
KAIROS: Practical Intrusion Detection and Investigation
using Whole-system Provenance

Zijun Cheng→†, Qiujian Lv→, Jinyuan Liang‡, Yan Wang→, Degang Sun→, Thomas Pasquier‡ and Xueyuan Han§
→Institute of Information Engineering, Chinese Academy of Sciences, China

†School of Cyber Security, University of Chinese Academy of Sciences, China
‡University of British Columbia, British Columbia, Canada

§Wake Forest University, North Carolina, United States

Abstract—Provenance graphs are structured audit logs that
describe the history of a system’s execution. Recent studies have
explored a variety of techniques to analyze provenance graphs for
automated host intrusion detection, focusing particularly on ad-
vanced persistent threats. Sifting through their design documents,
we identify four common dimensions that drive the development of
provenance-based intrusion detection systems (PIDSes): scope (can
PIDSes detect modern attacks that infiltrate across application
boundaries?), attack agnosticity (can PIDSes detect novel attacks
without a priori knowledge of attack characteristics?), timeliness
(can PIDSes efficiently monitor host systems as they run?), and
attack reconstruction (can PIDSes distill attack activity from large
provenance graphs so that sysadmins can easily understand and
quickly respond to system intrusion?). We present KAIROS, the
first PIDS that simultaneously satisfies the desiderata in all four
dimensions, whereas existing approaches sacrifice at least one
and struggle to achieve comparable detection performance.

KAIROS leverages a novel graph neural network based
encoder-decoder architecture that learns the temporal evolution
of a provenance graph’s structural changes to quantify the
degree of anomalousness for each system event. Then, based
on this fine-grained information, KAIROS reconstructs attack
footprints, generating compact summary graphs that accurately
describe malicious activity over a stream of system audit logs.
Using state-of-the-art benchmark datasets, we demonstrate that
KAIROS outperforms previous approaches.

1. Introduction
Recent work on intrusion detection [1–7] uses kernel-level

causal dependency graphs, or provenance graphs, to combat
today’s increasingly sophisticated system intrusions, such
as advanced persistent threats (APTs) [8]. These graphs,
constructed from system-level logs, describe interactions
(represented by edges) between kernel objects (represented by
nodes), such as processes, files, and sockets, to structurally
represent the history of a system’s execution.

Various aspects govern the design of prior provenance-based
intrusion detection systems (PIDSes). In particular, we identify
four key dimensions of PIDSes emerging from a large body
of work in this line of research:
Scope: System provenance tracks an entire system’s activity,
as well as cross-host interactions through sockets [9].
Leveraging provenance’s system-wide visibility, PIDSes that
scale to a network of systems are better equipped to detect
intrusions that span multiple applications and hosts [2].
Attack Agnosticity: As zero-day exploits (i.e., malware or
vulnerabilities that are not known by security analysts) become
increasingly common [10], PIDSes can better generalize to

detect new attacks if they do not rely on any attack signatures
or signals known a priori. Security practitioners have repeatedly
discovered new attacks that easily bypass signal-based
detectors deployed in the wild [11, 12]. In contrast, anomaly-
based PIDSes [1, 5, 13] extract distinguishing features from
graphs of known benign system execution and use these
features to determine whether a system is under attack.
These PIDSes not only outperform non-provenance-based
approaches (e.g., log analysis [14, 15]), but more importantly,
demonstrate great detection performance in the face of
unknown attacks. This is because system provenance provides
rich contextual information (both spatial and temporal)
through its dynamic graph topology. Such contexts separate
a benign system event from a malicious event, even if they
look almost identical in isolation [1]. For example, repeated
connections to a system (represented spatially in a provenance
graph as a large number of edges connected to socket nodes)
in a short period of time (rapid temporal changes in the graph)
could suggest a DoS attack, which might differ significantly
from a graph describing legitimate socket connections.
Timeliness: A provenance graph evolves to record system
activity as the system runs. PIDSes that analyze the graph
in a streaming fashion [1] as it evolves provide more timely
protection than offline systems [16] that introduce delays
between provenance capture and threat detection.
Attack Reconstruction: System provenance is instrumental in
understanding intrusions [17, 18]. We can reason about chains
of events that could have led to an intrusion and the potential
damage inflicted on the system by the intrusion by navigating
back and forth along the edges in the graph. However, it is
impractical to manually investigate the entire graph, given the
large size of a typical provenance graph and the fast growth
rate of the graph over time [9]. Instead, more practical PIDSes
provide minimum graph data that reconstructs attack scenarios
through the dependencies between kernel objects. Such PIDSes
can greatly reduce the manual effort, enabling sysadmins to
quickly understand an intrusion and devise a timely response.
For example, Holmes [2] correlates edges that match the behav-
ior of known attacks to identify APTs and uses the subgraphs
of the correlated edges to facilitate attack comprehension.

Unfortunately, no existing PIDSes achieve the desiderata
simultaneously in all four dimensions. Solutions meeting
the first three properties [1, 6, 7, 19, 20] provide little
information to help sysadmins understand their decisions
and reconstruct the attack, while systems satisfying the last
either consider single applications [4, 13], detect only known

attacks [2, 16, 21], or require offline analysis [16].
We introduce KAIROS, the first PIDS that fulfills all four

desiderata while achieving high detection performance. It
leverages fine-grained, temporal-spatial graph learning that
scales to provenance graphs of a network of systems to monitor
run-time system behavior. Specifically, KAIROS quantifies the
degree of anomalousness for individual edges (i.e., system
events) as they appear in the streaming graph, based on how
much the historical behavioral patterns of their corresponding
nodes (i.e., system entities) deviate from the patterns learned
from known benign executions in the past. KAIROS’ graph
analysis is highly contextualized, taking into account dynamic
changes (i.e., temporality) of the edges surrounding a node and
the node’s neighborhood structure (i.e., spatiality). Edge-level
anomalousness provides the basis for a graph-level causality
analysis that KAIROS performs periodically at run time. This
analysis correlates only highly anomalous edges based on infor-
mation flow and constructs compact but meaningful summary
graphs from original provenance graphs to fully and concisely
describe attack scenarios (like the one shown in Fig. 1), without
any a priori knowledge of attack characteristics.

We evaluate KAIROS on recent, publicly available bench-
mark datasets from DARPA that simulate APT campaigns,
as well as datasets that allow us to fairly compare KAIROS
with state-of-the-art open-source PIDSes, Unicorn [1] and
ThreaTrace [7]. Our results show that KAIROS achieves high
detection accuracy, outperforming both systems while incurring
low computational and memory overhead. More importantly,
KAIROS accurately reconstructs attack footprints, significantly
reducing the number of graph edges that sysadmins must
inspect to understand an attack. KAIROS is available online
at https://github.com/ProvenanceAnalytics/kairos.

2. Background & Motivation
We introduce the concept of system-level data provenance

in §2.1. In §2.2, we use a real attack scenario from DARPA
to motivate our design.

2.1. System-level Data Provenance
System-level data provenance records data flows between

kernel-level objects, e.g., processes, files, and sockets. Data
provenance can be represented as a directed graph, called
a provenance graph, where nodes represent kernel-level
objects and edges represent various types of interactions
(i.e., dependency relationships) between these objects. These
interactions are typically the results of system calls. Fig. 1
shows an example of a provenance graph.

We can capture system-level data provenance using kernel
event logging mechanisms, such as Windows ETW and Linux
Audit, that are natively supported by different operating
systems. Alternatively, specialized in-kernel reference
monitors, such as Hi-Fi [22] and CamFlow [9], track
fine-grained data flows between low-level kernel abstractions
(e.g., inodes and processes) to capture data provenance.

KAIROS is agnostic to the underlying provenance
capture mechanism, analyzing all kernel interactions of
an entire network of systems. This whole-system (rather
than application-specific) visibility is particularly crucial
in detecting modern sophisticated intrusions such as APTs,
because APTs often infect multiple applications on a single
host and migrate from one infected host to another.

2.2. A Motivating Example
We use a large-scale APT campaign simulated by

DARPA [23] to illustrate the challenges faced by existing
PIDSes along the four desiderata (§1). For comparison, we
briefly describe KAIROS’ output in this scenario at the end.
In §4, we provide an in-depth discussion of KAIROS’ design,
and in §5, we give details of this experiment (among others).

2.2.1. Scenario (Fig. 1). The attacker leverages a Firefox
vulnerability to establish a foothold on a victim machine,
which enables the attacker to write a malicious payload
called clean to /home/admin/ on disk. The attacker then
executes the payload with escalated privileges. This new attack
process (with root privileges) communicates with the attacker’s
command-and-control (C&C) server at 161.116.88.72 to
download and execute another malicious payload called pro-

file, again with root privileges. profile, in turn, fetches a
third payload called xdev from the C&C server and stores the
payload in /var/log/. profile and xdev lurk in the vic-
tim host to prepare for subsequent attacks. A few days later, the
attacker uses profile to inject malicious code in the mail
process and executes mail with root privileges. mail then
performs port scans of all known hosts on the victim’s network.

2.2.2. Challenges. APTs stealthily infiltrate their targeted
systems and maintain their presence in victim hosts for
extended periods of time, exhibiting a unique low-and-slow
attack pattern. During the lifecycle of an APT, it is common
for attackers to leverage various zero-day exploits, some
of which might even be tailored to the targeted victim
systems [24]. Because of these characteristics, existing
PIDSes are forced to make the following trade-offs:
Attack Agnosticity: APTs’ low-and-slow attack pattern makes
anomaly-based detection difficult, because attack activity can
hide among a large amount of benign activity and appear
similar to normal behavior if execution context is not sufficiently
considered [1]. For instance, in our scenario, among 32.4 mil-
lion log entries, we identify approximately only 3,119 entries
related to the attack, which make up merely 0.01% of the entire
log. To circumvent this challenge, PIDSes such as Holmes [2]
and RapSheet [21] use existing threat intelligence knowledge to
manually craft graph-matching rules that indicate the presence
of an APT. However, as new exploits continue to surface, they
must constantly update their knowledge base to include addi-
tional rules. By construction, they will always lag behind so-
phisticated adversaries launching previously unknown attacks.
Attack Reconstruction: PIDSes such as Unicorn [1] and
ThreaTrace [7] take an anomaly-based approach to detecting
system activity that deviates significantly from known benign
behavior. While they require no a priori knowledge of
APT characteristics (unlike Holmes), their detection provides
little information to help sysadmins understand the attack.
Consequently, forensic investigation that follows typically
involves prolonged manual inspection of large provenance
graphs. For example, Unicorn reduces a provenance graph to
a compact feature vector to model system behavior, but an
anomalous feature vector corresponds to an entire provenance
graph. In our example, sysadmins must sift through millions of
edges to identify the attack activity. ThreaTrace, on the other
hand, pinpoints only anomalous nodes (e.g., the Firefox and
clean process nodes in Fig. 1) that might be involved in the

https://github.com/ProvenanceAnalytics/kairos

Figure 1. A provenance summary graph from DARPA E3-THEIA that describes attack activity in the motivating example (§2.2), as automatically generated
by KAIROS. Rectangles, ovals, and diamonds represent processes, files, and sockets, respectively. R=Read, W=Write, O=Open, S=Send, Rc=Receive, C=Clone,
and E=Execute. We add colors and dashed elements for clarity to highlight the output that KAIROS generates. Solid nodes and edges are extracted by
KAIROS from the original provenance graph to reconstruct the attack. Dashed pink nodes and edges are attack-related activities missed by KAIROS, according
to the attack ground truth. Blue nodes and edges are activities not explicitly mentioned in the ground truth but included by KAIROS.

attack. While these nodes can be useful starting points, sysad-
mins still need to manually trace through thousands of edges
to understand the complete attack story. ThreaTrace recognizes
this limitation and acknowledges the gap between anomaly-
based detection and attack construction. KAIROS fills this gap.
Scope: PIDSes such as Winnower [4] construct benign graph
templates to highlight anomalous subgraphs that do not fit
into the templates. While this facilitates forensic analysis, Win-
nower is unsuitable for APT detection, because it cannot scale
to large graphs. Rather, Winnower focuses on an application-
wide scope and analyzes much smaller provenance graphs than
the ones that can realistically describe whole-system activity
under APTs. As such, we must run at a minimum multiple
instances of Winnower targeting various applications (e.g.,
Firefox and mail) to potentially detect the APT in our
scenario. In practice, a workstation could run many dozens of
applications, all of which must be individually monitored by
Winnower, since we do not know a priori what application(s)
would be involved in an APT. However, even then, it is unclear
whether Winnower’s isolated, application-centered approach
would be effective. This is because inter-process information
flows are critical to detecting APTs [1], but Winnower is obliv-
ious to them. Like Winnower, SIGL [13] limits its detection to
anomalies during software installations; therefore, it also can-
not analyze a provenance graph of millions of edges in our sce-
nario. Moreover, like ThreaTrace, SIGL pinpoints only anoma-
lous nodes, thus incapable of reconstructing attack activity.
Timeliness: Timely APT detection and forensic analysis is
important to quickly identify the attack and take remedial
actions. PIDSes such as Poirot [16] match complex graph
signatures, each describing the behavior of a specific malware
program. This expedites threat understanding after a threat
is matched. However, even if we dismiss the issue of attack
agnosticity, Poirot’s matching process is slow and thus
unsuitable for run-time detection, for two reasons. First, Poirot
takes minutes to search for each signature in a provenance
graph. Therefore, the approach cannot scale as the number
of signatures grows. Second, matching only succeeds if a
malware program exhibits its complete behavior as described
in the signature. As such, Poirot must repeatedly try to match
the same graph signatures as the graph evolves over time,
which exacerbates the scaling issue even further.

