lm
sk o Tight ZK CPU’

Batched ZK Branching with Cost Proportional to Evaluated Instruction
David Heath

University of Illinois
Urbana-Champaign, Urbana, USA

Yibin Yang
Georgia Institute of Technology,
Atlanta, USA

Carmit Hazay
Bar-Ilan University, Ramat Gan, Israel
Ligero Inc., Rochester, USA

yyang8ll@gatech.edu daheath@illinois.edu Carmit.Hazay@biu.ac.il
Vladimir Kolesnikov Muthuramakrishnan
Georgia Institute of Technology, Venkitasubramaniam

Atlanta, USA
kolesnikov@gatech.edu

Abstract

We explore Zero-Knowledge Proofs (ZKPs) of statements expressed
as programs written in high-level languages, e.g., C or assembly. At
the core of executing such programs in ZK is the repeated evaluation
of a CPU step, achieved by branching over the CPU’s instruction
set. This approach is general and covers traversal-execution of a
program’s control flow graph (CFG): here CPU instructions are
straight-line program fragments (of various sizes) associated with
the CFG nodes. This highlights the usefulness of ZK CPUs with a
large number of instructions of varying sizes.

We formalize and design an efficient tight ZK CPU, where the
cost (both computation and communication, for each party) of
each step depends only on the instruction taken. This qualitatively
improves over state of the art, where cost scales with the size of
the largest CPU instruction (largest CFG node).

Our technique is formalized in the standard commit-and-prove
paradigm, so our results are compatible with a variety of (interactive
and non-interactive) general-purpose ZK.

We implemented an interactive tight arithmetic (over Fys1_;)
ZK CPU based on Vector Oblivious Linear Evaluation (VOLE) and
compared it to the state-of-the-art non-tight VOLE-based ZK CPU
Batchman (Yang et al. CCS’23). In our experiments, under the same
hardware configuration, we achieve comparable performance when
instructions are of the same size and a 5-18X improvement when
instructions are of varied size. Our VOLE-based tight ZK CPU
(over Fye1_;) can execute 100K (resp. 450K) multiplication gates
per second in a WAN-like (resp. LAN-like) setting. It requires <
102 Bytes per multiplication gate. Our basic building block, ZK
Unbalanced Read-Only Memory, may be of independent interest.

CCS Concepts
« Security and privacy — Cryptography; - Theory of compu-
tation — Cryptographic protocols.

“The full version [44] is available online: https://eprint.iacr.org/2024/456.

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690289

Ligero Inc., Rochester, USA
muthu@ligero-inc.com

Keywords
Zero-Knowledge; Disjunctive Statements; CPU Emulation

ACM Reference Format:

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthura-
makrishnan Venkitasubramaniam. 2024. Tight ZK CPU: Batched ZK Branch-
ing with Cost Proportional to Evaluated Instruction. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3658644.3690289

1 Introduction

Zero-Knowledge (ZK) Proofs (ZKPs) [24] allow a prover # to con-
vince a verifier V that a given statement is true without reveal-
ing anything beyond this fact. With recent advances in efficiency,
ZKP has become one of the most active areas in cryptographic
research. Example applications include private blockchain [3], pri-
vate programming analysis [18, 35], private bug-bounty [26, 45],
privacy-preserving machine learning [34, 40], and many more.

Most generic ZK schemes prove statements represented as cir-
cuits or constraint systems. While these formats support arbitrary
statements, they do not align with how computational tasks are of-
ten described or developed in practice — using a high-level language,
such as C/C++/assembly/etc.

A promising path towards efficient ZKP for general programs is
to mimic what plaintext computers do. An assembly (or C/C++ or
other high-level) program can be broken into straight-line blocks;
the resulting program control-flow graph (CFG) describes how pro-
gram control can transfer between the blocks.

Casting this to ZKP (and for efficiency, omitting the plaintext-
world step of compiling to a hardware CPU fixed instruction set),
instead of agreeing on a single public circuit, ¥ and YV agree on B
circuits, each corresponding to (i.e., implementing a straight-line
program of) a CFG block. Viewed this way, the objective of ZKP is to
execute the program from a public initial state to a public final state
via a circuit constructed by privately “soldering” these (potentially
repeated) basic CFG blocks (see Figure 1). This approach can be
viewed as executing steps of a Zero-Knowledge Central Processing
Unit (ZK CPU) whose instruction set is defined in terms of the
target program’s complex CFG blocks. An MPC version of this
approach is explored by recent VISA MPC [46].

Of course, a ZK CPU must be able to access a random-access
memory (RAM); this technical task is external to our focus. We show

https://eprint.iacr.org/2024/456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690289
https://doi.org/10.1145/3658644.3690289
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690289&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Input Tape |
L L U
e
c® c®) c@ 5;
! ! !
0 0 0

Figure 1: Example ZK CPU execution. # and V agree on B
public (sub)circuits I = {Cy,...,Cg}. P demonstrates to V that
an initial state evaluates to a final state via a private circuit C =
c@Wo.. ~OC(1), where each CU€[4]) ¢ IV learns the size of C but
does not learn the number or identity of specific subcircuits used.
Each subcircuit’s output is fed as input to the subsequent subcircuit.
We refer to the wires that pass from subcircuit to subcircuit as
registers. Each subcircuit can read private input from #, and each
subcircuit outputs a “checking output”, which evaluates to 0 when
% is honest. The checking output can be used to, e.g., force P to
use C; when the first register is 1. See Section 3 for formal details.

that the state-of-the-art ZK RAM [42] can be efficiently integrated
with our ZK CPU (see Section 6.2).

ZK disjunctions. The sequence of executed CFG blocks (instruc-
tions) must remain hidden from V. This can be trivially achieved
by £ and V executing each instruction in each step - the circuit
for computing such a step would be a disjunction of all instructions
(in the instruction set), and the top-level proof statement would
simply be a sufficient number of repetitions of the disjunction.

This approach incurs a glaring overhead: parties execute — and
pay for — a large number of inactive (i.e., not taken in plaintext
execution) clauses in each disjunction. To make matters worse,
many programs have large CFGs, so each disjunction is over a large
number of clauses, causing corresponding overhead.

A recent line of work ([2, 21-23, 25, 29, 43]) aims to avoid paying
for inactive clauses in a disjunction. [25] described the possibility of
reusing the cryptographic material of the active branch to evaluate
(to garbage and privately discard) inactive branches. This limits
communication to the cost of a single (longest) branch but still
requires processing all branches. Very recent work [22, 43] shows
how to limit both communication and computation to that of the
single longest branch for our setting, where the same disjunction
(of all instructions in the instruction set) is executed repeatedly.

To summarize, the state of the art pays for the longest branch.

1.1 Our Focus: Pay for the Active Branch

We are motivated by scenarios where instructions (or branches)
differ significantly in size, possibly by orders of magnitude. In such
cases, it is unacceptable to incur the cost of the longest branch.
While instructions in hardware CPUs are roughly the same size
by design, this is not the case in CFGs, where blocks correspond to
straight-line program segments.

Tight ZK CPU emulation. We mostly adhere to the ZK CPU no-
tation and vocabulary. We choose this over other equivalent vo-
cabularies, such as CFG and blocks, discussed above. This is for
simplicity, clarity, and consistency, since prior ZK work already

3096

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

uses the CPU and CPU-emulation terminology and definitions
(e.g., [4, 20, 26, 43]).

Extending the existing ZK CPU vocabulary, in this work, we
introduce and focus on tight ZK CPU emulation (or just tight ZK
CPU) - one whose cost of executing each instruction is proportional
to the size of that instruction. This is in contrast to all prior work
on efficient ZK CPU emulation, where the cost of executing a CPU
step is proportional to the total cost of all instructions in the CPU
or, more recently, to the largest instruction in the CPU.

It is challenging to achieve tight ZK CPU concretely efficiently
because instruction boundaries must be hidden from V, and cor-
responding expensive instruction set-up and conclusions (which,
e.g., handle registers, instruction loads, proof checks, etc.) must be
executed at each possible basic step of the ZK proof.

Spliting large instructions. It is, of course, possible to equalize
instruction sizes by splitting a large instruction &€ into a sequence
of small instructions. This incurs the expense of passing more reg-
isters between instructions more frequently: the current internal
state of the larger instruction € now must be passed between its
consecutive sub-instructions €; and ;1. This internal state corre-
sponds to the width of the circuit implementing € and may be large.
Crucially, now all instructions must accept this many registers as
input to preserve ZK, incurring corresponding overhead.

Our work allows cheaply handling arbitrarily large (and arbitrar-
ily wide!) instructions without incurring the overhead of handling
additional registers.

Privacy guarantees. The privacy guarantees provided by prior
CPU-emulation definitions and constructions are somewhat differ-
ent from that of our tight ZK CPU. In prior work, V learns the
number of executed CPU steps; in our work, V learns the total
number of multiplication gates on the program execution path.
Both metrics correspond to (slightly different) notions of program
runtime. We stress that revealing the runtime is inevitable when de-
manding tight prover efficiency, and standard padding techniques
can provide finer privacy guarantees.

Depending on instruction sizes, the total number of evaluated
gates in executing our tight CPU can indicate to V with high
confidence which instructions were executed. A similar concern
applies to prior ZK CPU work, where a precise runtime (number
of instructions) might tell ‘V the execution path. Such issues are
arguably more relevant in our model since runtime is more granular.
As in prior work, this can be addressed by runtime padding via
inserting dummy multiplications.

1.2 Our Contribution

We motivate and formalize the notion of a tight ZK CPU, where
the cost (both computation and communication for each party) of
each step depends only on the instruction taken, even when the
instructions are of varying sizes. We define an ideal functionality
Fzkcpu (see Figure 5 and discussion in Section 3) to capture this
notion by only sending the length of the entire execution to V.
Our protocol realizes Fzkcpy in the commit-and-prove hybrid
(defined as Fcpzk in Figure 2) model with information-theoretic

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

security. Our protocol is public-coin and constant-round in Fcpzk-
hybrid model, so it natively supports the Fiat-Shamir transforma-
tion [19, 38]. Crucially, our abstraction allows realizing the Fzxcpu
via a variety of commit-and-proof ZK protocols, including interac-
tive and non-interactive ones (e.g., [1, 2, 8, 11, 14, 17, 28, 36, 41]).
We implement! a tight ZK CPU protocol by instantiating the
commit-and-proof ZK with VOLE-based ZK [17, 41] and report the
performance in Section 7. The cost of our VOLE-based tight ZK CPU
scales only linearly with the number of multiplication gates along
the program execution path. Concretely, this protocol outperforms
the state of the art Batchman [43] (a VOLE-based non-tight ZK
CPU) in both computation and communication commensurately
with branch size variation (see Section 7). Our VOLE-based ZK CPU
achieves a cost of only a constant factor (6-7X) higher than the
non-private protocol, where the execution path is revealed to V.

1.3 Intuition of Our Construction

We present high-level intuition here; Section 4 presents a detailed
technical overview of our approach.

