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Abstract

In networks consisting of agents communicating with a central coordinator and

working together to solve a global optimization problem in a distributed manner, the

agents are often required to solve private proximal minimization subproblems. Such a set-

ting often requires a further decomposition method to solve the global distributed problem,

resulting in extensive communication overhead. In networks where communication is ex-

pensive, it is crucial to reduce the communication overhead of the distributed optimization

scheme. Integrating Gaussian processes (GP) as a learning component to the Alternating

Direction Method of Multipliers (ADMM) has proven e”ective in learning each agent’s

local proximal operator to reduce the required communication exchange. In this work, we

propose to combine this learning method with adaptive uniform quantization in a hybrid

approach that can achieve further communication reduction when solving a distributed

optimization problem with ADMM. This adaptive quantization first considers setting the

mid-value and window length according to the mean and covariance given by GP. In a

later stage of our study, this adaptation is extended to also consider the variation of the

quantization bit resolution. In addition, a convergence analysis of this setting is derived,

leading to convergence conditions and error bounds in the cases where convergence cannot

be formally proven. Furthermore, we study the impact of the communication decision-

making of the coordinator, leading to the proposition of several query strategies using the

agent’s uncertainty measures given by the regression process. Extensive numerical exper-

iments of a distributed sharing problem with quadratic cost functions for the agents have

been conducted throughout this study. The results have demonstrated that the various

algorithms proposed have successfully achieved their primary goal of minimizing the over-

ix



all communication overhead while ensuring that the global solutions maintain satisfactory

levels of accuracy. The favorable accuracy observed in the numerical experiments is consis-

tent with the findings of the derived convergence analysis. In instances where convergence

proof is lacking, we have shown that the overall ADMM residual remains bounded by a

diminishing threshold. This implies that we can anticipate our algorithmic solutions to

closely approximate the actual solution, thus validating the reliability of our approaches.
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Chapter 1. Introduction

In a distributed optimization framework where a group of agents is linked to a cen-

tral coordinator, the optimization process typically involves agents tackling individual

local sub-problems privately while maintaining frequent data exchanges with the coor-

dinator. Many of these schemes are based on agents who solve proximal minimization

problems [2] as their underlying local subproblems in response to queries from the coor-

dinator. Proximal minimization is well-suited for networks with privacy constraints since

it safeguards each agent’s local objective and constraints from being revealed to the co-

ordinator or other agents. Once the coordinator receives the local proximal minimization

solutions from the agents, it employs them to formulate new queries for the agents, thus

guiding the agents’ solutions towards the global solution. These distributed optimization

schemes find applications in various domains, such as smart building power management

sensor networks, smart buildings, and smart manufacturing, as evidenced by [3].

Numerous algorithms are suitable for addressing distributed convex optimization;

for instance, [2], [4], [5], and [6] o”er relevant insights. Among these algorithms, a par-

ticularly notable method is the Alternating Direction Method of Multipliers (ADMM),

initially introduced in [7]. This approach e”ectively tackles optimization problems by

breaking them down into smaller local sub-problems. Subsequently, each agent tackles its

local sub-problem and transmits its outcomes to a coordinator, which aggregates all the

agents’ solutions to construct the global objective. ADMM o”ers two key advantages: it is

relatively straightforward to implement, and due to its decomposing nature, it lends itself

well to parallelization. As outlined in [8], ADMM finds extensive applications in statistical

and machine learning problems, including Lasso, sparse logistic regression, basis pursuit,
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support vector machines, and various others. Furthermore, ADMM has been widely em-

ployed in machine learning problems, as well as in other distributed optimization scenarios

[9–13].

The inherent query-response mechanism in distributed optimization algorithms,

including ADMM, frequently necessitates numerous iterations before converging to a so-

lution. However, a significant volume of communication between the coordinator and

agents may render the system impractical, particularly in scenarios where communication

is costly, such as underwater communication for robot formation control [14]. Therefore,

minimizing communication costs is highly desirable, even crucial, for ensuring the feasibil-

ity of these distributed optimization schemes in real-world applications.

E”orts to reduce communication in distributed optimization settings have been

previously explored. For example, in [15], the authors introduced a hierarchical distributed

optimization algorithm tailored for predictive control in smart grids. This algorithm mit-

igates communication overhead by circumventing direct communication between agents,

instead requiring agents to communicate solely with the coordinator at each iteration.

E!cient solutions for large-scale machine learning applications leveraging distributed opti-

mization schemes with a focus on communication e!ciency have been proposed in [16,17].

The authors of [18] successfully reduced communication complexity by employing ADMM

to solve each subsystem and applying the k-means algorithm to partition a distributed

smart grid. In [19], ADMM-based communication-e!cient federated learning algorithms

are proposed, which perform aggregation at a central coordinator of the updates sent by

other agents at predefined intervals. In [20], the authors propose employing a communica-

tion censoring strategy to devise a communication-e!cient ADMM algorithm for resolving

2



a convex consensus optimization problem. In [21], the concept of the Moreau envelope

function is utilized, and it is further elaborated in [22], to predict the proximal operators

of the local agents to facilitate skipping certain communication rounds. Similarly, in [23],

the same concept is employed, where the local proximal operators and their gradients are

predicted using Gaussian Processes (GP). The GP models generate estimations of pre-

diction uncertainty, which are utilized by the coordinator to determine the necessity of

communication with each agent.

Reducing the communication load can be achieved not only by directly limiting

the number of communication rounds but also by addressing the total communication

overhead, which includes the payload size of the information transmitted in each itera-

tion of a distributed optimization algorithm. Payload size reduction can be accomplished

by quantizing the data exchanged between agents and the coordinator. Various studies

have proposed quantization methods aimed at reducing the data exchange size in each

algorithmic iteration, consequently minimizing overall communication overhead. In [24],

a quantized distributed composite optimization problem over relay-assisted networks was

addressed using a simplified augmented Lagrangian method. In [25], a distributed opti-

mization problem a”ected by quantization was tackled employing the inexact proximal

gradient method. Additionally, in [26], a distributed optimization problem was resolved

utilizing a distributed gradient algorithm with adaptive quantization.

The work in this dissertation aims to extend the work in [23] by adding quanti-

zation to a distributed optimization problem solved with ADMM where each agent’s re-

sponse is predicted by GP. Related to GP regression with quantized data is GP regression

where part of the data was censored, which has been previously studied. The authors of

3



[27] described a GP framework in which all data outside of a specific range were fixed to a

value. Furthermore, in [28], a system identification approach with quantized output data

modeled with GP was presented, where Gibbs sampler was utilized for kernel hyperparam-

eters estimation. In addition, in [29], GP was employed to predict the best locations for

sensors in a spatial environment.

In our preliminary published work [1], we proposed a solution to a distributed

optimization problem using ADMM, where GP regression was employed to predict the

proximal operators, and the communications from agents to coordinator were quantized.

However, this approach had two limitations: 1) It did not consider the quantization of

the training data in optimizing the GP hyperparameters and in GP regression; and 2) It

did not address the correlation between quantization noise and inputs, nor did it miti-

gate these correlation issues. Since GP regression assumes a joint Gaussian distribution

among evaluations of the latent function, adapting the regression modeling to account for

non-Gaussian quantization noise and its correlation with the original function values is es-

sential. Failure to address this discrepancy can lead to inaccuracies in the inferred values,

which in turn impacts the accuracy of the ADMM algorithm. This discrepancy may result

in an increased number of iterations required to achieve convergence or even potential fail-

ure to converge altogether. Therefore, adjusting the regression modeling to better align

with the characteristics of the quantization noise is crucial for the overall e”ectiveness of

the distributed optimization process. In Chapter 2, we address these limitations by inte-

grating two components: an adaptive uniform quantizer with dithering [30–32] and joint

dithering and orthogonal transformation [33], and an improved regression method that

takes into account the quantization error in the learning data. As a result, the regression
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algorithm has to be revised accordingly by taking into consideration the resulting statistics

of measurements in the presence of quantization noise.

In addition, in Chapter 3, we present a convergence analysis for our hybrid ap-

proach. This analysis first presents a convergence proof that relies on a query decision

using the trace of the GP covariance matrix and an infinitely large quantization resolution

allowed. This proof can not be used directly to prove the convergence of our proposed hy-

brid approach; however, it is used to show the convergence properties of our method and

to demonstrate that the expectation of the ADMM residual is bounded and such bound

decreases at each iteration.

We continue our study by proposing to explore how the coordinator’s decision on

which agents are required to communicate a”ects the overall performance of our commu-

nication reduction approach. In [23], the coordinator decided whether a communication

with an agent is required when the maximum variance, given by the agent’s corresponding

GP regression, is below a certain threshold. This communication decision will be referred

to as an independent query strategy, since the coordinator makes its decision using the

uncertainty measure of each agent without considering the others. We propose to test dif-

ferent independent query strategies in addition to the one presented in [23]. Furthermore,

we propose studying the inherent coupling of agents in the ADMM algorithm to develop a

joint query strategy that will use a joint uncertainty measurement to decide which agents

are required to communicate.

Finally, we finish this study in Chapter 5 by proposing a refined hybrid approach in

which we not only account for the quantization error in the regression method but allow

for a fully adaptive uniform quantization scheme. This adaptation not only adapts the

5



quantizer’s mid-value and window length, but also assigns di”erent quantization resolu-

tions to each agent. The rationale of this adaptation is that not every agent contributes

uniformly to the total uncertainty so, depending on the value of each agent’s trace of its

covariance matrix and a decaying threshold, we determine each agent quantization resolu-

tion to control the system’s overall uncertainty while minimizing the overall transmission

load. Finally, since this refined hybrid approach uses the trace of the regression’s covari-

ance matrix to make the communication decision, it is aligned with our derived conver-

gence proof.

Our main contributions are summarized below.

Main Contributions:

• We study the statistics of the quantization error of the adaptive uniform quantizer
proposed in our previous work [1], and characterize its impact on the distributed
optimization algorithm.

• We improve the hybrid communication reduction approach in [23], which combines
proximal operator learning and adaptive quantization, employing a novel Linear
Minimum Mean Square Estimator (LMMSE)-based regression that takes into ac-
count the quantization error statistics. We also develop an additional LMMSE
to approximate more accurately the gradient of the Moreau Envelope used in the
ADMM algorithm.

• The impact of quantization error is mitigated in our learning algorithm by integrat-
ing our adaptive uniform quantizer with orthogonal transformations and dithering.

• A convergence analysis of our hybrid approach is presented. This analysis is based
on a derived convergence proof that is closely tied to the trace of the covariance
matrix given by the regression process and relies on an unrestricted assignment of
quantization bits.

• We propose three di”erent independent query strategies for the communication
reduction approach in [23], where the coordinator solely uses the uncertainty of the
prediction of each agent to decide whether such agent should be queried.

• We study the ADMM expression for the sharing problem and present a rearrange-
ment of such expression showing the inherent coupling between agents when run-

6



ning ADMM.

• We propose a joint query strategy that takes into account the inherent coupling
between agents, and using a joint uncertainty measurement decides which agents
should be queried considering the dynamics of all agents as a whole.

• A refined hybrid approach is presented that makes its communication decision
relying on the trace of the predictor’s covariance matrix and considers a uniform
quantizer that not only adapts its mid-value and window length but also adapts the
quantization resolution according to each agent’s needs.

• We validate our approach and algorithms in an extensive empirical study of a shar-
ing problem with quadratic cost function. We present numerical experiments for a
network of 10, 20, and 30 agents for which we ran 100 experiments for each. The
numerical results show significant reductions in total communication expenditure in
all test cases, with negligible compromise in the optimization performances.

The organization of the dissertation is given below. In Chapter 2 the hybrid ap-

proach that combines the proposed modified regression process with uniform quantization.

Chapter 3 presents a convergence analysis of the ADMM algorithm to address the sharing

problem when applied in conjunction with the stochastic STEP-GP algorithm [23] and its

variant named LGP derived in Chapter 2. In Chapter 4 we study the ADMM expression

for the sharing problem and propose di”erent query strategies to improve the communi-

cation decision-making of our query-response approach. This chapter does not consider

quantization. Then, in Chapter 5 the LGP algorithm in Chapter 2 is extended to include

an adaptive quantization scheme that also adapts its quantization resolution. Finally, the

global conclusions and proposed future directions are presented in Chapter 6.
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Chapter 2. Hybrid Approach Combining the Modified Gaussian
Process LGP and Adaptive Uniform Quantization

This chapter focuses on our proposed hybrid approach that combines adaptive

uniform quantization and GP regression. The work done did not simply put these two con-

cepts in a distributed optimization setting in a naive way, but considered the quantization

error statistics to be accounted for in the regression process mitigating its impact on the

ADMM algorithm.

Chapter Organization: The problem formulation is given in Section 2.1. An

overview of uniform quantization and GP regression is presented in Section 2.2. Then,

Section 2.3 presents the main mathematical foundation and derivations relevant to our

work. A detailed presentation of our proposed approach is shown in Section 2.4. The

numerical results are presented in Section 2.5. Finally, we conclude the chapter with the

main contributions in Section 2.6.

2.1. Problem Formulation

This chapter deals with a multi-agent optimization problem whose structure takes

the form of the sharing problem as considered in [8, 10]:

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (2.1)

Here, n agents, each with local decision variables xi → Rp, equipped with a proper and

strongly convex local cost function fi: Rp ↑↓ R, coordinate to minimize the system cost

consisting of all local costs and a proper and convex shared global cost function h: Rp ↑↓

R. Each cost function is only known to its corresponding agent and cannot be shared with

the coordinator or other agents for privacy reasons. The problem presented in (2.1) can

be solved with ADMM. By introducing copies yi of xi, the problem can be formulated
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equivalently as

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

yi

)

subject to xi ↔ yi = 0, ↗i = 1, . . . , n.

(2.2)

Because the agents keep their local cost function fi private, each agent i will only provide

the solution to the following local proximal minimization problem to the coordinator

prox 1
ωfi

(zki ) = argmin
xi→Rp

{
fi(xi) +

ϑ

2
↘xi ↔ zki ↘2

}
, (2.3)

in response to a value (a query) zki sent to it by the coordinator at iteration k, where ϑ >

0 is a penalty parameter. The ADMM works in a query-response manner as follows. At

iteration k, a query point zki is generated by the coordinator and sent to an agent i. Each

agent solves its proximal minimization problem at its query point zki and replies with

the response vector prox 1
ωfi

(zki ) to the coordinator. The coordinator then updates the

dual variables and generates the query points at the next iteration. Mathematically, each

ADMM iteration k involves the following updates derived in the analysis in Chapter 7 in

[8]:

1. The coordinator updates the average of yi

ȳk+1 = argmin
ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k ↔ uk↘2

}

then sends a query zki = xk
i ↔ x̄k + ȳk+1 ↔ uk to each agent i.

2. Each agent i updates and sends its response xk+1
i = prox 1

ωfi

(
zki
)
to the coordina-

tor.

3. The coordinator calculates the average x̄k+1 = (1/n)
∑n

i=1 x
k+1
i and updates the

scaled dual vector uk+1 = uk + x̄k+1 ↔ ȳk+1 .

This process is repeated until convergence is achieved or until a maximum number of

iterations is reached. The most common termination criterion for ADMM is presented in

Section 3.3.1 in [8].
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2.1.1. Moreau Envelope

To reduce the communication overhead in this distributed optimization scheme, the

authors of [22] proposed an approach called STEP (STructural Estimation of Proximal

operator) which relies on the concept of the Moreau envelope of a function f . For brevity,

we drop the subscript i and the superscript k in the subsequent equations. For 1/ϑ > 0,

the Moreau envelope f
1
ω of f is defined as

f
1
ω (z) = min

x→Rn

{
f(x) +

ϑ

2
↘x↔ z↘2

}
. (2.4)

When f is a proper and convex function, the Moreau envelope f
1
ω is convex and di!eren-

tiable with Lipschitz continuous gradient with constant ϑ [Fact 2.2 in [34]]. Moreover, the

unique solution to the proximal minimization prox 1
ωf
(z) is [35, Proposition 5.1.7]

prox 1
ωf
(z) = z ↔ 1

ϑ
≃f

1
ω (z). (2.5)

Consequently, the gradient ≃f
1
ω (z) is all that is required to reconstruct the optimizer

of (2.3) following from (2.5).

The STEP approach estimates the unknown gradient ≃f
1
ω (z) at any query point z

by constructing a set of possible gradients at z based on past queries and then selecting

a gradient that is “most likely” the true gradient. The work presented in [23] improved

STEP by learning the Moreau envelopes corresponding to the local proximal operators

with GP, which are updated online from past query data and used to predict the gradient

≃f
1
ω (z) for estimating the proximal operators (2.3) of the agents by (2.5).

2.1.2. Proposed Solution Overview

The communication expenditure can be reduced further if the learning component

is combined with the quantization of the communications between agents and coordinator.
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Orthogonal 
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Figure 2.1. Flow diagram of a query and response between the coordinator and an agent
in the proposed approach. The enhancements contributed by this work, compared with
the original approach in [1], are highlighted in the blue-shaded boxes.

Our work [1] presented some preliminary results on a hybrid approach combining learning

with quantization for further reducing communication overhead. This chapter builds upon

our hybrid approach [1] by further analyzing and mitigating the impact of quantization

errors. Our improved hybrid approach is depicted in the diagram in Figure 2.1, which

describes the communication and computation processes between the coordinator and

an agent i at ADMM iteration k. In the colored boxes are new or modified components

developed in this work compared to the approach in [1]. The blocks colored blue indicate

the processes that were added or improved compared with our work in [1].

In Figure 2.1, if the coordinator determines that a communication with agent i is

necessary at iteration k, it will send the query point zki to the agent. The Moreau enve-

lope f 1/ω
i (zki ) and its gradient ≃f 1/ω

i (zki ) are then calculated. A regression is performed
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simultaneously by the agent’s proxLGP (identical to the coordinator’s proxLGP), to

obtain the predictive mean µk
i (z

k
i ) and the covariance matrix $k

i (z
k
i ) of the agent’s re-

sponse. These values are used to parameterize the quantization process of the exact re-

sponse {f 1/ω
i (zki ),≃f 1/ω

i (zki )} to reduce the quantization error. The rationale is that if the

exact values fall with high probability inside a range (determined by the predictive co-

variance matrix) around the predictive mean, then the quantization error is reduced and

diminished as the proxGP becomes increasingly accurate, ensuring the optimization’s con-

vergence [25]. The quantized response

{(
Q
(
f 1/ω
i (zki )

)
,Q

(
≃f 1/ω

i (zki )
))}

from agent i is

sent back to the coordinator, which uses a similar dequantization process based on the

same predictive mean µk
i (z

k
i ) and covariance matrix $k

i (z
k
i ) to obtain the dequantized ap-

proximate response {f̂ 1/ω
i (zki ),≃f̂ 1/ω

i (zki )}. The dequantized values are used both for the

ADMM calculations and for updating the proxGP.

In the next section, we present a review of the important theoretical results rele-

vant to our work.

2.2. Review of Gaussian Process and Quantization

2.2.1. Gaussian Process with Derivative Observations

Let us assume that we have m observations of a random variable, and X → Rm↑p

whose rows xi (i → [1,m]) are observed inputs vectors. Considering a mean function

µ(xi) and the co-variance function ϱ(xi, x↓
i) of a real process f(xi) → R satisfying positive

definite conditions as presented in Chapter 4 of [36], the GP can be written as f(xi) ⇐

GP(µ(xi),ϱ(xi, x↓
i)).

