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ABSTRACT: PBQFF is an open-source program for fully
automating the production of quartic force fields (QFFs) and
their corresponding anharmonic spectroscopic data. Rather than
being a monolithic piece of code, it consists of several key modules
including a generic interface to quantum chemistry codes and,
notably, queuing systems; a molecular point group symmetry
library; an internal-to-Cartesian coordinate conversion module; a
module for the ordinary least-squares fitting of potential energy
surfaces; and an improved second-order rotational and vibrational
perturbation theory package for asymmetric and symmetric tops
that handles type-1 and -2 Fermi resonances, Fermi resonance
polyads, and Coriolis resonances. All of these pieces are written in
Rust, a modern, safe, and performant programming language that
has much to offer for scientific programming. This work introduces PBQFF and its surrounding ecosystem, in addition to reporting
new anharmonic vibrational data for c-(C)C3H2 and describing how the components of PBQFF can be leveraged in other projects.

1. INTRODUCTION
Quartic force fields (QFFs) are fourth-order Taylor series
expansions of the internuclear potential energy portion of the
Watson Hamiltonian,1 typically written as shown in eq 1.
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In line with this definition, QFFs are approximations to the
potential function used to produce theoretical, anharmonic
spectroscopic data including fundamental vibrational frequen-
cies, vibrationally averaged principal rotational constants, and
quartic and sextic distortion coefficients.2,3 QFFs are often
combined with both rotational and vibrational perturbation
theory at second order (VPT2) to obtain these spectroscopic
data,4−8 but they can also provide the base potential energy
surface (PES) for variational approaches such as vibration
configuration interaction (VCI) or vibrational self-consistent
field (VSCF)9,10 after a Morse-cosine coordinate trans-
formation.11,12 A fairly simple input is required to generate
all of these constants: an equilibrium molecular geometry, and
the second-, third-, and fourth-order force constants (FCs),
denoted F in eq 1. Simple, of course, does not mean easy, and
the immense cost of QFFs comes in computing these FCs or
derivatives, the number of which increases geometrically with
the number of atoms in a molecule. Despite the great cost,
QFFs are still much less expensive10,13 than alternatives like

global or even semiglobal PESs. These more extensive energy
surfaces may require orders of magnitude more single-point
energy computations, but these approaches may be required
for loosely bound or “floppy” systems with PESs that are
poorly approximated by a QFF. As a case in point, the C4
semiglobal PES computed by Wang et al.14 required 2914
single-point energy computations, while a recent VPT2 QFF
study on the same molecule required only 233.15 Clearly, the
cost is reduced dramatically when the underlying electronic
structure method has analytic derivatives available, but in most
practical cases the derivatives are approximated numerically.
This numerical approximation comes in two major forms. In

the first version, the single-point energies can be fit to a system
of polynomial equations generated by the Taylor series
expansion in eq 1 using ordinary least-squares. The FCs are,
then, the coefficients that minimize the sum of squared
residuals for the model. In the other formulation, the FCs are
computed directly using central finite differences. The major
benefit of the fitting approach is that, with the matrix form of
the solution in hand, Newton’s method can be used to find a
stationary point of the potential energy function. This
stationary point can be used both to verify that the input
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geometry is a minimum and to refit the FCs determined by the
fitted function. This typically leads to small displacements from
the input geometry, but this refitting is especially valuable
when the QFF is composed of composite energies, for which a
direct geometry optimization is unavailable.12 On the other
hand, the fitting process itself, and especially the iterative
stationary point determination, can become expensive as the
size of the molecule in question increases. The fact that the
finite difference approach computes the force constants
directly is a benefit in this regard. Additionally, if memory
usage is a concern, the finite difference formulation can be
adapted to accumulate each single-point energy directly into its
corresponding FC, avoiding the overhead of storing a
potentially large number of single-point energies.
Another fork in the procedure comes in the types of