Consider a ZK proof expressed as a high-level program com-
posed of basic “control-flow” blocks, which we call instructions. ’s
witness is an input to the program that evaluates to an accepting
state. The proof convinces V the existence of a sequence of instruc-
tions — an execution path — leading to an accepting state. While
the execution path, known to #, can depend on P’s secret witness,
a ZK proof must hide the path from V.

The recent Batchman protocol [43] demonstrates that it is possi-
ble to efficiently encode each program instruction as a randomized
vector of field elements. At a high level, each such vector is the
product of V’s random challenge vector and a matrix that encodes
the linear constraints imposed by the instruction; see Section 2.5.
Thus, an execution path can be encoded as a vector constructed
by concatenating subvectors corresponding to each instruction.
Batchman uses this encoding to hide the identity of each instruc-
tion from V. In particular, this vector encoding the execution path
is included in the proof as part of P’s (extended) witness.

If P is honest, this vector encodes a valid execution path. P
proves her witness satisfies linear constraints imposed by the vector.

Of course, V must check in ZK that $’s execution path vector
is valid - that each subvector (or, rather, each subvector’s hash)
is in the set of valid instructions (hashes) of the source program.
Batchman’s ZK hash check is efficient: each subvector hash is a
random linear combination of the subvector’s elements based on a
fresh challenge from V- a single uniform field element sent by V,
expanded by taking its powers. A crucial detail here is that V knows
the boundaries of the subvectors, as Batchman’s instructions are
each padded to the same publicly agreed-upon number of gates.

In our approach, we allow instructions of different sizes. Thus,
while our prover also inputs an execution path vector, the subvector
(i.e., instruction) boundaries and the lengths of each subvector must
be kept private. With this change, the subvector validity check and
passing of program state between instructions become a challenge,
the resolution of which is core to our contribution. Here, we give
high-level intuition underlying our validity check.

1Our implementation is available at https://github.com/gconeice/tight-vole-zk-cpu.

3097

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

To validate the execution path vector, # inputs an additional
0-1 vector of the same length, which defines the boundaries of
the instruction subvectors. Namely, P sets this boundary string
to 0 and places 1 only at positions corresponding to the ends of
subvectors. Similar to Batchman, our hash check is performed via
a random linear combination with a V-chosen challenge, but we
carefully arrange how parties use the boundary string to construct
and verify hash checksums of unknown length to V. We capture
this with a novel primitive of independent interest — an unbalanced
ZK read-only memory (ROM) — a ZK ROM capable of storing vectors
of different lengths, but where we do not pay the price of the largest
vector for each memory element (by exploiting the boundary string).
Based on the above intuition, our unbalanced ZK ROM manages
(loads, concatenates and checks) vectors of different lengths.

1.4 Related Work

Efficient handling of disjunctive statements is central to the han-
dling of ZK proofs expressed as high-level programs. High-level-
program-based ZK is an intuitive direction that was first concretely
explored by [4] and subsequently studied by [5, 6, 20, 22, 26, 45].

Early ZK work [13] gave special-purpose techniques allowing
proofs of disjunctions. With relatively recent and dramatic improve-
ment to proofs of general-purpose statements, special-purpose dis-
junction handling was (temporarily) subsumed by general-purpose
techniques. Indeed, disjunctions are easily encoded and proved as
part of a circuit that processes each branch and then multiplexes
the results. While this works, it is expensive. [25] — building on
the MPC result of [29] — demonstrated feasibility of paying (in ZK
proof size) for only one branch. The [25] technique “reuses cryp-
tographic material” of the active branch to evaluate (to garbage
and privately discard) inactive branches. This sparked a rich line of
work [2, 21-23, 25, 29, 43] that continues to reduce the costs of ZK
disjunctions.

Very recent work [22, 43] further improved the handling of dis-
junctions by showing how to improve not just communication
but also computation. This task is more challenging and cannot
be achieved by prior techniques relying on garbage evaluation of
inactive clauses. Leveraging the batched setting where a single dis-
junction is executed repeatedly, these works show how # and V
compute (and hence communicate) proportionally only to the single
largest clause of the disjunction. Our work extends and crucially
builds on the approach of [43], and our extension enables paying
only for the active branch. Sections 1.3 and 2.5 summarize [43] and
the novel techniques needed for our result. Neither [43] nor [22]
address disjunctions of clauses of varying sizes.

Efficient ZK ROM and RAM are essential to CPU-emulation ZK.
We integrate recent ZK ROM [42]. We also build on it to design
a novel basic primitive unbalanced ZK ROM, capable of retrieving
variable-size entries in a batch query. We achieve this by extend-
ing randomized hashes of [43] to vectors of differing lengths and
ultimately use them to execute variable-size instructions.

We note that emulating CPU in SNARK has also been intensively
studied recently in, e.g., [12, 16, 27, 30-32, 47]. Some of these ele-
gant works (e.g., [27, 30, 32, 47]) can indeed achieve tight efficiency
while offering attractive features such as non-interactivity and suc-
cinctness. However, adding ZK to these works may either require

https://github.com/gconeice/tight-vole-zk-cpu

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

large overheads or break tightness (see, e.g., discussions in [22]
and [33]). Furthermore, they (at least) reveal the number of instruc-
tions to the verifier, while our work reveals only the total number of
multiplication gates. See Section 3 for more formal discussions. We
suspect that some padding techniques might address the additional
leakage in, e.g., [30, 32], and we leave it as valuable future work.
Finally, we remark that our protocols can also be instantiated with
a succinct and non-interactive commit-and-prove zkSNARK.

2 Preliminaries
2.1 Notation

o 1 is the statistical security parameter (e.g., 40 or 60).

o The prover is . We refer to P by she, her, hers...

e The verifier is V. We refer to V by he, him, his...

e x 2 y denotes that x is defined as y.

o We denote sets by upper-case letters. We denote that x is uni-
formly drawn from a set S by x €5 S.

e We denote {1,...,n} by [n].

e We denote a finite field of size p by F), where p > 2 is a prime or a
power of a prime. We use F to represent a sufficiently large field,
ie., |[F| = A0), Inverse(x) denotes the multiplicative inverse of
x(#0) inF, ie., Inverse(x) - x = 1.

e For a vector @ € F" and an element x € F, xa = (xay,...,xan).

e last(a) denotes the last element of a, i.e., ap, if @ € F". For some

a € F*, if last(a) # 0, we refer to a as a non-zero-end vector.

We denote row vectors by bold lower-case letters (e.g., a), where

a; (or a[i]) denotes the i-th component of a (starting from 1) and

a|: i] the subvector (ay,...,a;).

We denote matrices by bold upper-case letters (e.g., A), where

A(i) denotes the i-th row vector of A (starting from 1) and A[i]

denotes the i-th column vector of A (starting from 1). A(i)[J]

denotes j-th value in i-th row.

Let a and b be vectors of equal length. (@, b) denotes the inner

product; @ © b denotes the element-wise product.

o We denote a multiplication (gate) by MULT.

2.2 Security Model

We formalize our protocol via the universally composable (UC)
framework [9] and prove its security in the presence of a malicious,
static adversary. For simplicity, we omit standard UC session (and
sub-session) IDs.

2.3 Commit-and-Prove Zero-Knowledge

Our protocol is defined in the commit-and-prove hybrid model [10].
This functionality, denoted by Fcpzk and formally defined in Fig-
ure 2, allows P to commit to field elements (over F) and then prove
that evaluating a particular circuit on the committed values yields a
vector of 0’s. We denote by com(a) a cryptographic commitment to
a € F, and naturally extend this notation to vectors (e.g., com(a)).

There are several ways to instantiate Fcpzk (e.g., [1, 2, 8, 11, 14,
17, 28, 36, 41]). To concretely evaluate our abstraction, we choose
to instantiate our protocol via the VOLE-based ZK (e.g., [2, 17, 41],
cf. Lemma 1), a proof paradigm known for its fast end-to-end run-
ning times and small (constant) computation/communication rates
compared to |C|. This paradigm employs information-theoretic
MACs (IT-MAGCs) [7, 37] as linearly homomorphic commitment

3098

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

Functionality Fcpzk

Fcpzk, parameterized by a field F, proceeds as follows, running with a
prover P, a verifier V, and an adversary S:

Commitments. On receiving (Commit, cid, x) from # where (a) there
is no recorded tuple (cid, -), and (b) x € F: Record tuple (cid, x) and
send (commit, cid) to V and S.

Linear Combination. On receiving (Linear, cid, cids, . . ., cid, co,
c1,...,ck) from P where (a) there is no recorded tuple (cid, -), (b)
each cid;e[] has a recorded tuple, and (c) co, . .., cx € F:

(1) Fetch recorded (cidy, x1), - .., (cidg, xx).

(2) Compute x :=¢o + c1x1 + - - - + Xk Record (cid, x).

(3) Send (linear, cid, cidy, . . ., cidg, o, . . ., cx) to V, S.

Open. On receiving (Open, cid) from P where cid has a recorded tuple,
fetch (cid, x), send (open, cid, x) to V and S.

Check. On receiving (Check, C, cidy, . . ., cidp) from P where (a) C :
F(™W — F® s an arithmetic circuit, and (b) each cidic[n) has a
recorded tuple: Fetch tuples (cidy, x1), ..., (cidn, x,) and compute
y = C(x1,...,xn). If y = 00, send (check, C, cid, true) to V and
S; else send (check, C, cid, false) to V and S.

Figure 2: Ideal functionality for commit-and-prove ZK. Each
committed element is associated with a unique identifier cid.
Linear operation allows P to generate a new commitment (associ-
ated with cid) via a public affine function over committed elements.

schemes over F. We describe the computation/communication of
VOLE-based ZK (via a formal version of Lemma 1) in [44].

LEMMA 1 (VOLE-BASED ZK, INFORMAL). There exists a protocol
IIcpzk that UC-realizes Fcpzk in the FyoLe-hybrid model (see [44])
with O(|C|) comp./comm. costs per ZKP over a circuit C.

Testing vector equality. We apply the Swchartz-Zippel lemma as
a central tool to prove the equality of two (committed) vectors.

LeEmMA 2 (VECTOR EQUALITY). Consider vectorsa,b € F". Ifa # b,
then for y €¢ F:

Pr({(1, 1... <L

n—1
SXTb) < IF]

STy =

Specifically, suppose the parties hold committed vectors com(a)
and com(b), and P wishes to convince V that a is equal to b.
Lemma 2 states that it suffices for P to prove that {(1, y, ... y" 1), a)
=Ly)("_1), b), where y is some uniform challenge sampled
by V. Note that zero-end vectors of different lengths (e.g.,a = (1,1)
and b = (1, 1,0)) are not captured by Lemma 2. On the other hand, it
does extend to non-zero-end vectors of potentially different lengths
(Corollary 1). Looking ahead, we need Corollary 1 because V does
not know the boundaries of instructions/subvectors whose equality
is proven by ? in the tight ZK CPU.

CoRrOLLARY 1. Consider vectors a € F"a,b € F" where a[ng],
b[np] # 0. Ifa # b, for y g F:

n
< —

Pr[((L,)., X" ™)@y = (L x .., X™), b)) < IF]

where n = max{ng, np} — 1.

