
Tight ZK CPU∗

Batched ZK Branching with Cost Proportional to Evaluated Instruction

Yibin Yang

Georgia Institute of Technology,

Atlanta, USA

yyang811@gatech.edu

David Heath

University of Illinois

Urbana-Champaign, Urbana, USA

daheath@illinois.edu

Carmit Hazay

Bar-Ilan University, Ramat Gan, Israel

Ligero Inc., Rochester, USA

Carmit.Hazay@biu.ac.il

Vladimir Kolesnikov

Georgia Institute of Technology,

Atlanta, USA

kolesnikov@gatech.edu

Muthuramakrishnan

Venkitasubramaniam

Ligero Inc., Rochester, USA

muthu@ligero-inc.com

Abstract
We explore Zero-Knowledge Proofs (ZKPs) of statements expressed

as programs written in high-level languages, e.g., C or assembly. At

the core of executing such programs in ZK is the repeated evaluation

of a CPU step, achieved by branching over the CPU’s instruction

set. This approach is general and covers traversal-execution of a

program’s control flow graph (CFG): here CPU instructions are

straight-line program fragments (of various sizes) associated with

the CFG nodes. This highlights the usefulness of ZK CPUs with a

large number of instructions of varying sizes.
We formalize and design an efficient tight ZK CPU, where the

cost (both computation and communication, for each party) of

each step depends only on the instruction taken. This qualitatively

improves over state of the art, where cost scales with the size of

the largest CPU instruction (largest CFG node).

Our technique is formalized in the standard commit-and-prove

paradigm, so our results are compatible with a variety of (interactive

and non-interactive) general-purpose ZK.

We implemented an interactive tight arithmetic (over F
2
61−1)

ZK CPU based on Vector Oblivious Linear Evaluation (VOLE) and

compared it to the state-of-the-art non-tight VOLE-based ZK CPU

Batchman (Yang et al. CCS’23). In our experiments, under the same

hardware configuration, we achieve comparable performance when

instructions are of the same size and a 5-18× improvement when

instructions are of varied size. Our VOLE-based tight ZK CPU

(over F
2
61−1) can execute 100K (resp. 450K) multiplication gates

per second in a WAN-like (resp. LAN-like) setting. It requires ≤
102 Bytes per multiplication gate. Our basic building block, ZK

Unbalanced Read-Only Memory, may be of independent interest.

CCS Concepts
• Security and privacy → Cryptography; • Theory of compu-
tation → Cryptographic protocols.

∗
The full version [44] is available online: https://eprint.iacr.org/2024/456.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690289

Keywords
Zero-Knowledge; Disjunctive Statements; CPU Emulation

ACM Reference Format:
Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthura-

makrishnan Venkitasubramaniam. 2024. Tight ZK CPU: Batched ZK Branch-

ing with Cost Proportional to Evaluated Instruction. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3658644.3690289

1 Introduction
Zero-Knowledge (ZK) Proofs (ZKPs) [24] allow a prover P to con-

vince a verifier V that a given statement is true without reveal-

ing anything beyond this fact. With recent advances in efficiency,

ZKP has become one of the most active areas in cryptographic

research. Example applications include private blockchain [3], pri-

vate programming analysis [18, 35], private bug-bounty [26, 45],

privacy-preserving machine learning [34, 40], and many more.

Most generic ZK schemes prove statements represented as cir-

cuits or constraint systems. While these formats support arbitrary

statements, they do not align with how computational tasks are of-

ten described or developed in practice – using a high-level language,

such as C/C++/assembly/etc.

A promising path towards efficient ZKP for general programs is

to mimic what plaintext computers do. An assembly (or C/C++ or
other high-level) program can be broken into straight-line blocks;

the resulting program control-flow graph (CFG) describes how pro-

gram control can transfer between the blocks.

Casting this to ZKP (and for efficiency, omitting the plaintext-

world step of compiling to a hardware CPU fixed instruction set),

instead of agreeing on a single public circuit, P and V agree on 𝐵

circuits, each corresponding to (i.e., implementing a straight-line

program of) a CFG block. Viewed this way, the objective of ZKP is to

execute the program from a public initial state to a public final state

via a circuit constructed by privately “soldering” these (potentially

repeated) basic CFG blocks (see Figure 1). This approach can be

viewed as executing steps of a Zero-Knowledge Central Processing
Unit (ZK CPU) whose instruction set is defined in terms of the

target program’s complex CFG blocks. An MPC version of this

approach is explored by recent VISA MPC [46].

Of course, a ZK CPU must be able to access a random-access
memory (RAM); this technical task is external to our focus. We show

3095

https://eprint.iacr.org/2024/456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690289
https://doi.org/10.1145/3658644.3690289
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690289&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

C(1) C(2) C(3) C(4)

Input Tape

0 0 0 0

In
it
ia
l
S
ta
te F

in
a
l
S
tate

Figure 1: Example ZK CPU execution. P and V agree on 𝐵

public (sub)circuits 𝐼 = {C1, . . . , C𝐵}. P demonstrates to V that

an initial state evaluates to a final state via a private circuit C ≜
C (4) ◦· · ·◦C (1)

, where each C (𝑖∈[4]) ∈ 𝐼 .V learns the size of C but

does not learn the number or identity of specific subcircuits used.

Each subcircuit’s output is fed as input to the subsequent subcircuit.

We refer to the wires that pass from subcircuit to subcircuit as

registers. Each subcircuit can read private input from P, and each

subcircuit outputs a “checking output”, which evaluates to 0 when

P is honest. The checking output can be used to, e.g., force P to

use C1 when the first register is 1. See Section 3 for formal details.

that the state-of-the-art ZK RAM [42] can be efficiently integrated

with our ZK CPU (see Section 6.2).

ZK disjunctions. The sequence of executed CFG blocks (instruc-

tions) must remain hidden fromV . This can be trivially achieved

by P and V executing each instruction in each step – the circuit

for computing such a step would be a disjunction of all instructions

(in the instruction set), and the top-level proof statement would

simply be a sufficient number of repetitions of the disjunction.

This approach incurs a glaring overhead: parties execute – and

pay for – a large number of inactive (i.e., not taken in plaintext

execution) clauses in each disjunction. To make matters worse,

many programs have large CFGs, so each disjunction is over a large

number of clauses, causing corresponding overhead.

A recent line of work ([2, 21–23, 25, 29, 43]) aims to avoid paying

for inactive clauses in a disjunction. [25] described the possibility of

reusing the cryptographic material of the active branch to evaluate

(to garbage and privately discard) inactive branches. This limits

communication to the cost of a single (longest) branch but still

requires processing all branches. Very recent work [22, 43] shows

how to limit both communication and computation to that of the

single longest branch for our setting, where the same disjunction

(of all instructions in the instruction set) is executed repeatedly.

To summarize, the state of the art pays for the longest branch.

1.1 Our Focus: Pay for the Active Branch
We are motivated by scenarios where instructions (or branches)

differ significantly in size, possibly by orders of magnitude. In such

cases, it is unacceptable to incur the cost of the longest branch.

While instructions in hardware CPUs are roughly the same size

by design, this is not the case in CFGs, where blocks correspond to

straight-line program segments.

Tight ZK CPU emulation. We mostly adhere to the ZK CPU no-

tation and vocabulary. We choose this over other equivalent vo-

cabularies, such as CFG and blocks, discussed above. This is for

simplicity, clarity, and consistency, since prior ZK work already

uses the CPU and CPU-emulation terminology and definitions

(e.g., [4, 20, 26, 43]).

Extending the existing ZK CPU vocabulary, in this work, we

introduce and focus on tight ZK CPU emulation (or just tight ZK

CPU) – one whose cost of executing each instruction is proportional

to the size of that instruction. This is in contrast to all prior work

on efficient ZK CPU emulation, where the cost of executing a CPU

step is proportional to the total cost of all instructions in the CPU

or, more recently, to the largest instruction in the CPU.

It is challenging to achieve tight ZK CPU concretely efficiently

because instruction boundaries must be hidden fromV , and cor-

responding expensive instruction set-up and conclusions (which,

e.g., handle registers, instruction loads, proof checks, etc.) must be

executed at each possible basic step of the ZK proof.

Spliting large instructions. It is, of course, possible to equalize

instruction sizes by splitting a large instruction 𝒞 into a sequence

of small instructions. This incurs the expense of passing more reg-
isters between instructions more frequently: the current internal

state of the larger instruction 𝒞 now must be passed between its

consecutive sub-instructions𝒞𝑖 and𝒞𝑖+1. This internal state corre-
sponds to the width of the circuit implementing𝒞 and may be large.

Crucially, now all instructions must accept this many registers as

input to preserve ZK, incurring corresponding overhead.

Our work allows cheaply handling arbitrarily large (and arbitrar-

ily wide!) instructions without incurring the overhead of handling

additional registers.

Privacy guarantees. The privacy guarantees provided by prior

CPU-emulation definitions and constructions are somewhat differ-

ent from that of our tight ZK CPU. In prior work, V learns the

number of executed CPU steps; in our work, V learns the total

number of multiplication gates on the program execution path.

Both metrics correspond to (slightly different) notions of program

runtime. We stress that revealing the runtime is inevitable when de-

manding tight prover efficiency, and standard padding techniques

can provide finer privacy guarantees.

Depending on instruction sizes, the total number of evaluated

gates in executing our tight CPU can indicate to V with high

confidence which instructions were executed. A similar concern

applies to prior ZK CPU work, where a precise runtime (number

of instructions) might tell V the execution path. Such issues are

arguably more relevant in our model since runtime is more granular.

As in prior work, this can be addressed by runtime padding via

inserting dummy multiplications.

1.2 Our Contribution
We motivate and formalize the notion of a tight ZK CPU, where

the cost (both computation and communication for each party) of

each step depends only on the instruction taken, even when the

instructions are of varying sizes. We define an ideal functionality

FZKCPU (see Figure 5 and discussion in Section 3) to capture this

notion by only sending the length of the entire execution to V .

Our protocol realizes FZKCPU in the commit-and-prove hybrid

(defined as FCPZK in Figure 2) model with information-theoretic

3096

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

security. Our protocol is public-coin and constant-round in FCPZK-
hybrid model, so it natively supports the Fiat-Shamir transforma-

tion [19, 38]. Crucially, our abstraction allows realizing the FZKCPU
via a variety of commit-and-proof ZK protocols, including interac-

tive and non-interactive ones (e.g., [1, 2, 8, 11, 14, 17, 28, 36, 41]).

We implement
1
a tight ZK CPU protocol by instantiating the

commit-and-proof ZK with VOLE-based ZK [17, 41] and report the

performance in Section 7. The cost of our VOLE-based tight ZK CPU

scales only linearly with the number of multiplication gates along

the program execution path. Concretely, this protocol outperforms

the state of the art Batchman [43] (a VOLE-based non-tight ZK

CPU) in both computation and communication commensurately

with branch size variation (see Section 7). Our VOLE-based ZK CPU

achieves a cost of only a constant factor (6–7×) higher than the

non-private protocol, where the execution path is revealed to V .

1.3 Intuition of Our Construction
We present high-level intuition here; Section 4 presents a detailed

technical overview of our approach.

Consider a ZK proof expressed as a high-level program com-

posed of basic “control-flow” blocks, which we call instructions. P’s

witness is an input to the program that evaluates to an accepting

state. The proof convincesV the existence of a sequence of instruc-

tions – an execution path – leading to an accepting state. While

the execution path, known to P, can depend on P’s secret witness,

a ZK proof must hide the path from V .

The recent Batchman protocol [43] demonstrates that it is possi-

ble to efficiently encode each program instruction as a randomized

vector of field elements. At a high level, each such vector is the

product of V’s random challenge vector and a matrix that encodes

the linear constraints imposed by the instruction; see Section 2.5.

Thus, an execution path can be encoded as a vector constructed

by concatenating subvectors corresponding to each instruction.

Batchman uses this encoding to hide the identity of each instruc-

tion from V . In particular, this vector encoding the execution path

is included in the proof as part of P’s (extended) witness.

If P is honest, this vector encodes a valid execution path. P
proves her witness satisfies linear constraints imposed by the vector.

Of course,V must check in ZK that P’s execution path vector

is valid – that each subvector (or, rather, each subvector’s hash)

is in the set of valid instructions (hashes) of the source program.

Batchman’s ZK hash check is efficient: each subvector hash is a

random linear combination of the subvector’s elements based on a

fresh challenge from V– a single uniform field element sent by V ,

expanded by taking its powers. A crucial detail here is thatV knows

the boundaries of the subvectors, as Batchman’s instructions are
each padded to the same publicly agreed-upon number of gates.

In our approach, we allow instructions of different sizes. Thus,

while our prover also inputs an execution path vector, the subvector

(i.e., instruction) boundaries and the lengths of each subvector must

be kept private. With this change, the subvector validity check and

passing of program state between instructions become a challenge,

the resolution of which is core to our contribution. Here, we give

high-level intuition underlying our validity check.

1
Our implementation is available at https://github.com/gconeice/tight-vole-zk-cpu.

To validate the execution path vector, P inputs an additional

0-1 vector of the same length, which defines the boundaries of

the instruction subvectors. Namely, P sets this boundary string
to 0 and places 1 only at positions corresponding to the ends of

subvectors. Similar to Batchman, our hash check is performed via

a random linear combination with aV-chosen challenge, but we

carefully arrange how parties use the boundary string to construct

and verify hash checksums of unknown length to V . We capture

this with a novel primitive of independent interest – an unbalanced
ZK read-only memory (ROM) – a ZK ROM capable of storing vectors

of different lengths, but where we do not pay the price of the largest

vector for eachmemory element (by exploiting the boundary string).