2.2.3. KAIROS’ Result. KAIROS accurately identifies the
attack and reconstructs the APT scenario at run time without

relying on any a priori attack knowledge, even though the
malicious activity blends in with the benign activity in the
background. Note that the size of the logs capturing the
benign activity is several orders of magnitude larger. Fig. 1
shows the attack summary graph automatically generated
by KAIROS from the original provenance graph that describes
whole-system host behavior (of all participating hosts).

The provenance data in this scenario is captured by
THEIA [25], which performs system-wide audit to track
fine-grained information flow between kernel-level entities.
KAIROS analyzes THEIA’s audit data to monitor all
applications running on victim hosts (scope). KAIROS’ model
is trained only on benign system behavior that is observed
before the APT campaign is launched (attack agnosticity).
As the attack slowly unfolds, KAIROS gradually constructs
the graph we see in Fig. 1, as highly-anomalous edges that
are deemed relevant to the attack appear in the provenance
graph (timeliness). This compact graph succinctly describes
the attack, summarizing the malicious activity extracted from
the anomalous edges for clarity. The original graph contains
32.4 million edges and 690K nodes; in contrast, KAIROS’
summary graph contains only 29 edges and 20 nodes. More
importantly, KAIROS’ output almost perfectly aligns with
the ground truth of our experiment, which is provided by
DARPA alongside the dataset [23]. This helps sysadmins
quickly understand the APT attack (attack reconstruction).
3. Threat Model

Similar to prior PIDSes [1, 2, 16, 26], our work considers
attackers attempting to take control of a system and maintain a
persistent presence by e.g., exploiting software vulnerabilities
and deploying communication backdoors. However, we do
not consider hardware-level, side-channel, or covert-channel
attacks, since their behavior is typically not explicitly captured
by kernel-level audit systems. KAIROS is an anomaly-based
detection system; therefore, we further assume that host
systems are not under the influence of an attacker when
KAIROS learns from provenance graphs of benign system
execution and that KAIROS thoroughly observes system
activity during this initial learning period. If system behavior
changes in the future (or if KAIROS did not fully observe all
benign behavior), concept drift might occur [27]. While we
exclude concept drift from our threat model, as is standard
in anomaly-based detectors [7, 13], we show empirically how
KAIROS can mitigate this issue in §5.2.

Our trusted computing base (TCB) includes the underlying
OS, the audit framework, and KAIROS’ analysis code, which
is also standard among existing PIDSes. As such, we do not
consider kernel-level attacks and assume the use of existing
system hardening techniques to mitigate any potential audit
framework compromise [9, 28].

Finally, we assume the integrity of the output data (i.e.,
provenance graphs) from the audit framework. Existing secure
provenance systems [9, 28] and tamper-evident logging
techniques [29, 30] can ensure log integrity and detect any
malicious interference with provenance logs.

4. KAIROS Framework
KAIROS is an anomaly-based intrusion detection and

attack investigation system. It leverages state-of-the-art deep
graph learning and community discovery through causal
dependencies in a provenance graph to (1) detect anomalous
system behavior without prior knowledge of any specific attack
characteristics, and (2) correlate detected anomalies based on
information flows between kernel objects. KAIROS provides
concise and meaningful summary graphs for labor-saving
human-in-the-loop forensic analysis. Fig. 2 depicts KAIROS’
architecture consisting of four major components:
1→ Graph Construction and Representation (§4.1). KAIROS

analyzes a graph in a streaming fashion, chronologically
ingesting edges as they appear in the graph.
2→ Graph Learning (§4.2). When a new edge (e.g., the bold

edge 2→ ↑ 7 in Fig. 2) appears in the graph, KAIROS uses an
encoder-decoder architecture to reconstruct the edge. The en-
coder takes as input the neighborhood structure around the edge
and the states of the nodes in the neighborhood. A node’s state
is a feature vector associated with each node that describes the
history of the changes in the node’s neighborhood. The decoder
then reconstructs the edge from the edge embedding output by
the encoder. The difference between the original edge and the
reconstructed edge is called the reconstruction error. In the
training phase, KAIROS simultaneously trains the encoder and
the decoder to minimize reconstruction errors of benign edges.
During deployment, reconstruction errors of individual edges
are used as the basis for anomaly detection and investigation.
Additionally, KAIROS updates the states of the source and
destination nodes (node 2→ and 7) of the new edge.
3→ Anomaly Detection (§4.3). KAIROS constructs time

window queues to detect anomalies during deployment. To do
so, KAIROS identifies a set of suspicious nodes in each time
window based on the edges’ reconstruction errors. Two time
windows with overlapping suspicious nodes are enqueued
together. When a new time window is added to a queue,
KAIROS updates the anomaly score of the queue, based also
on reconstruction errors. If the score exceeds a threshold,
KAIROS considers the queue to be anomalous and triggers an
alert. Thus, KAIROS performs anomaly detection periodically
at intervals of a time window. In Fig. 2, KAIROS detects an
anomalous queue consisting of time windows 1, 2, and 4.
4→ Anomaly Investigation (§4.4). To help sysadmins reason

about the alarm, KAIROS automatically generates compact
attack summary graphs from anomalous time window queues.
This involves identifying communities of edges with high
reconstruction errors to improve legibility. Graph reduction is
necessary, because unlike images and texts, graphs are hard to

Table 1. SYSTEM
ENTITIES, THEIR ATTRIBUTES, AND DEPENDENCY RELATIONSHIPS.

Subject Object Relationships Entity Attributes
Process Start, Close, Clone Image pathname

File Read, Write, Open, Exec File pathnameProcess
Socket Send, Receive Src/Dst IP/port

visualize and interpret even by human experts [31]. In Fig. 2,
sysadmins need only to understand a small, summarized graph
from KAIROS, instead of tracing through a much larger one
in the anomalous time window queue that triggered the alarm.

4.1. Graph Construction and Representation
KAIROS constructs a whole-system provenance graph

from audit data collected by logging infrastructures, such as
Windows ETW, Linux Audit, and CamFlow (§2.1). KAIROS
considers three types of kernel objects and nine types of
interactions (i.e., system events). KAIROS transforms each
event into a directed, time-stamped edge, in which the source
node represents the subject of the event and the destination
node the object being acted upon. Table 1 shows the types
of relationships (i.e., interactions) between kernel subjects
and objects and the node attributes we consider.

KAIROS encodes a node’s feature using a hierarchical
feature hashing technique [32] based on node attributes.
Hierarchical feature hashing projects high-dimensional
input vectors into a lower-dimensional feature space while
preserving the hierarchical similarity between the original
input. As a result, two files located in the same parent
directory (e.g., /var/log/wdev and /var/log/xdev),
for example, are mapped closer in the feature space than a file
in a different directory (e.g., /home/admin/profile).

To perform hierarchical feature hashing, KAIROS encodes
a node’s attribute multiple times, each at a different level
of hierarchy. For example, for a file node with a pathname
/home/admin/clean, KAIROS creates three substrings
of the pathname attribute: /home, /home/admin, and
/home/admin/clean; for a socket node with an IP
address 161.116.88.72, it creates four substrings: 161,
161.116, 161.116.88, and 161.116.88.72. KAIROS
then projects each substring s into the feature space. The i-
th dimension of s’ feature vector is computed by ωi(s) =∑

j:h(sj)=iH(sj) where sj is a character in the substring, h is
a hash function that maps each character to one of the dimen-
sions in the feature space, and H is another hash function that
hashes a character to {±1}. Therefore, we add H(sj) to dimen-
sion i in s’ feature vector if h(sj) is i. ω(s) is the feature vec-
tor of the substring s. The attribute a’s feature vector is the sum
of the feature vectors of all its substrings, !(a)=

∑
jω(sj)

where ω(sj) represents each substring’s encoded vector, and
!(a) represents the final encoding of a node’s attribute.

Hierarchical feature hashing assumes that two kernel
entities of similar semantics have similar hierarchical features.
While this is often the case, it is possible that an adversary
attempts to manipulate an entity’s attribute to evade detection.
However, KAIROS’ graph learning (§4.2) will update these
initial feature vectors based on temporal and structural
equivalence, which is hard to manipulate, to overcome such
issues. KAIROS can also leverage other node embedding
techniques [13], but all approaches make some assumptions
about the similarity between two system entities.

Figure 2. Overview of KAIROS’ architecture.

4.2. Graph Learning
Node featurization in §4.1 captures only attributes of

system entities, without considering any structural (i.e.,
interactions between an entity and other entities) or temporal
(i.e., sequences of events involving an entity) relationships
between individual entities and the rest of the provenance
graph. This is unfortunate, because the evolving provenance
graph itself, which describes the dynamic behavior of a
system, clearly manifests such relationships. More importantly,
these relationships provide rich contextual information that
enables us to model distinctive baseline (benign) system
behavior and distinguish anomalies from the baseline.

For example, process injection leads to arbitrary code
execution in the address space of a legitimate process. While
malicious execution is masked under the legitimate process
(i.e., the attribute of the process remains the same), under
the influence of the adversary, the compromised process
would exhibit interactions that deviate from its normal activity
(e.g., accessing privileged system resources that the process
typically does not require). These interactions are reflected
as anomalous structural relationships in a provenance graph.

Temporal information can further reveal subtle behavioral
differences; these differences are hard, if not impossible, to
identify if one looks at only static snapshots of a dynamic
provenance graph. For example, a DDoS attack that quickly
overwhelms a victim system with a large number of network
connections may result in the same graph structure as an
unattacked system handling the same number of connections
over a reasonable period of time. Without taking temporal
relationships into account, it is difficult to detect the attack
by comparing only graph structures.

KAIROS learns both temporal and structural relationships
in a provenance graph. KAIROS’ graph learning follows
an encoder-decoder architecture [33]. When a new edge et
appears in the streaming graph Gt at time t, the encoder
embeds et into a latent representation based on the state of
its neighborhood immediately before t (which we denote as
t→). That is, the edge embedding summarizes graph features
in Gt→ =Gt↓et. The decoder then takes as input the edge

embedding from the encoder and predicts the type of the
edge as a probability distribution, i.e., the probability of the
edge et belonging to each of the nine possible types (§4.1).