Now, consider the case where we have extended function values at xi → R1↑p in-
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cluding both the function value and its gradients at xi, denoted by [f(xi);≃f(xi)], where

≃f(xi) =

[
εf(xi)

εx
(d)
i



d=1,...,p

, and x(d)
i is the d-th element of xi. Following [37], the covariance

matrix is correspondingly expanded, for any pair of points s, l → [1,m], resulting in the

covariances between the observations and its partial derivatives given by

Cov

[
ςf(xs)

ςx(ds)
s

, f(xl)


=

ς

ςx(ds)
s

ϱ (xs, xl) ,

and between the partial derivatives given by

Cov


ςf(xs)

ςx(ds)
s

,
ςf(xl)

ςx(dl)
l


=

ς2

ςx(ds)
s ςx(dl)

l

ϱ (xs, xl) ,

where 1 ⇒ ds, dl ⇒ p. The GP then will have its predicted mean and covariance as pre-

sented in Chapter 2 of [36].

2.2.2. Uniform Quantization

We consider a uniform quantizer Qu of the mid-tread type [38], where the input-

output relation is given by

Qu(y; y, q) = y + q

(
y ↔ y

q


+

1

2

)
,

in which q > 0 is the quantization window length, y is the mid-value, and ⇑y⇓ denotes the

integer closest to y towards 0. Here, q = l
2b , where l is the range of the quantization inter-

val and b is the bit resolution of the quantizer. Let ŷ = Qu(y; y, q), then the quantization

error (or quantization noise) is defined as φQ = y↔ ŷ. The statistics of the quantization error

for this uniform quantizer are characterized in Section V-A in [39].

2.3. GP Regression under Adaptive Quantization

In this section, we present the derivations and principles of our proposed approach.

We present our proposed adaptive quantization scheme and its properties, the new regres-
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sion mechanism, and an approximation method to deal with the quantized data.

2.3.1. Adaptive Uniform Quantization

We propose a quantizer that adapts the standard (non-adaptive) uniform quantizer.

Given an input y which is a sample of a Gaussian distribution N
(
µy, ↼2

y

)
, we adapt a

uniform quantizer by setting its mid-value y = µy and its range l = 2c↼y, for some given

c > 0 controlling how many standard deviations apart from the µy we set the range which

influences how confident we are that the quantizer’s input is within the defined range. The

proposed adaptive quantizer Qua on y, given by Qua(y;µy, ↼y, c, b) = Qu(y;µy,
2cϑy

2b ) =

µy +
2cϑy

2b


2b(y↔µy)

2cϑy


+ 1

2


, therefore has parameters that are adapted for a quantization

resolution appropriate for the most likely values of f(x).

The following result characterizes the error statistics of the adaptive uniform quan-

tizer, which will play an important role in the analysis of our proposed adaptive quantiza-

tion methods throughout the rest of the chapter. Its proof is presented in Appendix A.

Proposition 1 Consider a sample y of a Gaussian distribution N
(
µy, ↼2

y

)
and an adap-

tive uniform quantizer Qua(y;µy, ↼y, c, b) on y. Define the quantization error φQ = y ↔

Qua(y;µy, ↼y, c, b). Then the mean and variance of the quantization error are

E[φQ] = 0

E[φQφ↓Q] =
q2

12
v(r),

where q = 2cϑy

2b , r = 2b

2c , and

v(r) = 1 +
12

↽2

↗∑

m=1

(↔1)m

m2
exp

(
↔2↽2m2r2

)
. (2.6)
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Furthermore, the correlation between the input y and the quantization error is given by,

E[yφQ] = 2↼y

↗∑

m=1

(↔1)m exp
(
↔2↽2m2r2

)
. (2.7)

While v(r) and E[yφQ], given in (2.6) and (2.7), involve complex mathematical se-

ries, we will show that when the ratio r = 2b

2c exceeds 1, v(r) becomes approximately 1 and

the correlation E[yφQ] becomes negligible. The following lemmas establish the monotonic-

ity and the negative values of these series. Their proofs can be found in Appendix B.

Lemma 1 The series
∑↗

m=1
(↔1)m

m2 exp (↔2↽2m2r2) is negative and increasing with r.

Lemma 2 The series
∑↗

m=1(↔1)m exp (↔2↽2m2r2) is negative. Furthermore, for r >

1↘
2ϖ

⇔ 0.225, it is increasing with r.

It follows from these lemmas that v(r) < 1 and increasing with r for all r > 0, and

E[xφQ] < 0 and increasing with r for all r > 1↘
2ϖ

⇔ 0.225. In practice, the ratio r = 2b

2c

is at least 1 and often much greater than 1. Indeed, with the typically chosen c = 3, at a

resolution of just b = 3 bits, r = 4/3 > 1 and increases exponentially with b. At r = 1, we

have v(1) = 1 ↔ 3.253 ↖ 10↔9, and E[yφQ] = ↔5.351 ↖ 10↔9↼y. Therefore, for all practical

purposes, we have 1 ↔ 3.253 ↖ 10↔9 ⇒ v(r) < 1, thus we can consider v(r) = 1 and hence

E[φQφ↓Q] = q2

12 . In addition, we have ↔5.351 ↖ 10↔9↼y ⇒ E[yφQ] < 0, thus we can consider

E[yφQ] = 0.

2.3.2. Adaptive Uniform Quantization with Vector Input

Consider the case where the input to the quantizer is a Gaussian random vector y

with conditional mean vector µy and conditional co-variance matrix $y. The previously

presented adaptive quantization scheme must be adjusted to handle the multidimensional

nature of the input. We propose two schemes described below: one ignores the correlations
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among the input values and the other takes these correlations into account.

2.3.2.1. Adaptive Scheme Ignoring Correlation

Quantization is performed element-wise, using each element of the quantizer’s input

with its corresponding element of the conditional mean vector µy and the diagonal of the

co-variance matrix $y for adaptation. Therefore, we have a vector of window lengths q

with the ith entry given by

qi =
2c


$y[ii]

2b
, (2.8)

where $y[ii] is the ith entry of the diagonal of $y. Using Proposition 1, we can characterize

the quantization error under the proposed scheme, as stated in the following proposition.

Proposition 2 Under the Adaptive Scheme Ignoring Correlation, an adaptive uniform

quantizer Qua(y;µy,$y, c, b) has a quantization error vector φQ whose components are un-

correlated. The correlation matrix, defined as %un = E[φQφ↓Q], is a diagonal matrix with its

diagonal given by the vector
v(2b/2c)

12 q2, with the entries of vector q defined as in (2.8) and

v(·) as defined in Proposition 1.

2.3.2.2. Correlated Adaptive Scheme

The use of an orthogonal transformation of the quantizer’s input y allows us to

consider the correlation between its elements, and to perform quantization over the trans-

formed input similarly as in the previously defined Adaptive Scheme Ignoring Correlation.

Using the above notations, the orthogonal transformation to the quantizer’s input

is expressed as

yA = A(y ↔ µy), (2.9)

where A is the transformation matrix. The conditional mean of y is subtracted to have
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a zero-mean quantizer’s input. Then, the way A is determined will define our orthogonal

pre-filtering of the quantizer’s input.

Pre-filtering : The transformation matrix A used in (2.9) is obtained by applying

an eigenvalue decomposition of matrix $y, in which $y = U&U ↓
, with & being a diagonal

matrix with the eigenvalues of $y and U being a square matrix whose columns are eigen-

vectors of $y. The matrix A can be expressed in two ways; A1 = ($y)↔1/2
or A2 = U ↓

,

where ($y)1/2 is a matrix such that ($y)1/2($y)1/2 = $y. The use of A1 will result in a

whitening procedure where the result will be a zero-mean unit variance vector with indepen-

dent components. The use of A2 will result in a decoupling procedure where the result will

be a zero-mean vector whose variances are determined by the eigenvalues in &.

Following this pre-filtering, yA will be element-wise quantized given by:

Qua(y
A; 0,$w, c, b) = yA + φQ,

where $w represents the identity matrix (when A = A1) or a diagonal matrix with entries

given by the eigenvalues of $y (when A = A2).

Proposition 3 Under the Correlated Quantization Scheme and the proposed Pre-filtering,

an adaptive uniform quantizer Qua(yA; 0,$y, c, b), where the input vector is transformed

following (2.9), has a quantization error vector φQ whose components are correlated with

each other. The correlation matrix, defined as %co = E[φQφ↓Q], is independent of the choice

of the transformation matrix A and is given by %co = c2v(2b/2c)
3(2b)2 $y , with v(·) as defined in

Proposition 1.

Proof: The proof is presented in Appendix C. ↭
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2.3.3. LMMSE Regression with Quantization

In this subsection, we consider a GP regression as presented in Section 2.2.1, but

when the training set D is a”ected by adaptive quantization. In this scenario, we do

not have access to the exact extended values yi but a quantized version of them ŷi =

[Qu(f(xi));Qu(≃f(xi))T ] + φin, which are quantized following the proposed adaptive quan-

tization with vector inputs presented in Section 2.3.2. These quantized extended values

are also expressed as ŷi = [f(xi);≃f(xi)T ] + φin + φiQ, where φiQ refers to the quantization

error vector for the observation i and φin is a vector whose entries follow the same Gaussian

distribution with zero mean, ↼2
n variance at observation i. Such Gaussian noise is not a

physical noise but one added to avoid possible matrix singularity.

The added non-Gaussian quantization noise invalidates the Gaussian noise assump-

tion of the regular GP regression. In this case, the regression cannot be a Minimum Mean

Square Estimator (MMSE) anymore, so we must compute the conditional mean which

requires a more involved computation. To overcome this challenge, we adopt a Linear Min-

imum Mean Square Error Estimator (LMMSE). This allows us to balance the accuracy

and complexity of the estimator while preserving the advantages of GP. With this premise

we will derive two estimators under two scenarios regarding the training set D.

2.3.3.1. Linear GP Regression (LGP-R)

This estimator is used to predict the extended values of an input x≃ given a train-

ing set where the observed extended values are a”ected by quantization. In this case, we

only have access to quantized values of the extended values. For a new input x≃ we want

to predict y≃, leading to the following theorem, whose proof is presented in Appendix D.
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This estimation is done at every iteration, and for every agent to assess the quality of

regression.

Theorem 1 The LGP-R Estimator has an input x≃ → Rp
and a training set containing m

past observations with quantized extended values D = (X, Ŷ ), with X → Rm(p+1)↑p
being a

collection of the past input observations xi → R(p+1)↑p
, and Ŷ → Rm(p+1)↑1

being a collection

of the past quantized extended values ŷi → R(p+1)↑1
. This estimator has its predicted mean

µ(x≃) = ’(X≃, X)(’(X,X) + ↼2
nIm(p+1) +%+ 2E[Y φ↓Q])

↔1Ŷ ,

and predicted covariance matrix

$(x≃) = ’(X≃, X≃)↔ ’(X≃, X)(’(X,X) + ↼2
nIm(p+1) +%+ 2E[Y φ↓Q])

↔1’(X,X≃),

where X≃ → R(p+1)↑p
contains a copy of x≃ in each of its rows, the entries of the matrices

’(X≃, X≃), ’(X≃, X), and ’(X,X) are as detailed in Subsection 2.2.1, % = E[φQφ↓Q] con-

tains the information of the uniform quantization error of all extended values observations

of the training set D, and the entries corresponding to each observation in % are added

block-wise following the expression given by %un in Proposition 2 or %co in Proposition

3 (depending on the quantization scheme selected), and E[Y φ↓Q] is the correlation between

the uniform quantization error of all extended values observations of the training set D

and the extended values observations, whose entries are calculated following the correlation

expression shown in Proposition 1.

2.3.3.2. Linear GP Approximation (LGP-A)

Consider the case where we perform adaptive uniform quantization on the extended

values at x≃, resulting in the quantized version of y≃ given by ŷ≃. Such adaptive quanti-
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zation uses the conditional mean and conditional covariance given by LGP-R. It is pos-

sible to approximate the real value y≃ if ŷ≃ and the statistics that adapt the quantizer

are known. To do so, we propose the construction of a LMMSE named LGP-A to be per-

formed after the quantization process. This estimation is only performed when communi-

cation is required and after receiving the reply from the agent.

The estimation could be performed by updating the training set with the new input

and the quantized extended values. Input x≃ could then be reinserted to the estimator

presented in Theorem 1. To avoid such redundancy we consider an approximator that

deals with a zero-mean input ŷ≃↔µ(x≃), and since ŷ≃ already has the information of the past

training set, we then have the following theorem, whose proof is presented in Appendix E.

Theorem 2 LGP-A has a training set containing past observations and extended quan-

tized values of x≃ leading to the set D = ([X; x≃], [Ŷ ; ŷ≃]), with X → Rm(p+1)↑p
being a

collection of the past input observations xi → R(p+1)↑p
, and Ŷ → Rm(p+1)↑1

being a collection

of the past quantized extended values ŷi → R(p+1)↑1
. LGP-A estimates the target value y≃ by

ȳ≃ = B(ŷ≃ ↔ µ(x≃)) + µ(x≃),

where B = $(x≃)($(x≃)+%p+1+↼nIp+1+2E[y≃φ↓Q≃])
↔1
, with µ(x≃) and $(x≃) as presented in

Theorem 1 and %p+1 is given by %un in Proposition 2 or %co in Proposition 3 depending

on the quantization scheme selected, φQ≃ is the quantization error of only the quantized

values in the present iteration, and E[y≃φ↓Q≃] is calculated as shown in Proposition 1.

20



2.4. Proposed Approach

2.4.1. Proposed Adaptive Uniform Quantization Scheme

This section combines the overview presented in Section 2.1 with the results pre-

sented in Section 2.3 to present our complete proposed approach in more detail.

In Figure 2.1, upon receiving the query point zki → R1↑p from the coordinator

(left side), agent i (right side) solves the proximal minimization problem (2.3) (the box

prox 1/ωfi) and obtains the exact values of f 1/ω
i (zki ) → R and ≃f 1/ω

i (zki ) → Rp↑1. Simul-

taneously, it uses the regression process, depicted in the block ’proxLGP’, to obtain the

conditional mean µk
i (z

k
i ), which stores the predicted values of f 1/ω

i (zki ) and ≃f 1/ω
i (zki ), and

the conditional covariance matrix $k
i (z

k
i ). We can adopt the same adaptive uniform quan-

tization scheme presented in Section 2.3.1, as the exact values follow a Gaussian distribu-

tion (under the LGP model). We will denote the quantized values of the query response

as [f̂ 1/ω
i (zki );≃f̂ 1/ω

i (zki )] = Qua([f
1/ω
i (zki );≃f 1/ω

i (zki )];µ
k
i (z

k
i ),$

k
i (z

k
i ), c, b)). The output of the

quantizer is transmitted from the agent (right side) to the coordinator (left side). The de-

quantized values f̂ 1/ω
i (zki ) and ≃f̂ 1/ω

i (zki ) are used by the ADMM algorithm and to update

the corresponding ’proxLGP’ of agent i.

2.4.2. LGP-R based Regression in our Proposed Approach

The ‘proxLGP’ block on the coordinator side of Figure 2.1 runs at every iteration

and its resulting covariance matrix is used to determine whether to send zki to agent i.

Using the quantization scheme for vector inputs Qua (defined in Section 2.3.2) and follow-

ing (2.8), the results presented in Propositions 1-3 apply to the adaptive quantizer Qua.

Hence, we can use the previously derived regression scheme LGP-R presented in Theorem
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1 as the regression scheme to be used in this work. Using the results in Section 2.3.1 that

E[yφ↓Q] ⇔ 0 and v(r) ⇔ 1, we henceforth remove the correlation E[yφ↓Q] present in Theorems

1 and 2, and remove the term v(2b/2c) used in the characterization of the variance of the

quantization error in Propositions 2 and 3.

Now, defining g1/ωi (zki ) = [f 1/ω
i (zki );≃f 1/ω

i (zki )], we have that, given the new query

point zki , the predicted value of the vector g1/ωi (zki ) using LGP-R will be given by

µk
i (z

k
i ) = ’(Zk

i≃, Z
k
i )(’(Z

k
i , Z

k
i ) + ↼2

nIm(p+1) +%i)
↔1Ĝk

i , (2.10)

where Zk
i≃ → R(p+1)↑p contains a copy of zki in each of its rows, Zk

i is the training input set

containing queries sent to agent i up to time k in the set {zji }j→Ji , J k
i contains the indices

of the iterations where a query was sent to agent i by the coordinator up to the current

algorithmic iteration, m is the number of elements in set J k
i , Ĝ

k
i is the quantized training

target set containing the local quantized proximal minimization problem results sent from

agent i to the coordinator up to time k in the set {Qua(g
1/ω
i (zji );µ

j
i (z

j
i ),$

j
i (z

j
i ), c, b)}j→Ji ,

↼2
nIm(p+1), %i are defined in Theorem 1, and the entries of ’(Zk

i≃, Z
k
i ) and ’(Zk

i , Z
k
i ) are

detailed in Subsection 2.2.1 with a covariance function given by the square exponential

kernel function.

Using the same notation, the covariance matrix given by the LGP-R is

$k
i (z

k
i ) = ’(Zk

i≃, Z
k
i≃)↔ ’(Zk

i≃, Z
k
i )(’(Z

k
i , Z

k
i ) + ↼2

nIm(p+1) +%i)
↔1’(Zk

i , Z
k
i≃). (2.11)

The matrix %i will be updated block-wise by inserting the corresponding quantization

error covariance matrix of the query round, which follows Proposition 2 or Proposition 3

depending on the quantization scheme used. Henceforth, we will use %k
i to refer to the
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Algorithm 1 LGP: Distributed Optimization with Estimated Proximal Operator based
on Gaussian Processes with Adaptive Uniform Quantization

Require: x0
i → Rp, ȳ0 → Rp, u0 → Rp, c → N, b → N

1: for k = 0, 1, . . . , kstop do
2: ȳk+1 ↙ argmin

ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k ↔ uk↘2

}

3: for each agent i do
4: zki ↙ xk

i ↔ x̄k + ȳk+1 ↔ uk

5: Calculate µk
i (z

k
i ) and $k

i (z
k
i ) from (2.10) and (2.11)

6: if max
(
diag

(
$k

i (z
k
i )
))

> ⇀k
i then

7: Send zki to Agent i

8: ĝ1/ωi ↙ QueryAgent(zki ) ⇁ Agent i

9: Compute ḡ1/ωi from (2.12)

10: Add (zki , ĝ
1/ω
i (zki )) to the GP training set

11: Perform the GP hyperparameter update.
12: xk+1

i ↙ zki ↔ (1/ϑ)≃f̄ 1/ω
i (zki )

13: else
14: xk+1

i ↙ zki ↔ (1/ϑ)µk
i (z

k
i )

15: end if
16: end for
17: x̄k+1 ↙ (1/n)

∑n
i=1 x

k+1
i

18: uk+1 ↙ uk + x̄k+1 ↔ ȳk+1

19: If ↘x̄k ↔ ȳk↘↗ ⇒ φp(1 + ↘λk/ϑ↘↗) then Terminate.
20: end for

resulting quantization error covariance matrix obtained after a query process in iteration k,

which will be then added to %i.

2.4.3. LGP-A Approximation in our Proposed Approach

In Figure 2.1 we can see that the coordinator receives the quantized version

≃f̂ 1/ω
i (zki ) of the exact value ≃f 1/ω

i (zki ). To improve the accuracy of the gradient values

used in the ADMM updates at the coordinator, we estimate these values with a LMMSE

estimator rather than using the inexact quantized values directly. The estimator derived in

this subsection is di”erent from that in subsection 2.4.2 because it is applied only when a

query is performed, which only uses the newly added entry in the training set. The result

is further used by the ADMM process.
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After a query undergoes a communication round, the quantized value of g1/ωi (zki ),

ĝ1/ωi (zki ), is added to the regression training set, and %i is updated with the block %k
i .