Based on the above intuition, our unbalanced ZK ROM manages

(loads, concatenates and checks) vectors of different lengths.

1.4 Related Work
Efficient handling of disjunctive statements is central to the han-

dling of ZK proofs expressed as high-level programs. High-level-

program-based ZK is an intuitive direction that was first concretely

explored by [4] and subsequently studied by [5, 6, 20, 22, 26, 45].

Early ZK work [13] gave special-purpose techniques allowing

proofs of disjunctions. With relatively recent and dramatic improve-

ment to proofs of general-purpose statements, special-purpose dis-

junction handling was (temporarily) subsumed by general-purpose

techniques. Indeed, disjunctions are easily encoded and proved as

part of a circuit that processes each branch and then multiplexes

the results. While this works, it is expensive. [25] – building on

the MPC result of [29] – demonstrated feasibility of paying (in ZK

proof size) for only one branch. The [25] technique “reuses cryp-

tographic material” of the active branch to evaluate (to garbage

and privately discard) inactive branches. This sparked a rich line of

work [2, 21–23, 25, 29, 43] that continues to reduce the costs of ZK

disjunctions.

Very recent work [22, 43] further improved the handling of dis-

junctions by showing how to improve not just communication

but also computation. This task is more challenging and cannot

be achieved by prior techniques relying on garbage evaluation of

inactive clauses. Leveraging the batched setting where a single dis-

junction is executed repeatedly, these works show how P andV
compute (and hence communicate) proportionally only to the single

largest clause of the disjunction. Our work extends and crucially

builds on the approach of [43], and our extension enables paying

only for the active branch. Sections 1.3 and 2.5 summarize [43] and

the novel techniques needed for our result. Neither [43] nor [22]

address disjunctions of clauses of varying sizes.

Efficient ZK ROM and RAM are essential to CPU-emulation ZK.

We integrate recent ZK ROM [42]. We also build on it to design

a novel basic primitive unbalanced ZK ROM, capable of retrieving

variable-size entries in a batch query. We achieve this by extend-

ing randomized hashes of [43] to vectors of differing lengths and

ultimately use them to execute variable-size instructions.

We note that emulating CPU in SNARK has also been intensively

studied recently in, e.g., [12, 16, 27, 30–32, 47]. Some of these ele-

gant works (e.g., [27, 30, 32, 47]) can indeed achieve tight efficiency

while offering attractive features such as non-interactivity and suc-

cinctness. However, adding ZK to these works may either require

3097

https://github.com/gconeice/tight-vole-zk-cpu

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

large overheads or break tightness (see, e.g., discussions in [22]

and [33]). Furthermore, they (at least) reveal the number of instruc-

tions to the verifier, while our work reveals only the total number of

multiplication gates. See Section 3 for more formal discussions. We

suspect that some padding techniques might address the additional

leakage in, e.g., [30, 32], and we leave it as valuable future work.

Finally, we remark that our protocols can also be instantiated with

a succinct and non-interactive commit-and-prove zkSNARK.

2 Preliminaries
2.1 Notation
• 𝜆 is the statistical security parameter (e.g., 40 or 60).

• The prover is P. We refer to P by she, her, hers...

• The verifier is V . We refer to V by he, him, his...

• 𝑥 ≜ 𝑦 denotes that 𝑥 is defined as 𝑦.

• We denote sets by upper-case letters. We denote that 𝑥 is uni-

formly drawn from a set 𝑆 by 𝑥 ∈
$
𝑆 .

• We denote {1, . . . , 𝑛} by [𝑛].
• We denote a finite field of size 𝑝 by F𝑝 where 𝑝 ≥ 2 is a prime or a

power of a prime. We use F to represent a sufficiently large field,

i.e., |F| = 𝜆𝜔 (1)
. Inverse(𝑥) denotes the multiplicative inverse of

𝑥 (≠ 0) in F, i.e., Inverse(𝑥) · 𝑥 = 1.

• For a vector 𝒂 ∈ F𝑛 and an element 𝑥 ∈ F, 𝑥𝒂 ≜ (𝑥𝑎1, . . . , 𝑥𝑎𝑛).
• last(𝒂) denotes the last element of 𝒂, i.e., 𝑎𝑛 if 𝒂 ∈ F𝑛 . For some

𝒂 ∈ F∗, if last(𝒂) ≠ 0, we refer to 𝒂 as a non-zero-end vector.

• We denote row vectors by bold lower-case letters (e.g., 𝒂), where
𝑎𝑖 (or 𝑎[𝑖]) denotes the 𝑖-th component of 𝒂 (starting from 1) and

𝒂 [: 𝑖] the subvector (𝑎1, . . . , 𝑎𝑖).
• We denote matrices by bold upper-case letters (e.g., 𝑨), where
𝑨(𝑖) denotes the 𝑖-th row vector of 𝑨 (starting from 1) and 𝑨[𝑖]
denotes the 𝑖-th column vector of 𝑨 (starting from 1). 𝑨(𝑖) [𝑗]
denotes 𝑗-th value in 𝑖-th row.

• Let 𝒂 and 𝒃 be vectors of equal length. ⟨𝒂, 𝒃⟩ denotes the inner
product; 𝒂 ⊙ 𝒃 denotes the element-wise product.

• We denote a multiplication (gate) by MULT.

2.2 Security Model
We formalize our protocol via the universally composable (UC)

framework [9] and prove its security in the presence of a malicious,
static adversary. For simplicity, we omit standard UC session (and

sub-session) IDs.

2.3 Commit-and-Prove Zero-Knowledge
Our protocol is defined in the commit-and-prove hybrid model [10].

This functionality, denoted by FCPZK and formally defined in Fig-

ure 2, allows P to commit to field elements (over F) and then prove

that evaluating a particular circuit on the committed values yields a

vector of 0’s. We denote by com(𝛼) a cryptographic commitment to

𝛼 ∈ F, and naturally extend this notation to vectors (e.g., com(𝜶)).
There are several ways to instantiate FCPZK (e.g., [1, 2, 8, 11, 14,

17, 28, 36, 41]). To concretely evaluate our abstraction, we choose

to instantiate our protocol via the VOLE-based ZK (e.g., [2, 17, 41],

cf. Lemma 1), a proof paradigm known for its fast end-to-end run-

ning times and small (constant) computation/communication rates

compared to |C|. This paradigm employs information-theoretic

MACs (IT-MACs) [7, 37] as linearly homomorphic commitment

Functionality FCPZK

FCPZK, parameterized by a field F, proceeds as follows, running with a

prover P, a verifier V , and an adversary S:
Commitments. On receiving (Commit, cid, 𝑥) from P where (a) there

is no recorded tuple (cid, ·) , and (b) 𝑥 ∈ F: Record tuple (cid, 𝑥) and
send (commit, cid) to V and S.
Linear Combination. On receiving (Linear, cid, cid1, . . . , cid𝑘 , 𝑐0,
𝑐1, . . . , 𝑐𝑘) from P where (a) there is no recorded tuple (cid, ·) , (b)
each cid𝑖∈ [𝑘] has a recorded tuple, and (c) 𝑐0, . . . , 𝑐𝑘 ∈ F:

(1) Fetch recorded (cid1, 𝑥1), . . . , (cid𝑘 , 𝑥𝑘) .
(2) Compute 𝑥 := 𝑐0 + 𝑐1𝑥1 + · · · + 𝑐𝑘𝑥𝑘 . Record (cid, 𝑥) .
(3) Send (linear, cid, cid1, . . . , cid𝑘 , 𝑐0, . . . , 𝑐𝑘) to V , S.

Open. On receiving (Open, cid) from P where cid has a recorded tuple,

fetch (cid, 𝑥) , send (open, cid, 𝑥) to V and S.
Check. On receiving (Check, C, cid1, . . . , cid𝑛) from P where (a) C :

F(𝑛) → F(∗) is an arithmetic circuit, and (b) each cid𝑖∈ [𝑛] has a

recorded tuple: Fetch tuples (cid1, 𝑥1), . . . , (cid𝑛, 𝑥𝑛) and compute

𝒚 := C(𝑥1, . . . , 𝑥𝑛) . If 𝒚 = 0
(∗)

, send (check, C, cid, true) to V and

S; else send (check, C, cid, false) to V and S.

Figure 2: Ideal functionality for commit-and-prove ZK. Each

committed element is associated with a unique identifier cid.
Linear operation allows P to generate a new commitment (associ-

ated with cid) via a public affine function over committed elements.

schemes over F. We describe the computation/communication of

VOLE-based ZK (via a formal version of Lemma 1) in [44].

Lemma 1 (VOLE-based ZK, Informal). There exists a protocol
ΠCPZK that UC-realizes FCPZK in the FVOLE-hybrid model (see [44])
with O(|C|) comp./comm. costs per ZKP over a circuit C.

Testing vector equality. We apply the Swchartz-Zippel lemma as

a central tool to prove the equality of two (committed) vectors.

Lemma 2 (Vector Eqality). Consider vectors 𝒂, 𝒃 ∈ F𝑛 . If 𝒂 ≠ 𝒃 ,
then for 𝜒 ∈

$
F:

Pr[⟨(1, 𝜒, . . . , 𝜒𝑛−1), 𝒂⟩ = ⟨(1, 𝜒, . . . , 𝜒𝑛−1), 𝒃⟩] ≤ 𝑛

|F|
Specifically, suppose the parties hold committed vectors com(𝒂)

and com(𝒃), and P wishes to convince V that 𝒂 is equal to 𝒃 .
Lemma 2 states that it suffices forP to prove that ⟨(1, 𝜒, . . . 𝜒𝑛−1), 𝒂⟩
= ⟨(1, 𝜒, . . . , 𝜒𝑛−1), 𝒃⟩, where 𝜒 is some uniform challenge sampled

byV . Note that zero-end vectors of different lengths (e.g., 𝒂 = (1, 1)
and 𝒃 = (1, 1, 0)) are not captured by Lemma 2. On the other hand, it

does extend to non-zero-end vectors of potentially different lengths

(Corollary 1). Looking ahead, we need Corollary 1 because V does

not know the boundaries of instructions/subvectors whose equality

is proven by P in the tight ZK CPU.

Corollary 1. Consider vectors 𝒂 ∈ F𝑛𝑎 , 𝒃 ∈ F𝑛𝑏 where 𝑎[𝑛𝑎],
𝑏 [𝑛𝑏] ≠ 0. If 𝒂 ≠ 𝒃 , for 𝜒 ∈

$
F:

Pr[⟨(1, 𝜒, . . . , 𝜒𝑛𝑎−1), 𝒂⟩ = ⟨(1, 𝜒, . . . , 𝜒𝑛𝑏−1), 𝒃⟩] ≤ 𝑛

|F|
where 𝑛 ≜ max{𝑛𝑎, 𝑛𝑏 } − 1.

3098

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Functionality FCPZK-ROM

FCPZK-ROM, parameterized by a field F, proceeds as follows, running

with a prover P, a verifier V and an adversary S:
CPZK

The functionality supports all instructions of FCPZK.
Read-Only Memory

Initialize ROM. On receiving (InitROM, cid1, . . . , cid𝑛) from P where

each cid𝑖∈ [𝑛] was recorded: Fetch (cid1, 𝑥1), . . . , (cid𝑛, 𝑥𝑛) , create a

key-value store 𝑋 where

𝑋 [1] := 𝑥1, · · · , 𝑋 [𝑛] := 𝑥𝑛

and set 𝑓rom := honest. Send (initrom, cid) to V and S. Ignore sub-
sequent calls to InitROM.

ReadROM.On receiving (ReadROM, cid1, . . . , cid𝑚, 𝑦1, . . . , 𝑦𝑚, cid (id)
1

,

. . . , cid (id)𝑚) from P where

(1) InitROM has been executed; and

(2) there is no recorded tuple for each (cid𝑖∈ [𝑚] , ·) ; and
(3) each 𝑦𝑖∈ [𝑚] ∈ F; and
(4) each cid (id)

𝑖∈ [𝑚] was recorded.

Fetch (cid (id)
1

, id1), . . . , (cid (id)𝑚 , id𝑚) . Record (cid1, 𝑦1), . . . , (cid𝑚,

𝑦𝑚) . If P is honest, ∀𝑖 ∈ [𝑚], 𝑋 [id𝑖] = 𝑦𝑖 where id𝑖 ∈ [𝑛]. If P
is corrupted, set 𝑓rom := cheating when

(1) there exists an id𝑖∈ [𝑚] ∉ [𝑛], where 𝑛 is the size of 𝑋 ; or

(2) there exists an 𝑖 ∈ [𝑚] such that 𝑋 [id𝑖] ≠ 𝑦𝑖 .

Send (readrom, cid, cid (id)) to V , S. Ignore subsequent ReadROM calls.
Check ROM. On receiving (CheckROM) from P where InitROM and

ReadROMwere executed: If P is corrupted and S sends Cheat, set 𝑓rom :=

cheating. Send (checkrom, 𝑓rom) to V and S.

Figure 3: Ideal functionality for commit-and-prove zero-
knowledge allowing proofs that support a read-onlymemory.
P specifies the result of the ReadROM operation. However, if P∗

provides an incorrect result, the flag 𝑓rom will be set to cheating.