KAIROS simultaneously trains the encoder and the decoder
using only benign provenance graphs. The goal of training is
to minimize the difference between the actual edge type (when
a new edge appears in the graph) and the type predicted by
the decoder from its embedding. We call this difference the
reconstruction error. At test time, the decoder assigns a small
reconstruction error to an edge if its embedding encodes graph
structures that resemble the structural context observed from
benign system activity in a similar temporal context. Otherwise,
a large reconstruction error is assigned, the magnitude of
which depends on the extent of the deviation in both contexts.
Encoder. KAIROS’ encoder uses a temporal graph network
(TGN) [34] architecture to encode provenance graph features
into edge embeddings. At time t, KAIROS generates an
edge embedding z for the new edge et using a graph neural
network (GNN) based model called UniMP [35]:

z=GNN(st→ ,e,t)
st→ denotes the state of the graph structure surrounding et at
t→. In KAIROS, a graph structure’s state is represented by the
states of all the nodes in the structure. Each node state is a fea-
ture vector that describes the history of graph changes involving
the node. When a new node appears in the graph, its state is
initialized to a feature vector with all zeros, because there is
no historical information on the node. As new edges change
the node’s neighborhood N , KAIROS updates the node state
(which we discuss later). st→ thus describes the states of et’s
source and destination nodes vsrc and vdst, as well as the states
of sampled nodes in Nvsrc and Nvdst . e represents the edges
in Nvsrc and Nvdst from sampled nodes. Each edge is encoded
as a concatenation of the source and destination node’s feature
embedding (§4.1) and the one-hot encoding of the edge type. t
is a vector of timestamps corresponding to the edges in e. (e,t)
provides the structural context of et, similar to the only informa-
tion that prior PIDSes [1, 36] use to learn provenance graphs.
State Update. KAIROS needs to update the states of vsrc

and vdst, since their neighborhoods have changed. To do so,
KAIROS trains a gated recurrent unit (GRU) model [37]:

st(vsrc)=GRU(st→(vsrc),et)

st(vdst)=GRU(st→(vdst),et)
Note that the new edge et’s information is propagated to
vsrc’s and vdst’s updated states st(vsrc) and st(vdst), so that
future edge embeddings (of new edges appearing after t) can
incorporate et if et is in their neighborhoods. However, et’s
information is not propagated to the current edge embedding
z at t, because et should not be leaked to the decoder from
z when the decoder is used to predict et. We refer interested
readers to Rossi et al. [34] for technical details on TGNs.
Decoder. KAIROS’ decoder uses a multilayer perceptron (MLP)
to predict the type of the edge connecting vsrc and vdst. In
other words, the decoder learns to reconstruct et from the
encoder’s output z, which provides both structural and temporal
contexts for the decoder to reconstruct edges. The dimension of
the MLP’s last (i.e., output) layer is nine, which is the number
of all possible edge types (§4.1). The decoder outputs a vector
P(et) of the probabilities of et being each of the nine types:

P(et)=MLP(z)
During training, KAIROS minimizes the reconstruction error
(RE) between P(et) and the observed edge type L(et) from
benign provenance graphs:

RE=CrossEntropy(P(et),L(et))
L(et) is an one-hot vector where the probability of et’s actual
edge type is 1 and the rest 0. At test time, KAIROS assigns
low REs to edges whose structural and temporal contexts
are similar to those learned from benign graphs but high
REs if they deviate significantly from known normal system
behavior. As we see next, KAIROS uses these suspicious
edges to detect (§4.3) and investigate (§4.4) anomalies.

4.3. Anomaly Detection
At a high level, KAIROS performs anomaly detection at the

level of time windows. A time window T contains all system
events (i.e., provenance edges) whose timestamps fall within
a specific period of wall-clock time. Within a time window,
KAIROS identifies a set of suspicious nodes S based on the
reconstruction errors of graph edges (§4.2) and the rareness of
the nodes. KAIROS then incrementally builds queues of time
windows based on each time window’s S . More specifically,
time windows within a queue q are correlated through their
suspicious nodes; therefore, a queue captures the activity of
suspicious nodes over time and between each other. KAIROS
can construct many time window queues, and each time win-
dow can belong to multiple queues as long as correlation exists
between time windows in those queues. KAIROS assigns an
anomaly score to each queue and flags a queue as anomalous if
its anomaly score is above an anomaly threshold. Consequently,
all time windows in an anomalous queue are deemed abnormal.

KAIROS analyzes time window queues, instead of only
individual edges or individual time windows, because KAIROS
is cognizant of the distinctive characteristics of modern
attacks. Advanced adversaries today frequently leverage the
“low-and-slow” attack pattern (§2.2), so that it is difficult
to distinguish malicious events from benign but unusual
system activities in the background. However, while these
unusual activities are typically discrete, events belonging
to an attack are connected via information flow over a long

time period [2]. Time window queues provide KAIROS with
additional context necessary to distinguish attack behavior
from unusual but benign activity and further, to reconstruct
series of events constituting the attack (§4.4).

In the remainder of this section, we describe in detail the
process of identifying suspicious nodes within a time window
(§4.3.1), constructing queues of time windows (§4.3.2), and
identifying abnormal queues (§4.3.3).

4.3.1. Identifying Suspicious Nodes. KAIROS considers
a node in a time window T to be suspicious if the node
satisfies the following two properties:
Anomalousness: A node is anomalous if it is a source
or a destination node of an edge that has a reconstruction
error (§4.2) greater than a reconstruction threshold. KAIROS
computes a reconstruction threshold εT for each time window
T based on the reconstruction errors of all the edges in T . In
our experiments, εT is 1.5 standard deviations (SDs) above
the mean of all reconstruction errors in a time window.
Rareness: A node is rare if its corresponding system entity
does not appear frequently in a benign execution. We use the
inverse document frequency (IDF) [38] to compute a node’s
rareness. That is, for a given node v, we calculate:

IDF(v)=ln(
N

Nv+1
)

where N is the total number of time windows and Nv the
number of time windows that contain the node v. A node
v receives the maximum IDF if it does not exist in the past,
i.e., Nv = 0. Note that the higher a node’s IDF, the rarer
it is. KAIROS considers a node to be rare if its IDF value
is above the rareness threshold ϑ. KAIROS identifies a set
of suspicious nodes ST satisfying both anomalousness and
rareness for each time window T .

Prior work, such as NoDoze [18] and PrioTracker [39],
also explored frequency-based approaches to measuring
rareness. However, KAIROS’s approach is novel, because (1)
KAIROS combines frequency with graph learning to identify
suspicious nodes, while prior work either considers only
frequency or with node fan-outs, which discounts important
structural and temporal anomalies; and (2) KAIROS leverages
frequency in the context of anomaly detection while both
systems focus only on forensic analysis.
4.3.2. Constructing Queues of Time Windows. KAIROS
constructs time window queues iteratively, as new time
windows appear in a streaming provenance graph. For a new
time window Tnew, KAIROS either assigns Tnew to one or
more existing queues or creates a new queue containing only
Tnew. That is, Tnew is appended to an existing queue q if:

↔T ↗q :STnew↘ST ≃=⇐

where T represents any time window in q. If Tnew is not
correlated to any existing queues through suspicious nodes,
Tnew itself becomes the start of a new queue.
4.3.3. Detecting Anomalous Queues. The anomaly score
of a queue q is the product over the anomaly scores of all
the time windows Ti in the queue:

AnomalyScore(q)=
n∏

i=1

AnomalyScore(Ti)

The anomaly score of a time window T is the mean of the
reconstruction errors of the edges in T whose reconstruction
errors are above the reconstruction threshold εT (§4.3.1).

KAIROS incrementally updates the anomaly score of a
queue at run time when a new time window is appended to
the queue. Each time a queue’s anomaly score is updated,
KAIROS compares the updated anomaly score with the
anomaly threshold ϖ to determine whether the queue is
abnormal. KAIROS uses benign validation data to set ϖ
after model training. If a queue’s anomaly score at run time
(during test) exceeds ϖ, the queue (and thus all time windows
in the queue) are considered to be anomalous.

4.4. Anomaly Investigation
While anomalous time window queues (§4.3) significantly

reduce the size of the graph that sysadmins must inspect in case
of an intrusion alarm, they can still contain thousands of nodes
and edges. To further lessen the burden on the analyst, KAIROS
automates the attack investigation process by constructing
candidate summary graphs from anomalous time window
queues. KAIROS does so without relying on any prior attack
knowledge; therefore, its ability to reconstruct more precise
attack footprints is not limited to previously known attacks.

Given an anomalous queue q, KAIROS first applies standard
provenance graph reduction techniques [40] to reduce the
size of the graph in q without changing its semantics. For
example, KAIROS merges edges from the same source and
destination nodes if they are of the same type. KAIROS’ graph
reduction does not affect anomaly detection, because KAIROS
performs reduction only after it detects an anomalous queue.

Similar to prior work [41], we observe that attack activities
typically form a dense community of nodes that are connected
via edges of high reconstruction errors, separating them from
other, non-attack-related nodes. Thus, after graph reduction,
KAIROS leverages the community discovery algorithm
Louvain [42] to identify those communities.

To do so, KAIROS first constructs a weighted graph Gq
from all the anomalous queues by adding to Gq any edge
e that has a REe greater than the reconstruction threshold
εT (§4.3.1) of its corresponding time window T :

Gq={e :REe>εT ,⇒e↗T ,⇒T ↗q}
Gq is the input graph to Louvain, and the reconstruction error
REe of each edge in Gq is the weight of the edge.

Then, Louvain starts with each node in Gq representing a
separate community. For every node v↗Gq , it moves v from
its current community to one of its neighboring communities
that leads to the largest improvement (if any) of modularity,
which measures the degree of connection density within
communities compared to that between communities:

Modularity=
∑

c

[∑
in

2m
↓

(∑
tot

2m

)2
]

where
∑

in is the sum of the REs of the edges in
the community c, and

∑
tot is the sum of the REs of

c’s neighboring edges (i.e., edges with one of their incident
nodes inside c and the other one outside). m is the sum of the
REs of all edges in Gq . Note that v remains in its community
if relocating it achieves no modularity gain. Louvain runs
this process repeatedly until modularity no longer increases.

To the best of our knowledge, KAIROS is the first to
bridge graph learning and community detection in the context
of anomaly detection. For example, HERCULE [41] also
leverages community detection but pre-defines 29 edge

features to cluster edges. In contrast, KAIROS avoids manual
feature engineering by using learned anomaly scores.

The resulting communities are then simplified to create
candidate summary graphs. These graphs concisely describe
malicious behavior that spans long time periods and
involves multiple stages of an attack kill-chain [2], although
sometimes, they might also represent abnormal but otherwise
benign system activity (due to the nature of anomaly-based
detection [43]). However, as we see in §5.5, sysadmins can
easily dismiss benign candidate graphs (i.e., false alarms)
and quickly identify the attacker’s footprints from small but
attack-revealing graphs without the need to backtrack [17]
or forward-track [44] the entire provenance graph. In fact,
analyzing those small graphs is the only time KAIROS requires
expert knowledge in its entire intrusion detection pipeline.
Unlike prior systems [2, 16, 21] that require expert-crafted
attack signatures and manual exploration of the whole
provenance graph, KAIROS greatly reduces human involvement.
Sysadmins still have the option to inspect the entire graph
for further, in-depth analysis, but only if they choose to do so.

In §5.2, we show how sysadmins can update KAIROS’
model based on benign candidate graphs to continuously
improve the quality of detection and investigation.
5. Evaluation

We implemented a KAIROS prototype in Python. We
use scikit-learn [45] to implement hierarchical feature
hashing (§4.1) and PyG [46] to implement KAIROS’ graph
learning framework (§4.2). Louvain is implemented using
NetworkX [47]. Finally, we use GraphViz [48] to visualize
summary graphs for manual inspection.

We evaluate KAIROS on eight publicly available datasets,
analyzing kernel-level provenance data that captures whole-
system behavior of various platforms (namely Linux, FreeBSD,
and Android) with and without attacks. §5.1 describes the ex-
perimental datasets in detail. All experiments are performed on
a server running CentOS 7.9 with 2.20GHz 20-core Intel Xeon
Silver 4210 CPU and 64 GB of memory. Unless otherwise
stated, we set the following hyperparameters in all the experi-
ments except those in §5.4, where we examine the effect of hy-
perparameters on KAIROS’ performance: node feature embed-
ding dimension |!| = 16, node state dimension |s(v)|=100,
neighborhood size |N |=20, edge embedding dimension |z|=
200, and time window length |tw|=15 minutes. Our evalu-
ation focuses on answering the following research questions:
Q1. Can KAIROS accurately detect anomalies in a running
system under attack, especially when they are low-and-slow
e.g., the APT in §2.2) and thus difficult to detect? (§5.2)
Q2. How does KAIROS compare to state-of-the-art? (§5.3)
Q3. How do hyperparameters affect KAIROS’ detection and
run-time performance? (§5.4)
Q4. Can KAIROS accurately reconstruct attack behavior from
the original provenance graph? (§5.5)
Q5. What is KAIROS’ end-to-end performance? (§5.6)

5.1. Datasets
We obtain our experimental datasets from two sources,

Manzoor et al. [49] and DARPA [23, 50, 51]. They are
the few open-source datasets widely used in evaluating
provenance-based systems [1, 2, 16, 20, 52–56]. Table 2
summarizes the statistics of the graphs in those datasets.

Table 2. SUMMARY OF THE EXPERIMENTAL DATASETS.