Therefore, we can obtain the desired approximation ḡ1/ωi (zki ) following the derivation from

Theorem 2, which gives us

ḡ1/ωi (zki ) = (Bk
i (ĝ

1/ω
i (zki )↔ µk

i (z
k
i )))) + µk

i (z
k
i ), (2.12)

where Bk
i = $k

i (z
k
i )($

k
i (z

k
i ) + ↼nIp+1 +%k

i )
↔1.

2.4.4. Dithering

From Proposition 1, we have that the correlation between the quantization noise

and the input is negligible when the quantization bit resolution (b) becomes larger and

we fix a small value for c. If b is too small, we can introduce dithering to randomize the

quantization error and break the correlation between this error and the quantizer input.

A recent study ([40]) explores the use of quantization with dithering to determine

which distribution the subtractive dithering follows. The work presented in [33] shows

that the use of dithering with quantization could be improved if an orthogonal transfor-

mation was performed on the quantizer input before the quantization process. We thus

adopt dithering as part of quantization after orthogonal transformation is performed at

the quantizer’s input.

When the uniform quantizer is used with a zero-mean Gaussian input, the dither-

ing variable dki will be a random number coming from a uniform distribution dki[r] ⇐

U(
↔qki[r]

2 ,
qki[r]
2 ), where the window length qki[r] is as defined in (2.8). The dithering will be

performed element-wise, so dki will have the same dimension as the quantizer input. Fol-

lowing the orthogonal transformation as in Section 2.3.2, the quantizer input with dither-
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Algorithm 2 Query Process at the Agent Side

1: procedure QueryAgent(zki )

2: Compute f 1/ω
i (zki ) and ≃f 1/ω

i (zki ) from (2.4)

3: g1/ωi ↙ [f 1/ω
i (zki );≃f 1/ω

i (zki )]
4: if Using Adaptive Scheme Ignoring Correlation then
5: ĝ1/ωi ↙ Qua(g

1/ω
i ;µk

i (z
k
i ),$

k
i (z

k
i ), c, b))

6: else
7: Perform decomposition $k

i (z
k
i ) = Uk

i &
k
iU

k→
i

8: if Using Whitening Transformation then
9: Ak

i ↙ ($k
i (z

k
i ))

↔1/2

10: end if
11: if Using Decoupling Transformation then
12: Ak

i ↙ Uk→
i

13: end if
14: gAi ↙ Ak

i [g
1/ω
i ↔ µk

i (z
k
i )]

15: if Using Dithering then
16: Compute gA[d]

i as in (2.13)

17: ĝ1/ωi ↙ Qua(g
A[d]
i ; 0,$k

i (z
k
i ), c, b)) + µk

i (z
k
i )

18: else
19: ĝ1/ωi ↙ Qua(gAi ; 0,$

k
i (z

k
i ), c, b)) + µk

i (z
k
i )

20: end if
21: end if
22: return ĝ1/ωi

23: end procedure

ing is given by

gA[d]
i (zki ) = gAi (z

k
i ) + dki , (2.13)

where gAi (z
k
i ) = A(g1/ωi (zki ) ↔ µk

i (z
k
i )), with A as presented in the Pre-filtering. Then,

gA[d]
i (zki ) will be quantized and sent to the coordinator. The coordinator then performs the

dequantization process and subtracts the noise added to the input before adding back its

mean. The value ĝ1/ωi (zki ) is given by

ĝ1/ωi (zki ) = A↔1((gA[d]
i (zki ) + φkQi ↔ dki ) + µk

i (z
k
i ),

where φkQi is the ith agent quantization noise at iteration k.
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2.4.5. LGP Pseudo-Code

The complete LGP algorithm considering all its di”erent variations is presented in

Algorithm 1.

2.5. Numerical Experiments

In this section, we evaluate the methods proposed in this work by solving a shar-

ing problem where the agent’s sub-problems are quadratic. The specifics of the sharing

problem considered, the experiment settings, and the results obtained are presented next.

2.5.1. Sharing Problem

2.5.1.1. Problem Definition

Our testing problem is based on the application presented in [10]. In this example,

a dynamic sharing problem where the problem’s variables change at each iteration is pre-

sented and solved via ADMM. In our work, those varying variables are fixed and do not

vary at each algorithmic step. We consider the following sharing problem:

minimize
n∑

i=1

(xi ↔ ωi)
T#i(xi ↔ ωi) + ζ↘

n∑

i=1

yi↘1

subject to xi ↔ yi = 0

(2.14)

where xi, yi → Rp, ωi → Rp, #i → Rp↑p positive definite, and ζ > 0 are given problem

parameters.

As presented in [10], the problem in (2.14) can be applied to data flow in communi-

cation networks or currents in power grids, where there are n subsystems and p quantities

distributed over such subsystems. The vector xi describes the p quantities at subsystem i,

and the goal is to determine the solution vectors xi, i = 1, 2, . . . , n.
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2.5.1.2. Generation of Parameters ωi and #i

In [10] the variables ωi and #i are updated at each iteration of the ADMM algo-

rithm. In this work, those variables are fixed by following the variable’s initialization for

the first iteration made in [10]. As such, to calculate each ωi we first create ω0i which is a

p-dimensional vector with entries randomly generated and uniformly distributed on [-1,1].

Then, the value of ωi to be used is ωi = ω0i + ▷ui, where ▷ is some small positive number, ui

is a p-dimensional vector for agent i whose entries are randomly generated and uniformly

distributed on [-1,1].

Next, to calculate each #i we first create #0
i = A ∝ A↓ as a symmetric p↖ p matrix,

where the entries of A → Rp↑p are randomly generated and uniformly distributed on [-1,1].

Then, we generate #i = #0
i + ▷Ei, where Ei is a symmetric p↖ p matrix whose entries are

randomly generated and uniformly distributed on [-1,1]. Subsequently, #i is constructed as

#i =






#i, if λmin(#i) > φ

#i +
(
φ↔ λmin(#i)

)
Ip, otherwise,

where λmin(#i) denotes the smallest eigenvalue of #i and φ > 0 is some positive constant.

2.5.1.3. Solution with ADMM

The problem presented in (2.14) has the same form as (2.2) in Section 2.1 based on

which the ADMM updates for this case are expressed as

xk+1
i = argmin

xi→Rp

{
fi(xi) + (ϑ/2)↘xi ↔ zki ↘22

}

ȳk+1 = argmin
ȳ→Rp

{
ζ↘nȳ↘1 + (nϑ/2)↘ȳ ↔ x̄k+1 ↔ (1/ϑ)λk↘22

}

λk+1 = λk + ϑ(x̄k+1 ↔ ȳk+1) (2.15)
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Table 2.1. Elements associated with each of the proposed methods.

GP Reg LGP Reg Uni Quant Decoup Whitening Dithering
Sync:UniQuant
STEP-GP:Exact
STEP-LGP:UniAd

STEP-LGP:UniAd-Dec
STEP-LGP:UniAd-DecDit
STEP-LGP:UniAd-Whit

STEP-LGP:UniAd-WhitDit

where fi(xi) = (xi ↔ ωi)T#i(xi ↔ ωi), x̄k = (1/n)
∑n

i=1 x
k
i , ȳ

k = (1/n)
∑n

i=1 y
k
i , and

zki = xk
i ↔ x̄k + ȳk ↔ (1/ϑ)λk.

Since the functions fi and the l1 norm are strongly convex, the ADMM updates for

xk+1
i and ȳk+1 are solutions to unconstrained convex optimization problems. Thus, those

problems can be solved by calculating the derivatives of the objective functions in (2.15),

and setting them equal to zero. Following this, xk+1
i can be expressed by the closed form

solution

xk+1
i = (2#i + ϑIp)

↔1(2#iωi + ϑ(xk
i ↔ x̄k + ȳk)↔ λk), (2.16)

where Ip is the p↖ p identity matrix.

Similarly, the ȳ update can expressed as

ȳk+1 =






(x̄k+1 + λk/ϑ)↔ ϱ
ω , if x̄k+1 + λk/ϑ > ϱ

ω

0, if |x̄k+1 + λk/ϑ| ⇒ ϱ
ω

(x̄k+1 + λk/ϑ) + ϱ
ω , if x̄k+1 + λk/ϑ < ↔ ϱ

ω .

(2.17)

2.5.2. Experiment Implementation

We consider two cases where n → {10, 30}. The problem described in (2.14) is

solved with four di”erent methods:
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1. Direct : this method uses a convex solver to solve the problem directly. The knowl-
edge of the true solution is used to construct the comparative metric, which is
introduced in the following subsection.

2. Sync: this algorithm uses ADMM with proximal operator as in (2.15), which simpli-
fies to (2.16) and (2.17) with ϑ = 10.

3. STEP-GP : the algorithm proposed in [23] combining ADMM with proximal opera-
tor with GP regression.

4. STEP-LGP : the hybrid algorithm proposed in this chapter, which combines the
regression algorithm developed in Section 2.4.2, the LMMSE approximation pre-
sented in Section 2.4.3, and the adaptive quantization method developed in Sec-
tion 2.4.1.

For each of the above algorithms, di”erent quantization methods, or no quantiza-

tion at all, are considered as follows:

• Exact : this method does not employ any quantization but uses 64-bit floating point
numbers.

• UniQuant : this uniform quantization adaptation scheme is proposed in [25] to
quantize the communications between agents in a connected network using the
Proximal Gradient Method (PGM). In case the quantizer’s input is a vector the
quantization is performed element-wise. For each element of the quantizer’s input,
an initial quantizer’s range is set which decreases at a linear rate over the algorith-
mic iterations and the quantizer’s mid-value is set to be the previous quantized
value.

• UniAd : this is the adaptive uniform quantization method as presented in Sec-
tion 2.4.1 and performed element-wise following the Uncorrelated Adaptive Scheme

as presented in Section 2.3.2.1.

• UniAd-Dec: this is the adaptive uniform quantization method as presented in Sec-
tion 2.4.1 and following the Correlated Quantization Scheme as presented in Sec-
tion 2.3.2.2 with decoupling.

• UniAd-DecDit : same as UniAd-Dec but adding the dithering procedure as pre-
sented in Section 2.4.4.

• UniAd-Whit : this is the adaptive uniform quantization method as presented in
Section 2.4.1 and following the Correlated Quantization Scheme with whitening.

• UniAd-WhitDit : same as UniAd-Whit but adding the dithering procedure as pre-
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sented in Section 2.4.4.

In our experiments, we consider the following combinations: Sync:Exact,

Sync:UniQuant, STEP-GP:Exact, STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, STEP-

LGP:UniAd-DecDit, STEP-LGP:UniAd-Whit, and STEP-LGP:UniAd-WhitDit. Table 2.1

summarizes each proposed combination’s algorithmic components.

The experiments were implemented in MATLAB. The solution of the minimization

problems (2.14) are obtained directly using a convex solver from the YALMIP toolbox [41].

We used the GPstu” toolbox [42] for the regression training and inference. The computa-

tion was conducted with high-performance computational resources provided by Louisiana

State University (http://www.hpc.lsu.edu).

2.5.3. Metrics and Considerations

2.5.3.1. MAC Metric

To consider a more realistic communication process, we include a numerical experi-

ment component to reflect the channel contention. By modifying the simulator in [43], we

get that the total transmission time will be Txt =
∑N

k=1 T
k
round, where N is the number of

iterations taken to reach convergence, and T k
round is the expected transmission time in one

iteration round. Appendix F presents the specifics of how this metric was obtained.

2.5.3.2. ADMM Termination Criterion

We propose a termination criterion for ADMM using the concept of primal-residual

as shown in [8], having the form:

↘x̄k ↔ ȳk↘↗ ⇒ φp(1 + ↘λk/ϑ↘↗),
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where xk, yk, and λk are the variables used in the ADMM (see Section 2.1) and φp is an

adjustable tolerance whose value will a”ect the trade-o” between communication reduction

and accuracy.

2.5.3.3. Performance Metric

To compare our results, we propose the Log Optimality over Transmission time

(LOT) performance metric

LOT = ↔ log(|Jgt ↔ J≃|/Jgt)/Txt

where Jgt is the true optimal value obtained by the Direct method, J≃ is the objective

value obtained by a particular approach, and Txt the total transmission time defined in

Section 2.5.3.1. This metric reflects both communication cost and e!cacy of a given ap-

proach. In particular, we want both the absolute error in the numerator and the transmis-

sion time in the denominator to be small, hence a higher LOT value is better.

2.5.3.4. Querying Mechanism

The coordinator decides if a query should be sent to agent i using a heuristic cri-

terion utilizing the maximum component of the diagonal of the covariance matrix of the

gradients of the Moreau Envelope. Specifically, if max
(
diag

(
$k

i (z
k
i )
))

> ⇀k
i then communi-

cation is needed, otherwise it is not. The threshold ⇀k
i is adapted at the coordinator side

based on the setting of an initial threshold which will decrease at each iteration according

to a decay rate ε, such that 0 < ε < 1. At k0, which is the iteration where the GP regres-

sion is used for the first time, the initial threshold for agent i (⇀k0
i ) is calculated following

⇀k0
i = ϖmax

(
diag

(
$k0

i (zk0i )
))
, where 0 < ϖ < 1. At iteration k > k0, no matter the commu-

nication decision made by agent i, the threshold will be updated as ⇀k
i = ⇀k0

i (ε)k↔k0 .
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2.5.4. Numerical Experiments Results with p = 5

In this subsection, we present the results for 10 and 30 agents when the dimension

of the variables is set to be p = 5. We also set the variable ϖ for the querying mechanism

described in Section 2.5.3.4 to be 0.6 for all agents. Each algorithm with the di”erent

combinations of quantization methods was run 100 times with di”erent sets of randomly

generated ωi and #i, and the results are shown in terms of the median statistic among all

experiments. We used such metric to mitigate the e”ect of outliers. The median is taken

considering only the convergent cases for each method across the considered quantiza-

tion levels. We consider a case to be non-convergent when the ADMM algorithm do not

stop before reaching the maximum number of iterations manually set by us. In our exper-

iments, we considered a maximum iteration count of 250 for a network of 10 agents and

300 when considering 30 agents. This set of results considered values of ▷ = 0.2, φ = ζ = 1,

ϑ = 10, p = 5, a tolerance value of φp = 10↔6, x0
i = z̄0 = λ0 = 0, and constant c = 3 for

quantization.

2.5.4.1. Results for 10 agents

Fig. 2.2 (left) shows the results of the median of the 100 experiments for ADMM,

STEP-GP and STEP-LGP based methods using the metric presented in Section 2.5.3.3

through the various quantization resolutions tested. The minimum resolution for which

any quantization method achieved convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better performance in all cases

compared to the baseline approaches Sync:UniQuant and Sync:Exact. Also, it can be

seen that starting from a resolution of 9 bits the performance of any STEP-LGP based
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Figure 2.2. Performance in the LOT metric of the adaptive quantization methods at dif-
ferent bit resolutions for 10 agents (left) and 30 agents (right) with p = 5. The plots show
the median LOT of 100 numerical experiments for di”erent sets of parameters ωi and #i.

method was better than STEP-GP, Sync:UniQuant, and Sync:Exact, with the peak of

performance occurring at 10 bits for STEP-LGP:UniAd-DecDit. For resolutions below

9 bits, STEP-LGP:UniAd outperformed the STEP-GP case starting from 7 bits while

STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit did it starting from 8 bits. For

8 and 7 bits, it is STEP-LGP:UniAd which achieved the best overall performance while

STEP-LGP:UniAd-Whit and STEP-LGP:UniAd-WhitDit could not beat the STEP-GP

algorithm. Overall, STEP-LGP:UniAd performed consistently good for all the presented

resolutions with STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit presenting the

peak of performance starting from a quantization resolution of 9 bits.

2.5.4.2. Results for 30 agents

The performance, in this case, is di”erent than the 10 agents case according to

Fig. 2.2 (right) in terms of the LOT metric. It can be seen that STEP-GP presented a

better performance in all cases compared to the baseline approaches Sync:UniQuant and
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Figure 2.3. Performance in the LOT metric of the adaptive quantization methods at di”er-
ent bit resolutions for 10 agents (left) and 30 agents (right) with p = 10. The plots show
the median LOT of 100 numerical experiments for di”erent sets of parameters ωi and #i.

Sync:Exact, however the di”erence in performance is not as notorious as in the previous

case. Similarly to the 10 agents case, STEP-LGP:UniAd-DecDit presented the peak of

performance but this time it does for the 9 bits case. Between the 5-8 bits interval, STEP-

LGP:UniAd-Whit and STEP-LGP:UniAd-WhitDit could not outperformed STEP-GP,

Sync:UniQuant, or Sync:Exact, while the rest of methods using LGP regression always

outperformed Sync:Exact and were all able to outperform STEP-GP and Sync:UniQuant

starting from the 8 bits case. For 9 and 10 bits, all LGP-based methods presented better

performance than STEP-GP with STEP-LGP:UniAd-Dec and STEP-LGP:UniAd-DecDit

presenting the better LOT values by a significant margin. Between 11 and 14 bits, the

best performance was always attained by a method involving quantization. However, it

is noted that the margin between STEP-GP and the methods using LGP regression was

significantly reduced compared to the 10 agents case.
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2.5.5. Numerical Experiments Results with p = 10

In this subsection, we discuss the results for 10 and 30 agents when the dimension

of the variables is set to be p = 10. The initialization parameters and constant variables

considered are the same as in the previous subsection. The corresponding graphs are pre-

sented in Figure 2.3.

2.5.5.1. Results for 10 agents

We generated results of the median of 100 numerical experiments for ADMM,

STEP-GP and STEP-LGP-based methods using the metric presented in Section 2.5.3.3

through the various quantization resolutions tested. The minimum resolution at which any

quantization method achieved convergence was 5 bits.

In terms of the LOT metric, STEP-GP presented a better performance compared

to Sync:Exact but it was outperformed by Sync:UniQuant in the cases where such a

method had a quantization resolution between 5 and 10 bits. Also, it is observed a stable

performance of all the methods using LGP regression through all the quantization reso-

lutions tested as shown in Figure 2.3 (left). In all the cases, those methods consistently

beated STEP-GP. The peak of performance was attained by STEP-LGP:UniAd-Whit at

7 bits beating by a small margin its own result for the 9 bits case. Through all the results

it is either STEP-LGP:UniAd-Whit or STEP-LGP:UniAd-WhitDit the method that pre-

sented the best performance, with the only exception being the 6 bits case. Starting from

10 bits, the methods using whitening presented a significantly better performance com-

pared to all the other methods. Finally, STEP-LGP:UniAd, STEP-LGP:UniAd-Dec, and

STEP-LGP:UniAd-DecDit presented a similar behavior through the di”erent quantization
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resolutions.

2.5.5.2. Results for 30 agents

Also, we generated the results for 30 agents following the same procedure as in the

previous subsection. In Figure 2.3 (right) we can see that the performance, in this case,

was similar to the 10 agents case in terms of the LOT metric. The most notorious di”er-

ence was that STEP-GP was outperformed by Sync:UniQuant for all the tested quantiza-

tion resolutions. In all the cases, LGP-based methods consistently outperformed STEP-

GP. Di”erent from the 10 agents case, the methods STEP-LGP:UniAd-Whit and STEP-

LGP:UniAd-WhitDit did not present the same notorious improvement in performance

compared to the rest of the methods, however, they still attained the best performance for

the 7 bits case.