2.4 Zero-Knowledge Read-Only Memory
Our protocol uses an extended version of FCPZK where parties can

access a ZK ROM (e.g., [15, 20, 42]). Namely, ZK ROM allows P to

specify 𝑛 commitments to initialize a key-value store data structure

(K-V store) indexed by the key 𝑘 ∈ [𝑛]. Subsequently, given com(i),
where i ∈ [𝑛], P andV generate a new commitment com(𝑥) where
𝑥 is the i-th committed value in the K-V store. Our protocol uses a re-

stricted (batch-read) version of ZK ROM formalized in Figure 3. I.e.,

P is allowed a single ReadROM call, where P specifies an arbitrarily

long vector of ROM indices, possibly with repetitions. This will al-

low P to load a sequence of hashes corresponding to the execution

path (note, we later introduce a stronger novel primitive, unbal-

anced ROM, to load the concatenation of variable-length instruc-

tion vectors, realized in the FCPZK-ROM-hybrid model). [42] shows

the state-of-the-art realization of FCPZK-ROM in the FCPZK-hybrid
model (see Lemma 3, the full version includes formal version).

Lemma 3 (ZK ROM, informal). Let 𝑛 = poly(𝜆),𝑚 = Ω(𝑛).
There exists a protocol ΠCPZK-ROM that UC-emulates FCPZK-ROM
(Figure 3) in the FCPZK-hybrid model (Figure 2) with amortized O(1)
comp./comm. costs per element read.

2.5 ZKP via Topology Matrices
Consider a circuit C with 𝑛in inputs and 𝑛× multiplication gates.

Note that a ZKP for C can be separated into two parts: (1) multipli-

cation gates and (2) linear constraints. Suppose that P commits to

its input com(in1), . . . , com(in𝑛in), and also commits to the values

on the 3𝑛× wires associated with C’s 𝑛× multiplication gates. I.e., P
commits to com(ℓ1), . . . , com(ℓ𝑛×), corresponding to the multipli-

cation left input wires, to com(𝑟1), . . . , com(𝑟𝑛×), corresponding to
the right input wires, and to com(𝑜1), . . . , com(𝑜𝑛×), corresponding
to the output wires. The full vector of P’s input and the multiplica-

tion wires (with a constant 1) is called P’s extended witness.
Now, P first proves to V that ℓ ⊙ 𝒓 = 𝒐, demonstrating that

its extended witness satisfies multiplicative constraints. Then, it

proves that in, ℓ, 𝒓 , 𝒐 indeed respect the linear constraints imposed

by circuit C. Note that since all multiplication gates were handled in

the first step, P simply needs to show its extended witness respects

a particular linear relation – i.e. a matrix 𝑴 . This public matrix 𝑴
is induced by the structure of the circuit C, and [43] refers to 𝑴 as

a topology matrix. Namely, P proves the following:

𝑴 × (1, 𝒊𝒏, ℓ, 𝒓, 𝒐)𝑇 = 0 (1)

Since 𝒊𝒏, ℓ, 𝒓, 𝒐 are committed, this equality check can be handled

byV’s sending of a uniform challenge 𝜒 ∈
$
Fwhere P uses FCPZK

to construct a commitment to

(1, 𝜒, . . . , 𝜒2𝑛×) ×𝑴︸ ︷︷ ︸
topology vector

× (1, 𝒊𝒏, ℓ, 𝒓, 𝒐)𝑇︸ ︷︷ ︸
extended witness

(2)

and then proves toV that this is a commitment to 0. Recall that 𝑴
is public, so once 𝜒 is fixed, both P andV know (1, . . . , 𝜒2𝑛×) ×𝑴
(called a topology vector). Thus, it suffices to checkwhether the inner

product between the topology vector and the extended witness

yields 0. Figure 4b shows an example topology matrix.

Proving batched disjunctions: Batchman [43]. The above para-

digm is an overkill if we only perform a ZKP for a single public

circuit. This is because it is worse than the state-of-the-art VOLE-

based CPZK (e.g.QuickSilver [41]), which only requires committing

in and 𝒐. However, this paradigm becomes useful when considering

a batch of disjunctions, as observed by Batchman [43].

In detail, Batchman [43] considers 𝐵 different circuits C1, . . . , C𝐵
of the same size. P wants to repeat the disjunctive proof 𝑅 times –

for each 𝑖 ∈ [𝑅], she proves that she knows some witness 𝒘𝑖 and

some index id𝑖 ∈ [𝐵] such that Cid𝑖 (𝒘𝑖) = 0. To achieve this, for the

𝑖-th repetition, P commits to her extended witness of only Cid𝑖 . V
then issues a uniform challenge 𝜒 to compress 𝐵 topology matrices

to 𝐵 topology vectors. The crucial step is that, for the 𝑖-th repetition,

P can commit to the id𝑖 -th topology vector. An extra mechanism

is needed to prevent P from committing to an arbitrary vector that

is not a topology vector, which can be built based on a ZK ROM

(storing and then loading vectors’ hashes). Finally, it suffices to

show that the inner product between the extended witness and the

topology vector is 0 for each repetition. Batchman can be viewed

as a non-tight ZK CPU (with extra constraints to support registers).

Note, topology matrices (combined with multiplication con-

straints) support efficient branching, and thus is a more convenient

program representation than, e.g., R1CS [4], for our setting.

3099

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

+

× ×

+

in1 in2 3

ℓ1 r1 ℓ2 r2

o1 o2

out

(a) The circuit

©­­­­«
0 1 0 −1 0 0 0 0 0

3 0 1 0 −1 0 0 0 0

0 0 1 0 0 −1 0 0 0

3 0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 1 1

ª®®®®¬
×

©­­­­­­­­­­­«

1

in1
in2
ℓ1
ℓ2
𝑟1
𝑟2
𝑜1
𝑜2

ª®®®®®®®®®®®¬
=

(
in1 − ℓ1, 3 + in2 − ℓ2, in2 − 𝑟1, 3 + in2 − 𝑟2, 𝑜1 + 𝑜2

)𝑇
= 0

(b) Original topology matrix

©­­­­«
1 0 0 0 0

0 1 0 0 0

0 1 3 0 0

0 1 3 0 0

0 0 0 1 1

ª®®®®¬
×

©­­­­«
in1
in2
1

𝑜1
𝑜2

ª®®®®¬
=

(
in1, in2, 3 + in2, 3 + in2, 𝑜1 + 𝑜2

)𝑇
=

(
ℓ1, 𝑟1, ℓ2, 𝑟2, 0

)𝑇
(c) Refined topology matrix

Figure 4: (a) An arithmetic circuit computing (in1 · in2) + (in2 + 3)2 and its (b) original and (c) refined topology matrix.

Functionality FZKCPU

FZKCPU runs with a prover P, a verifier V and an adversary S, and
is parameterized by a field F, an non-negative integer 𝑚, a positive

integer 𝐵 and 𝐵𝑚-instructions (Definition 1) C1, . . . , C𝐵 , an initial state

st (0) ∈ F𝑚 and a final state st (final) ∈ F𝑚 . For each 𝑖 ∈ [𝐵], let𝑚-

instruction C𝑖 have 𝑛 (𝑖)
in inputs and 𝑛

(𝑖)
× multiplication gates. Note that

𝑛
(𝑖∈ [𝐵])
in ≥ 𝑚. W.l.o.g., for each 𝑖 ∈ [𝐵], assume𝑛

(𝑖)
in −𝑚 = 𝑛

(𝑖)
× +𝑚+2

and denote this value as 𝑛 (𝑖)
. FZKCPU proceeds as follows:

On receiving (Prove, 𝜏, 𝑖1, . . . , 𝑖𝜏 , in1, . . . , in𝜏) from P where (1) 𝜏 is

a positive integer (i.e., the private steps), (2) 𝑖 𝑗 ∈ [𝜏] ∈ [𝐵], and (3) each

in𝑗 ∈ [𝜏] ∈ F𝑛
(𝑖 𝑗)
in −𝑚

(i.e., the inputs except registers), proceed as follows:

(1) Set st := st (0) and f := true. For each 𝑗 ∈ [𝜏] in order:

(a) Let st′ ∥ 𝑓 ′ := C𝑖 𝑗 (st ∥in𝑗) where st′ ∈ F𝑚, 𝑓 ′ ∈ F. I.e., st′
is the updated registers and 𝑓 ′ is the checking output.

(b) Set st := st′ . If 𝑓 ′ ≠ 0 (i.e., invalid checking), set f := false.

(2) If st ≠ st (final) (i.e., incorrect final state), set f := false.

(3) Let 𝑛 ≜ 𝑛 (𝑖1) + · · · + 𝑛 (𝑖𝜏)
. If P is corrupted, S can send

(Cheat, 𝑛′) where 𝑛′ ∈ Z+: Set 𝑓 := false, 𝑛 := 𝑛′
.

(4) Send (prove, 𝑓 , 𝑛) to V and S.

Figure 5: Ideal functionality for a tight ZK CPU.

3 Our Target Functionality: FZKCPU

We define the functionality of a tight ZK CPU realized by our

protocol. To define a ZK CPU over F, we need to specify: (1) 𝐵 ∈ Z+
denotes the number of instructions; (2)𝑚 ∈ Z+ denotes the number

of registers; and (3) each instruction (see Definition 1) is defined as

a circuit (over F) mapping ≥ 𝑚 values to𝑚 + 1 values.

Definition 1 (Instruction). An instruction is a circuit C :

F𝑛in → F𝑚+1 where 𝑛in ≥ 𝑚. In particular, we consider standard
fan-in 2 circuits over F with addition and multiplication gates. We
call an instruction C : F𝑛in → F𝑚+1 a𝑚-instruction, where the first
𝑚 output wires of C’s capture the updated CPU registers, and the last
wire is a checking output (0 in a valid execution).

In a tight ZK CPU execution, P and V agree on the initial/final

state of the 𝑚 registers (called the initial/final state), where P
demonstrates her ability to execute the initial state to the final

state by a sequence of (potentially repeatedly) instructions. We

formalize this functionality in Figure 5 with the following remarks:

(1) For each instruction C (𝑖)
with 𝑛

(𝑖)
× multiplications, 𝑛

(𝑖)
in in-

puts, and𝑚 registers, the size of this instruction is defined

as 𝑛 (𝑖) = 𝑛
(𝑖)
in −𝑚 = 𝑛

(𝑖)
× +𝑚 + 2. Essentially, 𝑛 (𝑖) reflects the

number of the multiplication gates in C (𝑖)
. We note that our

protocol introduces𝑚 + 2 extra multiplication gates, which

are used to constrain𝑚 input registers, the constant 1 input,

and the checking output. The equality can be enforced by

simply padding the instruction with dummy inputs or mul-

tiplications. Looking ahead, this equality ensures that the

total execution path length hides the executed instructions.

(2) FZKCPU reveals 𝑛 – the total runtime – toV . Prior non-tight

ZK CPUs achieve a similar functionality where V learns

the number of executed instructions 𝜏 . We remark that this

implies that V cannot learn 𝜏 directly in the tight ZK CPU.

(3) In Figure 5, P arbitrarily selects which instructions to ex-

ecute. In some use cases (e.g., when emulating real-world

CPUs), P’s chosen instructions should be constrained by

the current register state. For example, a program counter

register might dictate which instruction runs next. Such con-

straints can be captured by each instruction’s checking out-

put wire, which must be 0 in a valid proof (see Sub-step 1b).

(4) FZKCPU only supports limited state (i.e., up to𝑚 registers)

to be passed between instructions. Perhaps surprisingly, we

show that by introducing 5 special registers and 2 extra

rounds, our protocol can natively support a large (poly-size

in 𝜆) read-write random access memory (see Section 6.2).

4 Technical Overview
In this section, we provide a technical overview of our tight ZK CPU

protocol. We refer the reader to Section 1.3 for a high-level intuition.

The main steps to achieve our target ideal functionality FZKCPU
(Figure 5) are outlined as follows.

FCPZK-ROM
Sections 4.4 and 5

=⇒ FCPZK-UROM
Sections 4.3 and 5

=⇒ FZKCPU

4.1 Boundary Strings and Helper Notation
Recall our discussion from Section 1.3 regarding a 0-1 vector of

field elements used by our protocol, denoted as a boundary string.

3100

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

This section formally defines the boundary strings and introduces

useful notations for demonstrating how these strings will be used.

For a vector 𝒑 ∈ F𝑛 where 𝑛 ∈ Z+, we say that 𝒑 is a boundary
string if and only if 𝒑 ∈ {0, 1}𝑛−1∥1. We note that it is efficient to

check whether com(𝒑) commits to a valid boundary string. Namely,

given com(𝒑),P opens 𝑝𝑛 to prove it is 1, andP proves𝒑⊙(1−𝒑) =
0 (i.e., each 𝑝𝑖∈[𝑛] is either 0 or 1).

We use HW(𝒑) to denote the Hamming weight of a boundary
string. I.e., the number of ones in𝒑.We now introduce two functions

Partition and Filter that we use as analysis tools. We emphasize

that we never run these functions inside ZK.

Partition. Consider a length-𝑛 boundary string 𝒑. 𝒑 specifies a

partition of a length-𝑛 vector 𝒗 into HW(𝒑) subvectors. We define

a function Partition:

𝒑 = (

𝑛1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛2︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛3︷ ︸︸ ︷
0, . . . , 0, 1, . . .), 𝒗 ∈ F𝑛

⇒Partition(𝒑, 𝒗) =
(
𝒗 (1) , . . . , 𝒗 (HW(𝒑))

)
such that

𝒗 (1) = (𝑣1, . . . , 𝑣𝑛1
), 𝒗 (2) = (𝑣𝑛1+1, . . . , 𝑣𝑛1+𝑛2

), · · ·

Filter. A length-𝑛 boundary string 𝒑 also specifies a way to

filter a length-𝑛 vector 𝒗 into a length-HW(𝒑) vector. We define a

function Filter:

𝒑 = (

𝑛1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛2︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛3︷ ︸︸ ︷
0, . . . , 0, 1, . . .), 𝒗 ∈ F𝑛

⇒Filter(𝒑, 𝒗) = (𝑣𝑛1
, 𝑣𝑛1+𝑛2

, 𝑣𝑛1+𝑛2+𝑛3
, . . . , 𝑣𝑛)

Expanding random challenges. In our protocol, V will issue ran-

dom challenges, which will be composed with P’s chosen boundary

string. We consider two ways to compose these:

(1) For some public challenge 𝜒 ∈ F, let 𝑠1 ≜ 1, and for each

𝑖 ∈ [𝑛 − 1] in order, let 𝑠𝑖+1 := 𝑠𝑖 (1 − 𝑝𝑖) + 𝜒𝑖𝑝𝑖 . That is,

𝒑 = (

𝑛1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛2︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒𝒔 = (1, . . . , 1︸ ︷︷ ︸
𝑛1

, 𝜒𝑛1 , . . . , 𝜒𝑛1︸ ︷︷ ︸
𝑛2

, 𝜒𝑛1+𝑛2 , . . . , 𝜒𝑛1+𝑛2︸ ︷︷ ︸
𝑛3

, . . .)