coordinates displaced to construct the QFF. Traditionally, the
most efficient QFFs are performed in symmetry-internal
coordinates (SICs). As their name suggests, SICs are linear
combinations of simple internal coordinates such as bond
stretches, bends, and torsions.12 Their efficiency comes from
the definition of SICs as nonmass-weighted approximations to
normal coordinates. Despite not including the mass-weighting,
well-chosen SICs typically align well with the actual normal
coordinates, allowing the QFF to take advantage of the
reduced coordinate space without the trouble of obtaining
actual normal coordinates in advance. Of course, this reduced
coordinate space refers to the reduction from 3N Cartesian
coordinates to 3N − 6 or 3N − 5 internal coordinates.
However, SICs are not without their shortcomings. The

computational efficiency comes at the cost of requiring the
user to generate a set of unique coordinates that align well with
the actual normal coordinates. As such, we have more
recently16 taken advantage of the simpler definition of
Cartesian coordinates to run QFFs on molecules for which
the development of an SIC system was too complicated. In this
case, the equilibrium geometry is displaced directly along the
Cartesian x, y, and z axes. Because of the much larger number
of coordinates involved in Cartesian QFFs, they have been
combined with the finite difference scheme of evaluating FCs.
Together, these two factors increase the computational cost to
about an order of magnitude more than SICs, even when
molecular symmetry can be taken into account. For a concrete
example, the three SICs required for the C2v water molecule
(symmetric and antisymmetric O−H stretches, and the bend)
require 69 single-point energies to generate a QFF. Increasing
the number of atoms to four in another C2v molecule,
formaldehyde, raises the number of single-point energy
computations by nearly an order of magnitude to 413.
Stepping to a C2v five-atom system in cyclopropenylidene (c-
C3H2) requires 1585 single-point energies.17 Using 3N
Cartesian coordinates instead of 3N − 6 SICs increases the
number of single-point energies in each case to 1780, 5252,
and 11952 points, respectively. Still, when this computational
cost can be paid, it can enable the application of QFFs to
molecules for which SICs cannot readily be derived, notably
for large molecules or those with non-Abelian point group
symmetry.16

Regardless of the derivative scheme or coordinate type,
when the single-point energies comprising a QFF are
computed with a high-level quantum chemical method such
as CCSD(T)-F12b18−20 and triple-ζ basis sets, accuracy of
within 5−7 cm−1 can be achieved for VPT2 based on such
QFFs relative to gas-phase experimental values.21−25 Similarly,

experimental agreement to within about 60 MHz can be
attained in the vibrationally averaged principal rotational
constants.26,27 Even better agreement (1−2 cm−1; 7 MHz) can
be reached through the use of more expensive, composite
methods that include corrections like complete basis set
extrapolations, corrections for core correlation, scalar rela-
tivistic effects, or higher-order electron correlation.1,26 The
QFF procedure itself is agnostic to these concerns and merely
requires the generation of some set of single-point energies
that can be turned into a local PES.
The sheer number of these single-point energies required for

molecules larger than about five atoms means that these
energies cannot practically be run serially within the confines
of a conventional quantum chemistry program, necessitating
some form of external automation.10,28,29 Traditionally, our
group has handled this issue by dividing each single-point
energy computation into its own input file and submitting the
individual computations to a queue managed by software like
Slurm30 or OpenPBS.31 Again, for small molecules, the
individual input files and corresponding queue submission
scripts can readily be generated and submitted by scripts.
However, as the number of single-point energies eclipses the
number of jobs allowed (or desirable) in the queue, the
process becomes more complicated, and the user has to
monitor the available queue space and submit more jobs as it
becomes available. Additionally, transient queue failures or
errors in the computations may leave gaps in the completed
single-point energies, requiring further manual intervention to
detect and correct the affected files.
In addition to these difficulties, our traditional QFF

procedure relies on several standalone programs written in
Fortran 77. For SIC QFFs, the internal coordinate trans-
formations are handled by the INTDER program,32 the fitting of
the PES is the domain of ANPASS,33 and the final spectroscopic
data are produced by SPECTRO.5 Each connection between these
programs (and in some places within a program) is mediated
by the reading and writing of files to disk, which leads to a
degradation in both performance and precision. Further, the
brittle input formats for these programs mean that user errors
in converting between them can cause silent and devastating
errors. Some of this can be papered over with scripts that help
to automate postprocessing, but no solutions to date have been
totally satisfactory, especially for new users. As such, a program
that can continuously monitor the status of the queue, collect
output from the quantum chemistry program of choice, create
new input files as needed, and finally compute the
corresponding anharmonic rovibrational spectra would dra-
matically ease this process for the user.