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

Functionality Fcpzk-rRom

Fcpzk-ROM, parameterized by a field F, proceeds as follows, running
with a prover P, a verifier V and an adversary S:

The functionality supports all instructions of Fcpzk.

Read-Only Memory

Initialize ROM. On receiving (InitROM, cidy, ..., cidy) from $ where
each cid;c[,) was recorded: Fetch (cidy, x1),.. ., (cidn, xn), create a
key-value store X where

X[1] =x1,- -, X[n] =xn

and set from := honest. Send (initrom, cid) to V and S. Ignore sub-
sequent calls to InitROM.

Read ROM. On receiving (ReadROM, cidj, . . s Yms cidiid),
U cidﬁ,id)) from P where
1) InitROM has been executed; and
2) there is no recorded tuple for each (cid;c[,m), -); and
3) each yjcm] € F; and
4) each cidgéd[)m]
Fetch (cid\™,idy), ..., (cid'", idpm). Record (cidy, y1),. .., (cidm,
Ym). If P is honest, Vi € [m], X[id;] = y; where id; € [n]. If P
is corrupted, set fiom := cheating when

(1) there exists an id;e[n,] € [n], where n is the size of X; or

(2) there exists an i € [m] such that X[id;] # y;.
Send (readrom, cid, cid<id)) to V, S. Ignore subsequent ReadROM calls.
Check ROM. On receiving (CheckROM) from % where InitROM and

ReadROM were executed: If % is corrupted and S sends Cheat, set fiom :=
cheating. Send (checkrom, fiom) to V and S.

- Cidm, Y1, - -

—~ o~~~

was recorded.

Figure 3: Ideal functionality for commit-and-prove zero-
knowledge allowing proofs that support a read-only memory.
P specifies the result of the ReadROM operation. However, if £*
provides an incorrect result, the flag fiom will be set to cheating.

2.4 Zero-Knowledge Read-Only Memory

Our protocol uses an extended version of Fcpzk where parties can
access a ZK ROM (e.g., [15, 20, 42]). Namely, ZK ROM allows P to
specify n commitments to initialize a key-value store data structure
(K-V store) indexed by the key k € [n]. Subsequently, given com(i),
where i € [n], # and V generate a new commitment com(x) where
x is the i-th committed value in the K-V store. Our protocol uses a re-
stricted (batch-read) version of ZK ROM formalized in Figure 3. Le.,
P is allowed a single ReadROM call, where P specifies an arbitrarily
long vector of ROM indices, possibly with repetitions. This will al-
low P to load a sequence of hashes corresponding to the execution
path (note, we later introduce a stronger novel primitive, unbal-
anced ROM, to load the concatenation of variable-length instruc-
tion vectors, realized in the Fcpzk-rom-hybrid model). [42] shows
the state-of-the-art realization of Fcpzk-rom in the Fcpzk-hybrid
model (see Lemma 3, the full version includes formal version).

LEMMA 3 (ZK ROM, INFORMAL). Let n = poly(1),m = Q(n).
There exists a protocol Ilcpzk-Rom that UC-emulates Fcpzk-ROM
(Figure 3) in the Fcpzk -hybrid model (Figure 2) with amortized O(1)

comp./comm. costs per element read.

3099

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

2.5 ZKP via Topology Matrices

Consider a circuit C with n;, inputs and ny multiplication gates.
Note that a ZKP for C can be separated into two parts: (1) multipli-
cation gates and (2) linear constraints. Suppose that commits to
its input com(iny), ..., com(iny,,), and also commits to the values
on the 3ny wires associated with C’s nyx multiplication gates. Le., P
commits to com(#;), ..., com(#y,,), corresponding to the multipli-
cation left input wires, to com(ry), ..., com(ry,), corresponding to
the right input wires, and to com(o1), . .., com(op,,), corresponding
to the output wires. The full vector of #’s input and the multiplica-
tion wires (with a constant 1) is called P’s extended witness.

Now, P first proves to V that £ © r = o, demonstrating that
its extended witness satisfies multiplicative constraints. Then, it
proves that in, £, r, o indeed respect the linear constraints imposed
by circuit C. Note that since all multiplication gates were handled in
the first step, P simply needs to show its extended witness respects
a particular linear relation - i.e. a matrix M. This public matrix M
is induced by the structure of the circuit C, and [43] refers to M as
a topology matrix. Namely, P proves the following:

Mx (1in¢,r,0)T =0 (1)

Since in, ¢, r, o are committed, this equality check can be handled
by V’s sending of a uniform challenge y €g F where # uses Fcpzk
to construct a commitment to

(l,X,..,,XZ"X)xMX(1,in,t’,r,o)T (2)

topology vector extended witness

and then proves to V that this is a commitment to 0. Recall that M
is public, so once y is fixed, both and V know (1,...,)(Z”X) XM
(called a topology vector). Thus, it suffices to check whether the inner
product between the topology vector and the extended witness
yields 0. Figure 4b shows an example topology matrix.

Proving batched disjunctions: Batchman [43]. The above para-
digm is an overkill if we only perform a ZKP for a single public
circuit. This is because it is worse than the state-of-the-art VOLE-
based CPZK (e.g. QuickSilver [41]), which only requires committing
in and 0. However, this paradigm becomes useful when considering
a batch of disjunctions, as observed by Batchman [43].

In detail, Batchman [43] considers B different circuits Cy, . ..,Cp
of the same size. P wants to repeat the disjunctive proof R times —
for each i € [R], she proves that she knows some witness w; and
some index id; € [B] such that C;q, (w;) = 0. To achieve this, for the
i-th repetition, $ commits to her extended witness of only C4,. V
then issues a uniform challenge y to compress B topology matrices
to B topology vectors. The crucial step is that, for the i-th repetition,
P can commit to the id;-th topology vector. An extra mechanism
is needed to prevent £ from committing to an arbitrary vector that
is not a topology vector, which can be built based on a ZK ROM
(storing and then loading vectors’ hashes). Finally, it suffices to
show that the inner product between the extended witness and the
topology vector is 0 for each repetition. Batchman can be viewed
as a non-tight ZK CPU (with extra constraints to support registers).

Note, topology matrices (combined with multiplication con-
straints) support efficient branching, and thus is a more convenient
program representation than, e.g., R1CS [4], for our setting.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

my ing 3

—— |

- 1
ing
gl 1 62 79 o 1 0 -1 0 0 0 0 0 ing 1 0 0 0 0 iny
30 1 0 -1 0 0 0 0 st o 1 0 0 0 iny
X >< 0o 0 1 0 0 -1 0 0 0fx]| & 0 1 3 0 o0oflx|1
3 0 1 0 0 0 -1 0 0 r 0O 1 3 0 0 01
01 09 o 0 0 0 0 0 0 1 1 r o 0 0 1 1 02
01
- "2 '
L = (iny — 6,3 + ing — by, ing — 11,3 + iny —r2,01+oz)T = (imy, ing, 3+ ing, 3 + iz, 01 + 02)
T
s -0 = (&1, 71, £, 72, 0)
(a) The circuit (b) Original topology matrix (c) Refined topology matrix

Figure 4: (a) An arithmetic circuit computing (in; - inz) + (inz + 3)? and its (b) original and (c) refined topology matrix.

Functionality Fzkcpu

Fzkcpu runs with a prover P, a verifier V and an adversary S, and
is parameterized by a field F, an non-negative integer m, a positive
integer B and B m-instructions (Definition 1) Cy, . . ., Cp, an initial state
st € F™ and a final state st(i"®) ¢ F™ For each i € [B], let m-
(i) (1)

instruction C; have n;” inputs and n,’ multiplication gates. Note that

ngrfe[B]) > m.Wlo.g, foreachi € [B], assume "Erf) -m= ng) +m+2

and denote this value as n). Fzkcpu proceeds as follows:
On receiving (Prove, 7, iy, . . ., iz, iny, . .., in;) from P where (1) 7 is
a positive integer (i.e., the private steps), (2) ijc[,] € [B], and (3) each
injec() € Fniﬂ])_m(
(1) Set st := st(®) and f := true. For each j € [r] in order:
(a) Let st’||f" = Ci; (st|linj) where st’ € F™ f" € F. Le, st/
is the updated registers and f” is the checking output.
(b) Set st :=st’.If f’ # 0 (i.e., invalid checking), set f := false.
(2) If st # stUa) (i e incorrect final state), set f := false.
(3) Letn = nl) 4.4 plo) If P s corrupted, S can send
(Cheat,n’) where n’ € Z*: Set f := false,n:=n’.
(4) Send (prove, f,n) to V and S.

i.e., the inputs except registers), proceed as follows:

Figure 5: Ideal functionality for a tight ZK CPU.

3 Our Target Functionality: Fzkcpu

We define the functionality of a tight ZK CPU realized by our
protocol. To define a ZK CPU over F, we need to specify: (1) B € Z*
denotes the number of instructions; (2) m € Z* denotes the number
of registers; and (3) each instruction (see Definition 1) is defined as
a circuit (over F) mapping > m values to m + 1 values.

DEFINITION 1 (INSTRUCTION). An instruction is a circuit C :
Frin — F™ swhere ny, > m. In particular, we consider standard
fan-in 2 circuits over F with addition and multiplication gates. We
call an instruction C : F™n — B™1 g m-instruction, where the first
m output wires of C’s capture the updated CPU registers, and the last
wire is a checking output (0 in a valid execution).

In a tight ZK CPU execution, # and V agree on the initial/final
state of the m registers (called the initial/final state), where P
demonstrates her ability to execute the initial state to the final

3100

state by a sequence of (potentially repeatedly) instructions. We
formalize this functionality in Figure 5 with the following remarks:
(1) For each instruction C () with ng) multiplications, nl(:;) in-
puts, and m registers, the size of this instruction is defined
@) _ = @
in X
number of the multiplication gates in C (1), We note that our
protocol introduces m + 2 extra multiplication gates, which
are used to constrain m input registers, the constant 1 input,
and the checking output. The equality can be enforced by
simply padding the instruction with dummy inputs or mul-
tiplications. Looking ahead, this equality ensures that the
total execution path length hides the executed instructions.
(2) Fzkcpu reveals n - the total runtime - to V. Prior non-tight
ZK CPUs achieve a similar functionality where V learns
the number of executed instructions 7. We remark that this
implies that V cannot learn 7 directly in the tight ZK CPU.
(3) In Figure 5, P arbitrarily selects which instructions to ex-
ecute. In some use cases (e.g., when emulating real-world
CPUs), £’s chosen instructions should be constrained by
the current register state. For example, a program counter
register might dictate which instruction runs next. Such con-
straints can be captured by each instruction’s checking out-
put wire, which must be 0 in a valid proof (see Sub-step 1b).
(4) Fzkcpu only supports limited state (i.e., up to m registers)
to be passed between instructions. Perhaps surprisingly, we
show that by introducing 5 special registers and 2 extra
rounds, our protocol can natively support a large (poly-size
in A) read-write random access memory (see Section 6.2).

asn® =n m +m + 2. Essentially, n(®) reflects the

4 Technical Overview

In this section, we provide a technical overview of our tight ZK CPU
protocol. We refer the reader to Section 1.3 for a high-level intuition.
The main steps to achieve our target ideal functionality Fzkcpu
(Figure 5) are outlined as follows.