We denote this procedure by 𝒔 ≜ Expand
1
(𝒑, 𝜒).

(2) For some public challenge 𝛾 ∈ F, let 𝑠1 ≜ 1, for each 𝑖 ∈ [𝑛 − 1]
in order, let 𝑠𝑖+1 := 𝛾𝑠𝑖 (1 − 𝑝𝑖) + 𝑝𝑖 . That is,

𝒑 = (

𝑛1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛2︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒𝒔 = (1, 𝛾, . . . , 𝛾𝑛1−1, 1, 𝛾, . . . , 𝛾𝑛2−1, 1, 𝛾, . . . , 𝛾𝑛3−1, . . .)

We denote this procedure by 𝒔 ≜ Expand
2
(𝒑, 𝛾).

Starting from com(𝒑), we can compute commitments to the above

compositions (i.e., com(𝒔)) each via a circuit with 𝑛 − 1 MULTs.

4.2 More Powerful Topology Matrices
This section includes how we adjust and optimize the definitions

of the topology matrices (discussed in Section 2.5) for our setting.

We first introduce a ≈ 2× optimization to the topology ma-

trix/vector of [43] (see Figure 4c). Note that the order of the multi-

plication inputs in the [43] topologymatrix is fixed (e.g., in Figure 4b,

this order is ℓ1, ℓ2, 𝑟1, 𝑟2, 0). Based on this observation, there is no

need to include the constraints of these fixed order wires internally

in the topology matrix (see Figure 4c, refined topology), reducing

its size in roughly two and achieving corresponding improvement.

However, neither the topology matrix format of [43] nor the

above improvement are suited to our setting because their verifier

knows the instruction boundaries, and hence, explicit routing of

registers and other wires into instruction entry points is allowed.

We must hide this topology fromV . To facilitate this, we further

rearrange the topology matrices of instructions of our ZK CPU

(Figure 5). In particular, constants 0 and 1 and instruction (register

or non-register) inputs are not processed in a distinguished manner

but rather treated like outputs of regular multiplication gates. (We

unify constant wires, input, andmultiplication gates into a universal

gate.) Formally, we use the following topology matrix equation:

𝑴 × (in1, 𝑜1, . . . , in𝑛, 𝑜𝑛)𝑇 = (ℓ1, 𝑟1, . . . , ℓ𝑛, 𝑟𝑛)𝑇 (3)

Here, 𝑛 reflects the size of a𝑚-instruction as a circuit C and we

define 𝑛 = 𝑛in −𝑚 = 𝑛× +𝑚 + 2 (see Section 3 especially remark 1).

Looking ahead, P will privately order committed ℓ ⊙ 𝒓 = 𝒐, starting
from 1 · 1 = 1 (to capture 1 in the extended witness), followed by

𝑚 registers, then 𝑛× multiplication tuples in C, and ending with

1 · 0 = 0 (to capture the checking output).

Notice that in Equation (3), P’s extended witness (or, rather, its

topology meta information) is now compositional in the sense that

if we were to simply concatenate (committed) vectors from two

different instructions, we would obtain new vectors of the same

form. As wewill see next (Section 4.3), a similar form of composition

applies to topology matrices (and hence topology vectors), and this

enables us to hide from V the boundaries between instructions.

4.3 Reducing a Tight ZK CPU to a ZK UROM
This section overviews how a tight ZK CPU can be reduced to a

so-called ZK UROM functionality. We consider a tight ZK CPU with

𝐵 instructions C1, . . . , C𝐵 , each of (potentially) different size, where

P wishes to execute C1 followed by C2 (i.e., C2 ◦ C1), as an example.

4.3.1 Special Case: No Registers. For simplicity, let us start by

considering a special case where our CPU has no registers for

passing data between instructions (i.e.,𝑚 = 0). Recall that, w.l.o.g,

for each C𝑖∈[𝐵] , we assume 𝑛 (𝑖) = 𝑛
(𝑖)
in = 𝑛

(𝑖)
× + 2 where C𝑖 has 𝑛 (𝑖)in

inputs, 𝑛
(𝑖)
× multiplications.

Suppose P wishes to first execute C1, then execute C2.V should

only learn 𝑛 = 𝑛 (1) +𝑛 (2) , andV learns neither how many instruc-

tions, nor which instructions are executed (unless such information

is implied by 𝑛). Now, imagine a larger circuit C that expresses the

composition 𝐶2 ◦𝐶1. In particular, C can be described by simply

concatenating the gate-by-gate description of C1 and C2 and ap-

propriately shifting the names (indexes) of C2’s gates and wires by

𝑛 (1) . A key observation is that the topology matrix for C can be

constructed by combining the topology matrices for C1 and C2:

𝑴 =

(
𝑴 (1) 0
0 𝑴 (2)

)
∈ F2𝑛×2𝑛, 𝑛 ≜ 𝑛 (1) + 𝑛 (2) (4)

where 𝑴 (1)
(resp. 𝑴 (2)

) is the topology matrix induced by C1
(resp. C2). Our approach hides C (and 𝑴) from V , even though

3101

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

each𝑴 (𝑖∈[𝐵])
and 𝑛 is public. For this simple case, our proof would

proceed as follows:

(1) P commits to 𝑛 inputs 𝒊𝒏 and 𝑛 MULT tuples ℓ, 𝒓, 𝒐 in the

order described by Equation (3) (and proves ℓ ⊙ 𝒓 = 𝒐).
(2) P proves that the first MULT output of both subcircuits is 1

and that both circuits check to 0:

𝑜1 = 𝑜𝑛 (1)+1 = 1 and 𝑜𝑛 (1) = 𝑜𝑛 (2) = 0

(3) P proves in ZK that the committed values and𝑴 satisfy Equa-

tion (3). To achieve this,V issues a uniform challenge 𝜒 and

P proves in ZK that:

topology vector 𝒄︷ ︸︸ ︷
(1, 𝜒, . . . , 𝜒2𝑛−1) ×𝑴 ×

committed︷ ︸︸ ︷
(in1, 𝑜1, . . . , in𝑛, 𝑜𝑛)𝑇

= (1, 𝜒, . . . , 𝜒2𝑛−1)︸ ︷︷ ︸
public

× (ℓ1, 𝑟1, . . . , ℓ𝑛, 𝑟𝑛)𝑇︸ ︷︷ ︸
committed

To achieve the above steps while hiding C (and 𝑴), P commits to

two additional vectors. The first is an appropriate boundary string

(see Section 4.1) 𝒑:

𝒑 ≜

𝑛 (1)−1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛 (2)−1︷ ︸︸ ︷
0, . . . , 0, 1

The second vector id places the index of each branch at that branch’s

boundary, and elsewhere P fills the vector with any values in [𝐵]:

id ≜

𝑛 (1)−1︷ ︸︸ ︷
any values in [𝐵], 1,

𝑛 (2)−1︷ ︸︸ ︷
any values in [𝐵], 2

Looking ahead, these branch IDs will be used as indices to load

instruction hashes from a ZK ROM (entries not on boundaries

are dummy indices). The definition of id implies that Filter(𝒑, id)
outputs a vector of branch IDs (see Section 4.1 for Filter’s definition).
Informally, 𝒑 and id jointly form a commitment to a particular

execution path.

At a high level, our protocol leverages 𝒑 and id to cheaply ex-

press Steps 2 and 3 as ZK constraints. In detail:

(1) Step 1 only depends on𝑛 and is independent of𝑴 .P commits

to her inputs and to well-formed MULT tuples.

(2) Step 2 can be performed by checking the constraints:

(a) 𝒑 ∈ {0, 1}𝑛−1∥1. I.e., 𝒑 is a boundary string.

(b) If 𝑝𝑖∈[𝑛] = 1, 𝑜𝑖 must be 0.

(c) 𝑜1 = 1, and if 𝑝𝑖∈[𝑛−1] = 1, 𝑜𝑖+1 must be 1.

The above constraints can be checked very efficiently.

(3) To perform Step 3,V cannot construct the topology vector 𝒄 ,
as𝑴 is private. Instead, our protocol requires that P commits
to 𝒄 . Of course, P might attempt to cheat, so we need extra

checks that ensure com(𝒄) is properly constructed and is

consistent with 𝒑 and id. We will soon show how this can be

achieved via a so-called ZK unbalanced ROM (Section 4.4).

For now, simply assume that P commits to the vector:

𝒄 =(1, 𝜒, . . . , 𝜒2𝑛−1) ×𝑴

Crucially, private 𝑴 has a special structure – it has square

matrices on the diagonal and 0s elsewhere. In particular,

these square matrices are determined and ordered by the

private execution path. I.e., it (in order) includes 𝑴 (𝑗)
for

each 𝑗 ∈ Filter(𝒑, id) in order. Note that each 𝑴 (𝑖∈[𝐵])
is

public. Finally, once we have com(𝒄), it suffices to show that:

⟨𝒄, (in1, 𝑜1, . . . , in𝑛, 𝑜𝑛)⟩ = ⟨(1, . . . , 𝜒2𝑛−1), (ℓ1, 𝑟1, . . . , ℓ𝑛, 𝑟𝑛)⟩

4.3.2 Handling Constant 1. Recall that the first MULT gate in each

instruction should output 1 defined as 1·1 = 1, enabling that instruc-

tion to manipulate the constant 1. As a remark, it is surprisingly

difficult to incorporate constants in our approach, because our con-

straint systems are merely linear (and not affine) over F. Sub-step 2c
forces that the output of the first MULT gate is 1. Here, we show an

optimized way to ensure that the output of this MULT is 1 for free
by directly constraining its inputs. Our idea is to pass the constant

1 from one instruction to the next and, looking forward, this same

handling will be used to enable the passing of𝑚 registers.

A naïve (failing) attempt to pass a 1 into an instruction would be

to have a fixed wire of C carrying 1, to which each instruction can

refer. However, we are working with a fixed instruction set (and we

check hashes of executed instructions against the corresponding

set of hashes). Informally, we could make an instruction reference a

fixedwire in C, outside of itself. However, due to our use of topology
matrices, under the hood (i.e., in the supporting matrix algebra)

such an instruction will access this wire via an offset to its own

position on the execution path, resulting in a unique instruction
(topology matrix) hash. Such an instruction cannot be checked

against the fixed instruction set (IS).

Thus, our instructions cannot refer to wires by their absolute

position, but they can refer to wires via a fixed offset relative to

their own position on the execution path. Indeed, our solution, at

the high level, is for each instruction to “push forward” a 1 wire

to the next instruction. This is possible because each instruction

knows its own length, and can set up the corresponding constraint

for the next instruction. Each instruction C𝑖∈[𝐵] has a fixed offset
to access (enforce) input constraints (via left/right wires of MULTs)

of the next instruction. Thus, C𝑖∈[𝐵] ’s topology matrix (and hence

hash) will be the same anywhere on the execution path. The very

first instruction can pick up the 1 from a designated wire of C.
This cleanly translates into our matrix representation. Let us go

through our concrete example of P proving a circuit C consisting

of C1 followed by C2. Formally, the entire proof will be based on a

(slightly) updated equation:

𝑴 × (1, in1, 𝑜1, . . . , in𝑛, 𝑜𝑛)𝑇
= (ℓ1, 𝑟1, . . . , ℓ𝑛, 𝑟𝑛, 1, 1)𝑇

��������� 𝑴 ≜

©­­­­«
1 0 0
1 0 0
0 𝑴 (1)

∗ 0
0 0 𝑴 (2)

∗

ª®®®®¬
where each 𝑴 (𝑖∈[𝐵])

∗ =

©­­­­­«
𝑴 (𝑖) (3)

· · ·
𝑴 (𝑖) (2𝑛 (𝑖))
0 1 0 · · ·
0 1 0 · · ·

ª®®®®®¬
is public. (Here 𝑴 (𝑖∈[𝐵])

∗

omits the first two constraints of 𝑴 (𝑖∈[𝐵])
, which define left/right

wires of a MULT generating 1. As a complement, the last two rows

of 𝑴 (𝑖∈[𝐵])
∗ constrain the next instruction’s left/right wires of the

MULT generating 1.
2
) The IS will consist of 𝐵 instructions𝑴 (𝑖∈[𝐵])

∗ .

2
The firstMULT ℓ1 ·𝑟1 = 𝑜1 must be 1·1 = 1 as ℓ1 = 𝑟1 = ⟨ (1, in1, . . .), (1, 0, . . .) ⟩ = 1.

3102

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Crucially, while𝑴 is private, the first two rows of𝑴 are fixed and

public. We need to construct the vector commitment of (1, 𝜒, . . . ,
𝜒2𝑛+1) × 𝑴 = (1 + 𝜒)∥(𝜒2 (1, . . . , 𝜒2𝑛−1) × 𝑴∗), where 𝑴∗ =(
𝑴 (1)

∗ 0
0 𝑴 (2)

∗

)
. Hence, it suffices to construct the commitments of

(1, . . . , 𝜒2𝑛−1)×𝑴∗, the problem discussed in Step 3 of Section 4.3.1

and postponed to Section 4.3.4.

