policy and driven by rewards. (a). A general diagram of fixed-policy workflow. 

Here the subsequent action will only be executed when the condition is met, where conditions are based on the 

acquired data and can be detection of a specific feature or flatness of the scan. (b). A general diagram of reward-

driven algorithms. Here the workflow is myopic as the reward from the previous measurement will be used to tune 

the parameter in the next measurement, which is closer to the nature of human operators. 

 



III. Implementation of the Jupiter-HPC workflows 

To enable automated workflows for SPM, we consider the general scheme for the 

implementation, as shown in Figure 4(a). First, users need to provide the fixed-policy and/or 

reward functions to define the goal of the experiment. Second, users define the optimization 

parameter space and institute programmatic control of these parameters. Third, users search 

parameter space to understand the behavior of the instrument interacting with the sample and 

identify parametric danger zones. Fourth, users determine appropriate myopic algorithms to 

optimize the reward functions in the parameter space. Finally, users will deploy the automated 

workflows on the instrument and evaluate their performance.   

To automate operation of the microscope, we have developed an interface enabling 

Python-based control of the instrument from either local computers or remote supercomputers in 

Figure 4(b). Control is achieved by Python notebook that encodes sequences of operations into a 

buffer command file in a hyper-language format. Subsequently, the Python code invokes the 

SPM controller to execute these operations. To retrieve the status of the instrument, the Python 

code instructs the SPM controller to write the corresponding parameters in a buffer data file, 

from which the status can be read. Since communication between code and instrument occurs via 

buffer files, seamless integration of supercomputers into the workflow is feasible by 

manipulating these files from the cluster.  

 

Figure 4. Implementation and setup. (a). A general scheme of implementing a new workflow.   (b). The 

communication between the Python notebook running on a remote supercomputer and the SPM controller is realized 

through an interface library which consists of a data buffer and a command buffer.   

 

This interface library is designed to emulate the actions of human operators. It offers 

basic actions as LEGO-style building blocks for users to construct their own workflows to 



automate repetitive, time-consuming works. The interface library and all the following 

workflows are tested on a Jupiter SPM by Asylum Research, Oxford Instruments. However, by 

writing a custom layer that translates the hyper-language commands into a set of controller-

specific commands, this interface and all the implemented workflows should be able to run 

seamlessly on other SPM controllers. 

In addition to the normal image and spectroscopy data saved on the disk, the interface 

library also has access to the intermediate data stored in the controller memory. For example, it 

can access the scanning trace and retrace lines in real time, which enables tuning the scanning 

parameters in real time, instead of waiting for completion of the whole image. Another example 

is that it can initiate and read the tuning data, which facilitates automation of all contact-mode 

based imaging modes. To summarize, the interface library offers code control for the SPM 

beyond what a human operator can do. Table 1 lists the delay time for common operations on the 

Jupiter SPM. 

 

Table 1. Timing of different actions by code from both a local computer (conventional way of 

control) and a remote supercomputer (ISAAC). 

Actions Control from local computer Control from remote server 

Write commands to buffer 3 ms 9 ms 

Execute commands in 

controller 

70 ms 75 ms 

Read the status of SPM 45 ms 62 ms 

Start a scan 1.5 s 1.63 s 

 

 

IV. Examples 

This section describes four examples of automated workflows. The focus is on definition 

of the reward functions, how to determine the parameter space and what optimization algorithms 

can be used. Most importantly, the section also highlights how the interface library makes these 

automated instrument controls possible. 

 

IV.a. Gain optimization in PFM       

These automated workflows offer an opportunity to study the interplay between the 

driving voltage and writing voltage in the PFM study of ferroelectric materials. To switch 

domain orientations in a ferroelectric material, a DC voltage between the probe and sample is 

required to align the polarization of the domains with the applied electric field. It is also 

necessary to apply an AC drive voltage to read out the domain orientation. Therefore, we build a 



workflow to test the minimum DC voltage required to flip ferroelectric domains for different 

read-out drive voltages. The parameter space in this experiment is hence two-dimensional space 

of sample voltage and drive voltage. 

To define the reward during the experiment, we use the flipping rate as defined in the 

Figure 5.   Movement of the probe along the slow-scan direction was disabled to avoid artifacts. 