2. THE PBQFF PROGRAM
These problems, (1) generating displaced geometries for
QFFs, (2) building, running, and monitoring the correspond-
ing single-point energy computations, and (3) collecting the
results and transforming them into force constants and
spectroscopic data, are what the program described herein
and its subcomponents are designed to handle, with an
additional emphasis on reproducibility and scientific rigor
attained by ease of use. That program is PBQFF, and the name is
an acronym for “push-button quartic force fields.” As the name
suggests, the goal of this program is to make the technology of
QFFs easy to use and, thus, accessible to a wider audience of
experts and nonexperts alike. In contrast to the aforementioned
procedure, which often required hours of training and pages of
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notes to reproduce spectral data for a simple molecule like
water, PBQFF dramatically streamlines the process. It allows the
user to provide a simple configuration file written in Tom’s
Obvious Minimal Language (TOML),34 literally push a button
to initiate the QFF [in the optional graphical user interface
(GUI)], and come back to anharmonic spectroscopic data.
These data can then be passed to another simple tool that
formats them for typesetting with LATEX. Underlying this
functionality is a constellation of standalone libraries that can
be readily composed to handle the problems above.
Rust has been selected as the language of choice for this

suite of programs because of its strong dedication to safety and
correctness at the level of language design, as well as its
commitment to “blazingly fast” performance in line with other
systems programming languages like C and C++.35 Addition-
ally, Rust offers many of the niceties of modern programming
languages by default, such as unit and integration testing,
benchmarking tools, an integrated package manager and build
tool (named cargo), and extensive text editor support. The first
two of these are invaluable in the production of scientific code
where the importance of correctness and reproducibility are
paramount. Rust ensures these features with a rigorous
compiler that tracks memory ownership and lifetimes of
variables to prevent common bugs in other languages like use-
after-frees or dereferencing null pointers. These restrictions
and the closely related careful accounting of the types that are
safe to send between threads means that Rust code can truly be
fearlessly parallelized. Further, cargo, the integrated package
manager and build tool, can be used not only to facilitate easier
builds, but also to achieve so-called “hermetic” builds where all
versions of dependencies can be set explicitly to ensure
reproducible build artifacts. On top of all of this, Rust is an
expressive programming language, allowing for the direct
translation of scientific and mathematical concepts and
invariants into computer language, while preserving clean
and easy-to-use application programming interfaces (APIs).
2.1. Normal Coordinates. PBQFF itself is both a binary and

a library that addresses problem (1); namely, PBQFF is focused
primarily on driving the coordinate transformations that
convert displacements in the aforementioned coordinate
systems into input for quantum chemistry programs. In
addition to the SIC and Cartesian coordinate systems

described above, PBQFF contains our first implementation of
normal coordinate QFFs. This approach utilizes the infra-
structure for Cartesian coordinate QFFs, but truncated to the
second order, yielding a harmonic force field (HFF). This
Cartesian HFF is used to generate the harmonic FC matrix,
and the eigenvectors of the mass-weighted form of this matrix
correspond to the normal coordinates for the molecule in
question. These normal coordinates then serve as the basis for
a full QFF, which captures the convenience of automatic
coordinate determination from Cartesian coordinates and the
computational efficiency of treating only 3N − 6 internal
coordinates.
For small molecules of about three or four atoms, the

additional cost of the HFF is somewhat prohibitive, but for
these molecules, SIC systems are typically straightforward
anyway. Returning to the example of cyclopropenylidene, the
initial HFF requires only 171 points compared to the 1585
points for the normal coordinate QFF, giving a ratio of about
11%. For a C2v, nine-atom molecule [CH2(NH2)2]

36 the ratio
is 742 to 71769, or down to about 1%. Hence, the cost
diminishes for the types of large molecules to which these
coordinates will be applied. The one downside of using normal
coordinates in this way is that the QFF is no longer fully
isotope-independent. However, since this scheme preserves the
full eigenvector matrix, including the translational and
rotational degrees of freedom, isotope-independent Cartesian
FCs can be recovered as described by Mackie et al.,37 although
this has not yet been implemented.