Similarly to our importing a 1 = 1 · 1 into an instruction, we will

import registers via reg = 1 · reg:

4.3.3 Supporting Registers. Extending our idea of passing 1, we sup-
port register passing between two adjacently executed instructions.

We view each register as a MULT, where the previous instruction

defines MULT’s left/right wires. The translation of this into the

matrix representation is similar to our handling of 1·1 = 1. Consider

the case with a single register as a simple example (the order of

gates follows Section 4.3.1). We can (re)define the public matrix

𝑴 (𝑖) ≜

©­­­­­­­­­­­­­­­­­­«

define ℓ3
define 𝑟3

· · ·
define ℓ

𝑛
(𝑖)
× +2

define 𝑟
𝑛
(𝑖)
× +2

0 1 0 · · · (define 1)
define checking output

0 1 0 · · · (define 1)
0 1 0 · · · (define 1)
0 1 0 · · · (define 1)
define first register

ª®®®®®®®®®®®®®®®®®®¬

∈ F2𝑛
(𝑖)×2𝑛 (𝑖)

(5)

for each 𝑖 ∈ [𝐵]. Here, the last two rows of𝑴 (𝑖)
set the first register

(as inputs to a MULT of the next instruction). The prior two rows

similarly set a 1 for the next instruction.

Now, suppose P wants to prove the execution of C1 followed by

C2, where the register is initialized to 𝑥 as C’s input and stores 𝑦 as

C’s output (𝑥,𝑦 are public). P can commit 𝑛 = 𝑛 (1) + 𝑛 (2) inputs
and MULT tuples and show:

𝑴 × (1, 𝑥, in1, 𝑜1, . . . , in𝑛, 𝑜𝑛)𝑇
= (ℓ1, 𝑟1, . . . , ℓ𝑛, 𝑟𝑛, 1, 1, 1, 𝑦)𝑇

������������
𝑴 ≜

©­­­­­­­«

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 𝑴 (1) 0
0 0 0 𝑴 (2)

ª®®®®®®®¬
𝑴 is private butP andV can obtain the commitment of (1, 𝜒, 𝜒2, . . .)×

𝑴 by constructing the commitment of (1, . . . , 𝜒2𝑛−1)×
(
𝑴 (1) 0
0 𝑴 (2)

)
(discussed next).

4.3.4 Committing to the Topology Vector. We now show howP and

V can construct com(𝒄), a crucial task postponed from Section 4.3.1.

The methodology applies to Sections 4.3.2 and 4.3.3. We explain

it on the special case of two instructions C2 ◦ C1; our discussion
applies generally. We exploit the following equality:

𝒄 =(1, 𝜒, . . . , 𝜒2𝑛−1) ×𝑴

=(1, . . . , 𝜒2𝑛
(1)−1) ×𝑴 (1) ∥(𝜒2𝑛

(1)
, . . . , 𝜒2𝑛

(1)+2𝑛 (2)−1) ×𝑴 (2)

=(1, . . . , 𝜒2𝑛
(1)−1) ×𝑴 (1) ∥𝜒2𝑛

(1)
· (1, . . . , 𝜒2𝑛

(2)−1) ×𝑴 (2)

=

©­­­­«
𝒂 ≜ (1, . . . , 1︸ ︷︷ ︸

2𝑛 (1)

,

2𝑛 (2)︷ ︸︸ ︷
𝜒2𝑛

(1)
, . . . , 𝜒2𝑛

(1)
)
ª®®®®¬
⊙

©­­­«𝒃 ≜ (1, 𝜒, . . . , 𝜒2𝑛
(1)−1︸ ︷︷ ︸

2𝑛 (1)

) ×𝑴 (1) ∥(1, 𝜒, . . . , 𝜒2𝑛
(2)−1︸ ︷︷ ︸

2𝑛 (2)

) ×𝑴 (2)
ª®®®¬

Hence, to construct com(𝒄), it suffices to construct com(𝒂) and
com(𝒃). Note, 𝒂 is a structured vector based on 𝜒 and 𝒑 (see Sec-

tion 4.1, Expand
1
). We only need to construct com(𝒃), and the

crucial observation is the following vectors are public:

∀𝑖 ∈ [𝐵], 𝒗 (𝑖) ≜ (1, 𝜒, . . . , 𝜒2𝑛
(𝑖)−1) ×𝑴 (𝑖)

The functionality we need is to “load” from unbalanced ROM then

“concatenate” 𝒗 (1) and 𝒗 (2) . This can be viewed as

(1) P and V agree on an unbalanced read-only memory (ROM)

storing (public) entries (1, 𝒗 (1)), . . . , (𝐵, 𝒗 (𝐵)).
(2) P and V load-concatenate 𝒗 (𝑖∈[𝐵]) s where the ordered in-

dexes are decided by Filter(𝒑, 𝒊𝒅).
Note that these vectors saved in ROM are randomized by V’s

uniform challenge sent after 𝒑 and id have been committed. As are

instructions, these vectors are of different lengths. We capture this

as a (more generic and novel) hybrid functionality ZK Unbalanced
ROM (ZK UROM) and include the overview in Section 4.4. Crucially,

the access cost of our ZK UROM is proportional to the length of the

data retrieved – this is needed to meet our tight efficiency budget.

4.4 ZK Non-Zero-End Unbalanced ROM
This section overviews how to reduce a ZK UROM to a ZK ROM.

We observe that it suffices to design a ZK UROM supporting only

non-zero-end vectors. This simplifies our task, enabling concise

soundness checks based on Corollary 1, and can always be achieved,

e.g., by padding. (We later show that padding is not needed for us.)

In ZK non-zero-end UROM, P and V agree on a set of key-

value tuples (1, 𝒗 (1)), . . . , (𝐵, 𝒗 (𝐵)), where 𝒗 (𝑖∈[𝐵]) are non-zero-
end vectors in F that can have different lengths. The objective is
allowing P to commit to a vector 𝒗, a concatenation of several

𝒗 (𝑖∈[𝐵]) s, e.g., 𝒗 ≜ 𝒗 (1) ∥𝒗 (2) ∥𝒗 (1) . Crucially, V should only learn

𝑛 ≜ |𝒗 | and be convinced that 𝒗 is a concatenation of vectors from

UROM. Prior work (e.g., [42], on which we build) only considers

ZK ROM over vectors of equal length (see Section 2.4).

Our ZK UROM protocol works in the commit-and-prove para-

digm. I.e., we require P to directly commit to 𝒗 and prove in ZK

that 𝒗 is a valid concatenation. To support this proof, P addition-

ally commits how she wants to partition 𝒗. That is, P commits a

length-𝑛 boundary string 𝒑 and a length-𝑛 vector 𝒊𝒅 ∈ [𝐵]𝑛 such

that for each 𝑥 ∈ Filter(𝒑, id) and 𝒚 ∈ Partition(𝒑, 𝒗) pair (total
HW(𝒑) pairs, unknown to V) in sequence, 𝒚 = 𝒗 (𝑥) .

To begin with, consider a simplified single-read task: P commits

a vector 𝒘 and a single index 𝑡 and wants to prove that 𝒘 = 𝒗 (𝑡) .
This can be checked by V issuing a uniform challenge 𝛾 ∈ F
where parties agree on another balanced ROM storing K-V tuples:

3103

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

(1,mac (1)), . . . , (𝐵,mac (𝐵)) where mac (𝑖) ≜ (1, 𝛾, 𝛾2, . . .) × 𝒗 (𝑖) ∈
F for each 𝑖 ∈ [𝐵]. Now, by accessing the ZK ROM (see Section 2.4),

parties convert com(𝑡) into com(mac (𝑡)). Then, it suffices to show:

(1) last(𝒘) ≠ 0. This can be proved by requiring P to commit a

value inv and show that last(𝒘) · inv = 1.

(2) ⟨(1, 𝛾, 𝛾2, . . .),𝒘⟩ = mac (𝑡) . This can be proved by opening

com(⟨(1, 𝛾, 𝛾2, . . .),𝒘⟩ −mac (𝑡)) (which should be 0). Note

that 𝛾 is public and parties hold com(𝒘), com(mac (𝑡)).
Soundness is reduced to Corollary 1 as P is prevented by Step 1

from appending the returned vector with zeros.

Our ZK UROM protocol generalizes the above idea to 𝒗 with the

help of committed 𝒑 and 𝒊𝒅. In particular, since 𝒑 already marks

where each subvector ends, and the corresponding committed 𝒊𝒅
includes the index of each subvector, we can perform the above

checks only at the position where 𝑝𝑖 = 1. That is, P andV perform

a check for each position, but checks in positions where 𝑝𝑖 = 0 are

dummy. Formalizing the above, we outline our protocol:

(1) V issues a uniform challenge𝛾 ∈ Fwhere P andV agree on

another balanced ROM storing K-V tuples {(𝑖,mac (𝑖))}𝑖∈[𝐵]
where (public) mac (𝑖) ≜ (1, 𝛾, 𝛾2, . . .) × 𝒗 (𝑖) for each 𝑖 ∈ [𝐵].

(2) P andV generate committed “selected macs” com(smac)
by “reading” single-element ZK ROM (see Section 2.4) ini-

tialized by mac (1) , . . . ,mac (𝐵) at positions 𝒊𝒅, where each
smac𝑖∈[𝑛] = mac (id𝑖) . We remark that 𝒊𝒅 is fixed before 𝛾 .

(3) P and V generate commitment of the structured vector 𝒔
based on 𝛾 and 𝒑 via Expand

2
(see Section 4.1):

𝒑 = (

𝑛1︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛2︷ ︸︸ ︷
0, . . . , 0, 1,

𝑛3︷ ︸︸ ︷
0, . . . , 0, 1, . . .)

⇒𝒔 = (1, 𝛾, . . . , 𝛾𝑛1−1, 1, 𝛾, . . . , 𝛾𝑛2−1, 1, 𝛾, . . . , 𝛾𝑛3−1, . . .)

(4) P proves that for each 𝑝𝑖∈[𝑛] = 1, it holds 𝑣𝑖 ≠ 0. (I.e.,

each segment ends non-zero.) This corresponds to the check

in Step 1 of the single-read task. This can be performed by

requiring P to commit to another length-𝑛 vector inv where

inv𝑖 = (𝑣𝑖)−1 if 𝑝𝑖 = 1; inv𝑖 = 0 otherwise

P then shows that inv ⊙ 𝒗 − 𝒑 = 0.
(5) P proves that for each 𝒂 ∈ Partition(𝒑, 𝒔), 𝒃 ∈ Partition(𝒑,

𝒗), 𝒄 ∈ Partition(𝒑, smac) (in order, total HW(𝒑) tuples),
⟨𝒂, 𝒃⟩ = last(𝒄). This corresponds to the check in Step 2 of

the single-read task. This can be performed by proving:

∀𝑖 ∈ [𝑛], 𝑝𝑖 · (⟨𝒔 [: 𝑖], 𝒗 [: 𝑖]⟩ − ⟨𝒑 [: 𝑖], smac[: 𝑖]⟩) = 0

Note, the above equality trivially holds for all 𝑝𝑖 = 0. More-

over, when 𝑝𝑖 is equal to 1, both ⟨𝒔 [: 𝑖], 𝒗 [: 𝑖]⟩ and ⟨𝒑 [:
𝑖], smac[: 𝑖]⟩ are accumulating the sum of macs used so far.

Importantly, P andV do not compute these sums for each

position separately, which incurs quadratic overhead. Rather,

they accumulate a running total, which is being checked at

each step. Thus, the total complexity of this check is linear.

4.4.1 Using ZK UROM with Topology Vectors. Recall, our protocol
for ZK CPU is reduced to a ZK UROM, where the data are the

instructions’ topology vectors. In the course of this reduction, P
and V generate commitments to 𝒑 and id (see Section 4.3). We

need these commitments for the operation of UROM as well. The

low-level format of these vectors is different from what UROM

needs: while the vectors, as described in Section 4.3 manage gates,
UROM needs to account for two wires for each of these gates. This

discrepancy is easily reconciled (by inserting 0 to 𝒑 and replicating

id), and we can work with a single copy of 𝒑 and id.
A more subtle issue is that each topology vector ends with 0.

This is because the last column of a topology matrix denotes the

contribution of the last output of the instruction to each wire. Note

that the last output represents the checking output of the instruc-

tion, which is not an input of any wire, resulting in the all-0 last

column of the topology matrix (ultimately producing the 0-end

topology vector). This does not fit the non-zero-end requirement!

While this can be resolved by appending 1, we resolve it more

efficiently as follows. Since the checking output in a valid instruc-

tion is 0, we simply add it into the instruction’s first (left) wire. This

does not change the function of the instruction, and guarantees

that the last column now has a single leading 1. This modification

will make each topology vector end with 1. Further, in our proof

we need to invert the last position of each topology vector; having

set it to 1 optimizes this task. Namely, the vector inv committed by

P in Step 4 is precisely the boundary string 𝒑.

5 Formalization
This section formalizes our approach. See Section 4 for a detailed

overview of our approach. Due to space constraints, we defer some

formalization to the appendices.