2.5.6. Overall Remarks

The behavior of methods using whitening transformation reflects that a more com-

plex algorithm can achieve the best results under certain conditions but it lacks the ro-

bustness shown (especially at lower quantization bits) by the less complex method STEP-

LGP:UniAd. The LGP-based algorithms were able to further reduce the communication

expenditure compared to the base STEP-GP algorithm. The best behavior in terms of per-

formance and robustness of any of the proposed quantization-based algorithms is achieved

for a resolution greater than 8 bits.

The results showed the potential of our proposed methods to achieve a really good

accuracy while significantly reducing the communication cost in comparison to the base-

line methods Sync:Exact, Sync:UniQuant, and STEP-GP. Even the less complex proposed

36



method STEP-LGP:UniAd is good enough for reducing significantly the communication

cost while reaching an acceptable accuracy level with consistent performance. The peak of

performance in any of the testing scenarios was achieved by a quantization-based method

using orthogonal transformation, either Decoupling or whitening.

2.6. Conclusion to Chapter 2

In this chapter, we developed a hybrid approach that combined the Gaussian

Process-based learning approach with an adaptive uniform quantization approach to

achieve further reduction of the communication cost required in distributed optimization.

The resulting quantization error did not follow a Gaussian distribution, so we proposed a

new regression algorithm. This algorithm, inspired by GP, resulted in a Linear Minimum

Mean Square Estimator named LGP-R, which considered the resulting quantization er-

ror statistics. Communication was also reduced by refining the uniform quantizer with an

orthogonalization process of the quantizer input to handle the inherent correlation of the

quantizer’s input components, and with dithering to ensure the uncorrelation between the

quantizer’s introduced noise and the quantizer’s input. Numerical Experiments of a dis-

tributed sharing problem showed that our hybrid approaches significantly decreased total

communication cost when compared to baseline methods, being able to find the global

solution at even low quantization resolutions.
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Chapter 3. Convergence Analysis

This chapter presents a convergence analysis of the ADMM algorithm for address-

ing the sharing problem when applied in conjunction with two algorithms: 1) the stochas-

tic STEP-GP algorithm [23] and 2) its variant named LGP derived in the previous chap-

ter, which includes adaptive uniform quantization. For the case using LGP, the coordina-

tor can assign di”erent quantization resolutions at each iteration, and we assume that the

number of bits that can be assigned is unrestricted and can go to infinity. This chapter

describes and analyzes the two methods for integrating learning and uniform quantization

into the ADMM to reduce its communication overhead and a general formulation of their

communication decision method. The problems are formulated for a multi-agent setting.

3.1. Introduction

This chapter serves as a complementary discussion of the derivations presented in

Chapter 2. In that chapter, the Alternating Direction Method of Multipliers (ADMM) is

used to solve the sharing problem in a multi-agent setting. The main goal is to reduce the

ADMM communication overhead. The derived approach named LGP has its foundation in

the STEP-GP algorithm presented in [23]. Furthermore, the STEP-GP algorithm extends

the work in [22] which proposed an approach called STEP (STructural Estimation of Prox-

imal operator) that relies on the concept of the Moreau Envelope. The STEP approach

estimates the unknown gradient of the Moreau Envelope by constructing a set of possi-

ble gradients based on past information and then selecting a gradient that is “most likely”

the true gradient. The work presented in [23] improved STEP by learning the Moreau en-

velopes corresponding to the local proximal operators with GP, which are updated online
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from previous query data and used to predict the gradient. The resulting algorithm of this

work was named STEP-GP.

On the other hand, the work in [23] was extended in the previous chapter (Chap-

ter 2) to consider a uniform quantization on the agent’s reply to the coordinator. Follow-

ing an analysis of the statistical properties of the uniform quantization noise, we were

able to derive a mechanism to adapt the uniform quantizer relying on the regression’s pre-

dicted mean and covariance. This adaptation allows that the quantization error can be

approximated to follow a uniform distribution and the correlation of such an error with

the quantizer’s input can be considered negligible. However, the inclusion of uniform quan-

tization violates the condition for GP where all components are considered Gaussian. For

that reason, we derived a new regression scheme constructed upon the concept of a Linear

Minimum Mean Square Estimator (LMMSE). To further ensure the conditions for the

uncorrelation between the input and error of the quantizer, orthogonal transformation and

additive dithering were included. The resulting algorithm was named Linear GP (LGP).

These studies present extensive numerical experiments that prove that a significant reduc-

tion in communication overhead can be obtained by both algorithms. However, we did not

prove the convergence of both algorithms analytically. In this chapter, we complement our

previous research by presenting a convergence analysis for STEP-GP and LGP.

Chapter Organization: We initiate this chapter with a summary of key results per-

taining to the standard ADMM and the Stochastic Inexact ADMM (SI-ADMM) algorithm

that are important for our derivations in Section 3.2. Subsequently, in Section 3.3, we

delve into a brief discussion on the learning-integrated ADMM, employing adaptive uni-

form quantization for the sharing problem. Then, we present the derivation of a conver-
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gence proof for the STEP-GP algorithm in Section 3.4, where we prove that the expected

value of the ADMM residual goes to zero as the algorithmic iterations go to infinity and

do so at a geometric rate. A similar conclusion is reached in Section 3.5, where we present

a convergence analysis for the LGP algorithm assuming that the quantization resolution

can be varied and its variation is unbounded. The convergence analysis for the LGP algo-

rithm when the quantization resolution is bounded is presented in Section 3.6, where it is

shown that the expectation of the ADMM residual is bounded. We present in Section 3.7

the connection between the derived convergence analysis and the LGP algorithm as de-

fined in Chapter 2, since the results in that chapter consider fixed quantization. Finally,

the conclusions for this chapter are presented in Section 3.8.

3.2. Preliminary Convergence Results

3.2.1. Generalized ADMM Convergence Analysis

This subsection summarizes useful results from [44]; however, because the notation

used in [44] is di”erent from that used in [23] and Chapter 2, it will be adjusted to match

our notations. The results from [44] are for the generalized ADMM algorithm solving the

general problem:

minimizex,y f(x) + h(y)

subject to Ax+By = c

The algorithm is di”erent from the standard ADMM by introducing smoothing terms

based on the norms. Let the augmented Lagrangian be

L(x, y,m) = f(x) + h(y)↔m⇐(Ax+By ↔ c) +
1

2ϑ
↘Ax+By ↔ c↘22
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Choose Q ′ 0 and a symmetric matrix P (possibly indefinite). Then each algorithm’s

iteration consists of:

yk+1 = argminyL(xk, y,mk) +
1

2
↘y ↔ yk↘2Q

xk+1 = argminxL(x, yk+1,mk) +
1

2
↘x↔ xk↘2P

mk+1 = mk ↔ ζ

ϑ
(Axk+1 +Byk+1 ↔ c).

Note that the standard ADMM is a special case of the generalized ADMM where P =

Q = 0 and ζ = 1. Let s = [x, y,m] with corresponding versions s≃ for the optimal solutions

and sk for the algorithm iterations. In addition, define the following matrices:

P̂ = P + (1/ϑ)A⇐A, G =





P̂

Q

ω
ϱ Ip





where p is the dimension of m. For standard ADMM, with P = Q = 0 and ζ = 1, we have

P̂ = ◁A⇐A, G =





◁A⇐A

0

ϑIp




= (1/ϑ)G⇐

0 G0, G0 =





A

0

ϑIp





Also define the norm ↘s↘G =
∞
s⇐Gs. Assumptions 1 and 2 in [44] are standard for

ADMM convergence.

• Assumption 1: There exists a saddle point s≃ = (x≃, y≃,m≃) to the problem,
namely, x≃, y≃, and m≃ satisfying the KKT conditions:

A⇐m≃ → ςf(x≃)
B⇐m≃ → ςh(y≃)

Ax≃ +By≃ ↔ c = 0.

• Assumption 2: Functions f and h are convex. One of them is also strongly con-
vex.
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Table 1 Four scenarios leading to linear convergence

Scenario Strongly
convex

Lipschitz
continuous

Full row
rank

Additional assumptions

1 f ∇ f A If Q " 0, B has full column rank

2 f, g ∇ f A

3 f ∇ f,∇g – B has full column rank

4 f, g ∇ f,∇g –

Table 2 Summary of linear convergence results

Case P, P̂ Q Any scenario 1–4

Q-linear convergence R-linear convergence

1 P = 0 = 0 (Axk ,λk ) xk , (yk or Byk )∗, λk

2 P̂ " 0 = 0 (xk ,λk )

3 P = 0 " 0 (Axk , yk ,λk )

4 P̂ " 0 " 0 (xk , yk ,λk )

Column rank of B; otherwise, only Byk has R-linear convergence
∗ In cases 1 and 2, scenario 1, R-linear convergence of yk requires full

Under these assumptions and another technical assumption, Theorem 3.4 in [44] provides

a bound on the convergence rate of generalized ADMM. The theorem is reproduced below.

Theorem 3 (Theorem 3.4 in [44]) Assume Assumptions 1 and 2, ζ = 1, and that sk of

the Generalized ADMM is bounded (see remark below). For all scenarios in Table 1, there

exists 0 > 0 such that

↘sk ↔ s≃↘2G ↫ (1 + 0)↘sk+1 ↔ s≃↘2G

Remark 1 In terms of the boundedness of {sk}, Remark 2.2 in [44] provides several con-

ditions. For example, if the objective functions are coercive then the boundedness is guar-

anteed. Also, for the standard ADMM, the boundedness is guaranteed if A and B have full

column rank.

We now apply the above results to standard ADMM and more specifically the

sharing problem, as defined in [8, 10] having the form

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (3.1)
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Theorem 2.2 in [44] states the convergence of {sk} to the KKT point. In particular, for

the standard ADMM as a special case of the generalized ADMM, under the same assump-

tions as above, we have mk ↓ m≃, Axk ↓ Ax≃, and Byk ↓ By≃. The sharing problem is a

special case of the standard ADMM problem with A = I and B = ↔I; therefore, we have

uk ↓ u≃, xk
i ↓ x≃

i , and ȳk ↓ ȳ≃ (or yki ↓ y≃i ). Note that here u is just the scaled version of

the dual variables m.
Applying Theorem 3 to the standard ADMM and the sharing problem, we have:

• For standard ADMM: there exists 0 > 0 such that
∥∥∥∥

[
A(xk ↔ x≃)
uk ↔ u≃

∥∥∥∥
2

2

↫ (1 + 0)

∥∥∥∥

[
A(xk+1 ↔ x≃)
uk+1 ↔ u≃

∥∥∥∥
2

2

• For the sharing problem with standard ADMM: there exists 0 > 0 such that
∥∥∥∥

[
xk
i ↔ x≃

i

uk ↔ u≃

∥∥∥∥
2

2

↫ (1 + 0)

∥∥∥∥

[
xk+1
i ↔ x≃

i

uk+1 ↔ u≃

∥∥∥∥
2

2

,

for all i stacked vertically.

3.2.2. Stochastic inexact ADMM (SI-ADMM) Convergence Analysis

This subsection summarizes the stochastic inexact ADMM for the general ADMM

problem and its convergence result in [45]. The paper considers the general stochastic

ADMM problem (of which the sharing problem is a special case):

minimizex,y E[f̃(x, 1)] + E[h̃(y, 1)]

subject to Ax+By = c

for some random variable 1 with known distribution. This problem can be solved by the

standard ADMM if f(x) = E[f̃(x, 1)] and h(y) = E[h̃(y, 1)] can be calculated analyti-

cally and easily. However, this is not true in many cases and f(x) and g(y) can only be

approximated. This means that the ADMM steps where the proximal operators of f
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and g are evaluated cannot be done exactly. For example, argminxf(x) +
1
2ω↘x ↔ zk↘22

cannot be solved exactly easily. To overcome this issue, the paper proposes applying a

sampled gradient descent approach to solve the proximal minimization problems. For in-

stance, given a sequence of Nx
k samples {1xk,1, . . . , 1xk,Nx

k
} of 1, then the above stochastic

proximal minimization can be solved approximately by iterative gradient descent steps:

xi+1
k+1 = xi

k+1 ↔ 2≃x


E[f̃(x, 1xk,i)] + 1

2ω↘x↔ vk↘22

. It can be shown that as Nx

k increases, the

error between x
Nx

k
k+1 and the true solution xς

k+1 decreases and can be bounded.

Given the above approach, the stochastic ADMM algorithm is modified as follows

(simplified version of Algorithm 2 SI-ADMM in [45]):

yk+1 is such that E[↘yk+1 ↔ y≃k+1↘2] ↬ ▷k+1

xk+1 is such that E[↘xk+1 ↔ x̃≃
k+1↘2] ↬ ▷k+1

mk+1 = mk ↔ 2ϑ(Axk+1 +Byk+1 ↔ c)

where y≃k+1 is the unknown true solution of the generalized proximal minimization (with

an extra smoothing term), x̃≃
k+1 is the unknown true solution of the generalized proximal

minimization that uses yk+1 instead of y≃k+1 (hence the tilde).

The key theorem of the papers can be stated below (Theorem 2 in [45]).

Theorem 4 Consider the above SI-ADMM algorithm. Under certain technical assump-

tions (see [45]) and
∑↗

k=1

∞
▷k < ∈, we have that ↘sk ↔ s≃↘G ↓ 0 almost surely as k ↓ ∈.

Here, s = [x, y, u] and G is a matrix derived in the work on generalized ADMM [44].

Lemma 3 Let {vk} be a sequence of nonnegative random variables, where E[v0] < ∈, and
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let {uk} and {µk} be deterministic scalar sequences such that:

E[vk+1|v0,...,vk ] ↬ (1↔ uk)vk + µk a.s. ↗k ↫ 0,

0 ↬ uk ↬ 1, µk ↫ 0, ↗k ↫ 0,
∑↗

k=0 uk = ∈,
∑↗

k=0 µk < ∈, limk⇒↗
µk

uk
= 0.

Then vk ↓ 0 almost surely as k ↓ ∈.

3.3. Problem Formulation

In the setting of a multi-agent optimization problem where the structure resembles

the sharing problem as defined in (3.1), each of the n agents has local decision variables

xi → Rp and a strongly convex local cost function fi: Rp ↑↓ R. Their objective is to

minimize the overall system cost, which comprises their local costs and a convex shared

global cost function h: Rp ↑↓ R.

The problem presented in (3.1) can be equivalently reformulated by introducing

auxiliary variables yi for each xi as

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

yi

)

subject to xi ↔ yi = 0, ↗i = 1, . . . , N .

(3.2)

Because the agents must keep their local cost function fi private, each agent i only pro-

vides the solution to the following local proximal minimization problem to the coordinator

prox 1
ωfi

(zki ) = argmin
xi→Rp

{
fi(xi) +

ϑ

2
↘xi ↔ zki ↘2

}
, (3.3)

in response to a value (a query) zki sent to it by the coordinator at iteration k, where

ϑ > 0 is a penalty parameter. The problem posed in (3.2) can be solved using the ADMM

algorithm following the query response mechanism and ADMM updates explained in Sec-

tion 2.1.
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Our approach named LGP considers adding adaptive uniform quantization as

explained in Chapter 2. We assume in the following results that the adaptation of the

quantizer is done not only over the middle point and the window length but also over

the quantization resolution. This means that the coordinator can adjust the bits used for

quantization as needed. The LGP approach considers first defining the communication

decision variable for agent i in iteration k as

2k
i =






1, if agent i is queried

0, otherwise.

When 2k
i = 1, the query zki is sent to agent i to obtain the quantized value of ≃f

1
ω

i (z
k
i ). In

contrast, when 2k
i = 0, we use the predicted value µk

i (z
k
i ) given by the LGP regression. We

then define an expression ◁k
i as

◁k
i = 2k

i Qua(≃f
1
ω

i (z
k
i )) + (1↔ 2k

i )µ
k
i (z

k
i ).

Contrary to the regular STEP-GP algorithm, we always have a source of inexactness ei-

ther from the LGP prediction when there is no query or from the adaptive uniform quan-

tization when a query is made. This is due to the decision mechanism used in Chapter 2,

where we aim to limit the general inexactness by ⇀k. The value of the threshold ⇀k deter-

mines which agents to be queried. This decision mechanism is expressed in the following

46



optimization problem:

minimize
φk,bk

n∑

i=1

[
(2k

i )b
k
i

]

subject to bki → N ,

2k
i → {0, 1},
n∑

i=1

[
2k
i

ω

22b
k
i

trace($k
i (z

k
i )) + (1↔ 2k

i )trace($
k
i (z

k
i ))


< ⇀k.

(3.4)

The threshold ⇀k decreases at each iteration to keep up with the decrease of
∑n

i=1 trace($
k
i (z

k
i )).

In addition, it is important to note that 2k
i

↼

22b
k
i
< (1↔ 2k

i ) and, depending on the value of bki ,

the uncertainty resulting from the prediction could be much greater than the uncertainty

resulting from the quantization of a particular agent. Furthermore, bki is assumed to be

unbounded, so its value can be as large as necessary to satisfy the constraint. Thus, the

value of this variable can go to infinity, making the quantization uncertainty vanish if nec-

essary. Finally, the sharing ADMM expression considering the communication reduction

can be expressed as:

ȳk+1 = argmin
ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k ↔ uk↘2

}

xk+1
i = zki ↔ (1/ϑ)◁k

i

uk+1 = uk + x̄k+1 ↔ ȳk+1. (3.5)

3.4. Convergence Proof of the STEP-GP algorithm

In this section, we present a convergence analysis for the STEP-GP algorithm pre-

sented in [23]. This algorithm has ADMM updates similar to (3.5) when solving the shar-
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ing problem. However, it considers the following problem for querying decision-making

minimize
φk

↘2k↘1

subject to 2k
i → {0, 1}.
n∑

i=1

[
(1↔ 2k

i )trace($
k
i (z

k
i ))

]
< ⇀k.

(3.6)

Here, we want to minimize the number of communicating agents while keeping the global

prediction uncertainty bounded. The threshold ⇀k decreases at each iteration, ensuring

that the uncertainty given to the system also reduces over time until it eventually van-

ishes. However, at the moment when the threshold ⇀k decreases too much, we query all

agents at each iteration impacting the communication reduction in the last rounds before

reaching convergence.

3.4.1. Preliminaries

Define sk = [x̄k; ȳk; uk] and that Ik
i collects the query information from each agent

i up to iteration k. The STEP-GP algorithm defines the mapping (k+1 : sk ↓ sk+1 which

gives a mixture of inexact and exact values depending on the value of the decision variable

2k
i . On the other hand, the exact ADMM algorithm defines the exact mapping (k+1

≃ : sk ↓

sk+1
≃ where sk+1

≃ = [x̄k
≃; ȳ

k
≃ ; u

k
≃] are the exact values. Note that ȳ≃k = ȳk, therefore it is

always known exactly.

The following convergence proof is constructed upon the querying policy in (3.6)

and the mean square error between the inexact and exact values of xk+1
i and uk+1. Those

expressions are given by:

• We know that (xk+1
i ↔ xk+1

≃,i ) = (1/ϑ)(◁k+1
i ↔ ◁k+1

≃,i ), and it can be shown that

E[||xk+1
i ↔ xk+1

≃,i ||2|2k
i ] = trace(Cov(xk+1

i ↔ xk+1
≃,i |2k

i )) = (1/ϑ)2((1↔ 2k
i )trace($

k
i (z

k
i ))).
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Thus,

E[||xk+1 ↔ xk+1
≃ ||2|2k] = (1/ϑ)2

n∑

i=1

(
(1↔ 2k

i )trace($
k
i (z

k
i ))

)

• We can express uk+1 = ↔(1/ϑ)◁̄k, so

E[||uk+1 ↔ uk+1
≃ ||2|2k] =

(
(1/ϑ)

n

)2 n∑

i=1

(
(1↔ 2k

i )trace($
k
i (z

k
i ))

)
(3.7)

• Due to the querying policy defined in problem (3.6), we have that

E[||xk+1 ↔ xk+1
≃ ||2|2k] ⇒ (1/ϑ)2⇀k

3.4.2. Upper-bound on the expected value of the ADMM residual for STEP-
GP

In each iteration, we consider the following variables: sk is the state of the algo-

rithm at the beginning; sk+1 is the output of the STEP-GP algorithm, which is a random

variable; sk+1
≃ is implicitly produced by the exact ADMM algorithm. Therefore, the STEP-

GP algorithm produces a sequence of random variable samples {sk}.