2.2. Symmetry and Internal Coordinates. The afore-
mentioned normal and Cartesian coordinate schemes are
implemented directly in PBQFF. In contrast, the SIC coordinates
rely on a reimplementation of the INTDER program.32 INTDER

handles the transformation of SIC displacements to Cartesian
coordinates for input to quantum chemistry (QC) programs
and the corresponding transformation of SIC FCs to Cartesian
coordinates for use in our VPT2 software. Figure 1 shows the
simple-internal coordinates available in this version of INTDER.
In all three coordinate types, PBQFF takes advantage of the SYMM

package to account for molecular point group symmetry. SYMM

provides an interface for obtaining the point group of a
molecule, as well as the symmetries of displaced geometries
within a given point group. This latter feature is especially

Figure 1. SICs supported by INTDER. A, B, C, and D denote real atoms, except in the case of (c), where D is a dummy atom.
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useful for automatically determining symmetry-equivalent
structures in order to eliminate redundant computations in a
QFF. For SICs and fitted normal coordinates, this elimination
is tightly coupled to the TAYLOR package, which implements the
lazy Cartesian product algorithm presented by Thackston and
Fortenberry38 used to generate the matrices needed for the
least-squares fitting and the corresponding geometrical
displacements.
2.3. psqs. For actually interfacing with QC programs and

cluster management or queuing systems, PBQFF relies on the
PSQS library. This name is another acronym standing for
“ProgramS and QueueS.” PSQS is the primary handler of

problem (2): building, running, and monitoring running QC
programs, and the output gathering portion of problem (3). In
addition to providing concrete implementations for the
Molpro39 and Mopac40 QC programs and the OpenPBS31

and Slurm30 queuing systems, PSQS exposes interfaces for
Programs and Queues, which allow users of the library to
define their own types to be used with the core queue
management functionality.
Figure 2 shows the set of methods required for a QC

program to implement the Program trait (interface in many
other languages). Nearly all of these are trivial to implement,
and a default implementation of build_jobs is provided

Figure 2. Program interface.

Figure 3. Queue interface.
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that relies on the other, simpler methods. The main work is in
write_input and read_output, which tell PSQS how to
interact with the QC program.
Figure 3 shows the corresponding methods for a queuing

system to implement the Queue trait. In this case, the
methods are separated into two traits to allow more code to be
reused between implementations. In particular, the Sub-
Queue trait contains the methods that are independent of the
generic P: Program bound in the trait definition. This trait
can be implemented generically for all P, while the Queue
trait itself may need to be implemented specifically for a given
QC program. Regardless, most of these methods are trivial to
implement and allow users of PSQS to take advantage of its
abilities without having to modify PSQS itself.
Using these methods as building blocks, the Queue trait

provides default implementations of methods that run,
monitor, and collect output of geometry optimizations and
single-point energy computations. It does this while monitor-
ing the status of the queue (status method), dividing large
numbers of jobs into smaller “chunks” that can be submitted to
the queue together, and obeying the set job_limit to avoid
overloading the queue. Figure 4 shows the signature of the
drain method on Queue, which provides the interface for
single-point energy computations. A user just needs to provide
the directory in which to run the calculations, a vector of
Jobs produced by the build_jobs method on a
Program, and a destination array for the results. The
check_int parameter represents the interval at which
checkpoint files are to be written. These checkpoints allow the
whole draining process to resume from any point if it gets
interrupted. Furthermore, the methods for generating these
checkpoints are composed entirely of calls to the other
methods already described, meaning they are essentially free
from the perspective of the programmer.
2.4. Anharmonic Spectra. Once the single-point energies