Dataset # of Nodes # of Edges
(in millions)

of Attack
Edges

% of Attack
Edges

Manzoor et al. 999,999 89.8 2,842,345 3.165%
DARPA-E3-THEIA 690,105 32.4 3,119 0.010%
DARPA-E3-CADETS 178,965 10.1 1,248 0.012%
DARPA-E3-ClearScope 68,549 9.7 647 0.006%
DARPA-E5-THEIA 739,329 55.4 86,111 0.156%
DARPA-E5-CADETS 90,397 26.5 793 0.003%
DARPA-E5-ClearScope 91,475 40.0 4,044 0.010%
DARPA-OpTC 9,485,265 75.0 33,504 0.045%

Table 3. CHARACTERISTICS OF THE MANZOOR ET AL. DATASET.

Scenarios # of Graphs Average #
of Nodes

Average #
of Edges

YouTube 100 8,292 113,229
Gmail 100 6,827 37,382
Video Game 100 8,831 310,814
Attack 100 8,891 28,423
Download 100 8,637 112,958
CNN 100 8,990 294,903

5.1.1. Manzoor et al. Dataset. This dataset contains
provenance graphs captured by SystemTap [57] from six
activity scenarios in a controlled lab environment. Five of
them (i.e., watching YouTube, checking Gmail, playing
a video game, downloading files, and browsing cnn.com)
contain only benign activity. The attack scenario involves a
drive-by download from a malicious URL that exploits a Flash
vulnerability, which allows the attacker to gain root access.
Manzoor et al. repeatedly ran each scenario to generate 100
graphs per scenario. Table 3 details the graph statistics.

This dataset allows us to demonstrate KAIROS’ high
efficacy on traditional, “smash-and-grab” attacks, where the
attacker quickly subverts a system. It also allows us to fairly
compare KAIROS with Unicorn [1] and ThreaTrace [7], two
state-of-the-art PIDSes that perform anomaly detection on
whole-system provenance graphs. Both systems used this
dataset for their own evaluations. However, it is difficult to
demonstrate KAIROS’ ability to reconstruct attack activity
with this dataset, as the fine-grained attack ground truth (i.e.,
the exact attack procedure) is not public and thus unknown
to us. We use DARPA datasets (§5.1.2) for such evaluation.
Data Labeling. We label the Attack scenario graphs as
attack and the remaining graphs as benign. Due to the lack
of attack knowledge, we use a single time window (§4.3)
for each graph (i.e., the time window queue length |q| is
1). Thus, an attack graph corresponds to a single attack
time window. From each benign scenario, we use only one
graph to train KAIROS and 24 graphs as validation data to
configure detection thresholds (§4.3) to not introduce bias
in their selection [58]. We use the remaining benign graphs
(75 for each scenario) and all 100 attack graphs as test data.

5.1.2. DARPA Datasets. We use datasets from DARPA’s
Transparent Computing (TC) and Operationally Transparent
Cyber (OpTC) programs. TC organized several adversarial
engagements that simulated real-world APTs on enterprise
networks. During the engagements, a red team launched a se-
ries of attacks towards an enterprise’s security-critical services
(e.g., web, email, and SSH servers) while engaging in benign
activities such as browsing websites, checking emails, and
SSH log-ins. A separate team deployed various provenance
capture systems (e.g., CADETS, ClearScope, and THEIA)
on different platforms to record whole-system host activity.

Table 4. KAIROS’ EXPERIMENTAL RESULTS.

Datasets TP TN FP FN Precision Recall Accuracy AUC
Manzoor et al. 100 375 0 0 1.000 1.000 1.000 1.000
E3-THEIA 9 216 2 0 0.818 1.000 0.991 0.995
E3-CADETS 4 174 1 0 0.800 1.000 0.994 0.997
E3-ClearScope 5 112 2 0 0.714 1.000 0.983 0.991
E5-THEIA 2 173 1 0 0.667 1.000 0.994 0.997
E5-CADETS 7 238 9 0 0.438 1.000 0.965 0.982
E5-ClearScope 10 217 5 0 0.667 1.000 0.978 0.989
OpTC 22 1210 16 0 0.579 1.000 0.987 0.993

The provenance data from the third (E3) and the fifth (E5)
engagement is publicly available [23, 50].

The OpTC dataset contains benign activities of 500 Win-
dows hosts over seven days and additional three days of a
mixture of benign and APT activities. The red team simulated a
three-day long APT attack using a number of known CVEs on a
small subset of hosts. The large scale of this dataset (with its to-
tal size in the order of a few dozen TBs) enables us to evaluate
KAIROS under a more “real” setting, where the amount of test
data is much larger than that of training data. Specifically, we
randomly select six hosts and use only one day of the benign
data from them for training, one additional benign day for
validation, but all three attack days from all hosts for testing. Ta-
ble 2 details the graph statistics from different provenance sys-
tems. Table 11 in Appendix A summarizes all DARPA attacks.

We use DARPA datasets to show that KAIROS can (1) accu-
rately detect anomalies even though they are hidden among a
large amount of benign activity across a long time span, and (2)
precisely distill the original provenance graph (that describes
both benign and attack activity) into a compact attack summary
graph without prior attack knowledge, even though attack activ-
ity is several orders of magnitude rarer (see Table 2). Moreover,
we use (3) the TC dataset to compare KAIROS with Unicorn
and ThreaTrace, and (4) the OpTC dataset to demonstrate that
KAIROS can be realistically deployed in a large-scale network
of systems. Our motivating example (§2.2) uses the E3 dataset.
Data Labeling. Unlike Manzoor et al., DARPA provides
attack ground truth, which enables us to label individual
nodes and edges related to the attack. Thus, we can manually
compare KAIROS’ reconstructed attack graph with the
ground-truth graph. It is worth noting that the ground truth
is used only by us to verify KAIROS’ efficacy; KAIROS does
not leverage any attack knowledge in its own analysis.

In both TC and OpTC, attack activity occurred only in
a subset of time windows within an attack day. For instance,
in our motivating example (§2.2), the ground truth shows
some attack activity on April 10th, 2018 at 13:41 when the
attacker attempted to manipulate Firefox. The next attack
activity occurred almost an hour later. As such, we mark
the time window that includes the Firefox event as an attack
time window. Since each time window is 15-minute long in
our experiments, the next several time windows are therefore
benign time windows, until the attack activity resumes.

Table 12 in Appendix A summarizes specific benign and
attack days we use for training, validation, and detection.
5.2. Detection Performance

To evaluate KAIROS’ detection performance, we replay
test data in each dataset as if KAIROS was monitoring the
behavior of the host system as it runs. Model training is
performed offline using only benign data. Note that this
experimental setup automatically ensures two desiderata of
PIDSes introduced in §1: scope and attack agnosticity.

Table 5. KAIROS’ ADJUSTED EXPERIMENTAL RESULTS.

Datasets TP TN FP FN Precision Recall Accuracy AUC
Manzoor et al. 100 375 0 0 1.000 1.000 1.000 1.000
E3-THEIA 10 216 1 0 0.909 1.000 0.996 0.998
E3-CADETS 4 174 1 0 0.800 1.000 0.994 0.997
E3-ClearScope 5 112 2 0 0.714 1.000 0.983 0.991
E5-THEIA 2 173 1 0 0.667 1.000 0.994 0.997
E5-CADETS 16 238 0 0 1.000 1.000 1.000 1.000
E5-ClearScope 10 217 5 0 0.667 1.000 0.978 0.989
OpTC 32 1210 6 0 0.842 1.000 0.995 0.998

Table 6. E5-CLEARSCOPE’S MAY 17th DETECTION PERFORMANCE
WITH AND WITHOUT RETRAINING BASED ON MAY 15th FPS.

E5-ClearScope TP TN FP FN Precision Recall Accuracy AUC
Without retraining 6 87 2 0 0.750 1.000 0.979 0.989
With retraining 6 89 0 0 1.000 1.000 1.000 1.000

Table 4 shows the precision, recall, accuracy, and area
under ROC curve (AUC) results for all datasets. We compute
these metrics based on time windows. As mentioned in §5.1,
we manually label each time window in a provenance graph
as either benign or attack according to the ground truth. If
KAIROS marks a benign time window as anomalous (i.e.,
if KAIROS mistakenly includes a benign time window in an
anomalous queue), we consider the time window to be a false
positive (FP). On the other hand, if KAIROS correctly marks
an attack time window as anomalous, it is counted as a true
positive (TP). False negatives (FN) and true negatives (TN)
are calculated in a similar fashion. Table 4 also shows the
number of TP, TN, FP, and FN time windows.

We see in Table 4 that KAIROS can accurately detect all
attacks, achieving 100% recall. KAIROS reports FPs (which
lead to lower precision) in a subset of experiments for several
reasons. First, KAIROS continues to assign high reconstruction
errors to edges whose nodes were under the attacker’s influence
even after the attacker stops actively manipulating them.
KAIROS still considers these entities to be compromised, be-
cause KAIROS remembers the history of their states (§4.2), part
of which indeed involves the attacker. However, in the ground
truth, entities that remain active after the attack are often dis-
missed, since they are no longer part of the attack. For example,
in E5-CADETS, the attacker exploited a vulnerable Nginx
process to download and execute a malicious payload. Once the
payload was executed, subsequent attack activity no longer in-
volved Nginx, but Nginx continued to serve benign requests.
Any entity, once compromised by an attacker, should be consid-
ered problematic. We manually identify these “fake” FPs (i.e.,
processes that potentially remain under an attacker’s control but
whose subsequent behavior is not part of the ground truth), and
we show the adjusted results in Table 5. Notice the significant
improvement for E3-THEIA, E5-CADETS, and OpTC.

Second, KAIROS assigns high reconstruction errors to novel
activities of new applications that were introduced only in the
test data. Since their behavior is completely unknown, it is ab-
normal to KAIROS, albeit non-malicious. This is an example of
concept drift [27], where new benign behavior does not fit into
the underlying statistical properties learned by the model. For
example, in E5-ClearScope, we test KAIROS on May 15th and
17th, 2019 when the attack took place. KAIROS reports FPs on
both days. Upon inspection of the candidate summary graphs
from KAIROS (Fig. 5), we easily conclude that all the FPs are
caused by the behavior of screencap, which does not appear
in the training data. We next show how sysadmins can effec-
tively mitigate FPs by incrementally retraining KAIROS’ model.

Model Retrain. KAIROS makes model retraining more prac-
tical, because it enables sysadmins to quickly identify false
alarms by providing them with compact candidate summary
graphs to inspect (§5.5). To update the model, we repeat the
same training process (§4.2) on the existing model using only
the provenance data from the FP time windows. Table 6 shows
the experimental results on E5-ClearScope before and after we
identify FP time windows and update the model. More specifi-
cally, in addition to the original training data, we further train
the model on the FP data on May 15th, which was previously
used as part of the test data. We then evaluate the updated
model on the May 17th’s data, which is the remaining test data.
For fair comparison, Table 6 reports the results before model
update only on May 17th (while Table 5 reports the results on
both days). KAIROS can continuously learn from FPs to address
concept drift and avoid making similar mistakes in the future.

In practice, KAIROS’ model should be regularly updated
as new benign behavior emerges. Note that retraining
potentially breaks the assumptions made in our threat model
(§3), since benign training data may not be captured in a
controlled environment where the absence of an attacker
is guaranteed. As such, attackers may exploit retraining to
poison the model [59, 60]. Detecting and preventing model
poisoning [61] is further discussed in §6, along with other
possible evasion strategies, but it is beyond the scope of this
work. In summary, while KAIROS supports retraining, we
leave its thorough exploration and evaluation to future work.

5.3. Comparison Study
Fairly comparing KAIROS with state-of-the-art PIDSes is

hard for several reasons. First, the majority of PIDSes are
signature-based [2, 16, 21, 62, 63], while KAIROS detects
anomalies. The performance of signature-based PIDSes
depends on the quality of the signatures, which are often
proprietary knowledge unavailable to the public. Comparison
between signature- and anomaly-based PIDSes can easily be
biased by manipulating signatures that can be matched to
the attack. Therefore, we exclude signature-based PIDSes for
comparison. Second, most anomaly-based PIDSes [13, 64] are
closed-source and evaluated using private datasets. We attempt
to re-implement some PIDSes based on published descriptions,
but it is challenging to verify correctness with no access to
datasets to reproduce the original results. For example, we
re-implemented ProvDetector [26] but are unable to compare
it against KAIROS due to unreasonably long run time on
even the smallest DARPA dataset (we attribute this outcome
to our lack of skills, not to the original authors). Similarly,
ShadeWatcher [6] is not fully open-source. Specifically,
we confirm with the authors that a major component of
ShadeWatcher is proprietary. Unfortunately, we are unable to
replicate the algorithm from the description in its publication
alone. Last but not least, PIDSes might use different metrics
to report their detection performance, further complicating
comparison and giving a misleading impression of performance.
We further discuss the issues of evaluating PIDSes in general
in §6 and leave benchmarking PIDSes to future work.