Sections 4.4 and 5 Sections 4.3 and 5
FcpzK-ROM = FCPZK-UROM = Fzxcpu
4.1 Boundary Strings and Helper Notation

Recall our discussion from Section 1.3 regarding a 0-1 vector of
field elements used by our protocol, denoted as a boundary string.

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

This section formally defines the boundary strings and introduces
useful notations for demonstrating how these strings will be used.

For a vector p € F" where n € Z*, we say that p is a boundary
string if and only if p € {0, 1}"!||1. We note that it is efficient to
check whether com(p) commits to a valid boundary string. Namely,
given com(p), P opens p,, to prove itis 1, and P proves pO(1-p) =
0 (i.e., each p;e[p is either 0 or 1).

We use HW(p) to denote the Hamming weight of a boundary
string. Le., the number of ones in p. We now introduce two functions
Partition and Filter that we use as analysis tools. We emphasize
that we never run these functions inside ZK.

Partition. Consider a length-n boundary string p. p specifies a
partition of a length-n vector v into HW(p) subvectors. We define
a function Partition:

ny ny ns
—_——
p=1(0,...,0,1,0,...,0,1,0,...,0,1,...),0 € F"

=Partition(p,v) = (u(l), . ..,U(HW(P))) such that

o = (01,...,2),11),0(2) = (Uny41s - Ongmy)s o

Filter. A length-n boundary string p also specifies a way to
filter a length-n vector v into a length-HW(p) vector. We define a
function Filter:

ny np ns
—_———
p=(0,...,0,1,0,...,0,1,0,...,0,1,...),0 € F"

:Filter(P: v) = (vnl, Unq+nys Onq+ng+ngs - - > Un)

Expanding random challenges. In our protocol, V will issue ran-
dom challenges, which will be composed with $’s chosen boundary
string. We consider two ways to compose these:

A

(1) For some public challenge y € F, let 51 1, and for each
i € [n— 1] in order, let sj+1 :==s;(1 — p;) + x'p;. That is,
ny ny ns
—_————
p=1(0,...,0,1,0,...,0,1,0,...,0,1,...)

=s=(L....,Ly", ..., ¥y
——— ™ - ——
ny ns

ni+ny ni+ny
v M)

ny
We denote this procedure by s = Expand; (p, y).
(2) For some public challenge y € F, let s; = 1, for each i € [n — 1]
in order, let s;41 = ys;(1 — p;) + p;. That is,
ni ny ns
—N—— —— ——
p=(0,...,0,1,0,...,0,1,0,...,0,1,...)
L)

We denote this procedure by s = Expand,(p,y).

=s=(Ly,...y" Liy...y Ly,

Starting from com(p), we can compute commitments to the above
compositions (i.e., com(s)) each via a circuit with n — 1 MULTs.

4.2 More Powerful Topology Matrices

This section includes how we adjust and optimize the definitions
of the topology matrices (discussed in Section 2.5) for our setting.

We first introduce a ~ 2X optimization to the topology ma-
trix/vector of [43] (see Figure 4c). Note that the order of the multi-
plication inputs in the [43] topology matrix is fixed (e.g., in Figure 4b,

3101

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

this order is ¢1, £s, r1, r2, 0). Based on this observation, there is no
need to include the constraints of these fixed order wires internally
in the topology matrix (see Figure 4c, refined topology), reducing
its size in roughly two and achieving corresponding improvement.
However, neither the topology matrix format of [43] nor the
above improvement are suited to our setting because their verifier
knows the instruction boundaries, and hence, explicit routing of
registers and other wires into instruction entry points is allowed.
We must hide this topology from V. To facilitate this, we further
rearrange the topology matrices of instructions of our ZK CPU
(Figure 5). In particular, constants 0 and 1 and instruction (register
or non-register) inputs are not processed in a distinguished manner
but rather treated like outputs of regular multiplication gates. (We
unify constant wires, input, and multiplication gates into a universal
gate.) Formally, we use the following topology matrix equation:

®)

Here, n reflects the size of a m-instruction as a circuit C and we
define n = nj, — m = nyx + m+ 2 (see Section 3 especially remark 1).
Looking ahead, will privately order committed £ © r = o, starting
from 1 -1 =1 (to capture 1 in the extended witness), followed by
m registers, then ny multiplication tuples in C, and ending with
1-0 = 0 (to capture the checking output).

Notice that in Equation (3), $’s extended witness (or, rather, its
topology meta information) is now compositional in the sense that
if we were to simply concatenate (committed) vectors from two
different instructions, we would obtain new vectors of the same
form. As we will see next (Section 4.3), a similar form of composition
applies to topology matrices (and hence topology vectors), and this
enables us to hide from V the boundaries between instructions.

M X (ing,01, ..., inp,0n) " = (b1,71, o by)T

4.3 Reducing a Tight ZK CPU to a ZK UROM

This section overviews how a tight ZK CPU can be reduced to a
so-called ZK UROM functionality. We consider a tight ZK CPU with
B instructions Cy, . . ., Cp, each of (potentially) different size, where
P wishes to execute C; followed by C; (i.e., C2 0 C1), as an example.

4.3.1 Special Case: No Registers. For simplicity, let us start by
considering a special case where our CPU has no registers for
passing data between instructions (i.e., m = 0). Recall that, w.l.o.g,

)42 where C; has ntd

for each C;c[p], we assume n() = ngr? = ng in

inputs, nil) multiplications.

Suppose P wishes to first execute Cy, then execute Cz. V should
only learn n = n) +n(2) and V learns neither how many instruc-
tions, nor which instructions are executed (unless such information
is implied by n). Now, imagine a larger circuit C that expresses the
composition Cz o Cy. In particular, C can be described by simply
concatenating the gate-by-gate description of C; and C and ap-
propriately shifting the names (indexes) of Cy’s gates and wires by
n A key observation is that the topology matrix for C can be
constructed by combining the topology matrices for C; and Ca:

M
_ ()

0

M®) (4

) c FEnxan s () 4 p(2)

where M(D (resp. M) is the topology matrix induced by C;
(resp. Cz). Our approach hides C (and M) from V, even though

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

each MU€IBD) and nis public. For this simple case, our proof would
proceed as follows:

(1) $ commits to n inputs in and n MULT tuples ¢, r, 0 in the
order described by Equation (3) (and proves £ © r = o).

(2) P proves that the first MULT output of both subcircuits is 1
and that both circuits check to 0:

01 = 0,4y = 1and 0,0) =0, =0

(3) P proves in ZK that the committed values and M satisfy Equa-
tion (3). To achieve this, V issues a uniform challenge y and
P proves in ZK that:

topology vector ¢ committed

1, x. ..,in_l) X M x (iny,01,...,iny, on)T

=L, x...,)(2"_1) X (61,71, ..., n, rn)T

public committed

To achieve the above steps while hiding C (and M), £ commits to
two additional vectors. The first is an appropriate boundary string
(see Section 4.1) p:
n()—1 n® —1
—_—— —_——
p=0,...,0,10,...,0,1

The second vector id places the index of each branch at that branch’s
boundary, and elsewhere P fills the vector with any values in [B]:

n()—1 n® 1

id = any values in [B], 1, any values in [B], 2

Looking ahead, these branch IDs will be used as indices to load
instruction hashes from a ZK ROM (entries not on boundaries
are dummy indices). The definition of id implies that Filter(p, id)
outputs a vector of branch IDs (see Section 4.1 for Filter’s definition).
Informally, p and id jointly form a commitment to a particular
execution path.

At a high level, our protocol leverages p and id to cheaply ex-
press Steps 2 and 3 as ZK constraints. In detail:

(1) Step 1 only depends on n and is independent of M. P commits
to her inputs and to well-formed MULT tuples.

(2) Step 2 can be performed by checking the constraints:

(@) p € {0,1}"7!|1. Le,, p is a boundary string.
() If pic[n] = 1, 0; must be 0.
(c) 01 =1,and if pje[p_1] = 1, 041 must be 1.
The above constraints can be checked very efficiently.

(3) To perform Step 3, V cannot construct the topology vector c,
as M is private. Instead, our protocol requires that commits
to c. Of course, P might attempt to cheat, so we need extra
checks that ensure com(c) is properly constructed and is
consistent with p and id. We will soon show how this can be
achieved via a so-called ZK unbalanced ROM (Section 4.4).
For now, simply assume that commits to the vector:

c =(1,)(,...,)(2”_1) XM

Crucially, private M has a special structure — it has square
matrices on the diagonal and 0s elsewhere. In particular,
these square matrices are determined and ordered by the
private execution path. Le., it (in order) includes M () for

3102

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

each j € Filter(p, id) in order. Note that each MUE[BD) ig
public. Finally, once we have com(c), it suffices to show that:

(e, (in1, 01, ..., inp0n)Yy = (1, .., ¥¥°), (1,11, .. . tasTn))

4.3.2 Handling Constant 1. Recall that the first MULT gate in each
instruction should output 1 defined as 1-1 = 1, enabling that instruc-
tion to manipulate the constant 1. As a remark, it is surprisingly
difficult to incorporate constants in our approach, because our con-
straint systems are merely linear (and not affine) over F. Sub-step 2c
forces that the output of the first MULT gate is 1. Here, we show an
optimized way to ensure that the output of this MULT is 1 for free
by directly constraining its inputs. Our idea is to pass the constant
1 from one instruction to the next and, looking forward, this same
handling will be used to enable the passing of m registers.

A naive (failing) attempt to pass a 1 into an instruction would be
to have a fixed wire of C carrying 1, to which each instruction can
refer. However, we are working with a fixed instruction set (and we
check hashes of executed instructions against the corresponding
set of hashes). Informally, we could make an instruction reference a
fixed wire in C, outside of itself. However, due to our use of topology
matrices, under the hood (i.e., in the supporting matrix algebra)
such an instruction will access this wire via an offset to its own
position on the execution path, resulting in a unique instruction
(topology matrix) hash. Such an instruction cannot be checked
against the fixed instruction set (IS).

Thus, our instructions cannot refer to wires by their absolute
position, but they can refer to wires via a fixed offset relative to
their own position on the execution path. Indeed, our solution, at
the high level, is for each instruction to “push forward” a 1 wire
to the next instruction. This is possible because each instruction
knows its own length, and can set up the corresponding constraint
for the next instruction. Each instruction C;¢[p] has a fixed offset
to access (enforce) input constraints (via left/right wires of MULTS)
of the next instruction. Thus, Cj¢|p)’s topology matrix (and hence
hash) will be the same anywhere on the execution path. The very
first instruction can pick up the 1 from a designated wire of C.