Let s≃ be the KKT solution (to which the exact ADMM converges). Note that

s≃ is a fixed point of the mapping (≃, that is, s≃ = (≃(s≃). Define ŝk = [xk; uk], which

is part of sk (excluding ȳk). We consider the residual φk = ||ŝk ↔ ŝ≃||2 = ||sk ↔ s≃||G

. Henceforth, we will omit the conditioning on 2k for brevity. Let Ik denote the total

information collected, i.e., the total history of the queries, of all agents i up to iteration k;

in other words, Ik =
⋃

i Ik
i .

Theorem 5 Consider the STEP-GP algorithm for the sharing problem. Suppose that the

3 assumptions in [45] hold and
∑↗

i=1


⇀k < ∈. Then E[φk+1|Ik] is bounded by

E[φk+1|Ik] ⇒ g


⇀k +
1∞
1 + 0

E[φk|Ik↔1],

49



where g = (1/ϑ)
√

(1 +
(

1
n2

)
).

Proof: This proof follows the proof of Theorem 2 in [45]. First, we develop a bound

on E[||sk+1 ↔ s≃||G].

E[||sk+1 ↔ sk+1
≃ ||G|Ik] = E





√√√√
n∑

i=1

||xk+1
i ↔ xk+1

≃,i ||22 + ||uk+1 ↔ uk+1
≃ ||22

∣∣∣∣I
k





⇒

√√√√
n∑

i=1

E[||xk+1
i ↔ xk+1

≃,i ||22|Ik] + E[||uk+1 ↔ uk+1
≃ ||22|Ik]

=
√

(1/ϑ)2⇀k + E[||uk+1 ↔ uk+1
≃ ||22|Ik]

where the inequality comes from applying Jensen’s inequality, the concavity of the square

root, and the querying policy condition. For the second term we apply (3.7) and the con-

straint in (3.4), giving that

E[||uk+1 ↔ uk+1
≃ ||22|Ik] ⇒

(
(1/ϑ)

n

)2

⇀k.

Therefore,

E[||sk+1 ↔ sk+1
≃ ||G|Ik] ⇒

√

(1/ϑ)2⇀k +

(
(1/ϑ)

n

)2

⇀k = g


⇀k,

where g = (1/ϑ)
√

(1 +
(

1
n2

)
).

Now, consider the residual φk. We have that

E[φk+1|Ik] = E[||sk+1 ↔ s≃||G|Ik] = E[||sk+1 ↔ sk+1
≃ + sk+1

≃ ↔ s≃||G|Ik]

⇒ E[||sk+1 ↔ sk+1
≃ ||G|Ik] + E[||(≃(sk)↔ (≃(s≃)||G|Ik]

⇒ g


⇀k +
1∞
1 + 0

E[||sk ↔ s≃||G|Ik]
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for some 0 > 0, where the last inequality comes from Theorem 3 in [44]. It follows that

E[φk+1|Ik] ⇒ g


⇀k +
1∞
1 + 0

E[φk|Ik↔1].

↭

3.4.3. Rate of Convergence and Convergence of the Expected Value of the
Residual of STEP-GP

In the following lines, we prove that if ⇀k decreases geometrically, then the ex-

pected value of the mean square error of the ADMM residual when using the STEP-GP

algorithm converges to zero as k ↓ ∈ and does so at a geometric rate. First, we restate

Lemma 4 proven in [45] as:

Lemma 4 Given a function f(z) = zwz
where w < 1. Then, for all z ∋ 0, we have that

zwz < Dlz,

where w < l < 1 and D > 1
ln(l/w)e .

This lemma makes the following Theorem to hold:

Theorem 6 Consider the STEP-GP algorithm. Suppose that Theorem 5 holds and


⇀k = (ε)k for some 0 < ε < 1 (note that (ε)k refers to a constant raised to the power

k). Then for every k > 0, we have that

E[3k|Ik↔1] ⇒ (gD + 30)(l)k,

where l > r ⊜ max( 1↘
1+↽

,ε) and D is chosen such that D > 1
e ln(l/r) . Furthermore,

E[3k|Ik↔1] ↓ 0 as k ↓ ∈.

Proof: Let a = 1↘
1+↽

. Since


⇀k = (ε)k where ε < 1, we have the following
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sequence of inequalities based on the bound E[3k+1|Ik] ↬ g(ε)k + aE[3k|Ik↔1].

E[3k+1|Ik] ↬ aE[3k|Ik↔1] + g(ε)k ↬ (a)2E[3k↔1|Ik↔2] + ag(ε)k↔1 + g(ε)k

↬ (a)3E[3k↔2|Ik↔3] + (a)2g(ε)k↔2 + ag(ε)k↔1 + g(ε)k

...

↬ (a)k+130 + g
k∑

j=0

(a)k↔j(ε)j ↬ (r)k30 + c
k∑

j=0

(r)k

= (30 + g(k + 1))(r)k ↬ (30 + ck)(r)k

△ E[3k|Ik↔1] ↬ (30 + g(k ↔ 1))(r)k↔1.

From Lemma 4, it can be shown that there exist scalars l and D satisfying l → (r, 1) and

D > 1/ ln((l/r)e) such that

E[3k|Ik↔1] ↬ 30(r)k↔1 + g(k ↔ 1)(r)k↔1 < 30(r)k↔1 + gD(r)k↔1 < (30 + gD)(l)k↔1.

Finally, since l < 1, it follows that as k ↓ ∈ then E[3k|Ik↔1] ↓ 0. ↭

3.5. Convergence Proof of the LGP algorithm with Unbounded Quantization
Resolution

In this section, we present a convergence analysis for the LGP algorithm presented

in Chapter 2. However, we consider the case where the coordinator can vary the quantiza-

tion resolution at each iteration and it is not fixed as in our previous study. Moreover, we

assume that we can assign an infinitely large quantization resolution if needed.

3.5.1. Preliminaries

The mapping and definitions of s≃, sk≃, and sk are the same as in Section 3.4.1.

The convergence proof is constructed upon the querying policy in (3.4) and the

mean square error between the exact and inexact values of xk+1
i and uk+1. These expres-

sions are given by:
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• We know that (xk+1
i ↔ xk+1

≃,i ) = (1/ϑ)(◁k+1
i ↔ ◁k+1

≃,i ), and it can be shown that

E[||xk+1
i ↔ xk+1

≃,i ||2|2k
i ] = trace(Cov(xk+1

i ↔ xk+1
≃,i |2k

i )) = (1/ϑ)2(2k
i

↼

22b
k
i
trace($k

i (z
k
i )) +

(1↔ 2k
i )trace($

k
i (z

k
i ))). Thus,

E[||xk+1 ↔ xk+1
≃ ||2|2k] = (1/ϑ)2

n∑

i=1

(
2k
i

ω

22b
k
i

trace($k
i (z

k
i )) + (1↔ 2k

i )trace($
k
i (z

k
i ))

)

• We can express uk+1 = ↔(1/ϑ)◁̄k, so

E[||uk+1↔uk+1
≃ ||2|2k] =

(
(1/ϑ)

n

)2 n∑

i=1

(
2k
i

ω

22b
k
i

trace($k
i (z

k
i )) + (1↔ 2k

i )trace($
k
i (z

k
i ))

)

(3.8)

• Due to the querying policy defined in the problem (3.4), we have that

E[||xk+1 ↔ xk+1
≃ ||2|2k] ⇒ (1/ϑ)2⇀k

3.5.2. Upper-bound on the expected value of the ADMM residual for LGP

In each iteration, we consider the following variables: sk is the state of the algo-

rithm at the beginning; sk+1 is the output of the LGP algorithm, which is a random vari-

able; sk+1
≃ is implicitly produced by the exact ADMM algorithm. Therefore, the LGP

algorithm produces a sequence of random variable samples {sk}.

Let s≃ be the KKT solution (to which the exact ADMM converges). Note that s≃

is a fixed point of the mapping (≃, that is, s≃ = (≃(s≃). Define ŝk = [xk; uk], which is

part of sk (excluding ȳk). We will consider the residual φk = ||ŝk ↔ ŝ≃||2 = ||sk ↔ s≃||G

. Henceforth, we will omit the conditioning on 2k for the sake of brevity. Let Ik denote

the total information collected, i.e., the total history of the queries, of all agents i up to

iteration k; in other words, Ik =
⋃

i Ik
i .

Theorem 7 Consider the LGP algorithm for the sharing problem. Suppose that the 3
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assumptions in [45] hold and
∑↗

k=1


⇀k < ∈. Then E[φk+1|Ik] is bounded by

E[φk+1|Ik] ⇒ g


⇀k +
1∞
1 + 0

E[φk|Ik↔1],

where g = (1/ϑ)
√

(1 +
(

1
n2

)
).

Proof: This proof follows the proof of Theorem 2 in [45]. We first develop a bound

on E[||sk+1 ↔ s≃||G].

E[||sk+1 ↔ sk+1
≃ ||G|Ik] = E





√√√√
n∑

i=1

||xk+1
i ↔ xk+1

≃,i ||22 + ||uk+1 ↔ uk+1
≃ ||22

∣∣∣∣I
k





⇒

√√√√
n∑

i=1

E[||xk+1
i ↔ xk+1

≃,i ||22|Ik] + E[||uk+1 ↔ uk+1
≃ ||22|Ik]

=
√

(1/ϑ)2⇀k + E[||uk+1 ↔ uk+1
≃ ||22|Ik]

where the inequality comes from applying Jensen’s inequality, the concavity of the square

root, and the querying policy condition. For the second term we apply (3.8) and the con-

straint in (3.4), giving that

E[||uk+1 ↔ uk+1
≃ ||22|Ik] ⇒

(
(1/ϑ)

n

)2

⇀k

. Therefore,

E[||sk+1 ↔ sk+1
≃ ||G|Ik] ⇒

√

(1/ϑ)2⇀k +

(
(1/ϑ)

n

)2

⇀k = g


⇀k,

where g = (1/ϑ)
√

(1 +
(

1
n2

)
).

Now, consider the residual φk. We have that

E[φk+1|Ik] = E[||sk+1 ↔ s≃||G|Ik] = E[||sk+1 ↔ sk+1
≃ + sk+1

≃ ↔ s≃||G|Ik]
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⇒ E[||sk+1 ↔ sk+1
≃ ||G|Ik] + E[||(≃(sk)↔ (≃(s≃)||G|Ik]

⇒ g


⇀k +
1∞
1 + 0

E[||sk ↔ s≃||G|Ik]

for some 0 > 0, where the last inequality comes from Theorem 3 in [44]. It follows that

E[φk+1|Ik] ⇒ g


⇀k +
1∞
1 + 0

E[φk|Ik↔1].

↭

3.5.3. Rate of Convergence and Convergence of the Expected Value of the
Residual for LGP

In the following lines, we prove that if ⇀k decreases geometrically, then the ex-

pected value of the mean square error of the ADMM residual when using the unbounded

LGP algorithm converges to zero as k ↓ ∈ and does so at a geometric rate. Taking into

account Lemma 4, we formulate the following theorem:

Theorem 8 Consider the LGP algorithm. Suppose that E[3k+1|Ik] ↬ g


⇀k +

1↘
1+↽

E[3k|Ik↔1] holds and


⇀k = (ε)k for some 0 < ε < 1 (note that (ε)k refers to

a constant raised to the power k). Then for every k > 0, we have that

E[3k|Ik↔1] ⇒ (gD + 30)(l)k,

where l > r ⊜ max( 1↘
1+↽

,ε) and D is chosen such that D > 1
e ln(l/r) . Furthermore,

E[3k|Ik↔1] ↓ 0 as k ↓ ∈.

Proof: Let a = 1↘
1+↽

. Since


⇀k = (ε)k where ε < 1, we have the following
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sequence of inequalities based on the bound E[3k+1|Ik] ↬ g(ε)k + aE[3k|Ik↔1].

E[3k+1|Ik] ↬ gE[3k|Ik↔1] + g(ε)k ↬ (a)2E[3k↔1|Ik↔2] + ag(ε)k↔1 + c(ε)k

↬ (a)3E[3k↔2|Ik↔3] + (a)2g(ε)k↔2 + ag(ε)k↔1 + g(ε)k

...

↬ (a)k+130 + g
k∑

j=0

(a)k↔j(ε)j ↬ (r)k30 + g
k∑

j=0

(r)k

= (30 + g(k + 1))(r)k ↬ (30 + gk)(r)k

△ E[3k|Ik↔1] ↬ (30 + g(k ↔ 1))(r)k↔1.

From Lemma 4, it can be shown that there exist scalars l and D satisfying l → (r, 1) and

D > 1/ ln((l/r)e) such that

E[3k|Ik↔1] ↬ 30(r)k↔1 + g(k ↔ 1)(r)k↔1 < 30(r)k↔1 + gD(l)k↔1 < (30 + gD)(l)k↔1.

Finally, since l < 1, it follows that as k ↓ ∈ then E[3k|Ik↔1] ↓ 0. ↭

3.6. Convergence Analysis of the LGP algorithm with Bounded Quantization
Resolution

The convergence analysis in the previous subsection assumes that the quantization

resolution can be infinitely large, eventually making the uncertainty zero if all agents com-

municate. In real life, having an infinite quantization resolution defies the purpose of using

quantization. However, not allowing the quantization resolution to be infinitely large goes

against the condition to conclude the convergence that the uncertainty eventually reaches

zero as k goes to infinity.

Let us define the maximum possible value of bki as bmax. In the limit case, let us say
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Figure 3.1. Upper bound of the expected value of the residual through the iterations for
values of ε = 0.97, n = 10, ϑ = 10.

that iteration k↓ is the last iteration where the constraint is met having the form:

n∑

i=1

(
ω

22bmax
trace($k→

i (z
k→

i ))

)
< ⇀k→

i ,

where we assume the lowest possible uncertainty that is attained when all agents are

queried. This is because for any given agent, the quantization uncertainty is smaller than

the GP prediction uncertainty following the expression in (3.4). Iteration k↓ is the last one

in which the constraint is met. Therefore, in iteration k↓ + 1 we are forced to stop the

algorithm because the threshold ⇀k→+1
i will be smaller than our uncertainty measure that

cannot decrease any further. However, at iteration k↓ we still satisfy the condition so the

results of Theorem 7 hold leading to

E[φk→+1|Ik→ ] ⇒ g


⇀k→ +
1∞
1 + 0

E[φk→ |Ik→↔1].

Then, we can do the same analysis as in the proof of Theorem 8 leading to the inequality

E[3k→+1|Ik→ ] ⇒ (30 + gk↓)(r)k
→
.
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Figure 3.1 shows the plot of the bound (30 + gk)(r)k where we can see that it increments up

to a certain iteration at first and then starts decreasing indefinitely. The region where the

function d(k) decreases is given by

k ∋ r

(1↔ r)
↔ 30

g
.

The constant r
(1↔r) ↔

⇀0

g defines the iteration where d(k) starts to decrease.

Unfortunately, having a bound for k↓ involves having a bound on trace($k→
i (z

k→
i ))

that depends on k↓. However, the error bound is not infinitely large even in the worst-

case scenario, meaning that the uncertainty is always bounded. Considering that iteration

k↓ is an extreme case and assuming a well-designed threshold mechanism, we anticipate

that by the time we reach this moment the residual limit is not significantly large, as

shown in Figure 3.1, so the solution we have at that moment is in the vicinity of the true

solution. In the hypothetical case presented in Figure 3.1, considering that k↓ happens at

iteration 220 then the bound on the residual is small at 0.027. This is mostly because our

algorithms make sure that the overall uncertainty keeps decreasing at each iteration.

3.7. Discussion on Convergence Behavior of the Specific Approach presented
in Chapter 2

In the previous subsections, we presented a convergence analysis for the STEP-GP

and LGP algorithms when the query mechanism is performed by comparing the trace of

the covariance matrix $k
i (z

k
i ) to a decaying threshold instead of the maximum element

of the diagonal of $k
i (z

k
i ) as presented in Section 2.5.3.4. The following lemma presents

a relationship between the convergence proof presented in Section 3.4 and the STEP-GP

algorithm under the querying mechanism in Section 2.5.3.4.

Lemma 5 Under the querying mechanism presented in Section 2.5.3.4, the STEP-GP
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algorithm converges and does so at a geometric rate.

Proof: The querying mechanism presented in Section 2.5.3.4 determines if commu-

nication is required following

2k
i =






0, if max(diag($k
i (z

k
i ))) ⇒ ⇀k

i

1, otherwise,

(3.9)

with local threshold ⇀k
i = ⇀k0

i (ε)k↔k0 .

Since the trace of $k
i (z

k
i ) is the sum of its diagonal entries, we can establish the

following relationship

trace($k
i (z

k
i )) ⇒ pmax(diag($k

i (z
k
i ))) ⇒ p⇀k

i .

Assuming that the assessment to determine 2k
i for each agent was already made, we take

the sum over all agents:

n∑

i=1

[
(1↔ 2k

i )trace($
k
i (z

k
i ))

]
⇒ p

n∑

i=1

[
(1↔ 2k

i )max(diag($k
i (z

k
i )))

]
⇒ p

n∑

i=1

⇀k
i .

The bound imposed on
∑n

i=1

[
(1↔ 2k

i )trace($
k
i (z

k
i ))

]
(the same term used in Section 3.4)

follows the same form of a constant multiplied by a geometrically decaying term. Since

the sum of the maximum variances is bounded by this threshold form, Theorems 5 and 6

also apply to the querying mechanism presented in Section 2.5.3.4. This communication

strategy imposes a tighter bound than that using the trace. ↭

On the other hand, the previous subsection presents a convergence analysis for the

LGP algorithm when the quantization resolution is bounded. Theorems 7 and 8 show the

convergence of the LGP algorithm using trace for the communication decision when the

coordinator can vary the quantization resolution at each iteration and there is no bound
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on the value that such resolution can take. The LGP algorithm presented in Chapter 2

has the added complication that its quantization resolution is fixed. For the case when

the quantization resolution is bounded, we present a discussion in Section 3.6 where con-

vergence is not concluded but it is shown that the expectation of the ADMM residual

is bounded by a decaying bound. We are currently working on the convergence analy-

sis when quantization is present, the quantization resolution is fixed, and the querying

method presented in Section 2.5.3.4 is used. Those results will be presented in a future

work. However, the empirical evidence of the extensive experiments performed suggests

that the LGP algorithm as presented in Chapter 2 converges to an acceptable solution

while not dramatically increasing the number of iterations required to reach convergence.