5.1 Ideal ZK Non-Zero-End UROM: FCPZK-UROM
We define the ideal functionality for CPZK with a single read-only

memory for unbalanced, non-zero-end vectors, denotedFCPZK-UROM
and presented in Figure 6. FCPZK-UROM is defined similarly to

FCPZK-ROM. The main difference is that FCPZK-UROM allows P
to initialize the UROMwith different-length vectors (via InitUROM).
Furthermore, FCPZK-UROM allows P to read a length-𝑛 vector 𝒅
from the UROM (via ReadUROM). Vector 𝒅 must partition into sub-

vectors where each subvector is a UROM entry. Before calling

ReadUROM, P can choose the content it wishes to read via SetProg.
This choice is encoded by length-𝑛 vectors 𝒑 and id, where 𝒑 is

the boundary string encoding how P wishes to partition 𝒅 and

Filter(𝒑, id) is the (ordered) set of indices P wishes to read. The

flag 𝑓urom is used to catch malicious P∗
misbehaviors.

5.2 Our Protocols: ΠCPZK-UROM and ΠZKCPU

Our tight ZKCPUprotocol (ΠZKCPU) is designed in theFCPZK-UROM-

hybrid model, and our ZK UROM protocol (ΠCPZK-UROM) is de-

signed in the FCPZK-ROM-hybrid model; see Section 4. We defer the

complete UC-style protocol definitions to the full version [44].

Here, we state the security theorems regarding these two proto-

cols. We defer the proof sketches (resp. complete proofs) to [44].

Theorem 1. Let the UROM be initialized with 𝐵 non-zero-end
vectors where each 𝑖-th vector is of length-𝑛 (𝑖) . Let the read-out vector
be of length-𝑛. Then, protocol ΠCPZK-UROM (defined in [44]) UC-
realizes FCPZK-UROM (Figure 6) in the FCPZK-ROM-hybrid model

(Figure 3) with soundness error max{𝑛,𝑛 (1) ,...,𝑛 (𝐵) }−1
|F | and perfect zero-

knowledge, in the presence of a static unbounded adversary.

3104

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Functionality FCPZK-UROM

FCPZK-UROM, parameterized by a field F, proceeds as follows, running

with a prover P, a verifier V and an adversary S:
CPZK

The functionality supports all instructions of FCPZK.
Unbalanced Non-Zero-End Read-Only Memory

Initialize UROM. On receiving (InitUROM, u(1) , . . . , u(𝐵)) from P,

where for each u(𝑖∈ [𝐵]) = (u (𝑖)
1

, . . . , u (𝑖)
𝑛 (𝑖)) , each u(𝑖∈ [𝐵])

𝑗 ∈ [𝑛 (𝑖)]
is recorded

as a cid (i.e., the unbalanced vectors were committed):

(1) For each 𝑖 ∈ [𝐵], fetch (u (𝑖)
1

, 𝑥
(𝑖)
1

), . . . , (u (𝑖)
𝑛 (𝑖) , 𝑥

(𝑖)
𝑛 (𝑖)) and let

𝒙 (𝑖)
:= (𝑥 (𝑖)

1
, . . . , 𝑥

(𝑖)
𝑛 (𝑖)) . Halt if last(𝒙

(𝑖)) = 0. (last(𝒙 (𝑖)) must

be a non-zero element if P is honest.)

(2) Create a key-value store 𝑋 where

𝑋 [1] := 𝒙 (1) , · · · , 𝑋 [𝐵] := 𝒙 (𝐵)

and set 𝑓urom := honest.

(3) Send (initurom, u(1) , . . . , u(𝐵)) to V and S.
Ignore the subsequent calls to InitUROM.

Set Program. On receiving (SetProg, cid (𝑝) , cid (id)) from P where

|cid (𝑝) | = |cid (𝑝) | = 𝑛 ∈ Z+ and each cid (𝑝)
𝑖∈ [𝑛] , cid

(id)
𝑖∈ [𝑛] was recorded:

Fetch (cid (𝑝)
𝑖

, 𝑝𝑖), (cid (id)𝑖
, id𝑖) for each 𝑖 ∈ [𝑛]. Record 𝒑 and id. If 𝒑 ∈

{0, 1}𝑛−1 ∥1, send (setprog, cid (𝑝) , cid (id)) to V and S; otherwise,
halt the functionality. (If P is honest, 𝒑 must be a length-𝑛 boundary

string, i.e., 𝒑 ∈ {0, 1}𝑛−1 ∥1.) Ignore the subsequent calls to SetProg.

Read UROM. On receiving (ReadUROM, cid (𝑑) , 𝒅) from P where (1)

InitUROM and SetProg were executed; (2) |cid (𝑑) | = |𝒅 | = |𝒑 | =

|id | = 𝑛; (3) there is no recorded tuple for each cid (𝑑)
𝑖∈ [𝑛] ; and (4) each

𝑑𝑖∈ [𝑛] ∈ F: Record tuples (cid (𝑑)
1

, 𝑑1), . . . , (cid (𝑑)𝑛 , 𝑑𝑛) .
(1) If P is honest, id ∈ [𝐵]𝑛 .
(2) If P is corrupted, set 𝑓urom := cheating when there exists some

𝑖 ∈ [𝑛] such that id𝑖 ∉ [𝐵].
For each 𝒙 ∈ Partition(𝒑, 𝒅) , 𝒚 ∈ Partition(𝒑, id) pair in order (there

are HW(𝒑) pairs in total):

(3) If P is honest, last(𝒙) ≠ 0 and 𝑋 [last(𝒚)] = 𝒙 .
(4) If P is corrupted, set 𝑓urom := cheating when:

last(𝒙) = 0 or 𝑋 [last(𝒚)] ≠ 𝒙

Send (readurom, cid (𝑑)) to V , S. Ignore subsequent ReadUROM calls.

Check UROM. On receiving (CheckUROM) from P where ReadUROM
was executed: If P is corrupted and S sends Cheat, set 𝑓urom :=

cheating. Send (checkurom, 𝑓urom) to V and S.

Figure 6: Ideal functionality for commit-and-prove zero-
knowledge allowing proofs that support a read-onlymemory
for unbalanced non-zero-end vectors.

Theorem 2. ProtocolΠZKCPU (defined in [44]) UC-realizesFZKCPU
(Figure 5) in the FCPZK-UROM-hybrid model (Figure 6) with soundness
error 2𝑚+2𝑛+1

|F | and perfect zero-knowledge, in the presence of a static
unbounded adversary.

5.3 Optimization and Cost Analysis
The optimization of ΠCPZK-UROM (defined in [44]) includes:

(1) Public initialization: If 𝐵 vectors used to initialize UROM

are public, InitUROM is free. This is because 𝒖 (𝑖∈[𝐵]) is only
used to generate commitments of mac (see ΠCPZK-UROM
in [44]), which are further used to initialize the underlying

(balanced) ROM. Thus,mac is also public (determined after𝛾

is selected byV), so P andV can computemac locally and

use calls to Linear construct the commitment of (constant).

(2) 1-ended vectors: If each vector in the UROM ends with 1

(whose inverse is 1), vector inv is redundant (seeΠCPZK-UROM
in [44]) since inv is equal to 𝒑.

(3) Rounding optimization: If eachUROM-stored vector has length

some multiple of 𝜀urom, for any 𝜀urom ∈ Z+, we can opti-

mize some operations. E.g., consider 𝜀urom = 2, i.e., each

𝑛 (𝑖∈[𝐵]) is even. This implies that every odd position of 𝒑
must be 0, which further implies that the checks in Ccheck

1/2/3
only need to be performed at each even position. Thus, P
only needs to commit length-

𝑛
2
vectors (instead of length-

𝑛) 𝒑, id, inv, smac, s with half-size Ccheck
1/2 . In particular, it

suffices to define s as Expand
2
(𝒑, 𝛾2). More generally, these

commitments reduce in size by factor 𝜀urom.

The protocol ΠZKCPU (see the full version [44]) can deploy all
optimizations above and will make one call to each instruction (i.e.,

InitUROM, SetProg, ReadUROM, CheckUROM). In particular, ΠZKCPU,

with instructions of size 𝑛 (1) , . . . , 𝑛 (𝐵) and the total execution size

𝑛, instantiates a hybrid UROM with vectors of size 2𝑛 (1) , . . . , 2𝑛 (𝐵) ,
and reads a length 2𝑛 vector from the UROM. Our ΠZKCPU in-

stantiates the UROM with public vectors ending with 1, and since

all vectors are of even length, we can deploy the above rounding

optimization. Moreover, a similar rounding optimization can be

deployed to ΠZKCPU. I.e., if the size of each instruction is an in-

teger factor of 𝜀 ∈ Z+, we can save cost by constructing shorter

vectors, e.g., 𝒑. In other words, cost can be reduced if we pad each

instruction circuit to size 𝑘𝜀, where 𝑘 ∈ Z+.

Cost analysis. Consider a ZK CPU with instructions of size 𝑛 (1) ,
. . . , 𝑛 (𝐵) and the total execution size 𝑛, let 𝜀 ≜ gcd(𝑛 (1) , . . . , 𝑛 (𝐵)),
we tally the optimized cost of ΠZKCPU directly in FCPZK-hybrid
(i.e., plugging ΠCPZK-UROM, ΠCPZK-ROM):

• P sends 𝑛 and V sends 𝜒,𝛾 .

• P andV each compute O
(∑

𝑖∈[𝐵] 𝑛
(𝑖)

)
field operations to

obtain 𝒗 (𝑖∈[𝐵]) and mac. Note, this relies on the technique

“evaluate circuits backward”; see [43].

• Parties call Commit 6𝑛 + 6𝑛
𝜀 + 2𝐵 times.

• Parties call Linear 2𝐵 + 1 times to commit constants.
• Parties call Open once.

• Parties call Check with each of the following 9 circuits (de-

fined in ΠCPZK-UROM, ΠCPZK-ROM; see the full version [44]):

– Ccheck
1/2/5 and Expand

1/2 (
𝑛
𝜀 multiplications each).

– Ccheck
3

(2𝑛 + 2𝑛
𝜀 multiplications).

– Ccheck
4

(𝑛 multiplications).

– Ccheck
6

(4𝑛 multiplications).

– The check circuit in ΠCPZK-ROM (see Lemma 3), which

has two products of
𝑛
𝜀 + 𝐵 − 1 multiplication.

3105

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

To conclude, assuming 𝑛 = Ω(𝐵) and assuming each instruction

is of size O(𝑛), the protocol requires O(𝑛) calls to Commit; O(𝐵)
calls to Linear; O(1) call to Open; O(1) call to Check.

Whenwe instantiateFCPZK using VOLE-based ZK (see Lemma 1),

our ZK CPU has the following cost:

• Computation: O
(
𝑛 + ∑

𝑖∈[𝐵] 𝑛
(𝑖)

)
field operations.

• Communication: 6𝑛 + 6𝑛
𝜖 + 𝐵 + 𝑜 (𝑛) field elements.

• Soundness: O
(
𝑚+max

{
𝑛,𝑛 (1) ,...,𝑛 (𝐵) }
|F |

)
.

The above costs leverage VOLE-based ZK’s support for polynomial

evaluation (see formal version of Lemma 1 in [44]). Namely, cir-

cuits used in Check are polynomials of degree
3
2 or 3. Note, both

computation and communication are proportional to 𝑛.

[44] includes more fine-grained cost analysis.

6 Support for Advanced Operations
We have shown how to construct instructions that contain arbitrary

addition and multiplication gates. Each instruction also supports

a checking output, which P must prove is equal to zero, and in

this section, we discuss examples of how this checking output

can be leveraged to support more advanced ZK operations. Most

importantly, we discuss support for ZK RAM, which enables our

CPU to support poly-size memory, rather than just a fixed number

of registers. Our formalization must be adjusted slightly to capture

such operations; the following discusses how.

6.1 Equality Gates
As our first advanced operation, we show how to implement an

equality gate, which forces P to prove that two particular instruc-

tion wires are equal; if they are not equal, the proof fails. This gate

is generally useful, and it can enable efficient implementation of

other operations, such as a division gate, where we can require

P to commit the quotient and then prove that the product of the

quotient and the divisor is equal to the dividend.

In standard CPZK, it is well known that a batch of equality gates

can be implemented by subtracting each pair of supposedly-equal

commitments, then havingV send a uniform challenge vector to P.

P demonstrates that the inner product of this vector and the vector

of committed differences is 0. With some care, we can incorporate

this trick into our ZK CPU.

Namely, we modify our protocol such that (1) P first commits

to her extended witness, (2)V sends its uniform challenge vector

(this vector is sent in the same round where V sends 𝜒), and (3)

V’s challenge vector is incorporated as a row of the instruction’s

topology matrix, where this row is used to constrain the instruc-

tion’s checking output. In particular, this row of the matrix forces

P to prove that the random linear combination of equality gate

difference wires are each equal to zero. With this change, each

instruction can use an arbitrary number of equality gates.

The crucial observation is: the above trick can be viewed as a

row in the topology matrix that needs to be specified by V . In par-

ticular, this row does not affect P to commit the extended witness

since the extended witness is independent ofV’s uniform vector.

3
The circuit in ΠCPZK-ROM is a O(𝑛)-degree polynomial, but the cost can be reduced

since it computes products. See Lemma 3 and [42].

We remark that this row must be specified after P commits the ex-

tended witness to maintain soundness. Nevertheless,V can specify

it with the step where he sends 𝜒 to compress topology matrices

to topology vectors. We note that this row can be embedded into

the checking output. I.e., the checking output is the uniform linear

combination of all wires that must be 0s.

6.2 Support for LOAD and STORE Gates
So far, our machine’s persistent state is stored in only𝑚 registers. Of

course, it would be desirable to allow instructions to access a large

main memory (supporting any poly(𝜆) number of memory cells).

We show how to implement LOAD and STORE gates that achieve

memory access while keeping the number of registers𝑚 constant.

In short, to support ZK RAM, it suffices that P provide outputs

from LOAD and STORE gates as part of her extended witness, then

prove that these gate outputs are consistent with the semantics of

a read-write array. Our insight is that these consistency checks

only require that our machine maintain a constant number (five)

of registers.