Different combinations of drive voltage and sample voltage are swept in each measurement 

cycle. At the start of the cycle, the domain structure along the scan line is erased at a large DC 

voltage of 12.5 V to make sure the starting phase is uniform. After that, a combination of drive 

voltage and sample voltage is applied to write the domains, followed by a reading cycle at drive 

voltage =1 V and sample voltage = 0 V.  The flipping rate is computed as how many phase 

pixels have changed from the before and after writing (based on PFM phase data). The reward 

function at different drive and sample voltages, i.e. the Vtip = Vsample + Vdrive cos(wt), is shown in 

Figure 6 (e, g). From this workflow, we conclude that with a higher AC drive voltage, it requires 

a smaller sample voltage to flip the domains. 

 

 

Figure 5. Domain writing optimization on a ~150 nm thick Pb0.995(Zr0.45Ti0.55)0.99Nb0.01O3 film in the PFM mode. 

(a-c). Domain poling at ±5 V DC tip voltage. (a) height, (b) amplitude and (c) phase channels of the dual amplitude 

resonance tracking (DART) map taken around a poled pattern. (d). The trace lines of the DART phase after erasing 



the area with +12.5 V (blue line) and after writing at – 8 V (orange line) of the surface voltage. The reward function 

is defined as the percent of phase pixels that has flipped from the blue line to the orange line. (e). The reward 

function plotted at different writing sample DC voltage and writing drive voltage. It shows that the required sample 

DC voltage becomes smaller at larger drive voltage. (f-g). Similar grid measurements taken for positive sample 

writing voltage. 

 

IV.b. Combinatorial library  

As shown in Figure 2, the interface library was used to construct a grid search workflow 

on a large combinatorial library sample (approximately 10 cm in diameter). In this workflow, the 

sample was divided into 20 grid points along the direction of composition gradient. At each grid 

point, the workflow brings the probe to the sample surface, tunes the probe if the imaging mode 

requires, and takes several topographic scans at different sizes and resolutions. After that, the 

probe is retracted to a safe distance from the sample surface and the sample moved to the next 

grid point for the next cycle of measurement. 

 

Figure 6. Discovery based on structural features. The sample used here is an AR Height calibration grating sample 

and the patterns are 100 nm deep holes fabricated on a silicon substrate. (a). Edge detection by a Canny filter from a 

local computer. All the edge points around the circular holes are detected and labeled with blue points. (b). 

Structural feature extraction with VAE running on a remote HPC. Compared to the simple Canny filter, VAE offers 

more control knobs, but requires higher computing power. Only the edge points at the lower right side of the circular 

holes are selected by VAE and labeled with red markers. (c). An amplitude-phase vs z curve measured at an edge 

location detected by Canny filter in (a). (d). Similar amplitude-phase vs z curve measured at an edge location 

detected by VAE in (b). 

 

IV.c. Discovery based structural features 

In this example, a fixed-policy workflow is shown to take spectroscopy measurements 

only on selected features. To illustrate this capability, we use the standard grid sample 

representing circular holes in Si and demonstrate simple feature finding to identify object of 



interest. In Figure 6(a), the acquired topographic image on a calibration silicon grating sample 

from Asylum Research (AR) is fed through a Canny filter to detect the presence of edges on a 

local computer. Then the workflow guides the probe to take force-distance spectroscopy only at 

these edge points. In Figure 6(b), the acquired topographic image is streamed to the code running 

on a remote supercomputer (Infrastructure for Scientific Applications and Advanced Computing, 

or ISAAC). After that, the workflow extracts the structural features in the image into a 2D latent 

space, from where human operators can subsequently select the edge points only at a specific 

angle. Finally, the workflow on the ISAAC will move the probe only to these selected locations 

to take spectroscopy (Figure 6(c-d)). In this example workflow, the policy is fixed upon the 

detection of edge points and taking force-distance data on them. Note that the force-distance 

spectroscopy measured on the edges of the silicon grating sample is not intended to provide any 

physical insights. Instead, it serves as a demonstration of our capability to perform similar tasks, 

such as I-V curve measurements, hysteresis loop analysis, and force-distance spectroscopy, 

specifically on domain boundaries or around specific defects as long as these can be identified 

from topographic, phase, or other imaging channels in SPM. 

 

 

Figure 7. Discovery based on spectral features. (a). The topographic image taken on ferroelectric PbTiO3. 

(b-d). Example of segmented topographic patches and corresponding hysteresis loop spectra. On selection, the probe 

is moved to the center of the topographic patch to take a hysteresis loop. Then the loop height will be extracted as 

the scalarizer. DKL learns the relation between all the measured spectra (scalarizers) and their corresponding 

topographic patches. The trained model will subsequently be used to predict the distribution of loop height in the 

whole topographic image in (a). (e). Predicted loop height by DKL after 58 steps of seeding plus 200 steps of 

exploration.  (f). The DKL uncertainty about its prediction in (e). (g). The DKL exploration trajectory shows all the 

visited points in the seeding (black) and training process (colored). 