3.8. Conclusion to Chapter 3

In this chapter, we present a convergence analysis for the STEP-GP and LGP al-

gorithms. The proofs were based on the convergence analysis of the generalized ADMM

and SI-ADMM algorithms. For the case of the analysis of the LGP algorithm, we assumed

that the coordinator can vary the quantization resolution at each iteration and that it can

assign infinitely large bits for quantization. We also present convergence properties in the

case where the quantization resolution is upper bounded using the LGP algorithm, leading

to the conclusion that the expectation of the ADMM residual is bounded and such bound

was explicitly stated. Finally, we present a connection between the analysis in this chapter

and the algorithms defined in Chapter 2.
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Chapter 4. Optimal Query Strategies for Communication-e!cient
ADMM using Gaussian Process Regression

Chapter 2 presented a hybrid approach combining an LMMSE regression with

quantization to reduce the overall communication overhead when solving a distributed

optimization problem with the ADMM algorithm. As explained in Section 2.5.3.4, the

decision of whether communication is required at every iteration is done using a heuristic

criterion utilizing the predictive covariance matrix of ≃f 1/ω
i (zki ). Although the proposed

hybrid approach resulted in a significant communication reduction, we believe that a re-

finement of the communication criterion could significantly impact the performance of

ADMM using GP regression. Since this decision method directly a”ects how regression

impacts the ADMM algorithm, we want to focus on ADMM performance when there is no

quantization involved. Therefore, we could observe the impact of di”erent query strategies

on ADMM without being a”ected by the potential impact of the quantization error.

Chapter Organization: We begin with the problem formulation in Section 4.1. The

systematic querying framework is presented in Section 4.2. We present our proposed joint

query mechanism in Section 4.3, followed by our proposed individual query strategies

in Section 4.4. A probabilistic comparison between the proposed methods, which leads

to an expected querying behavior, is presented in Section 4.5. The numerical results are

presented in Section 4.6, and the conclusions are made in Section 4.7.

This chapter previously appeared as: A. Duarte, T. X. Nghiem, S. Wei, Optimal Querying for

Communication-e!cient ADMM using Gaussian Process Regression, Franklin Open 6 (2024) 100080.

This is an open access article distributed under the terms and conditions of the Creative Commons Attri-

bution license, an no permission is required for reprinting, https://doi.org/10.1016/j.fraope.2024.100080.
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4.1. Problem Formulation

This chapter considers a sharing problem with n agents and a central coordinator,

similar to that in [8, 10]. In this problem, a global cost, which includes all agents’ strongly

convex local cost functions fi: Rp ↑↓ R on local decision variables xi → Rp and a convex

shared cost function h: Rp ↑↓ R, is minimized, as denoted by the expression

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (4.1)

The cost function fi is known only to its corresponding agent. Additionally, the problem

(4.1) is solved with communication allowed only between the coordinator and agents, but

without exchange between agents.

The sharing problem (4.1) is solved using ADMM as shown in [8] with the follow-

ing updates

xk+1
i = argmin

xi→Rp

{
fi(xi) + (ϑ/2)↘xi ↔ xk

i ↔ ȳk + x̄k + uk↘2
}

ȳk+1 = argmin
ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k+1 ↔ uk↘2

}

uk+1 = uk + x̄k+1 ↔ ȳk+1, (4.2)

where k is the algorithmic iteration count, ϑ > 0 is a penalty parameter and x̄k =

(1/n)
∑n

i=1 x
k
i . In iteration k, the coordinator sends a query value zki to the i-th agent and

receives the following local proximal operator as a response

prox 1
ωfi

(zki ) = argmin
xi→Rp

{
fi(xi) +

ϑ

2
↘xi ↔ zki ↘2

}
. (4.3)

The x-minimization step in (4.2) consists of the local proximal minimization problem, for
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every agent i,

xk+1
i = prox 1

ωfi
(xk

i + ȳk ↔ x̄k ↔ uk

︸ ︷︷ ︸
zki

).

4.1.1. STructural Estimation of Proximal operator with Gaussian Processes
(STEP-GP) Overview

For brevity, we will drop the subscript i and the superscript k in the subsequent

equations. The Moreau envelope of f is defined as

f
1
ω (z) = min

x→Rn

{
f(x) +

ϑ

2
↘x↔ z↘2

}
. (4.4)

When f is a convex function, the Moreau envelope f
1
ω is convex and di!erentiable with

Lipschitz continuous gradient with constant ϑ. Furthermore, given that the unique solution

to the proximal minimization x
1
ω (z) = prox 1

ωf
(z) is [35, Proposition 5.1.7]

x
1
ω (z) = z ↔ 1

ϑ
≃f

1
ω (z), (4.5)

the optimal solution of (4.3) only requires the gradient ≃f
1
ω (z) to be reconstructed. In

[23], we proposed using GP to learn the local proximal operators, based on the training

sets from past data to predict ≃f
1
ω (z), thus improving the STEP method in [22]. This

approach is named STEP-GP.

In particular, in STEP-GP, the coordinator maintains a GP model, named

proxGP, for each agent. Each GP model predicts the gradient ≃f
1
ω

i (z
k
i ) of each agent’s

Moreau envelope, which has a multivariate Gaussian distribution with conditional mean

E
[
≃f

1
ω

i (z
k
i )


= µk

i (z
k
i ) and conditional covariance matrix Cov

[
≃f

1
ω

i (z
k
i )


= $k

i (z
k
i ). The

coordinator then uses an uncertainty measurement coming from the conditional covariance
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Figure 4.1. Flow diagram of the query decision and the query process and response be-
tween the coordinator and 4 agents in the proposed approach.

matrix to decide whether to query each agent. More details of the STEP-GP method can

be found in [23].

4.1.2. Query-Response Dynamics

In Figure 4.1, we present one round of the proposed algorithm for a network of 4

agents. The GP regression block named proxGP refers to the GP prediction of f
1
ω

i (z
k
i ) and

≃f
1
ω

i (z
k
i ) as presented in [23]. The coordinator has a corresponding proxGP for each agent,

which is trained on its past query data with the agent. The coordinator first calculates the

query variables zki for each agent and uses them as input to the agent’s proxGP. Using the

covariance matrices $k
i (z

k
i ) given by the proxGPs, the coordinator decides which agents

are to be queried. In the figure, agents 1 and 2 are set to be queried, so the coordinator

sends zk1 and zk2 to the agents, which solve their proximal minimization problems, depicted
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by block prox 1
ωfi

. It then receives the Moreau envelopes f
1
ω

1 (z
k
1 ), f

1
ω

2 (z
k
2 ) and their gradi-

ents ≃f
1
ω

1 (z
k
1 ), ≃f

1
ω

2 (z
k
2 ) as responses from agents 1 and 2. Meanwhile, for agents 3 and 4,

which are not queried, the coordinator uses the corresponding predicted values µk
3(z

k
3 ) and

µk
4(z

k
4 ) from their proxGPs to perform the ADMM updates.

4.1.3. ADMM Updates with GP

Following the query-response mechanism presented in Figure 4.1, the ADMM ex-

pressions in (4.2) are modified to include the proxGP regression. First, let us define the

communication decision variable for agent i at iteration k as

2k
i =






1, if agent i is queried

0, otherwise.

(4.6)

When 2k
i = 1, the query zki is sent to agent i to obtain the exact value of ≃f

1
ω

i (z
k
i ). On the

contrary, when 2k
i = 0, we use the predicted value µk

i (z
k
i ) given by the GP. We then define

the received value ◁k
i as

◁k
i = 2k

i ≃f
1
ω

i (z
k
i ) + (1↔ 2k

i )µ
k
i (z

k
i ). (4.7)

The ADMM expressions in (4.2) can now be reformulated as:

xk+1
i = zki ↔ (1/ϑ)◁k

i

ȳk+1 = argmin
ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k+1 ↔ uk↘2

}

uk+1 = uk + x̄k+1 ↔ ȳk+1. (4.8)

This chapter focuses on how the query decision-making, represented by the blue

diamond block “Query Needed?” in Figure 4.1, can be carried out e”ectively.
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4.2. General Querying Decision Framework

The main objective of including GP regression in the ADMM algorithm when solv-

ing a distributed optimization problem is to reduce communication overhead. However,

we do not want it to significantly a”ect the algorithm convergence and accuracy of the

optimization solution. A key component in the ADMM updates when GP is used, as pre-

sented in (4.8), is the variable ◁k
i . This variable becomes the exact gradient ≃f

1
ω

i (z
k
i ) of

the Moreau envelope or its predicted value, depending on 2k
i . In (4.8), the set of xk+1, ȳk,

and uk+1 can be considered as a high dimensional vector trajectory to the global solution.

This trajectory is a”ected by ◁k
i , which depends on the communication decision variable

2k
i as defined in (4.6) and (4.7), which in turn a”ects the GP regression accuracy and the

optimization performance. Therefore, the mechanism to decide 2k
i will ultimately impact

the overall communication and optimization performance. If the coordinator does not have

a sound and systematic mechanism to determine when to send queries to the agents, the

ADMM algorithm could require excessive iterations to converge or never achieve conver-

gence. Furthermore, it may reach an inaccurate solution upon reaching convergence. We

propose a systematic querying framework that balances two opposing criteria: communi-

cation overhead reduction and optimization performance. In this framework, the querying

decision solves an optimization of the form

minimize comm(2k),

subject to 2k
i → {0, 1}, 1 ⇒ i ⇒ n

uncer(2k) ⇒ ⇀k,

(4.9)
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where comm(2k) is a communication cost function, uncer(2k) is an uncertainty function

caused by the GP regression, and ⇀k is a given threshold that fluctuates at each iteration.

The uncertainty is compared with the threshold because we want to limit the prediction

error at each step so that the reduction in communication does not introduce an insur-

mountable amount of error to the ADMM algorithm. Therefore, the decision outcomes

depend on how we measure those criteria. We can define the communication cost in sev-

eral ways, such as the number of agents communicating at each iteration or the number

of bits exchanged at each communication round. The uncertainty is measured by the pre-

diction uncertainty of the agents’ proxGPs. Thus, we define the query strategy in (4.9) as

minimizing the communication cost under a constraint on the uncertainty introduced by

proxGPs.

In general, the optimization problem (4.9) has to be solved using a combinato-

rial approach due to the n binary variables {2k
i }i=1,··· ,n. The computation cost, therefore,

could be prohibitive when the number of agents is large. For that reason, in this chapter,

we will seek approaches for solving (4.9) under certain communication cost and uncer-

tainty functions without resorting to combinatorial techniques.

4.3. Proposed Joint Query Method

In this section, we propose a joint query strategy within the general framework,

where the uncertainty function in (4.9) is the trace of the joint covariance matrix of the

ADMM variables a”ected by the GP regression. In the following subsection, we justify

why this uncertainty function is a suitable representation of the overall prediction error.
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4.3.1. Justification of Adopting Trace of the Covariance Matrix as the Uncer-
tainty Function

Consider a real Gaussian random vector F ⇐ N (µ,$) with mean vector µ and

covariance matrix $F , where the lth element of µ is µl, and the lth element of F is Fl, with

l → {1, . . . , p}. Our objective is to determine a su!cient condition for the L2 norm of

the discrepancy between F and its mean to be small with high probability. This can be

expressed by the confidence sphere:

P
[
↘F ↔ µ↘2 ⇒ ↘µ↘20

]
∋ 1↔ 1, (4.10)

where 1 and 0 are two small numbers chosen in advance for quality control. The values of

0 and 1 must be small because we want the discrepancy between the actual value and the

mean of F to be small with high probability, so these control variables will determine how

tight we allow the discrepancy to be and with how much probability.

The following proposition presents a su!cient condition for (4.10).

Proposition 4 A su”cient condition for (4.10) is given by

tr($F ) ⇒ ↘µ↘2202 ↔ 2



λ1 ln(1/1) +

ln(1/1)

√√√√
p∑

l=1

λ2
l



 . (4.11)

Proof: The proof is presented in Appendix G. ↭

Proposition 4 suggests that the trace of the joint covariance matrix of the ADMM

variables a”ected by GP regression, as the random vector F , can be constrained to control

the desired prediction errors, which a”ect the convergence of the algorithm and the accu-

racy of the solution. Therefore, it justifies the use of this trace as the uncertainty function

uncer(2k) in (4.9).
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4.3.2. Proposed Joint Query Method

Following the general querying decision framework presented in Section 4.2, we

propose using the L1 norm of 2k as the communication cost function, which indicates how

many agents are queried in the current iteration.

The uncertainty function uncer(·) is selected based on the analysis in the previous

subsection and the work [46]. The authors of [46] present a stochastic approach to inexact

ADMM in which the expectation of the mean square error of the inexact ADMM variables

with respect to their exact counterparts is bounded. It can be shown that the bounded

expectation is equal to the trace of the error covariance matrix. Extending both analyses

to our problem, we propose to use the trace of the joint covariance matrix of the iterative

variables of the ADMM algorithm, given by tr(Cov[xk+1; ȳk+1; uk+1|2k]), to derive the

uncertainty function. Here, tr(·) is the trace operator.

We thus have the following realization of the general optimization problem (4.9):

minimize ↘2k↘1

subject to 2k
i → {0, 1}, 1 ⇒ i ⇒ n,

tr(Cov[xk+1; ȳk+1; uk+1]|2k]) ⇒ ⇀k,

(4.12)

where the threshold ⇀k varies at each iteration. The rationale for (4.12) is to choose the

smallest set of agents to query while ensuring that the trace of the joint uncertainty

caused by not querying the other agents does not exceed the threshold ⇀k, thus ensur-

ing that there is a high probability that the uncertainty is within a desired sphere. Fol-

lowing the convergence analysis for the stochastic inexact ADMM in [46], we choose the

sequence of thresholds ⇀k such that
∑↗

k=1 ⇀
k < ∈. More details on ⇀k are presented in
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Section 4.3.4.

Next, we present an e!cient solution to the problem in (4.12) without resorting

to a combinatorial approach by exploiting the convexity and linearity of the cost func-

tions and constraints considered. The idea is that the search for a set of agents to query

starts with the scenario where the communication cost is maximum and the uncertainty

is minimum. Then, we calculate the contribution to the joint trace of each agent where

the ones that contribute the least to the joint uncertainty will be the first candidates not

to be queried in the current round. Instead of considering each possible combination, we

analyze the constraint on the joint uncertainty each time the next candidate is set to

skip communication until the constraint is met. The proposed joint query method named

L1Norm-Trace follows the steps listed below at iteration k:

1. For each agent, calculate its uncertainty contribution uni = tr(Cov[xk+1; ȳk+1; uk+1|2k
i =

0, 2k
j ⇑=i = 1]).

2. In the order from the smallest to the largest uni, pick all the agents whose sum
of uni does not exceed the threshold ⇀k and set their 2k

i to 0, i.e., they are not
queried. The remaining agents are to be queried, i.e., their 2k

i are set to 1.

The proposed strategy does not consider all possible combinations of communicat-

ing agents, as it would be necessary to combinatorically solve the problem posed in (4.12).

However, our strategy solves this optimization problem optimally.

Lemma 6 The L1Norm-Trace method solves the optimization problem in (4.12) opti-

mally.

Proof: If our method is not optimal, then our selection of agents to be queried does

not minimize the communication cost while ensuring that the uncertainty constraint

is met. Because we select agents from the smallest to the largest uni, we select the
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largest number of agents to not be queried such that the uncertainty constraint is met.

There is no other selection of agents that can further reduce ↘2k↘1 without violating

∑n
i=1 tr(Cov[x

k+1
i ; ȳk+1

i ; uk+1
i ]|2k

i ]) ⇒ ⇀k. ↭

The next subsections derive the calculation of the joint trace tr(Cov[xk+1; ȳk+1; uk+1]|2k])

and present the mechanism to vary the threshold ⇀k.

4.3.3. Derivation of the Trace of the ADMM Joint Covariance Matrix

In this subsection, we first present an equivalent expression to the ADMM

updates presented in (4.8) that allows us to see the inherent coupling of the agents.

This expression is then used to find the specifics of the proposed uncertainty cost

tr(Cov[xk+1; ȳk+1; uk+1]|2k]). The following proposition uses the notation presented in the

problem definition in Section 4.1.

Proposition 5 The specific form of the ADMM algorithm presented in (4.8) has an equiv-

alent expression given by

xk+1
i = zki ↔ (1/ϑ)◁k

i

uk+1 = (1/ϑ)≃hn/ω
(
vk
)

ȳk+1 = ȳk ↔ 1/(ϑn)
n∑

i=1

◁k
i ↔ uk+1

, (4.13)

where vk = nȳk ↔ (1/ϑ)
∑n

i=1 ◁
k
i and ≃hn/ω() is the gradient of the Moreau Envelope of the

function h.

Proof: The proof is presented in Appendix H. ↭

The expression in (4.13) presents the ADMM updates in terms of the gradient of

the Moreau Envelope of functions {fi} and h, and follows the calculations for the ADMM

algorithm executed on the coordinator side. More importantly, such an expression also
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shows that each agent’s ◁k
i is present in each of the ADMM updates, especially in the

ȳk+1 and uk+1 updates where we have the sum of those variables. The variable ◁k
i (de-

pending on 2k
i as defined in (4.7)) comes from the exact value or the predicted value of

≃f
1
ω

i (z
k
i ), so the ADMM updates in (4.13) can be used to quantify the joint uncertainty of

the ADMM variables.

Due to the linearity of the trace, the proposed uncertainty cost is simplified to

tr(Cov[xk+1; ȳk+1; uk+1|2k]) = tr(Cov[xk+1|2k]) + tr(Cov[ȳk+1|2k]) + tr(Cov[uk+1|2k]).

Following the expression in (4.13), the definition of ◁k
i in (4.7), and that only the terms

including ◁k
i contribute to the uncertainty, the overall trace function becomes

tr(Cov[xk+1; ȳk+1; uk+1|2k]) =

(1 + 1/n2)(1/ϑ)2
n∑

i=1

(1↔ 2k
i ) tr

(
$k

i (z
k
i )
)
+ 2(1/ϑ)2 tr

(
Cov[≃hn/ω(vk)]

)
, (4.14)

which is subject to the function h. Calculating the covariance matrix of ≃hn/ω(vk) given

the probability distribution of vk is generally di!cult and may not have a closed-form

equation, because ≃hn/ω(·) is generally a nonlinear function. In this case, we must approxi-

mate this covariance matrix [47]. However, this approximation will introduce uncertainty,

which will propagate into the algorithmic iterations, a”ecting the communication decision

methods and having an impact on the ADMM algorithm.

4.3.4. Threshold ⇀k Mechanism

During the execution of the ADMM algorithm, the uncertainty of the GP regres-

sion tends to reduce when the ADMM algorithm gets closer to convergence. This is be-

cause more training data from responses to queries is available, which allows the predic-

tion to be more accurate. For that reason, the threshold to be considered should decrease
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over the ADMM iterations. We propose a decreasing threshold mechanism that relies on

the iteration count and k0, which is the iteration where the GP regression is used for the

first time.

⇀k0 = ϖV k0 , (4.15)

where ϖ, chosen in advance, is a number between 0 and 1, and V k0 is the uncertainty vari-

able used by the query method (in this case tr(Cov[xk+1; ȳk+1; uk+1]|2k])). Given a prese-

lected decay rate ε → (0, 1), at a later iteration k > k0, the threshold is updated as:

⇀k = ⇀k0εk↔k0 . (4.16)

4.4. Proposed Individual Query Methods

In this section, we simplify the query framework presented in Section 4.2 by propos-

ing three individual query methods to determine when a communication round between

the coordinator and the agents is necessary. The notation individual query method is

used to describe that the coordinator determines if communication with a specific agent is

required by analyzing its uncertainty individually without considering the uncertainty mea-

sures of the other agents. This strategy reduces considerably the computational complex-

ity of the general method presented in Section 4.2, but ignores the impact of an agent’s

decision on the overall prediction error introduced to the system. However, by limiting the

uncertainty of each agent per iteration, we ensure that the prediction error does not a”ect

the ADMM’s algorithm performance greatly. Although this approach is not as rigorous as

the joint method, its simplicity makes it suitable for applications where the computational

cost must be as low as possible.