Setting aside our ZK CPU for a moment, recent work [42] shows

that ZK RAM can be implemented by (1) maintaining a vector of all

values written to RAM (tagged with appropriate timing metadata),

(2) maintaining a vector of all values read from RAM (tagged with

appropriate timing metadata), (3) requiring that P prove the above

two vectors are permutations of one another, and (4) for each read,

proving the accessed timing metadata value is in the past. Step (4)

is achieved by a ZK ROM, which similarly can be implemented by

proving two vectors are permutations of one another. Thus, the

full RAM reduces to two permutation checks. To prove two vectors

𝒂, 𝒃 are related by a permutation, it is standard for V to issue a

uniform challenge 𝛽 , and then P shows that

∏
𝑖∈[𝑛] (𝑎𝑖 − 𝛽) =∏

𝑖∈[𝑛] (𝑏𝑖 − 𝛽).
Returning to our ZK CPU, we observe that for each permuta-

tion proof we can use two registers to accumulate the above two

products; once all instructions are complete, P proves these two

registers are equal. [42]’s RAM also requires a global clock variable,

and we can support this with another register that is initialized to

0 and incremented on each RAM access. Therefore, we can compile

each LOAD/STORE gate into a constant number of INPUT/ADD/MULT
gates by maintaining five registers that jointly store the clock and

partial products of the permutation checks.

One small caveat is that the ZK RAM’s soundness relies on the

fact that P cannot guess 𝛽 . However, in our presented ZK CPU

protocol, P must commit all inputs 𝒊 and multiplication tuples ℓ, 𝒓 , 𝒐
at the same time. But per the above discussion, some multiplication

gates will depend on 𝛽 , so P does not even know ℓ, 𝒓 , 𝒐 until after
𝛽 is chosen. This problem is straightforwardly fixed by introducing

two extra protocol rounds.

Namely, (1) P commits to its input 𝒊, (2) V sends 𝛽 , and then (3)

P computes and commits to ℓ, 𝒓, 𝒐. This change is sound because

the input 𝒊 determines the entire instruction’s computation, and

𝒊 must be independent of 𝛽 . It is possible to omit the extra two

rounds by applying Fiat-Shamir [19]. Note that the combination of

our tight ZK CPU with ZK RAM interestingly hides from V the

number of RAM accesses.

3106

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

7 Evaluation
Our implementation. Using VOLE-based ZK, we implemented

ΠCPZK-UROM (see the full verison [44]) and ΠZKCPU (see, again,

the full verison [44]). In particular, we instantiated FCPZK (see Fig-

ure 2) and FCPZK-ROM (see Figure 3) via VOLE-based ZK. VOLE-

based FCPZK (QuickSilver [41]) is implemented as part of the EMP

Toolkit [39], and VOLE-based FCPZK-ROM [42] is open-sourced
4
.

We used their implementations in an (almost) black-box manner.

Following these implementations, we use the prime field F
2
61−1.

Baseline implementation. We compare our implementation to the

prior state-of-the-art non-tight ZK CPU, Batchman [43]. Their im-

plementation is open-sourced
5
. It is also a VOLE-based ZK protocol

over F
2
61−1.

Code availability. Our implementation is open-sourced and avail-

able at https://github.com/gconeice/tight-vole-zk-cpu.

Experiment setup. Unless otherwise specified, following our base-
line [43], all our experiments were executed over two AWS EC2

m5.2xlarge machines
6
that respectively implemented P and V .

Each party ran single-threaded. We configured different network

bandwidth settings, varying from a WAN-like 100Mbps connection

to a LAN-like 1Gbps connection, via the Linux tc command.

Benchmarks. Our experiments used randomly generated circuits

as instructions. Given a number of MULT gates, we generated gates

uniformly until we reached the specified number of MULT. Our ran-

dom circuits use the last input as the first register output. For each

𝑖-th instruction, the checking output is set as the first input minus

𝑖 . I.e., our benchmark allows P to select each instruction. Our P
chooses each next instruction uniformly at random. We acknowledge

that this benchmark is contrived. It is used to evaluate performance

only. Our implementation includes sufficient expressivity to handle

a non-contrived instruction set.

We consider the following distributions of sizes of 𝐵 instructions

to instantiate a ZK CPU:

• Balanced: Each of the 𝐵 instructions are of same size. This

distribution is more suitable for prior non-tight ZK CPUs.

Additionally, the rounding optimization of our tight ZK CPU

is effective for this distribution.

• Unbalanced: One instruction is much bigger than the others

(which are each of the same size).

• Varied: All sizes are distributed evenly. E.g., consider an

instruction set having sizes {10, 20, 30, · · · }.

Metrics. We report the following metrics:

• Time: We measured end-to-end proof execution time.

• Communication: We tested the overall communication.

• Hertz Rate: We calculated the hertz rate of a ZK CPU defined

by
#step
time . This is mainly used to compare with prior non-tight

ZK CPUs, i.e., the Batchman [43].

• Multiplication Gates Per Second (MGPS): We calculated the

MGPS defined by
#multiplication

time . This metric is only mean-

ingful for a tight ZK CPU since all executed multiplications

4
Available at https://github.com/gconeice/improved-zk-ram.

5
Available at https://github.com/gconeice/stacking-vole-zk.

6
Intel Xeon Platinum 8175 CPU@ 3.10GHz, 8 vCPUs, 32GiBMemory, 10Gbps Network

B m Distribution

MGPS (#Multi./s) CPM

100 Mbps 500 Mbps 1 Gbps Byte/#Multi.

10 5 Balanced 111 K 330 K 442 K 102

50

1

Balanced

109 K 334 K 438 K 102

10 107 K 323 K 432 K 102

20 108 K 342 K 459 K 102

100 20

Balanced 109 K 346 K 458 K 102

Unbalanced 110 K 337 K 467 K 102

Varied 109 K 340 K 460 K 102

Figure 7: The multiplication gates per second (MGPS) and
communication per multiplication (CPM) of our ZK CPU.
Recall that 𝐵 denotes the number of instructions and𝑚 denotes the

number of registers.

Protocol

Network Bandwidth

Comm./Step

100 Mbps 500 Mbps 1 Gbps

Batchman [43] 1.5 KHz 5.4 KHz 8.0 KHz 7.3 KB

Ours (Balanced) 0.6 KHz 2.7 KHz 3.7 KHz 12.7 KB

0.56× 0.51× 0.46×
Ours (Balanced) 1.7 KHz 5.9 KHz 8.5 KHz 6.3 KB

Rounding Opt. 1.13× 1.11× 1.05×
Ours (Unbalanced) 10.6 KHz 32.5 KHz 43.8 KHz 1.0 KB

6.90× 6.07× 5.45×

Figure 8: Comparison with Batchman [43]. We loaded each ZK

CPU with 50 instructions and tested a 500K step execution. For

the non-tight ZK CPU based on Batchman, each instruction has

125 multiplications. For our tight ZK CPU, we tested (1) balanced

instructions where each has 125 multiplications and (2) unbalanced

instructions where only one has 125 multiplications and others

each has 5 multiplications. We report the hertz rate.

are useful. In a non-tight ZK CPU, some multiplications are

used as padding.

• Communication Per Multiplication (CPM): We calculated the

CPM defined by
communication
#multiplication .

MGPS and CPM of our ZK CPU. We loaded our ZK CPU with dif-

ferent 𝐵 and𝑚 and considered different distributions of the sizes of

𝐵 instructions. In particular, we considered (1) each instruction with

100multiplications for the balanced distribution, (2) one instruction

with 100 multiplications and others each with 5 multiplications for

the unbalanced distribution, and (3) 𝑖-th instruction with 10 · 𝑖 mul-

tiplications for the varied distribution. We tested our ZK CPU with

each configuration by executing it over a large enough number of

steps to amortize the cost of generating VOLE correlations. Figure 7

tabulates the results. It shows that our ZK CPU’s speed depends

mainly on network bandwidth, which aligns with our asymptotic

analysis. In particular, it is (almost) independent of 𝐵,𝑚, and on how

instructions are distributed.

Comparison with Batchman [43]. We compare our tight ZK CPU

with prior state-of-the-art non-tight ZK CPU (i.e., Batchman). More

precisely, Batchman implements batched ZK disjunctions, which

can be viewed as a special ZK CPU with no registers.

The two ZK CPUs were each loaded with 50 instructions. We

considered the balanced (with/without our rounding optimization)

3107

https://github.com/gconeice/tight-vole-zk-cpu
https://github.com/gconeice/improved-zk-ram
https://github.com/gconeice/stacking-vole-zk

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakrishnan Venkitasubramaniam

Protocol

Network Bandwidth

Comm./Step

100 Mbps 500Mbps 1 Gbps

Batchman [43] 0.2 KHz 0.8 KHz 1.1 KHz 52.1 KB

Ours 4.0 KHz 12.6 KHz 17.1 KHz 2.8 KB

18.58× 16.33× 14.96×

Figure 9: Comparison with Batchman [43] with more biased
unbalanced instructions. We loaded each ZK CPU with 50 in-

structions and tested an execution with 500K steps. For the regular

ZK CPU based on Batchman, each instruction has 1000 multipli-

cations. We tested our ZK CPU with an unbalanced instruction

set, where one instruction has 1000 multiplications and the others

each have 5 multiplications. We report the hertz rate. We note that

these experiments were performed with two AWS EC2 m5.8xlarge
machines because of Batchman’s larger memory requirement.

Protocol

Network Bandwidth, Total Size

Total Comm.
100Mbps 500 Mbps 1 Gbps

15.4 M 15.4 M 15.3 M

QuickSilver [41] 21.2 s 6.6 s 5.1 s 226 MB

Ours 139.1 s 44.4 s 31.5 s 1484 MB

6.56× 6.72× 6.22× 6.56×

Figure 10: Comparison with the setting where the execution
path is public. We loaded our ZK CPU with 50 instructions and

ran it for 50K steps. Each 𝑖-th instruction had 10 · 𝑖 multiplications.

and unbalanced distributions. We tested the ZK CPUs by executing

500K steps.

Figure 8 tabulates the results. It shows that our tight ZK CPU

is slower than Batchman if we consider a balanced instruction

set. This is due to overhead we introduce in our tight ZK CPU

to ensure privacy, which is redundant when instructions are of

the same size. Nevertheless, our tight ZK CPU is only slower by

≈ 2×, mainly coming from the ≈ 2× overhead in communication.

By turning on our rounding optimization, our ZK CPU performs

comparably to (or even faster than) Batchman. This is because of
our refined topology matrices. Note that refined topology matrices

can also optimize Batchman. When considering an unbalanced

instruction set, our tight ZK CPU improves over Batchman by ≈ 5-

7×, depending on the network. We remark that even with more

bandwidth, our runtime would not converge to Batchman – we

additionally save constant-factor computation. The decrease in our

relative improvement comes from the streamlining nature. Our ZK

CPU communicates only ≈ 1KB per step.

Our speedup becomes more significant when considering in-

structions with larger differences in size; see Figure 9.

Comparison with insecure execution path. We compare our ZK

CPU with an “insecure” execution where P and V agree on a

public execution path. Namely, we constructed a single plaintext

circuit encoding an execution path and then ran the QuickSilver
protocol (which achieves FCPZK) on that circuit. Of course, a ZK

CPU will use more resources than such a circuit, since a ZK CPU

provides a stronger privacy guarantee. These experiments illustrate

the performance gap between our ZK CPU and the informal “lower

bound”. Figure 10 tabulates the results. Our ZK CPU has a ≈ 6×
overhead in communication (as a constant). Further optimizing this

constant is an interesting direction.

Rounding optimization. Recall that our ZK CPU supports an

optimization such that if the size of each instruction is a multiple of

𝜀, several contributing costs are reduced by factor 𝜀. To evaluate the

effectiveness of this optimization, we loaded our ZK CPU with 50

balanced instructions. By varying the size of each instruction and

letting the ZK CPU execute 6.4M multiplications, we deployed the

rounding optimization with different 𝜀. Our experiments show that,

when 𝜀 ≥ 16, the rounding optimization can speed up our ZK CPU

by ≈ 2×, independent of the network bandwidth. The improvement

comes from savings in communication, matching asymptotic.

Microbenchmarks. The full version [44] includes fine-grained

(i.e., decomposed) end-to-end time.

Acknowledgments
This work is supported in part by Visa research award, Cisco re-

search award, and NSF awards CNS-2246353, CNS-2246354, and

CCF-2217070. This material is also based upon work supported in

part by DARPA under Contract No. HR001120C0087. Any opinions,

findings and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the

views of DARPA. Distribution Statement “A” (Approved for Public

Release, Distribution Unlimited).

References
[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasub-

ramaniam. 2017. Ligero: Lightweight Sublinear Arguments Without a Trusted

Setup. In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin,

and Dongyan Xu (Eds.). ACM Press, 2087–2104. https://doi.org/10.1145/3133956.

3134104

[2] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. 2021.

Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits

with Nested Disjunctions. In CRYPTO 2021, Part IV (LNCS, Vol. 12828), Tal
Malkin and Chris Peikert (Eds.). Springer, Heidelberg, Virtual Event, 92–122.

https://doi.org/10.1007/978-3-030-84259-8_4

[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In 2014 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 459–474. https://doi.org/10.1109/SP.2014.36

[4] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars

Virza. 2013. SNARKs for C: Verifying Program Executions Succinctly and in Zero

Knowledge. In CRYPTO 2013, Part II (LNCS, Vol. 8043), Ran Canetti and Juan A.