Due to these difficulties, we choose Unicorn [1] and
ThreaTrace [7] as the primary PIDSes for comparison, because
they are anomaly-based, open-source, and evaluated by the
authors using both Manzoor et al. and a subset of DARPA
datasets. Similarly, StreamSpot [20] and Frappuccino [19] are

Table 7. COMPARISON STUDY BETWEEN UNICORN AND KAIROS.

Datasets System Precision Recall Accuracy
Manzoor et al. Unicorn 0.98 0.93 0.96

KAIROS 1.00 1.00 1.00
E3-CADETS Unicorn 0.98 1.00 0.99

KAIROS 1.00 1.00 1.00
E3-THEIA Unicorn 1.00 1.00 1.00

KAIROS 1.00 1.00 1.00

E3-ClearScope Unicorn 0.98 1.00 0.98
KAIROS 1.00 1.00 1.00

also open-source anomaly detection systems. However, Unicorn
has been shown to outperform these systems [1]. Our own
evaluation of StreamSpot on DARPA’s TC datasets confirmed
prior performance analyses by others: StreamSpot cannot detect
any anomalies in all TC datasets. Therefore, due to space con-
straints, we will not further discuss StreamSpot or Frappuccino.

5.3.1. Unicorn. Unicorn builds a behavioral model of a
system by featurizing an evolving provenance graph into a
series of fixed-size, incrementally-updatable graph sketches.
Each sketch represents a snapshot describing the entirety
of the graph from the very beginning of system execution
till the point where the snapshot is taken. The frequency of
generating a new sketch is a hyperparameter, determined by
the number of new edges streamed to the graph. At test time,
Unicorn can quickly generate and update graph sketches of
the system being monitored and compare them with known
benign sketches in the model to perform run-time detection.

We use the same evaluation protocol as in Unicorn [1] to
ensure fairness. Specifically, Unicorn computes evaluation met-
rics at the graph level, instead of the finer-grained time-window
level (as in KAIROS). That is, Unicorn classifies the entire
graph as benign or containing an attack, and uses it as a single
data point to calculate detection performance. To adopt Uni-
corn’s way of computing metrics, we consider an entire graph
to be malicious if KAIROS marks at least one time window as
attack. We do not need to modify the experimental results for
the Manzoor et al. dataset, because each graph is already a
single time window. Since Unicorn was not originally evaluated
on the DARPA E5 datasets, we will not compare Unicorn on
these datasets for fairness (because extensive hyperparameter
tuning might be needed for Unicorn to produce the best results).
Experimental Results. Table 7 shows that KAIROS either
outperforms Unicorn or achieves equally high performance
in all datasets. By comparing Table 7 with Table 5, we
also see that a coarse-grained, graph-level evaluation can be
misleading, since the detection system might not accurately
or completely identify the entirety of attack activity.

Unlike KAIROS, Unicorn does not support fine-grained
detection or automated post-detection investigation. We notice
a time lag between the first occurrence of a malicious event
and Unicorn’s detection of system anomalies, which results in
additional graph sketches. Since a graph sketch is a vectorized
graph representation that describes an entire evolving graph,
these additional sketches could represent tens of thousands of
more graph elements that sysadmins must inspect on top of
the sketch that actually contains attack activity. Consequently,
when Unicorn raises an alarm, attack activity can be hidden
anywhere within the graph, requiring sysadmins to blindly
backtrack the graph to reason about the alarm. In contrast,
KAIROS not only produces fewer false alarms, but also

Table 8. COMPARISON STUDY BETWEEN THREATRACE AND KAIROS.

Datasets System Precision Recall Accuracy
Manzoor et al. ThreaTrace 0.98 0.99 0.99

KAIROS 1.00 1.00 1.00
E3-CADETS ThreaTrace 0.90 0.99 0.99

KAIROS 1.00 0.95 0.99

E3-THEIA ThreaTrace 0.87 0.99 0.99
KAIROS 1.00 0.95 0.99

E5-CADETS ThreaTrace 0.63 0.86 0.97
KAIROS 1.00 0.85 0.98

E5-THEIA ThreaTrace 0.70 0.92 0.99
KAIROS 1.00 0.92 0.99

creates compact summary graphs that highlight possible
attack footprints, all without any human intervention (§5.5).
5.3.2. ThreaTrace. ThreaTrace builds a model for each
type of nodes in a provenance graph to detect anomalous
nodes. We use both the Manzoor et al. dataset and a subset
of DARPA datasets used by ThreaTrace for fair comparison.
ThreaTrace converts its node-level detection to graph-level
for the Manzoor et al. dataset, since node-level ground truth
is unavailable. It considers a graph to be anomalous if the
number of anomalous nodes exceeds a predefined threshold.
KAIROS and ThreaTrace are thus directly comparable on this
dataset. For DARPA datasets, we adopt ThreaTrace’s way
of computing metrics and use anomalous nodes in suspicious
time windows to compute precision, recall, and accuracy.
Experimental Results. Table 8 shows that KAIROS achieves
comparable performance to ThreaTrace in all datasets. We
note that ThreaTrace authors manually label as anomalous
both the nodes in the ground truth and their 2-hop ancestor
and descendant nodes, even though the neighboring nodes
were not involved in an attack. More concerningly, benign
nodes mistakenly detected by ThreaTrace as anomalous are not
considered to be FPs as long as any of their 2-hop neighbors
are labeled as anomalous. Thus, a benign node as far as 4
hops away from a true anomalous node in the ground truth can
be misclassified by ThreaTrace but not reported as a FP. This
labeling approach likely leads to favorable precision and recall,
but even then, KAIROS outperforms ThreaTrace in most cases.
We further discuss the issues of benchmarking PIDSes in §6.

Unlike KAIROS, ThreaTrace cannot reconstruct a complete
attack story. While ThreaTrace’s node-level detection can
facilitate attack comprehension to some extent, this approach
is impractical when the graph is large and the number of
FP nodes is high. For example, ThreaTrace identified over
63K FP nodes in the E5-THEIA experiment (after using the
aforementioned labeling strategy), which would undoubtedly
overwhelm human analysts. This limitation is explicitly
recognized by the ThreaTrace authors.

5.4. Hyperparameter Impact on Performance
In previous sections, we evaluate KAIROS with a set of

fixed hyperparameters. Here, we vary each independently and
report its impact on detection and run-time performance. We
show detailed results for E3-THEIA here and include results
for all TC datasets in Appendix B due to space constraints.
Node Embedding Dimension (|!|). Node embedding
encodes initial node features. We see in Fig. 3(a) that a
relatively small dimension is sufficient to encode these
features. A large dimension leads to sparse features, which
could severely affect detection performance and incur large

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 3. Detection performance (precision, recall, accuracy, and AUC) on E3-THEIA. We vary one hyperparameter and fix the others.

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 4. Average memory usage on E3-THEIA with varying hyperparameter values. We vary one hyperparameter and fix the others.

memory overhead (Fig. 4(a)). On the other hand, if |!| is too
small, we instead increase the probability of hash collision
in hierarchical feature hashing (§4.1). We find |!|= 16 to
be the ideal dimension across all datasets (Fig. 7(a)).
Node State Dimension (|s(v)|). A node’s state captures
the temporal evolution of a node’s neighborhood over time.
In Fig. 3(b), when |s(v)| is too small, KAIROS has difficulties
in retaining information about past events. On the other hand,
if |s(v)| grows too large, detection performance degrades, be-
cause states might contain outdated history irrelevant to current
events [1]. |s(v)| also influences memory overhead (Fig. 4(b)),
because a state vector is associated with each node. When
|s(v)|=100, across all TC datasets (Fig. 7(b)), KAIROS can
fully contextualize a new event using a node’s past interactions
with other entities, while incurring small run-time overhead.
Neighborhood Sampling Size (|N |). A node’s neighborhood
captures the structural role of a node, so that two nodes with a
similar neighborhood likely have the same structural role [65].
Too small of a neighborhood sampling size makes it difficult for
KAIROS to understand a node’s structural role. However, as we
continue to increase |N |, detection performance no longer im-
proves (Fig. 3(c)). This is because the majority of the nodes in a
dataset have fewer neighboring nodes than |N |. For example, in
E3-THEIA, about 97% of the nodes have a neighborhood size
of 20 or less. As such, increasing |N | above 20 has little to no
effect. This also explains why the additional memory overhead
we incur is not proportional to the increase in |N | (Fig. 4(c)).
We find |N |=20 to be ideal among all datasets (Fig. 7(c)).
Edge Embedding Dimension (|z|). The edge embedding
z encodes both the state and the structural information of
the graph surrounding an edge. With increasing |z|, the
edge embedding can better retain temporal and structural
information for the decoder to reconstruct an edge. However,
an overly large |z| complicates the model and affects KAIROS’
generalization capability. Fig. 3(d) confirms our hypothesis:
Within a certain range, increasing |z| improves KAIROS’
detection performance, until we reach a point where the
performance starts to degrade. Memory overhead (Fig. 4(d))
also increases as |z| grows, as expected. Across all datasets
(Fig. 7(d)), |z|=200 gives the best detection performance.
Time Window Length (|tw|). The length of a time window
determines the frequency of KAIROS performing its anomaly
detection algorithm (§4.3). Generally, a longer time window

Table 9. STATISTICS OF ATTACK SUMMARY GRAPHS.

Dataset # of Nodes # of Edges # of Edges in
Time Windows Reduction

E3-THEIA 20 31 3,393,536 109,469X
E3-CADETS 18 26 115,712 4,450X
E3-ClearScope 10 16 210,944 13,184X
E5-THEIA 11 17 826,368 48,610X
E5-CADETS 11 17 351,232 20,661X
E5-ClearScope 10 10 344,064 34,406X
OpTC 77 101 1,065,984 10,554X

accumulates a larger number of system events. Since the
amount of benign activity overwhelmingly dominates that
of attack activity (§2.2.2), a large time window can make
anomaly detection difficult. As we see in Fig. 3(e), while a
time window length between 5-30 minutes has little influence
on detection performance, when |tw| is too large (60
minutes), KAIROS generates more false negatives, which leads
to low recall (and high precision) and overall low accuracy.
When |tw| is small (5 minutes), we see a slight decline in
performance, because a short time window can limit KAIROS’
ability to accurately contextualize an event. However, it
is unnecessary to use small time windows just to improve
detection timeliness, because APT actors only slowly infiltrate
their target systems (§2.2.2). For example, in E3-THEIA, the
attacker performed two adjacent attack activities in a kill-chain
almost one hour apart (§5.1.2). We find |tw|=15 minutes
to be ideal among all datasets (Fig. 7(e)). Fig. 4(e) shows
that increasing the time window length only slightly increases
memory overhead, even when the length is large. This is
because KAIROS processes a provenance graph in a streaming
fashion and does not keep the entire graph in memory.

Note that CPU utilization is consistently less than 1% in
all E3-THEIA experiments. Varying hyperparameter values
only slightly impacts CPU utilization. Fig. 9 shows the 90th

percentile CPU utilization for all TC experiments.
5.5. Attack Reconstruction

The ability to reconstruct complete but concise attack stories
is a first-order design metric in KAIROS. It is particularly
important for anomaly detection systems, especially the ones
(like KAIROS) that leverage deep learning. This is because
attack reconstruction (1) establishes trust on the decisions,
(2) facilitates the necessary human-in-the-loop component
in understanding system anomalies, and (3) expedites the
process of identifying and reducing FPs (§5.2) [66].

Figure 5. A benign candidate summary graph.

In the DARPA datasets, KAIROS is able to reconstruct the
true attack activity describing the APT, while reporting only a
couple of benign candidate graphs (§4.4). Table 9 shows the
size of the attack summary graph that KAIROS generates from
an anomalous time window queue in each DARPA dataset
(the OpTC dataset contains three APT scenarios, while each
experiment in TC contains only one). We see that candidate
summary graphs are small (due to graph reduction, see §4.4).
In fact, compared to the size of the anomalous time window
queues from which they are generated, the size of attack
summary graphs is up to five orders of magnitude smaller.
For example, in E3-THEIA, KAIROS achieves 109,469X edge
reduction, narrowing down the total number of edges that
require manual inspection from 3.4 million in anomalous time
window queues to only 31. This means that sysadmins can
quickly and easily reason about candidate summary graphs,
eliminate the benign ones, and identify true attack activity. In
the remainder of this section, we use an attack and a benign
summary graph to illustrate how KAIROS’ ability to construct
concise graphs enables effective and efficient attack investiga-
tion. Due to space constraints, we provide full graph results
in Appendix C, Appendix D, and a separate document [67].
The Attack Summary Graph. Fig. 1 shows a candidate
summary graph from KAIROS that describes APT activity
in E3-THEIA. This graph and DARPA’s ground truth match
almost perfectly, even though a small number of perhaps
extraneous graph elements not mentioned in the ground truth
(colored blue) are included in the graph. However, notice
that these graph elements are closely connected to system
entities that are indeed under the influence of the attacker.