This cleanly translates into our matrix representation. Let us go
through our concrete example of # proving a circuit C consisting
of C; followed by Cs. Formally, the entire proof will be based on a
(slightly) updated equation:

1 0 0
M x (1,inq,01,...,in,,0 T R 1 0 0
(1, iny, 01 n nT) M= n
=(t,r1,....la,Tn, 1, 1) 0 M, 0
o o MYP
MO (3)

where each Mgie[B]) =|mM® (2n(i)) is public. (Here Miie[B])
010 ---
010 ---
omits the first two constraints of M:¢[B]) which define left/right
wires of a MULT generating 1. As a complement, the last two rows
of M,Eie [BD constrain the next instruction’s left/right wires of the

MULT generating 1.2) The IS will consist of B instructions M ,(Fie (BD)

2The first MULT £, -r; = oy mustbe1-1=1asé = r; = ((1,iny,...), (1,0,...)) = 1.

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

Crucially, while M is private, the first two rows of M are fixed and
public. We need to construct the vector commitment of (1, y, ...,
P x M = (1+ OIlGAW ... 27 x M), where M, =

(2) |- Hence, it suffices to construct the commitments of
0 M,
(1,...,)(Z"_l) X M., the problem discussed in Step 3 of Section 4.3.1
and postponed to Section 4.3.4.
Similarly to our importing a 1 = 1- 1 into an instruction, we will
import registers via reg = 1 - reg:

4.3.3 Supporting Registers. Extending our idea of passing 1, we sup-
port register passing between two adjacently executed instructions.
We view each register as a MULT, where the previous instruction
defines MULT’s left/right wires. The translation of this into the
matrix representation is similar to our handling of 1-1 = 1. Consider
the case with a single register as a simple example (the order of
gates follows Section 4.3.1). We can (re)define the public matrix

define 3
define r3

define fns)+2

define rn(xi)+2
010 --- (define 1)

define checking output

010 --- (define 1)
010 --- (define 1)
010 --- (define 1)
define first register

M(l) S c an(i)XZH(i) (5)

for each i € [B]. Here, the last two rows of M) set the first register
(as inputs to a MULT of the next instruction). The prior two rows
similarly set a 1 for the next instruction.

Now, suppose $ wants to prove the execution of C; followed by
Cy, where the register is initialized to x as C’s input and stores y as
C’s output (x, y are public). £ can commit n = n) 42 inputs
and MULT tuples and show:

1 0 0 0
1 0 0 0
M x (1,x,inq,01, ..., inp, 0n)T N 0 0
= (b rn 1,11,y 7 o1 oo 0
00 MDD o
o0 o M®
M is private but P and ‘V can obtain the commitment of (1, y, x%, .. .)

MD
0

0
M by constructing the commitment of (1, ..., y?" 1) ><(M@
(discussed next).

4.3.4 Committing to the Topology Vector. We now show how £ and
V can construct com(c¢), a crucial task postponed from Section 4.3.1.
The methodology applies to Sections 4.3.2 and 4.3.3. We explain
it on the special case of two instructions Cz o Cy; our discussion

applies generally. We exploit the following equality:
c=(Ly,.... " HxM

(LT e MO e M@

X

|

3103

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

=1, 2 e MO 2 (g 2P M@

on(@
—_——
.))
=laz,..., 1" .. ¥)]e
N——
2n(D
(1) _ (2) _
b (L. 2" T x MOy 2 x M@
N—— —————— N— ———————
2nM 2n(2)

Hence, to construct com(c), it suffices to construct com(a) and
com(b). Note, a is a structured vector based on y and p (see Sec-
tion 4.1, Expand;). We only need to construct com(b), and the
crucial observation is the following vectors are public:

Vie [Blo® 2 (1., 2" ") x MO

The functionality we need is to “load” from unbalanced ROM then
“concatenate” (1) and v(2). This can be viewed as

(1) # and V agree on an unbalanced read-only memory (ROM)
storing (public) entries (1, v(l)), .., (Bo®)).

(2) P and V load-concatenate v(i€[BD g where the ordered in-
dexes are decided by Filter(p, id).

Note that these vectors saved in ROM are randomized by V’s
uniform challenge sent after p and id have been committed. As are
instructions, these vectors are of different lengths. We capture this
as a (more generic and novel) hybrid functionality ZK Unbalanced
ROM (ZK UROM) and include the overview in Section 4.4. Crucially,
the access cost of our ZK UROM is proportional to the length of the
data retrieved - this is needed to meet our tight efficiency budget.

4.4 Z7ZK Non-Zero-End Unbalanced ROM

This section overviews how to reduce a ZK UROM to a ZK ROM.

We observe that it suffices to design a ZK UROM supporting only
non-zero-end vectors. This simplifies our task, enabling concise
soundness checks based on Corollary 1, and can always be achieved,
e.g., by padding. (We later show that padding is not needed for us.)

In ZK non-zero-end UROM, P and V agree on a set of key-
value tuples (1, U(l)), ..., (B, U(B)), where 0(i€[BD are non-zero-
end vectors in F that can have different lengths. The objective is
allowing # to commit to a vector v, a concatenation of several
o€[Bl)g, eg.,v = o ||u(2) ||v(1). Crucially, V should only learn
n £ |o| and be convinced that v is a concatenation of vectors from
UROM. Prior work (e.g., [42], on which we build) only considers
ZK ROM over vectors of equal length (see Section 2.4).

Our ZK UROM protocol works in the commit-and-prove para-
digm. Le., we require P to directly commit to v and prove in ZK
that v is a valid concatenation. To support this proof, addition-
ally commits how she wants to partition v. That is, commits a
length-n boundary string p and a length-n vector id € [B]" such
that for each x € Filter(p, id) and y € Partition(p,v) pair (total
HW (p) pairs, unknown to V) in sequence, y = o),

To begin with, consider a simplified single-read task: commits
a vector w and a single index t and wants to prove thatw = o),
This can be checked by V issuing a uniform challenge y € F
where parties agree on another balanced ROM storing K-V tuples:

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

(1, mac<1)), ..., (B, mac(B)) where mac() £ (1, R B o) e
F for each i € [B]. Now, by accessing the ZK ROM (see Section 2.4),
parties convert com(t) into com(mac(?)). Then, it suffices to show:

(1) last(w) # 0. This can be proved by requiring £ to commit a
value inv and show that last(w) - inv = 1.

@) ((1,y,y%..)w) = mac(t). This can be proved by opening
com({(1,y,y%,...),w) — mac(t)) (which should be 0). Note
that y is public and parties hold com(w), com(mac(t)).

Soundness is reduced to Corollary 1 as % is prevented by Step 1
from appending the returned vector with zeros.

Our ZK UROM protocol generalizes the above idea to o with the
help of committed p and id. In particular, since p already marks
where each subvector ends, and the corresponding committed id
includes the index of each subvector, we can perform the above
checks only at the position where p; = 1. That is, # and V perform
a check for each position, but checks in positions where p; = 0 are
dummy. Formalizing the above, we outline our protocol:

(1) “V issues a uniform challenge y € F where and ‘V agree on
another balanced ROM storing K-V tuples {(i, mclc("))}l-E [B]
where (public) mac®) £ (1, vys ..) xo foreachi e [B].

(2) P and V generate committed “selected macs” com(smac)
by “reading” single-element ZK ROM (see Section 2.4) ini-
tialized by mac(l), el mac®) at positions id, where each
smacje(n] = mac'i) We remark that id is fixed before Y.

(3) P and V generate commitment of the structured vector s
based on y and p via Expand, (see Section 4.1):

ni ny ns
—N—— —— ——
p=(0,...,0,1,0,...,0,1,0,...,0,1,...)

L)

(4) P proves that for each p;c[,) = 1, it holds v; # 0. (Le.,
each segment ends non-zero.) This corresponds to the check
in Step 1 of the single-read task. This can be performed by
requiring # to commit to another length-n vector inv where

=s=(Ly,....y" L Ly .y Ly,

inv; = (Ui)_l if p; = 1;inv; = 0 otherwise

% then shows that invO v — p =0.

(5) P proves that for each a € Partition(p, s), b € Partition(p,
v), ¢ € Partition(p, smac) (in order, total HW(p) tuples),
{a,b) = last(c). This corresponds to the check in Step 2 of
the single-read task. This can be performed by proving:
Vie [n],pi- ((s[:i],o[: i]) = (pl: i], smac[: i])) =0
Note, the above equality trivially holds for all p; = 0. More-
over, when p; is equal to 1, both (s[: i],o[: i]) and (p[:
i], smac[: i]) are accumulating the sum of macs used so far.
Importantly, £ and V do not compute these sums for each
position separately, which incurs quadratic overhead. Rather,

they accumulate a running total, which is being checked at
each step. Thus, the total complexity of this check is linear.

4.4.1 Using ZK UROM with Topology Vectors. Recall, our protocol
for ZK CPU is reduced to a ZK UROM, where the data are the
instructions’ topology vectors. In the course of this reduction,
and V generate commitments to p and id (see Section 4.3). We
need these commitments for the operation of UROM as well. The

3104

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

low-level format of these vectors is different from what UROM
needs: while the vectors, as described in Section 4.3 manage gates,
UROM needs to account for two wires for each of these gates. This
discrepancy is easily reconciled (by inserting 0 to p and replicating
id), and we can work with a single copy of p and id.

A more subtle issue is that each topology vector ends with 0.
This is because the last column of a topology matrix denotes the
contribution of the last output of the instruction to each wire. Note
that the last output represents the checking output of the instruc-
tion, which is not an input of any wire, resulting in the all-0 last
column of the topology matrix (ultimately producing the 0-end
topology vector). This does not fit the non-zero-end requirement!

While this can be resolved by appending 1, we resolve it more
efficiently as follows. Since the checking output in a valid instruc-
tion is 0, we simply add it into the instruction’s first (left) wire. This
does not change the function of the instruction, and guarantees
that the last column now has a single leading 1. This modification
will make each topology vector end with 1. Further, in our proof
we need to invert the last position of each topology vector; having
set it to 1 optimizes this task. Namely, the vector inv committed by
P in Step 4 is precisely the boundary string p.

5 Formalization

This section formalizes our approach. See Section 4 for a detailed
overview of our approach. Due to space constraints, we defer some
formalization to the appendices.

5.1 Ideal ZK Non-Zero-End UROM: Fcpzk-UROM

We define the ideal functionality for CPZK with a single read-only
memory for unbalanced, non-zero-end vectors, denoted Fcpzk-UROM
and presented in Figure 6. Fcpzk-urom is defined similarly to
Fcpzk-Rom- The main difference is that Fcpzk-urom allows P
to initialize the UROM with different-length vectors (via InitUROM).
Furthermore, Fcpzk-urom allows P to read a length-n vector d
from the UROM (via ReadUROM). Vector d must partition into sub-
vectors where each subvector is a UROM entry. Before calling
ReadUROM, P can choose the content it wishes to read via SetProg.
This choice is encoded by length-n vectors p and id, where p is
the boundary string encoding how # wishes to partition d and
Filter(p, id) is the (ordered) set of indices wishes to read. The
flag furom is used to catch malicious P* misbehaviors.

5.2 Our Protocols: HCPZK—UROM and HZKCPU

Our tight ZK CPU protocol (ITzkcpy) is designed in the Fcpzk-urom-
hybrid model, and our ZK UROM protocol (IIcpzk-urom) is de-
signed in the Fcpzk-rom-hybrid model; see Section 4. We defer the
complete UC-style protocol definitions to the full version [44].
Here, we state the security theorems regarding these two proto-
cols. We defer the proof sketches (resp. complete proofs) to [44].