In an individual query method, the decision is made per agent where this decision
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is reflected in the agent’s corresponding binary decision variable 2k
i . The general principle

of such methods is that for agent i, the coordinator shall decide in favor of not sending a

query to this agent if the probability of an estimation error of both the Moreau Envelope

and its gradients is within an acceptable bound. This estimation error is quantified in

di”erent ways. By doing this, we drop the minimization problem presented in (4.9) and

set each 2k
i by comparing the estimated error of each agent to a threshold individually.

The individual query strategies proposed were not arbitrarily derived, but followed the

mathematical intuition given by a confidence interval analysis to be performed per agent.

The specifics of the proposed individual query strategies are presented in the following

subsections.

4.4.1. Maximum Variance Query Method

Similarly to the derivation presented in Section 4.3.1, our goal is to generate a de-

cision rule in which the prediction error is small with a high probability. For that reason,

using the concept of confidence interval, a threshold setting can be derived. When the

prediction error is below a chosen threshold, no query will be sent to an agent. As a con-

sequence, we want the probability that the estimation error is bounded by a small upper

bound to be as large as possible.

For the following derivations, we employ the general notation used in Section 4.3.1,

where the variables F , Fl, µ, µl, 0, and 1 were defined, and we add the definition of the

vector of variances of F as s2 = diag($F ), where the lth element of s2 is s2l . The desired

confidence interval is given by

P


↔0↘µ↘1 ⇒ ↘F ↔ µ↘1 =

p∑

l=1

|Fl ↔ µl| ⇒ 0↘µ↘1


∋ 1↔ 1, (4.17)

74



A su!cient condition of (4.17) is given below in terms of the requirement imposed on each

dimension Fl of F .

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl

, 1 ⇒ l ⇒ p


∋ 1↔ 1. (4.18)

Following the region probability defined in [48], we get an immediate bound of (4.18):

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl

, 1 ⇒ l ⇒ p


∋

p∏

l=1

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl


, (4.19)

and it implies that if the following condition holds true,

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl


∋ 1↔ 1↓,↗1 ⇒ l ⇒ p, (4.20)

where 1↔ 1↓ = (1↔ 1)1/p, the requirement in (4.17) is immediately satisfied.

However, instead of analyzing this condition for each of the dimensions of F , we

can simplify the analysis by further requiring that the maximum standard deviation (the

maximum element of the vector s) satisfy the condition inside the probability in (4.18)

when the bound is minimum. This is achieved when

P

[
|Fl ↔ µl|

sl
⇒ 0min1⇓l⇓p |µl|

max1⇓l⇓p(sl)


∋ 1↔ 1↓, ↗1 ⇒ l ⇒ p, (4.21)

The condition in (4.20) is met when requiring

max
1⇓l⇓p

(sl) ⇒
min1⇓l⇓p |µl|0
Q↔1(1↓/2)

= ⇀(1), (4.22)

where Q↔1() is the inverse of the Q-function Q(x) =
∫↗
x

1↘
2ϖ
e↔v2/2dv. The right-hand

side of the inequality in (4.22) can be used as the threshold ⇀(1) to compare the maximum

element of the vector of variances s (sl). In case max1⇓l⇓p(sl) ⇒ ⇀(1), then automatically

all the elements of s satisfy the condition.
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In the context of the problem defined in Section 4.1, at each iteration, the

GP regression gives us for agent i the predicted mean µk
i (z

k
i ) and the conditional co-

variance matrix $k
i (z

k
i ). In this scenario, the vector of variances will be defined as

(ski )
2 = diag($k

i (z
k
i )). Furthermore, as mentioned in the previous section, each agent’s

GP prediction uncertainty is reduced over the algorithmic rounds. For that reason, the

threshold ⇀(1) should not be static as also implied in (4.22) but should decrease over the

ADMM iterations. This requires the control variables 1 and 0 to be adjusted at each

iteration, which can be problematic considering that the two variables need to be adjusted

at each round. Therefore, we do not use the specific threshold ⇀(1) defined in (4.22), but

instead employ a general threshold ⇀k
i per agent that follows the threshold mechanism

described in Section 4.3.4. Finally, under this querying mechanism, the variable 2k
i is

defined as

2k
i =






0, if max1⇓l⇓p(ski[l]) ⇒ ⇀k
i

1, otherwise.

(4.23)

4.4.2. Maximum Variance and Mean Ratio Query Method

The subsequent proposed strategy expands from the confidence interval analy-

sis presented in Section 4.4.1 to build its mathematical intuition. Following the confi-

dence interval defined in (4.18), to require that each dimension of an agent has a small

relative estimation error, we are interested in evaluating the bound in (4.19). Defining

a≃ = max1⇓l⇓p
sl
|µl|

, it is then straightforward to show that if

p∏

l=1

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl


∋

(
P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0

a≃

)p

∋ 1↔ 1, (4.24)
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we always satisfy

P

[∣∣∣∣
Fl ↔ µl

sl

∣∣∣∣ ⇒
0|µl|
sl

, 1 ⇒ l ⇒ p


∋ 1↔ 1. (4.25)

Note that under the GP model, each Fl is Gaussian following N (µl, s2l ), suggesting
Fl↔µl

sl

following N (0, 1). We then obtain a su!cient condition to meet the confidence region

requirement stated in (4.25), namely,

max
1⇓l⇓p

s[l]
|µ[l]|

⇒ 0

Q↔1(1/2↔ 1/2 ∝ (1↔ 1)1/p)
= ⇀(2). (4.26)

The upper-bound expressed in (4.26) is not imposed on the maximum element of s but on

the maximum ratio of sl
|µl|

.

In the context of our problem defined in Section 4.1, the threshold ⇀(2) should

decrease over the ADMM algorithmic rounds to keep up with the reduction of the uncer-

tainty of the GP prediction. Similarly to the query method presented in Section 4.4.1,

we do not use the specific threshold ⇀(2) defined in (4.26), but instead employ a general

threshold ⇀k
i per agent following the mechanism described in Section 4.3.4. Using the

notation of our problem, the variable 2k
i under this query strategy is defined as

2k
i =






0, if max
1⇓l⇓p

ski[l]
|µk

i[l](z
k
i )|

⇒ ⇀k
i

1, otherwise.

(4.27)

4.4.3. Ratio of Maximum Eigenvalue and the Norm of the Mean Query Method

In this subsection, we derive a norm-based decision strategy about when a query

shall be sent to an agent by the coordinator similar to the one derived in Section 4.3.4.

Our objective is to fulfill the decision criterion presented in (4.10) given by:

P
[
↘F ↔ µ↘2 ⇒ ↘µ↘20

]
∋ 1↔ 1.
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Following the same transformation presented in Appendix G expressed in (G.1), we seek

an alternative su!cient condition to satisfy the confidence sphere condition in (G.1). We

find an alternative lower bound on this probability by defining λ1 = max1⇓l⇓p λl (the

maximum eigenvalue of the matrix $F ) and resorting to the following inequality

p∑

l=1

G2
l

λl
∋ 1

λ1

p∑

i=1

|Gl|2 =
1

λ1
↘G↘2, (4.28)

where Gl/
∞
λl are independent and identical distributed (i.i.d standard Gaussian following

N (0, 1), which suggests that
∑p

l=1
G2

l
⇁l

follows a chi-square distribution with degree of p, i.e.

∑p
l=1

G2
l

⇁l
⇐ 42

p. Based on the desired bound in (4.10) and the inequality in (G.1), we have

a su!cient condition to satisfy (4.10) given by:

P
[
↘G↘2 ⇒ ↘µ↘20

]
∋ P


p∑

l=1

G2
l

λl
⇒ 1

λ1
↘µ↘2202


∋ 1↔ 1. (4.29)

This expression can be satisfied if λ1 satisfies the following condition:

λ1

↘µ↘22
⇒ 02

F↔1
χ2 (1↔ 1)

= ⇀(3), (4.30)

where F↔1
χ2 (.) is the inverse function of the Cumulative Distribution Function (CDF) of

the chi-square random variable. Thus, if ⇁1

⇔µ⇔22
⇒ ⇀(3), we ensure that the confidence sphere

criterion in (G.1) is met; therefore, there is no need to send a query. It should be noted

that, di”erent from the approach following a high-dimensional confidence region whose

su!cient condition is based on the maximum ratio between the standard deviation and

its associated absolute mean, as stated in (4.26), we need to compare the relationship

between the maximum eigenvalue and the square of the L2 norm of the conditional mean

to a threshold subject to the chi-square distribution, under the confidence sphere setting.

Once again, the specific threshold presented in this subsection is replaced by a general
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threshold ⇀k
i per agent following the mechanism described in Section 4.3.4. Finally, we

define a query strategy in which the variable 2k
i is defined as

2k
i =






0, if ⇁k
1

⇔µk
i (z

k
i )⇔22

⇒ ⇀k
i

1, otherwise.

(4.31)

The query strategies presented in this section are simple strategies with low impact

on the overall computational cost, but they ignore the inherent uncertainty dependencies

between the agents which will negatively a”ect the performance of the ADMM algorithm.

The following section presents a comparative analysis of the mathematical foundation

of each of the proposed methods to have an intuition about what querying behavior to

expect for each method.

4.5. Probability Comparison Between Querying Strategies

In this section, we present a comparative analysis of the probabilities used as a

basis for the various querying strategies proposed. This analysis allows us to have an idea

of the expected querying behavior for each of the methods. For the following derivations,

we use the same notation used to derive each of the methods’ probabilities first defined in

Section 4.3.1.

4.5.1. Relationship between Maximum Variance and Maximum Ratio Meth-
ods

Comparing the conditions presented in (4.20) and (4.24), while acknowledging the

bound presented in (4.19), we can observe that the condition in (4.20) is more likely to

occur. Thus, we find that the relationship between the Maximum Variance and Maximum
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Ratio between variance and mean methods is given by

(
P

[
|Fl ↔ µl|

sl
⇒ 0

a≃

)p

⇒ P

[
|Fl ↔ µl|

sl
⇒ 0min1⇓l⇓p |µl|

max1⇓l⇓p(sl)
, 1 ⇒ l ⇒ p


. (4.32)

This relationship shows that the condition given by the maximum ratio method is more

stringent than the one for the maximum variance. For that reason, we anticipate the for-

mer to behave more aggressively in terms of the frequency of queries.

4.5.2. Relationship between L2 Norm-based Methods and a L1 Norm condi-
tion

The querying strategies involving the maximum eigenvalue and the trace, presented

in Sections 4.4.3 and 4.3.1, respectively, are derived from the same confidence sphere in-

volving the L2 norm of F ↔ µ. This confidence region is defined in Equation (4.10). We

want to find a relationship between this confidence sphere and a condition involving the L1

norm of F ↔ µ given by

P [↘F ↔ µ↘1 ⇒ 0↘µ↘2] ∋ 1↔ 1. (4.33)

We know that for any real vector x, the relationship between L1 and L2 norms is given by

↘x↘1 ∋ ↘x↘2. This implies

P [↘F ↔ µ↘1 ⇒ 0↘µ↘2] < P [↘F ↔ µ↘2 ⇒ 0↘µ↘2] , (4.34)

which suggests that if the condition in (4.33) holds true then automatically the condition

in (4.10) is also true, thereby the querying condition based on L1 norm is more demanding

than that under the L2 norm, thereby resulting more frequent queries accordingly.
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4.5.3. Relationship between Maximum Variance Method and an L1 Norm
condition

The probability in the condition given in (4.33) can be expressed as

P


p∑

l=1

|Fl ↔ µl| ⇒ 0↘µ↘2


∋ 1↔ 1. (4.35)

Since a su!cient condition of
∑p

l=1 |Fl ↔ µl| ⇒ 0 is |Fl ↔ µl| ⇒ 1
p0↘µ↘2, for 1 ⇒ l ⇒ p, we

have

P

[
|Fl ↔ µl| ⇒

1

p
0↘µ↘2, 1 ⇒ l ⇒ p


⇒ P [↘F ↔ µ↘1 ⇒ 0↘µ↘2] . (4.36)

Now, we want to compare the left-hand side of (4.36) with the probability expression

for the Maximum Variance method in (4.18). Since the variable 0, used throughout all

derived probabilities, is a variable that can be tuned, we can define a variable 0̂ such that

1
p 0̂↘µ↘2 = 0min1⇓l⇓p |µl|. Dividing by sl into both sides of the arguments in the probability

of the left side of (4.36), it is straightforward to see that the following inequalities hold

P

∣∣F[l] ↔ µ[l]

∣∣
sl

⇒ 0min1⇓l⇓p |µl|
max1⇓l⇓p(sl)

, 1 ⇒ l ⇒ p


⇒ P


|Fl ↔ µl|

sl
⇒ 1

p

0̂↘µ↘2
sl

, 1 ⇒ l ⇒ p



⇒ P
[
↘F ↔ µ↘1 ⇒ 0̂↘µ↘2

]
. (4.37)

This results in the condition based on the L1 norm of F ↔ µ being more likely to occur than

the condition used in the query method based on the maximum variance.
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4.5.4. Complete Relationship Between all Methods

Combining the inequalities obtained in (4.32), (4.34), and (4.37) with the definition

of 0̂, we get the following inequalities

(
P

[
|Fl ↔ µl|

sl
⇒ 0

a≃

)p

⇒ P

[
|Fl ↔ µl|

sl
⇒ 0min1⇓l⇓p |µl|

max1⇓l⇓p(sl)
, 1 ⇒ l ⇒ p



⇒ P
[
↘F ↔ µ↘1 ⇒ 0̂↘µ↘2

]

⇒ P
[
↘F ↔ µ↘2 ⇒ 0̂↘µ↘2

]
.

(4.38)

The relationships in (4.38) demonstrate how the probabilities used in our proposed de-

cision strategies are related to each other. They reveal that the query dynamics will be

more aggressive when using the method based on the maximum ratio of mean and vari-

ance, followed by the method based on the maximum variance, and finally, the two meth-

ods directly based on the L1 and L2 norm-based confidence spheres will end up with a

more relaxed querying dynamics.

The following section presents numerical results to validate and compare all the

proposed query methods. We will present comparisons made in terms of querying dynam-

ics, which will be shown consistent with the analysis presented in this section and their

resulting convergence speed and qualities in solving a distributed ADMM optimization

problem.

4.6. Numerical Results

In this section, we evaluate the proposed query methods through a numerical study

of solving a sharing problem where each agent’s local function is quadratic.

The details of our problem setting are presented next.
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4.6.1. Quadratic Sharing Problem

4.6.1.1. Problem Definition

We evaluate our methods using a sharing problem motivated by the application

in [10]. However, we do not consider the dynamic behavior of the variables as in [10] but

assume that they are stationary. The sharing problem is formulated as

minimize
n∑

i=1

[(1/2)xT
i Mixi + wT

i xi + ci]

+ (1/2)
n∑

i=1

yTi Mh

n∑

j=1

yj + wT
h

n∑

i=1

yi + ch

subject to xi ↔ yi = 0,

(4.39)

where for i = 1, · · · , n, variables xi, yi → Rp, with wi, wh → Rp, Mi,Mh → Rp↑p positive

definite, and ci, ch → R being given problem parameters.

4.6.1.2. Problem Parameters Generation

The problem’s parameters presented (4.39) are generated following the example

given in [10]. First, the parameters ci and ch will be two randomly generated numbers

that are uniformly distributed on [-1,1]. For the case of wi, we generate for each agent

a parameter w[0]
i which is a p-dimensional vector with entries randomly generated and

uniformly distributed on [-1,1]. Then, the value of wi is generated for each agent following

wi = w[0]
i + ▷si, where ▷ is some small positive number and si is a p-dimensional vector

for agent i whose entries are randomly generated and uniformly distributed on [-1,1]. The

parameter wh is generated following the same procedure as wi, but is calculated only once

and not for each agent.

On the other hand, to generate Mi for each agent, we first generate a symmetric

p ↖ p matrix M [0]
i = AA↓, where the entries of A are randomly generated and uniformly
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distributed on [↔1, 1]. Then we generate M̃i = M [0]
i + ▷Si, where Si = BB↓ is a symmetric

p↖ p matrix with the entries of B randomly generated and uniformly distributed on [-1,1].

Subsequently, Mi is constructed as

Mi =






M̃i, if λmin(M̃i) > φd

M̃i +

φd ↔ λmin(M̃i)


Ip, otherwise,

(4.40)

where λmin(M̃i) denotes the smallest eigenvalue of M̃i and φd > 0 is a positive constant.

The parameter Mh is generated following the same procedure as Mi, but it is calculated

only once and not for each agent.

4.6.1.3. Solution Using ADMM

Following the specifics of the problem in (4.39) and the expression of ADMM in

(4.2), we can derive a closed-form solution for updating the ADMM variable xk+1
i . Because

the function fi is convex, the optimal solution of xk+1
i is attained when the gradient of the

objective function vanishes. By taking the gradient of the xk+1
i -update and equating it to

zero, we obtain

xk+1
i = (Mi + ϑIp)

↔1(ϑzki ↔ wi), (4.41)

where Ip is the p↖ p identity matrix. The expression in (4.41) is the closed-form solution of

the optimization for the xi update to be computed on the agent side.

Similarly, we can derive a closed-form solution for the ȳk+1 update. Because the

function h is also convex quadratic then once again the optimal solution of ȳk+1 is at-

tained when the gradient of the objective function vanishes, leading to the expression

ȳk+1 = (nMh + ϑIp)
↔1(ϑ(uk + x̄k+1)↔ wh). (4.42)
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Finally, combining the ADMM expression in (4.2) with the expressions in (4.41)

and (4.42), the ADMM updates are expressed as

xk+1
i = (Mi + ϑIp)

↔1(ϑzki ↔ wi)

ȳk+1 = (nMh + ϑIp)
↔1((ϑ/n)vk ↔ wh)

uk+1 = (1/n)(vk ↔ nȳk+1), (4.43)

where vk = nȳk ↔ (1/ϑ)
∑n

i=1 ◁
k
i .

4.6.2. Equation of the Trace of the Joint Covariance Matrix

As presented in Section 4.3.2, our proposed joint query strategy depends on an un-

certainty measurement given by the trace of the joint uncertainty of the ADMM updates.

The specific expression of tr(Cov[xk+1; ȳk+1; uk+1]|2k]), following the specific ADMM up-

dates presented in (4.43), is given by

tr(Cov[xk+1; ȳk+1; uk+1|2k]) = (1 + 1/n2)(1/ϑ)2
n∑

i=1

(1↔ 2k
i )tr

(
$k

i (z
k
i )
)
+

(2/n2)
n∑

i=1

(1↔ 2k
i )tr

(
CTC$k

i (z
k
i )
)
↔ 2(1/n2ϑ)

n∑

i=1

(1↔ 2k
i )tr

(
C$k

i (z
k
i )
)
, (4.44)

where C = (nMh + ϑIp)↔1.

4.6.3. Numerical Implementation

The problem in (4.39) is solved with two di”erent algorithms:

1. Sync: this algorithm uses ADMM with proximal operator as in (4.2), which simpli-
fies to (4.43) with ϑ = 10.

2. STEP-GP : the algorithm proposed in [23].

For the STEP-GP algorithm, di”erent query methods are considered as follows:

• MaxVar : The query strategy presented in Section 4.4.1.
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• MaxRat : The query strategy presented in Section 4.4.2.

• MaxEig : The query strategy presented in Section 4.4.3.

• L1Norm-Trace: The query strategy presented in Section 4.3.2.

In our numerical computations, we consider the following combinations: Sync, STEP-

GP:MaxVar, STEP-GP:MaxRat, STEP-GP:MaxEig, and STEP-GP:L1Norm-Trace. Also,

we consider two cases where the number of agents is taken from n → {10, 30}.