KAIROS also misses several entities (colored in pink and
dashed) explicitly mentioned in the ground truth. For example,
the socket nodes and the edges describing the communications
between the compromised Firefox process and two mali-
cious IP addresses are not included. This is because in general,
it is common for a Firefox process to read from and write to
an external IP. As such, it is difficult to classify those behaviors
without providing e.g., a complete allowlist/blocklist. However,
KAIROS accurately identifies Firefox’s anomalous behavior
(colored red) as a result of these communications with the
malicious IPs. Therefore, sysadmins familiar with the system
environment can easily verify the presence and the progression
of an attack, even without the missing components. Note that
graph reduction (§4.4) does not lead to missing entities; instead,
these are the result of low REs during anomaly detection.
The Benign Summary Graph. Fig. 5 shows a benign candi-
date summary graph. Unlike attack graphs, benign graphs from
KAIROS typically have one or two process nodes that are hubs,
forming small “communities” with well-defined behavioral
boundaries from other processes. These graphs are isolated by
KAIROS, often because they represent benign but uncommon
activity. For example, as discussed in §5.2, screencap in
Fig. 5 never appeared in training, thus resulting in relatively

Figure 6. End-to-end time window performance in E3-THEIA. Each bar
represents the time it takes to process the graph in a single time window.

Table 10. SUMMARY OF EXECUTION TIME.

Dataset Min (s) Median (s) 90th Percentile (s) Max (s)
DARPA-E3-THEIA 0.9 12.1 35.2 228.8
DARPA-E3-CADETS 1.3 2.5 4.9 19.7
DARPA-E3-ClearScope 0.1 3.8 4.9 19.7
DARPA-E5-THEIA 3.6 38.3 124.7 376.2
DARPA-E5-CADETS 0.5 7.2 12.1 16.3
DARPA-E5-ClearScope 0.1 8.2 40.1 68.8
DARPA-OpTC 3.7 19.8 35.7 111.7

high reconstruction errors among its edges. However, it is
easy for sysadmins to quickly disregard this benign candidate
summary graph, because it is small and well-structured.

5.6. End-to-end Performance
KAIROS processes a streaming provenance graph at regular

intervals of a time window and raises an intrusion alert when
an anomalous time window queue is detected (§4). We show in
Fig. 6 the time it takes for KAIROS to process 15-minute time
windows on E3-THEIA. Throughout this experiment, KAIROS
takes at most 228.8 seconds (or 25.4% of 15 minutes) to
process a single time window (which contains about 2.5M
edges), well below the duration of a time window. The median
size of time windows in our dataset has 57K edges, which
takes only 11.6 seconds to compute. We cannot clearly show
the execution time of many time windows in Fig. 6, because
it takes only about one second (or less) to compute each, as
they contain fewer than 10K edges. KAIROS’ computational
cost is proportional to the number of graph elements in a
time window. Table 10 summarizes time window execution
times for all DARPA datasets. Compared to StreamSpot [20],
which processes around 14K edges per second, KAIROS incurs
slightly higher latency, processing about 11K edges per second.
However, KAIROS significantly outperforms StreamSpot in
detection accuracy (§5.3). Moreover, prior work [1] has shown
that a provenance capture system typically generates fewer
than 10K edges per second, even when the host system is
busy. As such, KAIROS can just as easily process a streaming
provenance graph without “falling behind”. Furthermore,
as we discuss in §5.4, KAIROS’ time window approach,
similar to batch processing implemented in Unicorn [1] and
ThreaTrace [7], does not affect its detection timeliness. There-
fore, KAIROS can effectively monitor a host system at run time.

6. Discussion
Data Poisoning. If attackers can poison training data to include
malicious activity, which is then learned by a machine learning
model, future attacks will remain undetected. Data poisoning
poses a serious threat to all anomaly-based intrusion detection
systems. To the best of our knowledge, SIGL [13] is the only
PIDS that has evaluated its robustness against data poisoning in

depth, but its detection algorithm works at a much smaller scale.
Others, unfortunately, have much more limited evaluation, if at
all. For example, ShadeWatcher [6], which has a system-wide
scope equivalent to that of KAIROS, attempts to evaluate data
poisoning using the DARPA datasets. The authors use one day
of the attack data during training and show that ShadeWatcher
can detect an attack on the second day. We perform similar
evaluation and obtain equally good results showing that
detection performance is barely affected. However, such
evaluation is misleading, because attack activities performed on
one day will be different on another day. To properly evaluate
robustness, we need carefully-crafted, open-source datasets.
Creating such datasets is beyond the scope of this paper.
Evasion. An adversarial attacker with some knowledge of an
intrusion detection system can introduce noise or mimic benign
system behavior during an attack to mislead the detection
system. While evasion attacks [59, 60, 68], such as mimicry
attacks [69], are a threat to all PIDSes, evading deep graph
learning based systems like KAIROS is nontrivial. KAIROS
differentiates between benign and malicious activity based
on both structural and temporal interactions between system
entities. Therefore, to mimic benign behavior, the attacker
must carefully orchestrate attack activity such that a malicious
process interacts with a similar set of system objects in a sim-
ilar sequential order while ensuring that the actual attack logic
remains unchanged. This requires the attacker to have a great
knowledge of the target system’s benign behavior and likely the
inner workings of the trained model. Even then, prior work [13]
has shown that existing adversarial attacks on graphs cannot
evade PIDSes, because provenance graphs have more structural
and temporal constraints than other types of graphs (e.g., social
networks). We further evaluated KAIROS using an evasion
dataset based on DARPA’s E3-THEIA published by a recent ro-
bustness study [70]. KAIROS detected the camouflaged attack,
but in the summary graph (§4.4), it reported only a small subset
of the attack activity described in DARPA’s ground truth. While
we at first suspected that the evasion approach proposed in the
study was to some extent effective, upon further inspection, we
discovered that the published dataset contains only the attack
behavior identified by KAIROS, rather than the full attack traces
included in the original DARPA dataset. This discovery high-
lights the importance of a meaningful intrusion report; a tool
like KAIROS would have helped the authors remedy this issue.
Limitations of Evaluation. We identify three major issues
in PIDS evaluation in general. First, there lacks open-source
implementation of published PIDSes for comparison. Second,
only limited publicly-accessible datasets exist, and almost
all of them are poorly documented. It is thus difficult to
identify any bias in datasets that might produce misleading
results. Third, no single performance metric exists to
ensure meaningful comparison. PIDSes differ in their
detection granularity; in §5.3, ad-hoc conversion for the
sake of comparison inadvertently introduces biases. These
issues weaken the conclusion of our own evaluation (and
potentially that of others) and significantly hinder independent
reproduction of results. We encourage the community to
advocate public releases of software artifacts and datasets.

7. Related Work
Historically, PIDSes have had to make trade-offs along

four dimensions: scope, attack agnosticity, timeliness, and

attack reconstruction (§1). KAIROS is the first to reconcile
these dimensions while providing comparable, if not superior,
detection performance. It is also the first to efficiently
integrate the reduction, detection, and investigation layers
of the system auditing stack [71] with minimal overhead.
Provenance-based Intrusion Detection. A number of prior
PIDSes have used signature-based techniques to match known
attack behavior in provenance graphs [2, 16, 18, 21, 63].
However, these approaches are not attack agnostic and
therefore have difficulties in detecting unknown attacks. Other
approaches leverage anomaly-based detection techniques, but
they either (1) fail to scale to the entire system [4, 13], (2)
cannot reconstruct attack stories [1, 6, 19, 20, 26], and/or
(3) require offline analysis [39]. KAIROS overcomes all these
limitations simultaneously, while achieving similar or better
detection and computational performance.
Provenance-based Investigation. PIDSes [2, 21] have often
relied on known attack signatures to provide attack attribution
for detection. Prior anomaly-based PIDSes [9, 19, 20] require
sysadmins to manually inspect large anomalous graphs, thus
difficult to use in practice. Recently, ShadeWatcher [6] and
ThreaTrace [7] take a step in the right direction, identifying
individual anomalies at the node level. However, unlike
KAIROS, they fail to reconstruct complete and coherent attack
stories but merely provide a starting point for sysadmins to sift
through a large amount of data. Similarly but perhaps more
problematically, SIGL [13] not only identifies just anomalous
nodes, but also has limited scalability, which makes it
unsuitable to analyze provenance graphs of a whole-system
scope to detect advanced attacks. Recently, Yang et al. [72]
proposed ProGrapher that, similar to Unicorn, detects
anomalies at the graph level. To support finer-grained attack
investigation, it ranks graph nodes based on their degrees
of anomalousness, which is similar to SIGL [13]. Therefore,
post-detection investigation remains labor-intensive. Note that
ProGrapher is closed-source and reports worse overall detection
accuracy than KAIROS. DepComm [73] partitions a provenance
graph into process-centric communities based on pre-defined
random walk schemes and extracts for each community paths
that describes how information flows through it. While paths
provide more useful context for attack investigation than nodes,
DepComm requires point-of-interest events or attack signatures
from an IDS (e.g., Holmes [2]) to reconstruct an attack story.
Provenance Reduction. Different techniques [4, 40, 74]
have been proposed to reduce the size of provenance graphs.
Reduction is performed either before intrusion detection
or during attack investigation to reduce computational and
memory overhead [71]. For example, ShadeWatcher [6]
performs causality preserving reduction [40] before intrusion
detection. In contrast, KAIROS leverages reduction techniques
post-detection only to minimize a sysadmin’s mental load
but performs detection efficiently at scale on the entire graph.
Thus, KAIROS’ graph reduction does not affect detection.

8. Conclusion
KAIROS is the first provenance-based intrusion detection sys-

tem that detects system-wide anomalies and generates succinct
attack graphs to describe them without prior attack knowledge.
Our evaluation demonstrates that KAIROS can effectively
monitor long-running systems at run time, outperforms the
state-of-the-art, and incurs minimal performance overhead.

Acknowledgments

We thank S&P 2023 and 2024 anonymous reviewers for
their insightful comments. We acknowledge the support of
the Natural Sciences and Engineering Research Council of
Canada (NSERC). Nous remercions le Conseil de recherches
en sciences naturelles et en génie du Canada (CRSNG) de son
soutien. This work was partially supported by research funding
from the National Research Council Canada (NRC). This
material is based upon work supported by the U.S. National
Science Foundation under Grant CNS-2245442. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

References

[1] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. I.
Seltzer, “Unicorn: Runtime provenance-based detector
for advanced persistent threats,” in Network and
Distributed System Security Symposium (NDSS’20).
The Internet Society, 2020.

[2] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
and V. N. Venkatakrishnan, “HOLMES: real-time APT
detection through correlation of suspicious information
flows,” in Symposium on Security and Privacy, (S&P’19).
IEEE, 2019.

[3] M. Barré, A. Gehani, and V. Yegneswaran, “Mining
Data Provenance to Detect Advanced Persistent Threats,”
in International Workshop on Theory and Practice of
Provenance (TaPP’19). USENIX, 2019.

[4] W. U. Hassan, M. Lemay, N. Aguse, A. Bates, and
T. Moyer, “Towards Scalable Cluster Auditing through
Grammatical Inference over Provenance Graphs,” in
Network and Distributed System Security Symposium
(NDSS’18). The Internet Society, 2018.

[5] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying
intrusion detection and forensic analysis via provenance
awareness,” Future Generation Computer Systems,
vol. 61, pp. 26–36, 2016.

[6] J. Zengy, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua,
and Z. L. Chua, “ShadeWatcher: Recommendation-
guided cyber threat analysis using system audit records,”
in Symposium on Security and Privacy (S&P’22).
IEEE, 2022.

[7] S. Wang, Z. Wang, T. Zhou, X. Yin, D. Han, H. Zhang,
H. Sun, X. Shi, and J. Yang, “Threatrace: Detecting
and tracing host-based threats in node level through
provenance graph learning,” IEEE Transactions on
Information Forensics and Security, 2022.

[8] P. Chen, L. Desmet, and C. Huygens, “A study on
advanced persistent threats,” in International Conference
on Communications and Multimedia Security (CMS’14).
Springer, 2014.