THEOREM 1. Let the UROM be initialized with B non-zero-end
vectors where each i-th vector is oflength-n(i). Let the read-out vector
be of length-n. Then, protocol Ilcpzk-Urom (defined in [44]) UC-
realizes Fcpzk-Urom (Figure 6) in the Fcpzk-rRom-hybrid model
max{n,nV,. n®}-1

F
knowledge, in the presence of a static unlblounded adversary.

(Figure 3) with soundness error and perfect zero-

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

Functionality Fcpzk-Urom

Fcpzk-UROM, parameterized by a field F, proceeds as follows, running
with a prover P, a verifier V and an adversary S:

The functionality supports all instructions of Fcpzk.

Unbalanced Non-Zero-End Read-Only Memory

Initialize UROM. On receiving (InitUROM, u®, u(B)) from P,
where for each u(i€[BD = (u(l), . ")), each u(A’E[BJ.)
1 n(i) je[n(d]
as a cid (i.e., the unbalanced vectors were committed):
(1) For each i € [B], fetch (uii),xl(i)), . (ui:?i)’
x(D = (xl(i), .. .,x(i()i)). Halt if last(x()) = 0. (last (x(¥)) must
n
be a non-zero element if # is honest.)
(2) Create a key-value store X where
X[1]:=xP, ... X[B]
and set from = honest.
(3) Send (initurom, u, ... u‘®))to V and S.
Ignore the subsequent calls to InitUROM.

is recorded

xr(ll()g) and let

=x®

Set Program. On receiving (SetProg, cid®), cid(id)) from $ where
lcid?) | = |cid?)| = n € Z* and each cid®? | cid'®

ie[n]’ ie[n]

Fetch (cidgp),pi), (cidgid), id;) foreachi € [n].Record pand id.If p €
{0,1}*71|1, send (setprog, cid(P), cid(id)) to V and S; otherwise,
halt the functionality. (If # is honest, p must be a length-n boundary
string, i.e., p € {0,1}"71||1.) Ignore the subsequent calls to SetProg.

was recorded:

Read UROM. On receiving (ReadUROM, cid?, d) from P where (1)
InitUROM and SetProg were executed; (2) |cid(d)| = 1|d| = |p| =
@ . and (4) each

ie[n]’
dicn] € F:Record tuples (cidid), di),..., (cidﬁ,d), dyn).
(1) If P is honest, id € [B]".
(2) If P is corrupted, set fyrom := cheating when there exists some
i € [n] such that id; ¢ [B].
For each x € Partition(p, d), y € Partition(p, id) pair in order (there
are HW (p) pairs in total):
(3) If # is honest, last(x) # 0 and X[last(y)] = x.
(4) If P is corrupted, set firom := cheating when:

last(x) = 0 or X[last(y)] # x

|id| = n; (3) there is no recorded tuple for each cid

Send (readurom, cid(d)) to V, S. Ignore subsequent ReadUROM calls.

Check UROM. On receiving (CheckUROM) from ¥ where ReadUROM
was executed: If P is corrupted and S sends Cheat, set firom
cheating. Send (checkurom, fyrom) to V and S.

Figure 6: Ideal functionality for commit-and-prove zero-
knowledge allowing proofs that support a read-only memory
for unbalanced non-zero-end vectors.

THEOREM 2. ProtocolIlzkcpy (defined in [44]) UC-realizes Fzkcpu
(Figure 5) in the FcpzK-UROM -hybrid model (Figure 6) with soundness
error % and perfect zero-knowledge, in the presence of a static
unbounded adversary.

5.3 Optimization and Cost Analysis
The optimization of IIcpzk-urom (defined in [44]) includes:

3105

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

(1) Public initialization: If B vectors used to initialize UROM
are public, InitUROM is free. This is because u(i€[B]) i only
used to generate commitments of mac (see Ilcpzk-UROM
in [44]), which are further used to initialize the underlying
(balanced) ROM. Thus, mac is also public (determined after y
is selected by V), so P and V can compute mac locally and
use calls to Linear construct the commitment of (constant).
1-ended vectors: If each vector in the UROM ends with 1
(whose inverse is 1), vector inv is redundant (see IIcpzk-UROM
in [44]) since inv is equal to p.

Rounding optimization: If each UROM-stored vector has length
some multiple of eyrom, for any eyrom € Z*, we can opti-
mize some operations. E.g., consider eyrom = 2, i.e., each
n(i€[BD) is even. This implies that every odd position of p
must be 0, which further implies that the checks in Cf72e;3l<
only need to be performed at each even position. Thus,
only needs to commit length-% vectors (instead of length-
n) p, id, inv, smac, s with half-size Cf;‘zed‘. In particular, it

suffices to define s as Expand, (p, y%). More generally, these
commitments reduce in size by factor eyrom.

The protocol zkcpy (see the full version [44]) can deploy all
optimizations above and will make one call to each instruction (i.e.,
InitUROM, SetProg, ReadUROM, CheckUROM). In particular, IIzkcpu,
with instructions of size n(l), el n(B) and the total execution size
n, instantiates a hybrid UROM with vectors of size 2n<1), o, 2n(B),
and reads a length 2n vector from the UROM. Our Ilzkcpy in-
stantiates the UROM with public vectors ending with 1, and since
all vectors are of even length, we can deploy the above rounding
optimization. Moreover, a similar rounding optimization can be
deployed to ITzkcpu- Le., if the size of each instruction is an in-
teger factor of ¢ € Z*, we can save cost by constructing shorter
vectors, e.g., p. In other words, cost can be reduced if we pad each
instruction circuit to size ke, where k € Z*.

Cost analysis. Consider a ZK CPU with instructions of size nD),
...,n®) and the total execution size n, let ¢ = gcd(n(l), el n(B)),
we tally the optimized cost of IIzxcpy directly in Fepzk-hybrid
(e, plugging Ilcpzk-urom, Ilcpzk-ROM):

e P sends n and V sends y, y.
e P and V each compute O (ZiE[B] n(i)) field operations to

obtain v ’¢B]) and mac. Note, this relies on the technique
“evaluate circuits backward”; see [43].

Parties call Commit 6n + 6?” + 2B times.

Parties call Linear 2B + 1 times to commit constants.
Parties call Open once.

Parties call Check with each of the following 9 circuits (de-
fined in Icpzk-urom, lcpzk-ROM; see the full version [44]):

- Cf;‘;f;(and Expand, /, (% multiplications each).

- C;heCk @2n+ 27" multiplications).

-C ZheCk (n multiplications).

- CgheCk (4n multiplications).

— The check circuit in IIcpzk-rom (see Lemma 3), which
has two products of £ + B — 1 multiplication.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

To conclude, assuming n = Q(B) and assuming each instruction
is of size O(n), the protocol requires O(n) calls to Commit; O(B)
calls to Linear; O(1) call to Open; O(1) call to Check.

When we instantiate Fcpzy using VOLE-based ZK (see Lemma 1),
our ZK CPU has the following cost:

e Computation: O (n + Xie[B] n(i)) field operations.

e Communication: 6n + 6?" + B+ o(n) field elements.

m+max{n,n(1),.‘.,n(3)})

e Soundness: O (T

The above costs leverage VOLE-based ZK’s support for polynomial
evaluation (see formal version of Lemma 1 in [44]). Namely, cir-
cuits used in Check are polynomials of degree? 2 or 3. Note, both
computation and communication are proportional to n.

[44] includes more fine-grained cost analysis.

6 Support for Advanced Operations

We have shown how to construct instructions that contain arbitrary
addition and multiplication gates. Each instruction also supports
a checking output, which £ must prove is equal to zero, and in
this section, we discuss examples of how this checking output
can be leveraged to support more advanced ZK operations. Most
importantly, we discuss support for ZK RAM, which enables our
CPU to support poly-size memory, rather than just a fixed number
of registers. Our formalization must be adjusted slightly to capture
such operations; the following discusses how.

6.1 Equality Gates

As our first advanced operation, we show how to implement an
equality gate, which forces # to prove that two particular instruc-
tion wires are equal; if they are not equal, the proof fails. This gate
is generally useful, and it can enable efficient implementation of
other operations, such as a division gate, where we can require
% to commit the quotient and then prove that the product of the
quotient and the divisor is equal to the dividend.

In standard CPZK, it is well known that a batch of equality gates
can be implemented by subtracting each pair of supposedly-equal
commitments, then having V send a uniform challenge vector to P.
P demonstrates that the inner product of this vector and the vector
of committed differences is 0. With some care, we can incorporate
this trick into our ZK CPU.

Namely, we modify our protocol such that (1) # first commits
to her extended witness, (2) V sends its uniform challenge vector
(this vector is sent in the same round where V sends y), and (3)
V’s challenge vector is incorporated as a row of the instruction’s
topology matrix, where this row is used to constrain the instruc-
tion’s checking output. In particular, this row of the matrix forces
% to prove that the random linear combination of equality gate
difference wires are each equal to zero. With this change, each
instruction can use an arbitrary number of equality gates.

The crucial observation is: the above trick can be viewed as a
row in the topology matrix that needs to be specified by V. In par-
ticular, this row does not affect £ to commit the extended witness
since the extended witness is independent of V’s uniform vector.

3The circuit in IIcpzk-rom is a O (n)-degree polynomial, but the cost can be reduced
since it computes products. See Lemma 3 and [42].

3106

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

We remark that this row must be specified after commits the ex-
tended witness to maintain soundness. Nevertheless, V can specify
it with the step where he sends y to compress topology matrices
to topology vectors. We note that this row can be embedded into
the checking output. Le., the checking output is the uniform linear
combination of all wires that must be 0s.

6.2 Support for LOAD and STORE Gates

So far, our machine’s persistent state is stored in only m registers. Of
course, it would be desirable to allow instructions to access a large
main memory (supporting any poly(4) number of memory cells).
We show how to implement LOAD and STORE gates that achieve
memory access while keeping the number of registers m constant.

In short, to support ZK RAM, it suffices that provide outputs
from LOAD and STORE gates as part of her extended witness, then
prove that these gate outputs are consistent with the semantics of
a read-write array. Our insight is that these consistency checks
only require that our machine maintain a constant number (five)
of registers.

Setting aside our ZK CPU for a moment, recent work [42] shows
that ZK RAM can be implemented by (1) maintaining a vector of all
values written to RAM (tagged with appropriate timing metadata),
(2) maintaining a vector of all values read from RAM (tagged with
appropriate timing metadata), (3) requiring that ¥ prove the above
two vectors are permutations of one another, and (4) for each read,
proving the accessed timing metadata value is in the past. Step (4)
is achieved by a ZK ROM, which similarly can be implemented by
proving two vectors are permutations of one another. Thus, the
full RAM reduces to two permutation checks. To prove two vectors
a, b are related by a permutation, it is standard for V to issue a
uniform challenge f, and then # shows that [[;e[,)(ai — f) =
[Tien) (bi = B).