have been computed and collected by PSQS, the second phase of
problem (3) kicks in: transforming these energies to FCs and
then to spectroscopic constants. In the case of the SICs and the
fitted normal coordinates, there is an intermediate least-squares
fitting (and refitting) step handled by a package called ANPASS,
which is another reimplementation of the original Fortran
version under the same name.33 In the Cartesian and finite
difference normal coordinate implementation, the FCs are,
again, computed directly from the energies using finite
differences. For SICs, in particular, there is the additional,
aforementioned step of converting the SIC FCs to Cartesian
coordinates via INTDER. In any case, the resulting Cartesian FCs
are fed into the VPT2 and rotational perturbation theory
subprogram, called SPECTRO. Like INTDER and ANPASS, this is also
a reimplementation of the original Fortran version.5 However,
the SPECTRO implementation presented herein contains some

additional niceties, such as fully automatic degenerate mode
alignment for symmetric tops and JavaScript Object Notation
(JSON) output for easy interface with postprocessing scripts.
SPECTRO handles the rotational and vibrational perturbation
theory that transform the FCs from the QFF into constants
like harmonic and anharmonic vibrational frequencies, vibra-
tionally averaged and singly vibrationally excited principal
rotational constants, and quartic and sextic centrifugal
distortion constants. It does all of this while handling
individual type-1 and −2 Fermi resonances, their combination
into Fermi resonance polyads41 (for asymmetric tops), and
Coriolis resonances. Accounting for all of these resonance
effects has been shown to be crucial for obtaining accurate
spectral data.41,42

2.5. Auxiliary Packages. In addition to these core
packages for computing QFFs, several others take advantage
of the modularity of these libraries to provide useful
functionality. For example, the SUMMARIZE package uses the
JSON serialization facilities of the SPECTRO package itself to
collect multiple PBQFF/SPECTRO output files and compose them
into tables in several formats including plain text, comma-
separated value (CSV), JSON, Emacs org-mode, and LATEX.
Similarly, the SCOPE package takes this JSON output and
converts it to a format compatible with the Molden43 molecule
viewer for visualizing the vibrational modes computed by
SPECTRO. Figure 5 shows the dependency graph between the
core packages like PBQFF, PSQS, INTDER, and SPECTRO, as well as
how these auxiliary packages depend on this core.

The modularity of the code allows the individual pieces to
be easily composed and reused, raising the level of abstraction
at which the user has to think about QFFs. As noted for PBQFF

itself, many of these packages exist as both a library and a
standalone executable, lending composability to program
authors as well as end users. For example, the executable
forms of INTDER, ANPASS, and SPECTRO can be used as drop-in

Figure 4. Drain method.

Figure 5. PBQFF ecosystem
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replacements for their Fortran predecessors without the
queuing features of PBQFF. On the other side, the primarily
executable-focused SUMMARIZE can be loaded as a library for use
in more specific data analysis programs. While the coordina-
tion provided by PBQFF is often the most convenient approach,
this allows users with more established workflows to capture
benefit from these packages as well.
2.6. Interface. As mentioned above, the primary interface

for PBQFF is a single configuration file written in the TOML
format. An example of such an input file for an SIC QFF on
water is shown in Figure 6. This example uses the Slurm
queuing system and the MOPAC QC program.
As an alternative to direct manipulation of this input file, a

graphical interface called QFFBUDDY is also provided, as shown
in Figure 7. In addition to enforcing inclusion of all required
keywords, QFFBUDDY provides useful functionality like the
loading of QC program templates and extracting optimized
geometries from QC output files. Once the input has been
assembled in this way, QFFBUDDY supports both generating a
TOML configuration file as depicted above and running the
QFF directly from the interface. With this latter feature, the
user never has to interface directly with the underlying queuing
system or even a terminal emulator.
2.7. Open source. Like many other chemistry programs

including Psi4,44 NWChem,45 and GAMESS,46 to name just a
few, PBQFF and its component crates are fully open-source and
publicly available on GitHub. Although contributions have
thus far been limited to our group, we hope this publication
will bring wider attention and usage to these programs. As
such, we welcome bug reports, code contributions, feature
requests, and integrations with other packages from the
community as a whole. Links to all of the source code
mentioned herein can be found in Table A1 of Appendix A.