Garay (Eds.). Springer, Heidelberg, 90–108. https://doi.org/10.1007/978-3-642-

40084-1_6

[5] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Scalable

Zero Knowledge via Cycles of Elliptic Curves. In CRYPTO 2014, Part II (LNCS,
Vol. 8617), Juan A. Garay and Rosario Gennaro (Eds.). Springer, Heidelberg, 276–

294. https://doi.org/10.1007/978-3-662-44381-1_16

[6] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, andMadars Virza. 2014. Succinct

Non-Interactive Zero Knowledge for a von Neumann Architecture. In USENIX
Security 2014, Kevin Fu and Jaeyeon Jung (Eds.). USENIX Association, 781–796.

[7] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-

homomorphic Encryption and Multiparty Computation. In EUROCRYPT 2011
(LNCS, Vol. 6632), Kenneth G. Paterson (Ed.). Springer, Heidelberg, 169–188.

https://doi.org/10.1007/978-3-642-20465-4_11

[8] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. 2018. Bulletproofs: Short Proofs for Confidential Transactions and

More. In 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, 315–334. https://doi.org/10.1109/SP.2018.00020

[9] Ran Canetti. 2001. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. In 42nd FOCS. IEEE Computer Society Press, 136–145.

https://doi.org/10.1109/SFCS.2001.959888

3108

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-84259-8_4
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1109/SFCS.2001.959888

Tight ZK CPU
Batched ZK Branching with Cost Proportional to Evaluated Instruction CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[10] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. 2002. Universally

composable two-party and multi-party secure computation. In 34th ACM STOC.
ACM Press, 494–503. https://doi.org/10.1145/509907.509980

[11] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and

Nicholas P. Ward. 2020. Marlin: Preprocessing zkSNARKs with Universal and

Updatable SRS. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne Canteaut and
Yuval Ishai (Eds.). Springer, Heidelberg, 738–768. https://doi.org/10.1007/978-3-

030-45721-1_26

[12] Arka Rai Choudhuri, Sanjam Garg, Aarushi Goel, Sruthi Sekar, and Rohit Sinha.

2023. SublonK: Sublinear Prover PlonK. Cryptology ePrint Archive, Paper

2023/902. https://eprint.iacr.org/2023/902

[13] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. 1994. Proofs of Partial

Knowledge and Simplified Design of Witness Hiding Protocols. In CRYPTO’94
(LNCS, Vol. 839), Yvo Desmedt (Ed.). Springer, Heidelberg, 174–187. https://doi.

org/10.1007/3-540-48658-5_19

[14] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy.

2021. Limbo: Efficient Zero-knowledge MPCitH-based Arguments. In ACM
CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 3022–3036. https:

//doi.org/10.1145/3460120.3484595

[15] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and

Michiel Verbauwhede. 2022. Efficient Proof of RAM Programs from Any

Public-Coin Zero-Knowledge System. In Security and Cryptography for Networks,
Clemente Galdi and Stanislaw Jarecki (Eds.). Springer International Publishing,

Cham, 615–638.

[16] Zijing Di, Lucas Xia, Wilson Nguyen, and Nirvan Tyagi. 2023. MUXProofs:

Succinct Arguments for Machine Computation from Tuple Lookups. Cryptology

ePrint Archive, Paper 2023/974. https://eprint.iacr.org/2023/974

[17] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2021. Line-Point Zero Knowl-

edge and Its Applications. In 2nd Conference on Information-Theoretic Cryp-
tography (ITC 2021) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 199), Stefano Tessaro (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, Dagstuhl, Germany, 5:1–5:24. https://doi.org/10.4230/LIPIcs.ITC.2021.5

[18] Zhiyong Fang, David Darais, Joseph P. Near, and Yupeng Zhang. 2021. Zero

Knowledge Static ProgramAnalysis. InACMCCS 2021, Giovanni Vigna and Elaine
Shi (Eds.). ACM Press, 2951–2967. https://doi.org/10.1145/3460120.3484795

[19] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, 186–194. https://doi.org/10.1007/3-540-

47721-7_12

[20] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and

Chenkai Weng. 2021. Constant-Overhead Zero-Knowledge for RAM Programs.

In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 178–191.

https://doi.org/10.1145/3460120.3484800

[21] Aarushi Goel, Matthew Green, Mathias Hall-Andersen, and Gabriel Kaptchuk.

2022. Stacking Sigmas: A Framework to Compose 𝛴-Protocols for Disjunctions.

In EUROCRYPT 2022, Part II (LNCS, Vol. 13276), Orr Dunkelman and Stefan

Dziembowski (Eds.). Springer, Heidelberg, 458–487. https://doi.org/10.1007/978-

3-031-07085-3_16

[22] Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. 2023. Dora: Pro-

cessor Expressiveness is (Nearly) Free in Zero-Knowledge for RAM Programs.

Cryptology ePrint Archive, Paper 2023/1749. https://eprint.iacr.org/2023/1749

[23] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner.

2023. Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions. In

EUROCRYPT 2023, Part II (LNCS, Vol. 14005), Carmit Hazay andMartijn Stam (Eds.).

Springer, Heidelberg, 347–378. https://doi.org/10.1007/978-3-031-30617-4_12

[24] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity

of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (Providence, Rhode Island, USA) (STOC
’85). Association for Computing Machinery, New York, NY, USA, 291–304.

https://doi.org/10.1145/22145.22178

[25] David Heath and Vladimir Kolesnikov. 2020. Stacked Garbling for Disjunctive

Zero-Knowledge Proofs. In EUROCRYPT 2020, Part III (LNCS, Vol. 12107), Anne
Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 569–598. https://doi.org/

10.1007/978-3-030-45727-3_19

[26] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero

Knowledge for Everything and Everyone: Fast ZK Processor with Cached ORAM

for ANSI C Programs. In 2021 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, 1538–1556. https://doi.org/10.1109/SP40001.2021.00089

[27] Wenqing Hu, Tianyi Liu, Ye Zhang, Yuncong Zhang, and Zhenfei Zhang. 2024.

Parallel Zero-knowledge Virtual Machine. Cryptology ePrint Archive, Paper

2024/387. https://eprint.iacr.org/2024/387

[28] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-

Knowledge from Secure Multiparty Computation. In Proceedings of the Thirty-
Ninth Annual ACM Symposium on Theory of Computing (San Diego, California,

USA) (STOC ’07). Association for Computing Machinery, New York, NY, USA,

21–30. https://doi.org/10.1145/1250790.1250794

[29] Vladimir Kolesnikov. 2018. Free IF: How to Omit Inactive Branches and Imple-

ment 𝑆-Universal Garbled Circuit (Almost) for Free. In ASIACRYPT 2018, Part III

(LNCS, Vol. 11274), Thomas Peyrin and Steven Galbraith (Eds.). Springer, Heidel-

berg, 34–58. https://doi.org/10.1007/978-3-030-03332-3_2

[30] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal

machine executions without universal circuits. Cryptology ePrint Archive, Report

2022/1758. https://eprint.iacr.org/2022/1758.

[31] AbhiramKothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive Zero-

Knowledge Arguments from Folding Schemes. In CRYPTO 2022, Part IV (LNCS,
Vol. 13510), Yevgeniy Dodis and Thomas Shrimpton (Eds.). Springer, Heidelberg,

359–388. https://doi.org/10.1007/978-3-031-15985-5_13

[32] Abhiram Kothapalli and Srinath T. V. Setty. 2024. HyperNova: Recursive Ar-

guments for Customizable Constraint Systems. In Advances in Cryptology -
CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2024, Proceedings, Part X (Lecture Notes in Computer
Science, Vol. 14929), Leonid Reyzin and Douglas Stebila (Eds.). Springer, 345–379.

https://doi.org/10.1007/978-3-031-68403-6_11

[33] T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang. 2024. Pianist: Scalable zkRollups

via Fully Distributed Zero-Knowledge Proofs. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA, 39–39. https:

//doi.org/10.1109/SP54263.2024.00035

[34] Tianyi Liu, Xiang Xie, and Yupeng Zhang. 2021. zkCNN: Zero Knowledge Proofs

for Convolutional Neural Network Predictions and Accuracy. In ACM CCS 2021,
Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 2968–2985. https://doi.org/10.

1145/3460120.3485379

[35] Ning Luo, Timos Antonopoulos, William R. Harris, Ruzica Piskac, Eran Tromer,

and Xiao Wang. 2022. Proving UNSAT in Zero Knowledge. In ACM CCS 2022,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press,

2203–2217. https://doi.org/10.1145/3548606.3559373

[36] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019.

Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable

Structured Reference Strings. In ACM CCS 2019, Lorenzo Cavallaro, Johannes

Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.). ACM Press, 2111–2128.

https://doi.org/10.1145/3319535.3339817

[37] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank

Burra. 2012. A NewApproach to Practical Active-Secure Two-Party Computation.

In CRYPTO 2012 (LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.).

Springer, Heidelberg, 681–700. https://doi.org/10.1007/978-3-642-32009-5_40

[38] David Pointcheval and Jacques Stern. 2000. Security Arguments for Digital

Signatures and Blind Signatures. Journal of Cryptology 13, 3 (June 2000), 361–396.

https://doi.org/10.1007/s001450010003

[39] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit: Efficient

MultiParty computation toolkit. https://github.com/emp-toolkit.

[40] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. 2021.

Mystique: Efficient Conversions for Zero-Knowledge Proofs with Applications to

Machine Learning. InUSENIX Security 2021, Michael Bailey and Rachel Greenstadt

(Eds.). USENIX Association, 501–518.

[41] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. In ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM

Press, 2986–3001. https://doi.org/10.1145/3460120.3484556

[42] Yibin Yang and David Heath. 2024. Two ShufflesMake a RAM: Improved Constant

Overhead Zero Knowledge RAM. In 33rd USENIX Security Symposium (USENIX
Security 24). USENIX Association, Philadelphia, PA, 1435–1452. https://www.

usenix.org/conference/usenixsecurity24/presentation/yang-yibin

[43] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthura-

makrishnan Venkitasubramaniam. 2023. Batchman and Robin: Batched and Non-

Batched Branching for Interactive ZK. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (Copenhagen, Denmark)

(CCS ’23). Association for Computing Machinery, New York, NY, USA, 1452–1466.

https://doi.org/10.1145/3576915.3623169

[44] Yibin Yang, David Heath, Carmit Hazay, Vladimir Kolesnikov, and Muthuramakr-

ishnan Venkitasubramaniam. 2024. Tight ZK CPU: Batched ZK Branching with

Cost Proportional to Evaluated Instruction. Cryptology ePrint Archive, Paper

2024/456. https://eprint.iacr.org/2024/456

[45] Yibin Yang, David Heath, Vladimir Kolesnikov, and David Devecsery. 2022. EZEE:

Epoch Parallel Zero Knowledge for ANSI C. In 7th IEEE European Symposium on
Security and Privacy, EuroS&P 2022, Genoa, Italy, June 6-10, 2022. IEEE, Genoa,
Italy, 109–123. https://doi.org/10.1109/EuroSP53844.2022.00015

[46] Yibin Yang, Stanislav Peceny, David Heath, and Vladimir Kolesnikov. 2023. To-

wards Generic MPC Compilers via Variable Instruction Set Architectures (VISAs).

In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communica-
tions Security (, Copenhagen, Denmark,) (CCS ’23). Association for Computing

Machinery, New York, NY, USA, 2516–2530. https://doi.org/10.1145/3576915.

3616664

[47] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. 2018. vRAM: Faster Verifiable RAM with Program-

Independent Preprocessing. In 2018 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 908–925. https://doi.org/10.1109/SP.2018.00013

3109

https://doi.org/10.1145/509907.509980
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://eprint.iacr.org/2023/902
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1145/3460120.3484595
https://doi.org/10.1145/3460120.3484595
https://eprint.iacr.org/2023/974
https://doi.org/10.4230/LIPIcs.ITC.2021.5
https://doi.org/10.1145/3460120.3484795
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/3460120.3484800
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-031-07085-3_16
https://eprint.iacr.org/2023/1749
https://doi.org/10.1007/978-3-031-30617-4_12
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1007/978-3-030-45727-3_19
https://doi.org/10.1109/SP40001.2021.00089
https://eprint.iacr.org/2024/387
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-030-03332-3_2
https://eprint.iacr.org/2022/1758
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1109/SP54263.2024.00035
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3460120.3485379
https://doi.org/10.1145/3548606.3559373
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/s001450010003
https://github.com/emp-toolkit
https://doi.org/10.1145/3460120.3484556
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yibin
https://www.usenix.org/conference/usenixsecurity24/presentation/yang-yibin
https://doi.org/10.1145/3576915.3623169
https://eprint.iacr.org/2024/456
https://doi.org/10.1109/EuroSP53844.2022.00015
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1145/3576915.3616664
https://doi.org/10.1109/SP.2018.00013

	Abstract
	1 Introduction
	1.1 Our Focus: Pay for the Active Branch
	1.2 Our Contribution
	1.3 Intuition of Our Construction
	1.4 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Security Model
	2.3 Commit-and-Prove Zero-Knowledge
	2.4 Zero-Knowledge Read-Only Memory
	2.5 ZKP via Topology Matrices

	3 Our Target Functionality: zkcpu
	4 Technical Overview
	4.1 Boundary Strings and Helper Notation
	4.2 More Powerful Topology Matrices
	4.3 Reducing a Tight ZK CPU to a ZK UROM
	4.4 ZK Non-Zero-End Unbalanced ROM

	5 Formalization
	5.1 Ideal ZK Non-Zero-End UROM: idealzkurom
	5.2 Our Protocols: protzkurom and protzkcpu
	5.3 Optimization and Cost Analysis

	6 Support for Advanced Operations
	6.1 Equality Gates
	6.2 Support for LOAD and STORE Gates

	7 Evaluation
	References