Returning to our ZK CPU, we observe that for each permuta-
tion proof we can use two registers to accumulate the above two
products; once all instructions are complete, £ proves these two
registers are equal. [42]’s RAM also requires a global clock variable,
and we can support this with another register that is initialized to
0 and incremented on each RAM access. Therefore, we can compile
each LOAD/STORE gate into a constant number of INPUT/ADD/MULT
gates by maintaining five registers that jointly store the clock and
partial products of the permutation checks.

One small caveat is that the ZK RAM’s soundness relies on the
fact that P cannot guess . However, in our presented ZK CPU
protocol, must commit all inputs i and multiplication tuples ¢, r, o
at the same time. But per the above discussion, some multiplication
gates will depend on f, so P does not even know ¢, r, o until after
B is chosen. This problem is straightforwardly fixed by introducing
two extra protocol rounds.

Namely, (1) £ commits to its input i, (2) V sends f, and then (3)
% computes and commits to ¢, r, 0. This change is sound because
the input i determines the entire instruction’s computation, and
i must be independent of f. It is possible to omit the extra two
rounds by applying Fiat-Shamir [19]. Note that the combination of
our tight ZK CPU with ZK RAM interestingly hides from V the
number of RAM accesses.

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

7 Evaluation

Our implementation. Using VOLE-based ZK, we implemented
IIcpzk-urom (see the full verison [44]) and IIzkcpu (see, again,
the full verison [44]). In particular, we instantiated Fcpzk (see Fig-
ure 2) and Fcpzk-rom (see Figure 3) via VOLE-based ZK. VOLE-
based Fcpzk (QuickSilver [41]) is implemented as part of the EMP
Toolkit [39], and VOLE-based Fcpzk-rom [42] is open-sourced?.
We used their implementations in an (almost) black-box manner.
Following these implementations, we use the prime field Fae1_;.

Baseline implementation. We compare our implementation to the
prior state-of-the-art non-tight ZK CPU, Batchman [43]. Their im-
plementation is open-sourced”. It is also a VOLE-based ZK protocol
over Foe1_;.

Code availability. Our implementation is open-sourced and avail-
able at https://github.com/gconeice/tight-vole-zk-cpu.

Experiment setup. Unless otherwise specified, following our base-
line [43], all our experiments were executed over two AWS EC2
m5. 2x1arge machines® that respectively implemented # and V.
Each party ran single-threaded. We configured different network
bandwidth settings, varying from a WAN-like 100Mbps connection
to a LAN-like 1Gbps connection, via the Linux tc command.

Benchmarks. Our experiments used randomly generated circuits
as instructions. Given a number of MULT gates, we generated gates
uniformly until we reached the specified number of MULT. Our ran-
dom circuits use the last input as the first register output. For each
i-th instruction, the checking output is set as the first input minus
i. Le., our benchmark allows P to select each instruction. Our P
chooses each next instruction uniformly at random. We acknowledge
that this benchmark is contrived. It is used to evaluate performance
only. Our implementation includes sufficient expressivity to handle
a non-contrived instruction set.

We consider the following distributions of sizes of B instructions
to instantiate a ZK CPU:

o Balanced: Each of the B instructions are of same size. This
distribution is more suitable for prior non-tight ZK CPUs.
Additionally, the rounding optimization of our tight ZK CPU
is effective for this distribution.

o Unbalanced: One instruction is much bigger than the others
(which are each of the same size).

o Varied: All sizes are distributed evenly. E.g., consider an
instruction set having sizes {10, 20, 30, - - - }.

Metrics. We report the following metrics:

o Time: We measured end-to-end proof execution time.
Communication: We tested the overall communication.

e Hertz Rate: We calculated the hertz rate of a ZK CPU defined
by tls:f . This is mainly used to compare with prior non-tight
ZK CPUs, i.e., the Batchman [43].

Multiplication Gates Per Second (MGPS): We calculated the
MGPS defined by W. This metric is only mean-

ingful for a tight ZK CPU since all executed multiplications

4 Available at https://github.com/gconeice/improved-zk-ram.
5 Available at https://github.com/gconeice/stacking-vole-zk.
SIntel Xeon Platinum 8175 CPU @ 3.10GHz, 8 vCPUs, 32GiB Memory, 10Gbps Network

3107

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

B m Distribution MGPS (#Multi./s) CPM
100 Mbps 500 Mbps 1 Gbps Byte/#Multi.

10 5 Balanced 111K 330 K 442 K 102
1 109K 334K 438 K 102
50 10 Balanced 107 K 323K 432 K 102
20 108 K 342K 459K 102
Balanced 109 K 346 K 458 K 102
100 20 Unbalanced 110K 337K 467 K 102
Varied 109 K 340 K 460 K 102

Figure 7: The multiplication gates per second (MGPS) and
communication per multiplication (CPM) of our ZK CPU.
Recall that B denotes the number of instructions and m denotes the
number of registers.

Protocol Network Bandwidth Comm./Step

100 Mbps 500 Mbps 1 Gbps

Batchman [43] 1.5 KHz 54KHz 8.0KHz 7.3 KB

Ours (Balanced) 0.6KHz 27KHz 3.7KHz 12.7 KB
0.56X 0.51x 0.46X

Ours (Balanced) 1.7 KHz 59KHz 8.5KHz 6.3 KB
Rounding Opt. 1.13X 1.11x 1.05%

Ours (Unbalanced) 10.6 KHz 32.5KHz 43.8 KHz 1.0 KB
6.90X 6.07x 5.45%

Figure 8: Comparison with Batchman [43]. We loaded each ZK
CPU with 50 instructions and tested a 500K step execution. For
the non-tight ZK CPU based on Batchman, each instruction has
125 multiplications. For our tight ZK CPU, we tested (1) balanced
instructions where each has 125 multiplications and (2) unbalanced
instructions where only one has 125 multiplications and others
each has 5 multiplications. We report the hertz rate.

are useful. In a non-tight ZK CPU, some multiplications are
used as padding.

o Communication Per Multiplication (CPM): We calculated the
CPM defined by %’m.

MGPS and CPM of our ZK CPU. We loaded our ZK CPU with dif-
ferent B and m and considered different distributions of the sizes of
B instructions. In particular, we considered (1) each instruction with
100 multiplications for the balanced distribution, (2) one instruction
with 100 multiplications and others each with 5 multiplications for
the unbalanced distribution, and (3) i-th instruction with 10 - i mul-
tiplications for the varied distribution. We tested our ZK CPU with
each configuration by executing it over a large enough number of
steps to amortize the cost of generating VOLE correlations. Figure 7
tabulates the results. It shows that our ZK CPU’s speed depends
mainly on network bandwidth, which aligns with our asymptotic
analysis. In particular, it is (almost) independent of B, m, and on how
instructions are distributed.

Comparison with Batchman [43]. We compare our tight ZK CPU
with prior state-of-the-art non-tight ZK CPU (i.e., Batchman). More
precisely, Batchman implements batched ZK disjunctions, which
can be viewed as a special ZK CPU with no registers.

The two ZK CPUs were each loaded with 50 instructions. We
considered the balanced (with/without our rounding optimization)

https://github.com/gconeice/tight-vole-zk-cpu
https://github.com/gconeice/improved-zk-ram
https://github.com/gconeice/stacking-vole-zk

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Protocol Network Bandwidth Comm./Step
100 Mbps 500 Mbps 1 Gbps
Batchman [43] 0.2 KHz 0.8KHz 1.1KHz 52.1 KB
Ours 40KHz 12.6KHz 17.1KHz 2.8 KB
18.58% 16.33X 14.96x

Figure 9: Comparison with Batchman [43] with more biased
unbalanced instructions. We loaded each ZK CPU with 50 in-
structions and tested an execution with 500K steps. For the regular
ZK CPU based on Batchman, each instruction has 1000 multipli-
cations. We tested our ZK CPU with an unbalanced instruction
set, where one instruction has 1000 multiplications and the others
each have 5 multiplications. We report the hertz rate. We note that
these experiments were performed with two AWS EC2 m5. 8xlarge
machines because of Batchman’s larger memory requirement.

Network Bandwidth, Total Size

Protocol 100 Mbps 500 Mbps 1 Gbps Total Comm.
154 M 154 M 153 M
QuickSilver [41] 21.2s 6.6 5.1s 226 MB
Ours 139.1s 44.4s 315s 1484 MB
6.56X 6.72X 6.22X% 6.56X

Figure 10: Comparison with the setting where the execution
path is public. We loaded our ZK CPU with 50 instructions and
ran it for 50K steps. Each i-th instruction had 10 - i multiplications.

and unbalanced distributions. We tested the ZK CPUs by executing
500K steps.

Figure 8 tabulates the results. It shows that our tight ZK CPU
is slower than Batchman if we consider a balanced instruction
set. This is due to overhead we introduce in our tight ZK CPU
to ensure privacy, which is redundant when instructions are of
the same size. Nevertheless, our tight ZK CPU is only slower by
~ 2X, mainly coming from the = 2X overhead in communication.
By turning on our rounding optimization, our ZK CPU performs
comparably to (or even faster than) Batchman. This is because of
our refined topology matrices. Note that refined topology matrices
can also optimize Batchman. When considering an unbalanced
instruction set, our tight ZK CPU improves over Batchman by = 5-
7%, depending on the network. We remark that even with more
bandwidth, our runtime would not converge to Batchman - we
additionally save constant-factor computation. The decrease in our
relative improvement comes from the streamlining nature. Our ZK
CPU communicates only ~ 1KB per step.

Our speedup becomes more significant when considering in-
structions with larger differences in size; see Figure 9.

Comparison with insecure execution path. We compare our ZK
CPU with an “insecure” execution where £ and V agree on a
public execution path. Namely, we constructed a single plaintext
circuit encoding an execution path and then ran the QuickSilver
protocol (which achieves Fcpzk) on that circuit. Of course, a ZK
CPU will use more resources than such a circuit, since a ZK CPU
provides a stronger privacy guarantee. These experiments illustrate
the performance gap between our ZK CPU and the informal “lower

3108

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

bound”. Figure 10 tabulates the results. Our ZK CPU has a ~ 6X
overhead in communication (as a constant). Further optimizing this
constant is an interesting direction.

Rounding optimization. Recall that our ZK CPU supports an
optimization such that if the size of each instruction is a multiple of
¢, several contributing costs are reduced by factor ¢. To evaluate the
effectiveness of this optimization, we loaded our ZK CPU with 50
balanced instructions. By varying the size of each instruction and
letting the ZK CPU execute 6.4M multiplications, we deployed the
rounding optimization with different ¢. Our experiments show that,
when ¢ > 16, the rounding optimization can speed up our ZK CPU
by ~ 2X, independent of the network bandwidth. The improvement
comes from savings in communication, matching asymptotic.

Microbenchmarks. The full version [44] includes fine-grained
(i.e., decomposed) end-to-end time.

Acknowledgments

This work is supported in part by Visa research award, Cisco re-
search award, and NSF awards CNS-2246353, CNS-2246354, and
CCF-2217070. This material is also based upon work supported in
part by DARPA under Contract No. HR001120C0087. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of DARPA. Distribution Statement “A” (Approved for Public
Release, Distribution Unlimited).