[9] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. M.
Eyers, M. I. Seltzer, and J. Bacon, “Practical whole-
system provenance capture,” in Symposium on Cloud
Computing (SoCC’17). ACM, 2017, pp. 405–418.

[10] Google Project Zero, “The More You Know,
The More You Know You Don’t Know,” 2022,

https://googleprojectzero.blogspot.com/2022/04/the-
more-you-know-more-you-know-you.html.

[11] M. Sohm, “Research on various tech-
niques to bypass default falco ruleset,”
https://github.com/blackberry/Falco-bypasses.

[12] “Container runtime security bypasses on falco,”
https://www.antitree.com/2019/09/container-runtime-
security-bypasses-on-falco/.

[13] X. Han, X. Yu, T. Pasquier, D. Li, J. Rhee, J. W.
Mickens, M. I. Seltzer, and H. Chen, “SIGL: securing
software installations through deep graph learning,” in
Security Symposium (Sec’21). USENIX, 2021.

[14] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing,
and D. Meng, “Log2vec: A heterogeneous graph
embedding based approach for detecting cyber threats
within enterprise,” in Conference on Computer and
Communications Security (CCS’19). ACM, 2019.

[15] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog:
Anomaly detection and diagnosis from system logs
through deep learning,” in Conference on Computer and
Communications Security (CCS’17). ACM, 2017.

[16] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. N.
Venkatakrishnan, “POIROT: Aligning Attack Behavior
with Kernel Audit Records for Cyber Threat Hunting,”
in Conference on Computer and Communications
Security (CCS’19). ACM, 2019.

[17] S. T. King and P. M. Chen, “Backtracking intrusions,” in
Symposium on Operating Systems Principles (SOSP’03).
ACM, 2003.

[18] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li,
and A. Bates, “Nodoze: Combatting threat alert fatigue
with automated provenance triage,” in Network and
Distributed System Security Symposium (NDSS’19).
The Internet Society, 2019.

[19] X. Han, T. Pasquier, T. Ranjan, M. Goldstein, and M. I.
Seltzer, “Frappuccino: Fault-detection through runtime
analysis of provenance,” in Workshop on Hot Topics
in Cloud Computing (HotCloud’17). USENIX, 2017.

[20] E. Manzoor, S. Momeni, V. Venkatakrishnan, and
L. Akoglu, “Fast memory-efficient anomaly detection
in streaming heterogeneous graphs,” International
Conference on Knowledge Discovery and Data Mining
(KDD’16), 2016.

[21] W. U. Hassan, A. Bates, and D. Marino, “Tactical
Provenance Analysis for Endpoint Detection and
Response Systems,” in Symposium on Security and
Privacy (S&P’20). IEEE, 2020.

[22] D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler,
“Hi-fi: collecting high-fidelity whole-system provenance,”
in Annual Computer Security Applications Conference
(ACSAC’12), 2012.

[23] A. D. Keromytis, “Transparent Comput-
ing Engagement 3 Data Release,” 2018,
https://github.com/darpa-i2o/Transparent-Computing/
blob/master/README-E3.md.

[24] Mandiant, “APT1: Exposing One of
China’s Cyber Espionage Units,” 2013,
https://www.mandiant.com/resources/apt1-exposing-
one-of-chinas-cyber-espionage-units.

[25] M. Fazzini, “Tagging and tracking of multi-level
host events for transparent computing,” 2017,

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://github.com/blackberry/Falco-bypasses
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
https://www.antitree.com/2019/09/container-runtime-security-bypasses-on-falco/
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://www.mandiant.com/resources/apt1-exposing-one-of-chinas-cyber-espionage-units
https://www.mandiant.com/resources/apt1-exposing-one-of-chinas-cyber-espionage-units

https://smartech.gatech.edu/handle/1853/56510.
[26] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou,

J. Rhee, Z. Chen, W. Cheng, C. A. Gunter, and H. Chen,
“You Are What You Do: Hunting Stealthy Malware via
Data Provenance Analysis,” in Network and Distributed
System Security Symposium (NDSS’20). The Internet
Society, 2020.

[27] A. Tsymbal, “The problem of concept drift: definitions
and related work,” Computer Science Department,
Trinity College Dublin, 2004.

[28] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer,
“Trustworthy Whole-System Provenance for the Linux
Kernel,” in Security Symposium. USENIX, 2015.

[29] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. W.
Fletcher, A. Miller, and D. Tian, “Custos: Practical
Tamper-Evident Auditing of Operating Systems Using
Trusted Execution,” in Network and Distributed System
Security Symposium. The Internet Society, 2020.

[30] R. Paccagnella, K. Liao, D. Tian, and A. Bates, “Logging
to the Danger Zone: Race Condition Attacks and De-
fenses on System Audit Frameworks,” in Conference on
Computer and Communications (CCS’20). ACM, 2020.

[31] P. Li, Y. Yang, M. Pagnucco, and Y. Song, “Explainability
in graph neural networks: An experimental survey,”
CoRR, vol. abs/2203.09258, 2022.

[32] Z. Zhang, P. Qi, and W. Wang, “Dynamic malware
analysis with feature engineering and feature learning,”
AAAI Conference on Artificial Intelligence, 2021.

[33] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi,
P. Forsyth, and P. Poupart, “Representation Learning
for Dynamic Graphs: A Survey,” Journal of Machine
Learning Research, 2020.

[34] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti,
and M. Bronstein, “Temporal graph networks for deep
learning on dynamic graphs,” International Conference
on Machine Learning (ICML’20), 2020.

[35] Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng, and
Y. Sun, “Masked label prediction: Unified massage
passing model for semi-supervised classification,” in
IJCAI, 2021.

[36] T. F. J. Pasquier, X. Han, T. Moyer, A. Bates,
O. Hermant, D. M. Eyers, J. Bacon, and M. I. Seltzer,
“Runtime analysis of whole-system provenance,” in
Conference on Computer and Communications Security
(CCS’18). ACM, 2018.

[37] K. Cho, B. van Merrienboer, Çaglar Gülçehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio, “Learn-
ing phrase representations using rnn encoder–decoder
for statistical machine translation,” in EMNLP, 2014.

[38] K. Church and W. Gale, “Inverse document frequency
(idf): A measure of deviations from poisson,” in Natural
language processing using very large corpora. Springer,
1999.

[39] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee,
and P. Mittal, “Towards a timely causality analysis for
enterprise security,” in Network and Distributed System
Security Symposium. The Internet Society, 2018.

[40] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu,
H. Wang, and G. Jiang, “High fidelity data reduction for
big data security dependency analyses,” in Conference
on Computer and Communications Security (CCS’16).

ACM, 2016.
[41] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang,

Z. Zhang, L. Si, X. Zhang, and D. Xu, “HERCULE:
attack story reconstruction via community discovery
on correlated log graph,” in Annual Conference on
Computer Security Applications. ACM, 2016.

[42] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks,” Journal of Statistical Mechanics: Theory and
Experiment, 2008.

[43] L. Akoglu, H. Tong, and D. Koutra, “Graph based
anomaly detection and description: a survey,” Data
Mining and Knowledge Discovery, 2015.

[44] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M.
Chen, “Enriching intrusion alerts through multi-host
causality,” in Network and Distributed System Security
Symposium (NDSS’05). The Internet Society, 2005.

[45] “scikit-learn: machine learning in Python,” 2021,
https://scikit-learn.org/.

[46] M. Fey and J. E. Lenssen, “Fast graph representation
learning with PyTorch Geometric,” in ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019.

[47] A. Hagberg, P. Swart, and D. S Chult, “Exploring
network structure, dynamics, and function using
networkx,” Los Alamos National Lab., Tech. Rep., 2008.

[48] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and
G. Woodhull, “Graphviz—open source graph drawing
tools,” in International Symposium on Graph Drawing.
Springer, 2001.

[49] E. Manzoor, S. Momeni, V. Venkatakrishnan, and
L. Akoglu, “StreamSpot Code and Data,” 2016,
https://sbustreamspot.github.io/.

[50] J. Torrey, “Transparent Computing Engagement 5
Data Release,” 2020, https://github.com/darpa-i2o/
Transparent-Computing.

[51] M. van Opstal and W. Arbaugh, “Operationally
Transparent Cyber (OpTC) Data Release,” 2019,
https://github.com/FiveDirections/OpTC-data.

[52] H. Yu, A. Li, and R. Jiang, “Needle in a haystack: Attack
detection from large-scale system audit,” International
Conference on Communication Technology (ICCT’19),
2019.

[53] G. Berrada and J. Cheney, “Aggregating unsupervised
provenance anomaly detectors,” in International
Workshop on Theory and Practice of Provenance
(TaPP’19). USENIX, 2019.

[54] G. Berrada, S. Benabderrahmane, J. Cheney, W. Maxwell,
H. Mookherjee, A. Theriault, and R. Wright, “A baseline
for unsupervised advanced persistent threat detection
in system-level provenance,” Future Generation of
Computer Systems, 2020.

[55] Y. Xie, Y. Wu, D. Feng, and D. D. E. Long, “P-Gaussian:
Provenance-Based Gaussian Distribution for Detecting
Intrusion Behavior Variants Using High Efficient and
Real Time Memory Databases,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[56] M. N. Hossain, S. Sheikhi, and R. C. Sekar, “Combating
dependence explosion in forensic analysis using
alternative tag propagation semantics,” Symposium on
Security and Privacy (S&P’20), 2020.

[57] B. Jacob, P. Larson, B. Leitao, and S. Da Silva,

https://smartech.gatech.edu/handle/1853/56510
https://scikit-learn.org/
https://sbustreamspot.github.io/
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/darpa-i2o/Transparent-Computing
https://github.com/FiveDirections/OpTC-data

“Systemtap: instrumenting the linux kernel for analyzing
performance and functional problems,” IBM Redbook,
vol. 116, 2008.

[58] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pier-
azzi, C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos
and don’ts of machine learning in computer security,” in
Security Symposium (USENIX Sec’22). USENIX, 2022.

[59] D. Zügner, A. Akbarnejad, and S. Günnemann,
“Adversarial attacks on neural networks for graph data,”
in International Conference on Knowledge Discovery
& Data Mining (KDD’18). ACM, 2018.

[60] D. Zügner and S. Günnemann, “Adversarial attacks on
graph neural networks via meta learning,” in International
Conference on Learning Representations, 2019.

[61] X. Zhang and M. Zitnik, “GNNGuard: Defending
Graph Neural Networks against Adversarial Attacks,” in
Conference on Neural Information Processing Systems
(NeurIPS’20), 2020.

[62] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B.
Celik, X. Zhang, and D. Xu, “Atlas: A sequence-based
learning approach for attack investigation,” in Security
Symposium (Sec’21). USENIX, 2021.

[63] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete,
R. Gjomemo, R. Sekar, S. D. Stoller, and V. N.
Venkatakrishnan, “SLEUTH: Real-time Attack Scenario
Reconstruction from COTS Audit Data,” in Security
Symposium, (USENIX Sec’17). USENIX, 2017.

[64] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Cheng,
Y. Chen, S. Cheng, and X. Chen, “Conan: A Practical
Real-Time APT Detection System With High Accuracy
and Efficiency,” IEEE Transactions on Dependable and
Secure Computing, 2022.

[65] A. Grover and J. Leskovec, “node2vec: Scalable Feature
Learning for Networks,” in International Conference
on Knowledge Discovery and Data Mining (KDD’16).
ACM, 2016.

[66] D. Han, Z. Wang, W. Chen, Y. Zhong, S. Wang, H. Zhang,
J. Yang, X. Shi, and X. Yin, “DeepAID: Interpreting
and Improving Deep Learning-based Anomaly Detection
in Security Applications,” in Conference on Computer
and Communications Security (CCS’21). ACM, 2021.

[67] Z. Cheng, Q. Lv, J. Liang, Y. Wang, D. Sun,
T. Pasquier, and X. Han, “KAIROS: Practical
Intrusion Detection and Investigation using Whole-
system Provenance (Supplementary Material),” 2023,
https://github.com/ProvenanceAnalytics/kairos/blob/
main/supplementary-material.pdf.

[68] B. Wang and N. Z. Gong, “Attacking graph-based
classification via manipulating the graph structure,” in
Conference on Computer and Communications Security
(CCS’19), 2019.

[69] D. A. Wagner and P. Soto, “Mimicry attacks on
host-based intrusion detection systems,” in Conference
on Computer and Communications Security (CCS’02).
ACM, 2002, pp. 255–264.