 



IV.d. Deep Kernel Learning 

We also reproduced the Deep Kernel Leaning (DKL) workflow from previous work [29]. 

In this workflow, a topographic scan is first taken on the sample surface. Then the acquired 

image is streamed to the ISAAC, where the image is segmented into small patches. In the 

seeding stage, the codes running on ISAAC move the probe to the center of seeding patches and 

initiate a hysteresis loop spectroscopy measurement, from which the physical property – the 

maximum piezoresponse (PR) – can be derived as the scalarizer. Here, the scalarizer is a 

parameter derived from the spectrum that can be correlated with the property of the material. 

Then the DKL algorithm will train a model to learn the correlation between the measured 

maximum PR and the structural features in the corresponding patch. Subsequently, this model 

can be used to predict the distribution of the maximum PR based on the acquired topographic 

image. In this example, the policy is to search for structural features that can give rise to the 

maximum PR and the reward function is the PR computed from the measured hysteresis loop. In 

the active learning stage, the workflow decides where to measure next based on the predicted PR 

distribution, and it will re-train the model to include the newly acquired spectrum. In the end, we 

obtain a model that can predict the distribution of PR (Figure 6(d)) based on the topographic 

image and the accompanying model uncertainty (Figure 6(e)). 

 

V. From single task to workflow optimization 

 In the examples above, we have illustrated the integration between the Jupiter AFM and 

the HPC, the deployment of the workflows that allow grid-based exploration of the image quality 

as a function of control parameters, image-based spectroscopic measurements, grid based 

combinatorial library exploration, and ultimately implementation of the deep kernel learning 

workflow. These are the examples of tasks that are most common in the SPM exploration of real-

world systems. These single task workflows with fixed policy or driven by reward functions can 

be further extended to active learning optimization frameworks.  

 We further note that the availability of the engineering controls and single task 

workflows allows a straightforward extension to more complex multi-step discovery workflows 

that can be driven either by a human operator or organized to pursue reward functions 

established using human heuristics or large language models. With these, we believe that the 

connection between the active learning and experimental physical sciences is now possible. 

Methods 

Sample growth 

The (CrVTaW)xMo1-x thin film was grown via dc magnetron co-sputtering from a 50 mm diameter Mo 

and an equiatomic CrVTaW target at 500oC substrate temperature.  The system was pumped to ~ 3x10-7 

Torr and backfilled with Ar to 5 mTorr and the sputtering powers (200 W for CrVTaW and 100 W for 

Mo) were adjusted to give approximately equivalent sputtering rates (10 nm/min determined via x-ray 

reflectance) of the two targets at the substrate center.  The pseudo binary (CrVTaW)xMo1-x composition 



varies from 15 <x <88 at. % across the 100 mm diameter substrate with a roughly linear composition 

gradient.   

The PbTiO3 (PTO) thin films were grown on La0.7Sr0.3MnO3 (LSMO) buffered (110)-oriented SrTiO3 

(STO) substrates using pulsed laser deposition (PLD) with a KrF excimer laser (λ = 248 nm). The 

LSMO/PTO layers were deposited at temperatures of 650 °C/690 °C with oxygen pressures of 90 

mtorr/150 mtorr, respectively. After deposition, the samples were cooled to room temperature under an 

oxygen pressure of 600 Torr. The thicknesses of the PTO and LSMO layers are approximately 150 nm 

and 30 nm, respectively. 

Pb0.995(Zr0.45Ti0.55)0.99Nb0.01O3 films were grown by pulsed laser deposition using a KrF excimer 

laser from a ceramic target onto a SrRuO3-electroded (001) SrTiO3 single crystal.  The SrRuO3 

film was grown from a target from Kojundo Chemical Lab. Co. Ltd., using a laser energy density 

of 1.5 J/cm2, a substrate temperature of 660°C, an oxygen pressure of 120 mTorr, a target-to-

substrate distance of 6.7 mm, and a frequency of 5 Hz.  The SrRuO3 film thickness was around 

50 nm. The PZT film was grown from a target with 20% excess PbO to compensate for lead loss 

during growth, using a laser energy density of 1.5 J/cm2, a substrate temperature of 630°C, an 

oxygen pressure of 120 mTorr, a target-to-substrate distance of 6.2 mm, and a frequency of 5 Hz.  

The PZT film thickness was around147 nm. 
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