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-
ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted
Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu (Eds.). ACM Press, 2087-2104. https://doi.org/10.1145/3133956.
3134104

Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.
Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits
with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal
Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Virtual Event, 92-122.
https://doi.org/10.1007/978-3-030-84259-8_4

Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,
Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous
Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459-474. https://doi.org/10.1109/SP.2014.36

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKSs for C: Verifying Program Executions Succinctly and in Zero
Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A.
Garay (Eds.). Springer, Heidelberg, 90-108. https://doi.org/10.1007/978-3-642-
40084-1_6

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Scalable
Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO 2014, Part II (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, 276~
294. https://doi.org/10.1007/978-3-662-44381-1_16

[6] EliBen-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Succinct
Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 781-796.
Rikke Bendlin, Ivan Damgard, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-
homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011
(LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, 169-188.
https://doi.org/10.1007/978-3-642-20465-4_11

[8] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and
More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 315-334. https://doi.org/10.1109/SP.2018.00020

Ran Canetti. 2001. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136—145.
https://doi.org/10.1109/SFCS.2001.959888

[2

—
)

=

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SFCS.2001.959888

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction

[10]

(1

[12

[13]

[14]

(15

(16

[17

[18

[19]

[20]

[21

[22

[23

[24

[25

[26]

[27]

[28

[29

Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally
composable two-party and multi-party secure computation. In 34th ACM STOC.
ACM Press, 494-503. https://doi.org/10.1145/509907.509980

Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and
Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKSs with Universal and
Updatable SRS. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and
Yuval Ishai (Eds.). Springer, Heidelberg, 738-768. https://doi.org/10.1007/978-3-
030-45721-1_26

Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha.
2023. SublonK: Sublinear Prover PlonK. Cryptology ePrint Archive, Paper
2023/902. https://eprint.iacr.org/2023/902

Ronald Cramer, Ivan Damgard, and Berry Schoenmakers. 1994. Proofs of Partial
Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO 94
(LNCS, Vol. 839), Yvo Desmedt (Ed.). Springer, Heidelberg, 174-187. https://doi.
org/10.1007/3-540-48658-5_19

Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.
2021. Limbo: Efficient Zero-knowledge MPCitH-based Arguments. In ACM
CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 3022-3036. https:
//doi.org/10.1145/3460120.3484595

Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and
Michiel Verbauwhede. 2022. Efficient Proof of RAM Programs from Any
Public-Coin Zero-Knowledge System. In Security and Cryptography for Networks,
Clemente Galdi and Stanislaw Jarecki (Eds.). Springer International Publishing,
Cham, 615-638.

Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. 2023. MUXProofs:
Succinct Arguments for Machine Computation from Tuple Lookups. Cryptology
ePrint Archive, Paper 2023/974. https://eprint.iacr.org/2023/974

Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowl-
edge and Its Applications. In 2nd Conference on Information-Theoretic Cryp-
tography (ITC 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 199), Stefano Tessaro (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Infor-
matik, Dagstuhl, Germany, 5:1-5:24. https://doi.org/10.4230/LIPIcs.ITC.2021.5
Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang. 2021. Zero
Knowledge Static Program Analysis. In ACM CCS 2021, Giovanni Vigna and Elaine
Shi (Eds.). ACM Press, 2051-2967. https://doi.org/10.1145/3460120.3484795
Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.
Odlyzko (Ed.). Springer, Heidelberg, 186-194. https://doi.org/10.1007/3-540-
47721-7_12

Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.
In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 178-191.
https://doi.org/10.1145/3460120.3484800

Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk.
2022. Stacking Sigmas: A Framework to Compose X-Protocols for Disjunctions.
In EUROCRYPT 2022, Part II (LNCS, Vol. 13276), Orr Dunkelman and Stefan
Dziembowski (Eds.). Springer, Heidelberg, 458-487. https://doi.org/10.1007/978-
3-031-07085-3_16

Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. 2023. Dora: Pro-
cessor Expressiveness is (Nearly) Free in Zero-Knowledge for RAM Programs.
Cryptology ePrint Archive, Paper 2023/1749. https://eprint.iacr.org/2023/1749
Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner.
2023. Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions. In
EUROCRYPT 2023, Part II (LNCS, Vol. 14005), Carmit Hazay and Martijn Stam (Eds.).
Springer, Heidelberg, 347-378. https://doi.org/10.1007/978-3-031-30617-4_12

S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity
of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (Providence, Rhode Island, USA) (STOC
’85). Association for Computing Machinery, New York, NY, USA, 291-304.
https://doi.org/10.1145/22145.22178

David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive
Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107), Anne
Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 569-598. https://doi.org/
10.1007/978-3-030-45727-3_19

David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero
Knowledge for Everything and Everyone: Fast ZK Processor with Cached ORAM
for ANSI C Programs. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 1538-1556. https://doi.org/10.1109/SP40001.2021.00089
Wengqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang. 2024.
Parallel Zero-knowledge Virtual Machine. Cryptology ePrint Archive, Paper
2024/387. https://eprint.iacr.org/2024/387

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-
Knowledge from Secure Multiparty Computation. In Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing (San Diego, California,
USA) (STOC °07). Association for Computing Machinery, New York, NY, USA,
21-30. https://doi.org/10.1145/1250790.1250794

Vladimir Kolesnikov. 2018. Free IF: How to Omit Inactive Branches and Imple-
ment S-Universal Garbled Circuit (Almost) for Free. In ASIACRYPT 2018, Part III

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

(LNCS, Vol. 11274), Thomas Peyrin and Steven Galbraith (Eds.). Springer, Heidel-
berg, 34-58. https://doi.org/10.1007/978-3-030-03332-3_2

Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal
machine executions without universal circuits. Cryptology ePrint Archive, Report
2022/1758. https://eprint.iacr.org/2022/1758.

Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive Zero-
Knowledge Arguments from Folding Schemes. In CRYPTO 2022, Part IV (LNCS,
Vol. 13510), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Heidelberg,
359-388. https://doi.org/10.1007/978-3-031-15985-5_13

Abhiram Kothapalli and Srinath T. V. Setty. 2024. HyperNova: Recursive Ar-
guments for Customizable Constraint Systems. In Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2024, Proceedings, Part X (Lecture Notes in Computer
Science, Vol. 14929), Leonid Reyzin and Douglas Stebila (Eds.). Springer, 345-379.
https://doi.org/10.1007/978-3-031-68403-6_11

T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang. 2024. Pianist: Scalable zkRollups
via Fully Distributed Zero-Knowledge Proofs. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 39-39. https:
//doi.org/10.1109/SP54263.2024.00035

Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge Proofs
for Convolutional Neural Network Predictions and Accuracy. In ACM CCS 2021,
Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 2968-2985. https://doi.org/10.
1145/3460120.3485379

Ning Luo, Timos Antonopoulos, William R. Harris, Ruzica Piskac, Eran Tromer,
and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. In ACM CCS 2022,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press,
2203-2217. https://doi.org/10.1145/3548606.3559373

Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019.
Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable
Structured Reference Strings. In ACM CCS 2019, Lorenzo Cavallaro, Johannes
Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2111-2128.
https://doi.org/10.1145/3319535.3339817

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. 2012. A New Approach to Practical Active-Secure Two-Party Computation.
In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.).
Springer, Heidelberg, 681-700. https://doi.org/10.1007/978-3-642-32009-5_40
David Pointcheval and Jacques Stern. 2000. Security Arguments for Digital
Signatures and Blind Signatures. Journal of Cryptology 13, 3 (June 2000), 361-396.
https://doi.org/10.1007/s001450010003

Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit.

Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.
Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to
Machine Learning. In USENIX Security 2021, Michael Bailey and Rachel Greenstadt
(Eds.). USENIX Association, 501-518.

Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:
Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials
over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM
Press, 2986-3001. https://doi.org/10.1145/3460120.3484556

Yibin Yang and David Heath. 2024. Two Shuffles Make a RAM: Improved Constant
Overhead Zero Knowledge RAM. In 33rd USENIX Security Symposium (USENIX
Security 24). USENIX Association, Philadelphia, PA, 1435-1452. https://www.
usenix.org/conference/usenixsecurity24/presentation/yang-yibin

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthura-
makrishnan Venkitasubramaniam. 2023. Batchman and Robin: Batched and Non-
Batched Branching for Interactive ZK. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (Copenhagen, Denmark)
(CCS °23). Association for Computing Machinery, New York, NY, USA, 1452-1466.
https://doi.org/10.1145/3576915.3623169

Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakr-
ishnan Venkitasubramaniam. 2024. Tight ZK CPU: Batched ZK Branching with
Cost Proportional to Evaluated Instruction. Cryptology ePrint Archive, Paper
2024/456. https://eprint.iacr.org/2024/456

Yibin Yang, David Heath, Vladimir Kolesnikov, and David Devecsery. 2022. EZEE:
Epoch Parallel Zero Knowledge for ANSI C. In 7th IEEE European Symposium on
Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. IEEE, Genoa,
Italy, 109-123. https://doi.org/10.1109/EuroSP53844.2022.00015

Yibin Yang, Stanislav Peceny, David Heath, and Vladimir Kolesnikov. 2023. To-
wards Generic MPC Compilers via Variable Instruction Set Architectures (VISAs).
In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security (, Copenhagen, Denmark,) (CCS °23). Association for Computing
Machinery, New York, NY, USA, 2516-2530. https://doi.org/10.1145/3576915.
3616664

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2018. VRAM: Faster Verifiable RAM with Program-
Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 908-925. https://doi.org/10.1109/SP.2018.00013

https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2023/902
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://eprint.iacr.org/2023/974
https://doi.org/10.4230/LIPIcs.ITC.2021.5
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://eprint.iacr.org/2023/1749
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1109/SP40001.2021.00089
https://eprint.iacr.org/2024/387
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-030-03332-3_2
https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3548606.3559373
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/s001450010003
https://github.com/emp-toolkit
https://doi.org/10.1145/3460120.3484556
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yibin
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yibin
https://doi.org/10.1145/3576915.3623169
https://eprint.iacr.org/2024/456
https://doi.org/10.1109/EuroSP53844.2022.00015
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1109/SP.2018.00013

	Abstract
	1 Introduction
	1.1 Our Focus: Pay for the Active Branch
	1.2 Our Contribution
	1.3 Intuition of Our Construction
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Security Model
	2.3 Commit-and-Prove Zero-Knowledge
	2.4 Zero-Knowledge Read-Only Memory
	2.5 ZKP via Topology Matrices

	3 Our Target Functionality: zkcpu
	4 Technical Overview
	4.1 Boundary Strings and Helper Notation
	4.2 More Powerful Topology Matrices
	4.3 Reducing a Tight ZK CPU to a ZK UROM
	4.4 ZK Non-Zero-End Unbalanced ROM

	5 Formalization
	5.1 Ideal ZK Non-Zero-End UROM: idealzkurom
	5.2 Our Protocols: protzkurom and protzkcpu
	5.3 Optimization and Cost Analysis

	6 Support for Advanced Operations
	6.1 Equality Gates
	6.2 Support for LOAD and STORE Gates

	7 Evaluation
	References