3. ILLUSTRATIVE EXAMPLES
3.1. As an Executable. As an application of the PBQFF

binary and the normal coordinate formulation therein, the
vibrational frequencies of c − (C)C3H2 have been revisited.
Previous work22 reported positive anharmonicities in ν7-ν10, as

well as ν12, casting some doubt on the accuracy of the
anharmonic treatment despite the high level of theory
employed. As shown in Table 1, the present computations in
normal coordinates appear to correct this issue. The
CCSD(T)-F12b/cc-pVDZ-F1218−20,47 level of theory is
denoted F12-DZ therein, while TZ-cCR corresponds to the
CCSD(T)-F12b/cc-pCVTZ-F12 level of theory, with addi-
tional corrections for scalar relativity.26 While the earlier
authors suggest that these positive anharmonicities are
negligible, the new computations indicate that there may
have been an underlying issue with their SIC definitions, which
the automated normal coordinates in PBQFF have corrected.
The only exceptions to this trend are in ν12 of the F12-DZ
results and, surprisingly, in ν11 of the TZ-cCR results. The
former is somewhat expected due to this being a pseudolinear
bend, as indicated by the original authors.22,48 The latter is
more surprising, albeit smaller in magnitude, and may even
suggest a lingering issue at the TZ-cCR level. Regardless, with
an intensity of only 8 km mol−1, this mode is less likely to play
a role in experimental or astronomical observation of this
molecule. Still, the change of coordinate systems leads to
substantial differences in the anharmonic frequencies. In
particular, ν10, which was previously reported to have a
double-harmonic intensity of 67 km mol−1, shifts by over 100
cm−1 from 731.2 to 628.0 cm−1. Such a large difference would
surely inhibit experimental verification of the earlier results. In
general, this highlights the reproducibility and accuracy gains
of the PBQFF suite of programs compared to more manual and
error-prone alternatives.

3.2. As a Library. Our recent work on the reparameteriza-
tion of semiempirical methods49 provides a perfect example of
the composability of the PBQFF ecosystem. The essential
problem in that work is to minimize the difference between
experimental and computed anharmonic vibrational frequen-
cies by adjusting the parameters in the PM6 semiempirical
model.50 The minimization algorithm of choice is the
Levenberg−Marquardt algorithm,51,52 which at its core
necessitates the calculation of a Jacobian or gradient matrix
describing how the frequencies change with respect to

Figure 6. Example PBQFF input file.
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variations in the parameters. This matrix can be assembled
using finite differences of the anharmonic vibrational
frequencies output by PBQFF, and the performance of the
resulting parameters can similarly be assessed by another QFF
run automatically through PBQFF.
While this is a somewhat naive approach, the fact that the

current version of our code takes a better-parallelized approach
is actually indicative of the flexibility of the PBQFF ecosystem.
Namely, PBQFF and its constituent libraries allow for rapid
prototyping of QFF-reliant programs (e.g., the naive approach
above), while also exposing more primitive, but concomitantly
more powerful, underlying functionality. When needed, this
underlying functionality can be leveraged incrementally to
tackle problems in a progressively more refined way. Further,
when parallel computation is needed, as is often the case in
modern high-performance computing, Rust carefully restricts
the kinds of data and operations that can be performed across
thread boundaries. While these restrictions may sound onerous

at first, they help to prevent common issues that arise when
doing parallel programming in other languages and are
enforced automatically by the type system and the compiler.
Additionally, when these constraints are obeyed, libraries like
RAYON

53 provide a nearly seamless means for transforming
sequential operations into parallel operations. RAYON is used in
both PSQS and our semiempirical reparameterization code to
process QC program output and run SPECTRO in parallel,
respectively. Taking advantage of these improvements has
allowed our reparameterization code to scale to optimizations
requiring more than half a million single-point energies per
Jacobian evaluation.