[70] A. Goyal, X. Han, G. Wang, and A. Bates, “Sometimes,
you aren’t what you do: Mimicry attacks against
provenance graph host intrusion detection systems,” in
Network and Distributed System Security Symposium,
(NDSS’23). The Internet Society, 2023.

[71] M. A. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink,

N. Michael, S. Gaur, A. Bates, and W. U. Hassan, “Sok:
History is a vast early warning system: Auditing the
provenance of system intrusions,” in Symposium on
Security and Privacy. IEEE, 2022.

[72] F. Yang, J. Xu, C. Xiong, Z. Li, and K. Zhang,
“Prographer: An anomaly detection system based on
provenance graph embedding,” 2023.

[73] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and D. Meng,
“Depcomm: Graph summarization on system audit logs
for attack investigation,” in 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 2022, pp. 540–557.

[74] M. N. Hossain, J. Wang, O. Weisse, R. Sekar, D. Genkin,
B. He, S. D. Stoller, G. Fang, F. Piessens, E. Downing
et al., “Dependence-Preserving Data Compaction for
Scalable Forensic Analysis,” in Security Symposium
(USENIX Sec’18). USENIX, 2018.

[75] D. Han, Z. Wang, W. Chen, K. Wang, R. Yu, S. Wang,
H. Zhang, Z. Wang, M. Jin, J. Yang, X. Shi, and X. Yin,
“Anomaly Detection in the Open World: Normality Shift
Detection, Explanation, and Adaptation,” in Network
and Distributed System Security Symposium, (NDSS’23).
The Internet Society, 2023.

Appendix A.
DARPA Dataset Details

Table 11 summarizes the attack scenarios in the DAPRA
datasets. We describe each attack scenario in detail in a
separate document [67]. Table 12 summarizes the specific
data we use from the datasets for training, validation, and
detection. Similar to prior work [6], we also perform noise
reduction and define an allow-list of trusted data objects that
are removed from the causal analysis.

Table 11. OVERVIEW OF APT SCENARIOS IN DARPA DATASETS.

Dataset Duration Platform Attack Surface
E3-THEIA 02d00h12m Ubuntu 12.04 x64 Firefox
E3-CADETS 00d00h55m FreeBSD Nginx
E3-ClearScope 00d01h08m Android 6.0.1 Firefox
E5-THEIA 00d00h21m Ubuntu 12.04 x64 Firefox
E5-CADETS 01d01h14m FreeBSD 13 Nginx
E5-ClearScope 02d01h02m Android 8 Appstarter APK
OpTC 02d03h00m Windows PowerShell

Table 12. DARPA DATA
USED FOR TRAINING, VALIDATION, AND TEST. THE BOLD DAYS ARE ATTACK
DAYS IN WHICH BOTH BENIGN AND ATTACK TIME WINDOWS EXIST. THE
REMAINING DAYS ARE BENIGN DAYS WITH ONLY BENIGN TIME WINDOWS.

Datasets Training Data
(yyyy-mm-dd)

Validation Data
(yyyy-mm-dd)

Test Data
(yyyy-mm-dd)

E3-THEIA 2018-04-03/04/05 2018-04-09 2018-04-10/12
2018-04-11

E3-CADETS 2018-04-02/03/04 2018-04-05 2018-04-06
2018-04-07

E3-ClearScope 2018-04-04/05/06 2018-04-07 2018-04-10
2018-04-11

E5-THEIA 2019-05-08/09 2019-05-11 2019-05-14
2019-05-15

E5-CADETS 2019-05-08/09/11 2019-05-12 2019-05-15
2019-05-16/17

E5-ClearScope 2019-05-08/09/11 2019-05-12 2019-05-14
2019-05-15/17

OpTC 2019-09-22 2019-09-23 2019-09-23/24/25

https://github.com/ProvenanceAnalytics/kairos/blob/main/supplementary-material.pdf
https://github.com/ProvenanceAnalytics/kairos/blob/main/supplementary-material.pdf

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 7. AUC on all DARPA datasets with varying hyperparameter values.

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 8. Average memory usage on all DARPA datasets with varying hyperparameter values.

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 9. 90th percentile CPU utilization on all DARPA datasets with varying hyperparameter values.

(a) |!| (b) |s(v)| (c) |N | (d) |z| (e) |tw|

Figure 10. Average execution time on all DARPA datasets with varying hyperparameter values.

Appendix B.
Hyperparameter Impact on Performance

Fig. 7 shows AUC results for all DARPA datasets with
varying hyperparameter values. Fig. 8 and Fig. 9 show the
corresponding memory and computational overhead. Fig. 10
shows the average time window execution time.

Appendix C.
Attack Reconstruction Examples

Due to space constraints, we provide a subset of candidate
graph examples from DARPA datasets in our experiment. We
refer interested readers to the supplementary material [67] for
full experimental results. Similarly, we include only benign
summary graph examples of the corresponding datasets in §D.
E3-CADETS (Fig. 11). The attacker (81.49.200.166)
connects to a vulnerable Nginx server and obtains a shell.
Through the shell, the attacker successfully downloads a
malicious payload to /tmp/vUgefal and executes the
payload with root privileges. The elevated process vUgefal
attempts to move laterally to 154.145.113.18 and
61.167.39.128. However, only the attempt at infecting
61.167.39.128 is successful. vUgefal further plans to
inject malicious payload to the sshd process. To do so, the

attacker downloads the payload to /var/log/devc, but
the attempted process injection fails.
E5-ClearScope (Fig. 12). A user accidentally installs a mali-
cious appstarter APK de.belu.appstarter, which
loads an attack module called busybox. This module gives
the attacker control from 77.138.117.150. The attacker
then installs the driver msm_g711tlaw into the victim host
for privilege escalation. The attack exfiltrates calllog.db,
calendar.db, and mmssms.db and takes a screenshot.
Two days later, the attacker exploits appstarter again
to try to connect to the C&C server (128.55.12.233) but
failed. The ground truth also describes some malicious activity
of attack payloads called lockwatch and mozilla. Upon
close inspection, we discover that the provenance data
related to the malicious activity is corrupted. We remove the
corrupted data and omit the malicious activity in Fig. 12.
OpTC Day 1 (Fig. 13). The attacker uses a C&C server
(132.197.158.98) to connect to the victim host and
executes a powershell script runme.bat. The attacker
then injects the process lsass to collect the victim’s
credential and host information. The attacker also scans the
network (e.g., using ping and smb) and uses wmiprvse
to move laterally to a host at 142.20.57.147. Eventually,
the attacker moves to a host at 142.20.58.149 and runs
more powershell scripts *.ps1 to collect information.

Figure 11. A summary graph that describes attack activity in DARPA’s E3-CADETS dataset, as automatically generated by KAIROS.

Figure 12. A summary graph that describes attack activity in DARPA’s E5-ClearScope dataset, as automatically generated by KAIROS.

Figure 13. A summary graph that describes attack activity in DARPA’s OpTC dataset in day 1, as automatically generated by KAIROS.

Appendix D.
Benign Summary Graph Examples

Figure 14. A benign summary graph in DARPA’s E3-CADETS dataset.

E3-CADETS (Fig. 14). wget is a Linux utility used to down-
load files from the Internet. It might connect to any external IP
or URL. To determine whether wget’s behavior is related to
attack activity, sysadmins might either check whether any con-
nected IP is in a blocklist or confirm with the user the identities
of the files they download. Any file not recognized by the user
might be downloaded by the attacker through a C&C server.
E5-ClearScope (Fig. 15). defcontainer is a system
process associated with APK file installation. Sysadmins
might confirm with the user the identities of the APK files

Figure 15. A benign summary graph in DARPA’s E5-ClearScope.

they install. Sysadmins should further inspect the installed
APK files to ensure that they are from legitimate vendors.

Figure 16. A benign summary graph in DARPA’s OpTC.

OpTC (Fig. 16). Installagent is Microsoft Windows
Store’s update agent, which uses the system services System,
backgroundTaskHost, and svchost. Sysadmins need
to investigate Installagent only when suspicious files
(e.g., files not in the system path) appear in its activity.

Appendix E.
Meta-Review

Summary

This paper presents KAIROS, a provenance-based intrusion
detection system. KAIROS applies GNN to analyze temporal
information, which allows KAIROS to capture attack behaviors
that deviate from benign behaviors. In addition, the authors
design an attack investigation method that analyzes sub-graphs
denoting critical steps of attacks. The experiments show that
KAIROS outperforms existing methods.

Scientific Contributions

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue

Reasons for Acceptance

1) KAIROS uses a hierarchical feature extraction technique
that enhances the overall detection capability. The system
combines community detection algorithms and methods
to identify rare nodes in the provenance graph, providing
accurate detection.

2) This research addresses a critical and timely issue in the
domain of APT detection.

3) The datasets and source code will be open source.

Noteworthy Concerns

1) The authors have successfully utilized GNNs for threat
detection. However, several reviewers are concerned
about the black-box nature of GNN. The lack of model
explainability might hinder the adoption of the proposed
system by incident responders while investigating threat
alerts. By explaining how the alerts were generated by
GNN can improve the adaptability of the proposed system.

2) Attackers continually develop new evasive techniques to
bypass detection systems. There is a lack of detailed discus-
sion on how the proposed system would adapt to such evolv-
ing threats. A more robust evaluation, considering adaptive
attackers, would strengthen the paper’s contributions.

3) While the paper presents impressive detection rates, there
is less emphasis on the system’s false positive rates. In
practical scenarios, a high number of false positives can
lead to ”alert fatigue” and undermine the effectiveness
of the system.

4) Several reviewers have raised the concern related to
concept drift. If the model is not updated frequently and
adequately, it may fail to detect novel or evolved threats
effectively. This lack of adaptability could severely limit
the practical usefulness of the system. The paper should
place a stronger emphasis on addressing concept drift,
potentially by integrating continual learning strategies that
would allow the model to evolve along with the threat
landscape. The paper should also discuss the potential
risk of data poisoning due to frequent retraining.

Appendix F.
Response to the Meta-Review

We thank IEEE S&P 2023 and 2024 reviewers for their
insightful questions. Our responses to their four concerns are:
GNN’s blackbox nature: While the GNN model KAIROS
uses is opaque, KAIROS itself is not. The concise summary
graphs KAIROS generates from opaque GNN outputs (§4.4)
provide actionable insights incident responders typically
would need to investigate alerts. Combining interpretable ML
techniques (e.g., [66]) with KAIROS will improve transparency
but is orthogonal to this work.
Evasion: The existing techniques to evade provenance-based
detectors are brute force, requiring almost full knowledge
of the victim [70]. We evaluated KAIROS using the published
evasion dataset to the best of our ability in §6. Given the
lack of research in this area, we believe that sufficiently
demonstrating robustness is complex enough to require a
separate paper to address fully.
False positive (FP): KAIROS reports similar or lower FP
rates compared to prior work, and we discuss in detail the
causes of FPs in §5.2. Anomaly-based detectors like KAIROS
trade off FP rates for the ability to detect unknown threats.
Concept drift: For an anomaly-based detector, evolving
threats do not affect its model performance unless they
become identical to the learned benign activity; this is similar
to the evasion problem above. Evolving benign behavior, on
the other hand, requires approaches like continuous learning
to address. While our re-training strategy (§5.2) is primitive
(albeit effective), it shows that KAIROS is compatible with
the latest study [75], which performs selective re-training to
combat concept drift, specifically in learning-based anomaly
detection systems. We note that properly evaluating concept
drift requires careful construction of provenance datasets; no
such datasets are publicly available. While this is an important
area for future work, it is well beyond the scope of this paper.

We direct readers to §6, where the limitations of our work
are fully discussed.

	Introduction
	Background & Motivation
	System-level Data Provenance
	A Motivating Example
	Scenario (Fig. 1)
	Challenges
	Kairos' Result

	Threat Model
	Kairos Framework
	Graph Construction and Representation
	Graph Learning
	Anomaly Detection
	Identifying Suspicious Nodes
	Constructing Queues of Time Windows
	Detecting Anomalous Queues

	Anomaly Investigation

	Evaluation
	Datasets
	Manzoor et al. Dataset
	DARPA Datasets

	Detection Performance
	Comparison Study
	Unicorn
	ThreaTrace

	Hyperparameter Impact on Performance
	Attack Reconstruction
	End-to-end Performance

	Discussion
	Related Work
	Conclusion
	Appendix A: DARPA Dataset Details
	Appendix B: Hyperparameter Impact on Performance
	Appendix C: Attack Reconstruction Examples
	Appendix D: Benign Summary Graph Examples
	Appendix E: Meta-Review
	Appendix F: Response to the Meta-Review