4. FUTURE WORK
Along the lines of the prototyping discussion in the previous
section, a major path for future work is providing bindings to
the functionality of PBQFF and its associated packages in a

Figure 7. QFFBUDDY GUI.
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scripting language like Python. Such an integration would
allow users to take advantage of the performance and safety
guarantees of Rust while iterating more quickly on exploratory
programs. To return to the reparameterization example, this
would have allowed us to combine the convenient queue and
program abstractions of PBQFF with the user-friendly linear
algebra and optimization routines of NumPy54 and SciPy,55

while still likely transitioning to a full Rust implementation as
efficiency became more important. Such bindings may also
make it easier to integrate with other QC programs with
Python interfaces, such as Psi4.44

Other routes of improvement include expanding PSQS to
support more QC and queuing packages. Again, PSQS exposes
the Queue and Program traits, which allow users to add
their own implementations, but providing more concrete
implementations out of the box would only make things easier
for more users. PSQS could also be adapted to collect more
information from QC output files. Thus far, it has been limited
to optimized geometries and single-point energies, but it could
be readily expanded to collect any data presented in the output
files. Of particular interest may be analytic gradients or higher
derivatives, which could also be leveraged within PBQFF, or
properties like dipole moments, which could be used to
construct dipole moment surfaces for the computation of
anharmonic vibrational intensities.

5. CONCLUSION
Rust is an excellent language for developing safe, performant,
and reusable scientific code. PBQFF and its related ecosystem of
libraries and programs leverage the strengths of Rust to
produce fully automated QFFs at massive scales while taking
full advantage of all of the available, widely distributed
computational resources. Further, several of these component
libraries are useful in their own right, especially SPECTRO, which

offers extensive Fermi and Coriolis resonance corrections for
asymmetric and symmetric top molecules to increase the
accuracy of its produced rovibrational spectral data. While
much of this technology has been available for decades, it has
never before been presented in such a reliable, composable,
and accessible package for end users and programmers alike, as
reflected by the examples reported herein. In many cases, it has
also never been published as open source software, and we
hope this publication will bring new users and contributors to
the PBQFF ecosystem as a whole. Finally, an illustrative example
for the c-(C)C3H2 molecule shows that the use of PBQFF can
alleviate potential errors in QFF VPT2 computations, leading
to corrections to several previously predicted fundamental
frequencies for this molecule.

■ APPENDIX A: REPOSITORIES
This appendix contains Table A1 as mentioned in the text.
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Table 1. Vibrational Frequencies of c-(C)C3H2 (in cm−1)

Mode Symm. F12-DZ TZ-cCR Prev.a

ω1 a1 3342.5 3346.9 3353.9
ω2 b2 3294.0 3299.1 3307.4
ω3 a1 1826.3 1836.9 1841.7
ω4 a1 1564.8 1573.1 1584.7
ω5 b2 993.7 995.8 998.1
ω6 a1 975.2 974.9 973.2
ω7 a1 824.5 829.0 826.6
ω8 a2 779.5 786.6 793.6
ω9 b2 761.2 768.9 759.4
ω10 b1 633.0 638.5 645.4
ω11 b1 349.4 354.7 356.0
ω12 b2 156.4 161.7 157.2
ν1 a1 3203.1 3212.5 3214.1
ν2 b2 3160.4 3169.0 3171.8
ν3 a1 1807.5 1823.6 1826.8
ν4 a1 1545.5 1558.5 1564.0
ν5 b2 961.4 961.9 973.6
ν6 a1 949.5 947.4 941.6
ν7 a1 809.9 818.5 828.4
ν8 a2 744.9 743.3 816.3
ν9 b2 711.1 718.2 797.1
ν10 b1 611.9 628.0 731.2
ν11 b1 328.9 358.2 323.5
ν12 b2 172.0 125.9 195.1

aCcCR results from ref 22.

Table A1. Software Packages and Their git Repositories

Package URL

PBQFF https://github.com/ntBre/rust-pbqff
SYMM https://github.com/ntBre/symm
PSQS https://github.com/ntBre/psqs
ANPASS https://github.com/ntBre/rust-anpass
SUMMARIZE https://github.com/ntBre/summarize
INTDER https://github.com/ntBre/intder
TAYLOR https://github.com/ntBre/taylor
SPECTRO https://github.com/ntBre/spectro
SCOPE https://github.com/ntBre/scope
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