Our results were generated using MATLAB. For comparison purposes, ground

truth solutions to minimization problems (4.39) were obtained using the YALMIP tool-

box [41]. For the construction of the GP models, we used the GPstu” toolbox [42]. All

calculations were performed on high-performance computers at Louisiana State University

(http://www.hpc.lsu.edu).

4.6.4. Metrics and Considerations

4.6.4.1. Media Access Control (MAC) Metric

Appendix F presents the details of how this metric is obtained.

4.6.4.2. ADMM Termination Criterion

For our numerical computations, we use the ADMM termination criterion pre-

sented in Section 3.3.1 in [8]. This criterion presents two conditions that compare the

primal and dual of ADMM against two di”erent tolerances. Expressing the primal and

dual in terms of the specifics of our problem results in a termination criterion of the form:

↘x̄k+1 ↔ ȳk+1↘2 ⇒ φpri and ↘ϑ(ȳk+1 ↔ ȳk)↘2 ⇒ φdual, (4.45)
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where φpri > 0 and φdual > 0 are feasibility tolerances for the primal and dual feasibility

conditions. These tolerances can be chosen using an absolute and relative criteria, such as

φpri =
∞
pφabs + φrel max(↘x̄k+1↘2, ↘ȳk+1↘2),

φdual =
∞
pφabs + φrel↘ȳk+1↘2,

where φabs > 0 is an absolute tolerance, φrel > 0 is a relative tolerance, and the factor

∞
p account for the fact that the L2 norms are in Rp. Both φabs and φrel are set manually

at the beginning of the algorithm. The choice of φabs depends on the scale of the typical

variable values of the application, while reasonable values for φrel might be 10↔3 or 10↔4,

depending on the application.

4.6.4.3. Performance Trade-o”

We propose to present the results showing directly the trade-o” between the trans-

mission time reduction and the accuracy of the algorithm. Define the negative logarithm

of the relative error (NLRE) expression as

NLRE = ↔ log(|Jgt ↔ J≃|/Jgt), (4.46)

where Jgt is the true optimal value calculated directly with a convex solver, and J≃ is the

objective value obtained by a particular approach. Also, let us define the relative transmis-

sion time reduction (RTx) as

RTx = (TxADMM ↔ TxGP )/TxADMM , (4.47)

where TxADMM is the transmission time obtained when running the Sync:Exact algorithm,

and TxGP is the transmission time obtained by any of the methods using the STEP-GP
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algorithm. The metric RTx assumes that the Sync:Exact and STEP-GP methods use the

same set of problem parameters.

We present our results in a graph where the vertical axis shows the values of RTx

and the horizontal axis shows the values of NLRE. Each point in the graph is a tuple of

transmission time reduction and accuracy, and its location shows how well it performs in

terms of the trade-o” between these two relative metrics. In particular, the ideal scenario

is when NLRE and RTx are as large as possible. Hence, we want the points to be as

close to the right upper corner of the graph as possible.

4.6.5. Initial Threshold Tuning

Since the variation of the initial threshold a”ects the overall performance of the

tested algorithms, we propose fine-tuning the initial threshold for the multiple methods

proposed in this work. We consider testing 11 di”erent initial thresholds per case, so we

can capture the impact of such variation in the proposed methods. The threshold pre-

sented in Section 4.3.4 initializes its initial threshold ⇀k0 following the expression in (4.15).

Such an initialization requires manually setting the variable ϖ, which indicates how pro-

portional regarding V k0 we want ⇀k0 to be. For all the di”erent methods tested in this

chapter, we tune ⇀k0 considering ϖ = [0.5, 0.6 . . . , 1.4, 1.5].

4.6.6. Numerical Results Setting

In this subsection, we present the results for 10 and 30 agents when using the dif-

ferent query strategies proposed in this work with the threshold mechanism described in

Section 4.3.4. We consider di”erent initial threshold values following the description in

Section 4.6.5. Each algorithm for the di”erent methods was run 100 times with di”erent
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Figure 4.2. Performance trade-o” between the Relative Transmission Time Reduction
and the Negative Logarithm of the Relative Error for 10 Agents with variable’s dimension
p = 5 (left) and p = 10 (right). The plots show the 12 best-ranked tuple medians of the
100 results for di”erent sets of parameters Mi, Mh, wi, wh, ci and ch, and for di”erent
values of ε.

sets of Mi, Mh, wi, wh, ci and ch, generated as in Section 4.6.1.2. In the generated graphs,

each point among the same colored cluster represents a tuple of the median values among

the 100 results of the same method for the NLRE and RTx metrics, as presented in Sec-

tion 4.6.4.3.

The decaying threshold described in Section 4.3.4 is greatly a”ected by the selec-

tion of the decay rate ε. For that reason, we also considered running numerical computa-

tions for di”erent values of ε on top of tuning the initial threshold. Since we consider a

set of 11 initial thresholds per method, each scenario tested has 11 points per method and

per value of ε. The best performance of a given method might occur for a value of ε that

is not necessarily the same as the rest of the methods. Consequently, we present the re-

sults in Figures 4.2-4.3 as a ranking of all the median points across all di”erent values of ε

tested. The ranking is done by setting a tuple as an upper bound with a value of NLRE
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Figure 4.3. Performance trade-o” between the Relative Transmission Time Reduction
and the Negative Logarithm of the Relative Error for 30 Agents with variable’s dimension
p = 5 (left) and p = 10 (right). The plots show the 12 best-ranked tuple medians of the
100 numerical results for di”erent sets of parameters Mi, Mh, wi, wh, ci and ch, and for
di”erent values of ε.

and RTx that is higher than any of the values obtained in our results. Then we will cal-

culate the Euclidean distance of all the median points obtained across the di”erent values

of ε to the upper bound tuple. The 12 median points that attain the lowest distance are

included in the graph.

This set of results considered values of ▷ = 0.2, φd = 1, ϑ = 10, p = 5, an absolute

tolerance value of φabs = 10↔6, a relative tolerance value of φrel = 10↔5, values of ε =

[0.95, 0.96, . . . , 0.99], and x0
i = ȳ0 = u0 = 0.

4.6.7. Numerical Results for 10 and 30 Agents

Figures 4.2-4.3 (left) present the graph NLRE vs. RTx for 10 and 30 agents of the

median of 100 numerical results for the Sync:Exact and the STEP-GP based algorithms

for the di”erent initial thresholds considered, per each of the values considered of ε when

the dimension of the variables is p = 5, while Figures 4.2-4.3 (right) show the same infor-
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mation but when the dimension of variables is p = 10. The presented results were selected

as a consequence of a ranking of the best points in terms of the trade-o” between all val-

ues tested of ε. The results in all cases show three main clusters of the points presented.

In the lower-left corner, the points that show the worst performance in terms of the trade-

o” between communication reduction and accuracy appear, which corresponds to the

STEP-GP:MaxRat method. In the upper-left corner, with results similar to each other in

all cases, appear STEP-GP:MaxVar and STEP-GP:MaxEig. These methods present a sim-

ilar reduction in transmission time; however, STEP-GP:MaxVar presents better relative

error values than STEP-GP:MaxEig which is showcased by the points coming from STEP-

GP:MaxVar being closer to the ideal case. In the upper-right corner, separated from the

other methods appears STEP-GP:L1Norm-Trace with all its points close to each other in

all the graphs presented.

On the other hand, the results presented in terms of the reduction in relative trans-

mission time in Figures 4.2-4.3 correlate with the analysis presented in Section 4.5. As the

graphs show, STEP-GP:MaxRat presents the lowest communication reduction in all cases.

The observation of the intermediate results showed that this method asked queries for

each agent in around 80% of the total iterations required to reach convergence. Further-

more, the two methods based on an L2 norm confidence sphere (STEP-GP:MaxEig and

STEP-GP:L1Norm-Trace) present a little more reduction in relative transmission time

than the STEP-GP:MaxVar method. This di”erence is not significant if we only analyze

the relative transmission time reduction metric. However, through the intermediate results,

we observed that STEP-GP:MaxEig and STEP-GP:L1Norm-Trace present a lower fre-

quency of queries, but require more iterations to converge than STEP-GP:MaxVar. This
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Figure 4.4. Variation of the primal residual through the iteration count for all the pro-
posed query methods. The graphs present the test scenario for the same set of parameters
Mi, Mh, wi, wh, ci, and ch of 10 agents with variables’ dimension of p = 10, an initial
threshold given by ϖ = 1, and decay rate ε = 0.97 for all cases.

behavior is more pronounced for the STEP-GP:L1Norm-Trace where the frequency of

queries is considerably lower but the increment in the number of iterations is also very

significant. Thus, the results generated are aligned with the anticipated query behavior.

4.6.8. Empirical Convergence

In this subsection, we present results on the convergence behaviors of the proposed

query methods. Figure 4.4 shows the ADMM primal residual as defined in Section 4.6.4.2

through the iteration count until convergence is reached for all methods tested. The four
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graphs present the test scenario for the same set of parameters Mi, Mh, wi, wh, ci, and

ch of 10 agents with the dimension of the variables p = 10, an initial threshold set by

ϖ = 1 and the decay rate ε = 0.97 for all cases. The figures presented show the decaying

behavior of the residual until a significant drop when convergence is achieved. The main

di”erence between methods is the speed of convergence, which is defined by the query

frequency. The smaller such a frequency, the larger the convergence speed. The speed of

convergence shown in Figure 4.4 for each method is aligned with the analysis presented

in Sections 4.5 and 4.6.7 because we see that STEP-GP:L1Norm-Trace requires consid-

erably more iterations to reach convergence than the rest of the methods, while STEP-

GP: MaxRat requires fewer iterations than all other methods. Although only one case is

presented, this trend is observed in all test scenarios considered in all our experiments

presented in the previous subsections. Thus, all generated results (regardless of the param-

eters of the test scenario) reached convergence and each query strategy presents the same

convergence speed behavior.

4.6.9. Prediction Error

In this subsection, we present statistics about how the prediction error behaves in

our algorithm through all di”erent query methods. Figure 4.5 presents two graphs showing

information on the prediction error of a numerical result corresponding to agent 1 under

the STEP-GP:L1Norm-Trace query strategy for a specific set of parameters Mi, Mh, wi,

wh, ci and ch in a system of 10 agents with the dimension of the variables p = 10, an

initial threshold set by ϖ = 1, and decay rate ε = 0.97. To generate both graphs we

calculated the real values of the Moreau Envelope and its gradient even in iterations where
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Figure 4.5. Prediction Error statistics corresponding to agent 1 under the STEP-

GP:L1Norm-Trace query strategy for a specific set of parameters Mi, Mh, wi, wh, ci,
and ch in a system of 10 agents with variables’ dimension of p = 10, an initial threshold
set by ϖ = 1, and decay rate ε = 0.97. Graph (a) presents the histogram of the normalized
prediction error, while graph (b) presents the variation of the L2 norm of the prediction
error at each iteration.

a query was not requested.

In Figure 4.5 (a) we present the histogram of the normalized prediction error vector

(φki(NPE)), where the lth entry (l → [1, . . . , p+ 1]) is defined as

φki[l](NPE) =

(
1

ski[l]

)∣∣∣∣∣

[
f

1
ω

i (z
k
i );≃f

1
ω

i (z
k
i )



[l]

↔ µk
i[l]

∣∣∣∣∣ .

This normalized error results in a vector generated at each iteration for each agent. To

construct the presented histogram, we consider each individual component of the vec-

tor φki(NPE) as a point to be considered in the graph. Following the GP assumptions, we

should expect that the discrepancy between the Moreau Envelope and its gradient with

the predicted mean follows a Gaussian distribution. However, the histogram in Figure 4.5

(a) contradicts the prior expectation. This non-normality of the prediction error is also

observed in other query strategies throughout di”erent system parameters. Some cases pre-

sented histograms showing more discrepancies with respect to the expected Gaussian bell
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shape than the one presented in Figure 4.5 (a). This is interesting because these results

show that even though the assumed Gaussian distribution of f
1
ω

i (z
k
i ) does not hold, the GP

is still capable of making a good prediction with acceptable accuracy. Furthermore, this

discrepancy from the initial assumption did not prevent any of the scenarios tested from

reaching convergence.

On the other hand, Figure 4.5 (b) presents the variation of the L2 norm of the

prediction error at each iteration for agent 1. This is defined as

φki[PE] =

∣∣∣∣

∣∣∣∣

[
f

1
ω

i (z
k
i );≃f

1
ω

i (z
k
i )


↔ µk

i

∣∣∣∣

∣∣∣∣
2

.

This metric generates a single point per iteration, so the presented graph shows the vari-

ation of the prediction error over the algorithmic iterations. Figure 4.5 (b) also makes a

di”erentiation between iterations in which a query was made (green points) and iterations

in which no query was made (blue points). The decaying behavior of the prediction error

is clearly seen in the graph with a significant drop closer to convergence. This behavior

is desirable because we want our prediction to become more accurate through the algo-

rithmic iterations, which is a favorable condition to be confident not only that we reach

convergence but that we converge to a good solution. Furthermore, the figure shows a

bursting behavior between intervals, where we see an increment in the prediction error dur-

ing the interval where no query was made and an abrupt drop once a query is requested.

This prediction error behavior is observed for all agents through all the di”erent test sce-

narios and di”erent query strategies.
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Figure 4.6. Distances between generated query points for a specific set of parameters Mi,
Mh, wi, wh, ci, and ch in a system of 10 agents with variables’ dimension of p = 10, an ini-
tial threshold set by ϖ = 1, and decay rate ε = 0.97. Graph (a) presents the measurement
of the minimum distance between a new query vector and all query vectors already in the
training set. Graph (b) presents the minimum query distances between query points that
are already part of the training set only.

4.6.10. Query Dynamics

In this subsection, we present information on the distances between the queries

zki generated at each iteration compared to the previous query points included in the GP

training set. Figure 4.6 (a) presents the measurement of the minimum distance between a

new query vector and all query vectors already in the training set. This distance is defined

as

d(zki , Z
k) = min{d(zki , z) : z → Zk

i },

where Zk
i is the set containing the queries within the GP training set for agent i until iter-

ation k and d(·) is the distance function. Since each generated zki is a vector, the distance

function considered is d(zki , Z
k) = ↘zki ↔ z↘2 where z → Zk

i . Figure 4.6 (a) presents a dif-

ferentiation between iterations in which a query was made (green points) and iterations
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in which there was no query (blue points). The results show that the distance between

the queries throughout the iterations tends to become smaller as the iteration process

approaches convergence. This is correlated with the patterns observed in Figure 4.5 (b),

where the prediction error is smaller when the algorithm is closer to convergence. The

closer the query points are to the end of the algorithm run, the more points are trained in

GP around a close vicinity, thus considerably reducing the uncertainty of the prediction.

Furthermore, the behavior of the minimum distance between queries presented in Fig-

ure 4.6 (a) presents a similar bursting behavior to that observed for the prediction error in

Figure 4.5 (b).

On the other hand, Figure 4.6 (b) presents the minimum query distances between

the query points already included in the training set. Only when a new point is added to

the training set is this minimum distance recalculated. This distance is defined as

d(z, x) = inf{d(z, x) : z, x → Zk
i , z ▽= x},

where d(.) once again is defined as d(z, x) = ↘z ↔ x↘2. The graph in Figure 4.6 (b) presents

a new point when a query is made, so each point presented represents an interval after a

period of iterations where no query was made. Similarly to the results presented in Fig-

ure 4.6 (b), the distance between the query points also decreases closer to convergence.

However, in the case where we only compare points that are part of the training set, we do

not see increasing variations at any point.

4.6.11. Overall Remarks

The presented results across di”erent initial parameters showed that the joint query

method STEP-GP:L1Norm-Trace is the method that achieved better trade-o” perfor-
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mance among all query strategies tested. An observation we made during the numerical

computations is that such a method tends to reduce the required queries considerably;

however, it does not require extensive communication rounds to obtain good values for the

NLRE metric. Compared to the other methods tested, for similar values of total trans-

mission time, the STEP-GP: L1Norm-Trace method usually produces a global ADMM

solution closer to the true solution. In contrast, the STEP-GP:MaxRat method proved to

be the one with the worst trade-o” performance among all tested methods. Although the

other individual query strategies showed similar behavior, it was STEP-GP:MaxVar that

showed a better overall trade-o” performance compared to STEP-GP:MaxEig. In addi-

tion, the results obtained were consistent across all the di”erent numerical computation

cases presented. The querying behavior observed during numerical computations correlates

with the previous analysis, resulting in an anticipated querying behavior of the proposed

methods.

The results presented showed that the more complex querying strategy can achieve

the best performance. This outcome agrees with the intuitive idea that the method closer

to the general querying framework should achieve better performance. On the other hand,

the individual query methods, despite their simplicity, were able to maintain an acceptable

accuracy while reducing the transmission time considerably. Thus, the individual strate-

gies STEP-GP:MaxVar and STEP-GP:MaxEig are viable options in scenarios where the

computation cost needs to be as low as possible.
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4.7. Conclusion to Chapter 4

Distributed optimization methods, such as ADMM, generally incur an excessive un-

desired communication overhead. In this context, the use of Gaussian processes has proven

to be e”ective in learning the unknown proximal operators of the agents. Therefore, the

coordinator can predict the solutions to the local proximal minimization sub-problems,

requiring fewer queries to the agents, which leads to a significant reduction in commu-

nication. However, the extent of the achievable reduction in communication depends in

part on the mechanism through which the coordinator decides if communication with the

agents is needed. For that reason, this work proposed several query strategies to decide

whether the coordinator should send queries to the agents in a particular iteration when

running the STEP-GP algorithm based on the notion of a general querying framework.

Such an ideal mechanism solves a constrained optimization problem by balancing two op-

posing criteria, which are to maximize the communication reduction while minimizing the

error of the final solution obtained. Motivated by this constrained optimization problem

and an alternative expression of the regular ADMM updates that showcases the inherent

coupling between agents, we proposed a joint query strategy consisting in minimizing a

convex communication cost restricted by the trace of the joint uncertainty of the ADMM

variables. On the other hand, to reduce the computational burden added to our algo-

rithm, we proposed di”erent individual query strategies for each agent using an individual

uncertainty measure to determine whether the prediction is reliable enough to skip a com-

munication round. The numerical results of solving a sharing problem with quadratic

cost functions showed the di”erent performances of the proposed methods in terms of the
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trade-o” between the reduction of communication cost and the loss of accuracy in solving

the optimization problem. In particular, the proposed joint query method achieved better

trade-o” performance than the independent query strategies. Our next research steps in-

clude testing our proposed framework in more complex applications, where we have more

challenging objective functions, and convergence analysis of all query methods.
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Chapter 5. LGP with Adaptive Quantization Resolution

In Chapter 2 we solved a distributed centralized optimization problem through

ADMM with a learning component to skip communication rounds, where communications

between the coordinator and agents are quantized. Because we proposed to use a uniform

quantizer that adapts its mid-value and window length with the statistics given by the

predictor, we were able to characterize the quantization error statistics. These statistics

do not follow a Gaussian distribution, making the GP assumptions invalid. Therefore, we

proposed an alternative regression method (based on GP) following the concept of Linear

Minimum Mean Square Error (LMMSE) estimation. Our proposed method resulted in

the integration of ADMM with our new proposed regression method a”ected by uniform

quantization, where the impact of the quantization error was addressed and mitigated.

The study presented in Chapter 4 dealt with the same framework presented in [23] where

quantization was not considered. In this scenario, GP was used as the learning method

and our work focused on the mechanism used to determine whether the coordinator should

communicate with the agents or not. This study resulted in the proposition of an ideal

query method that served as a framework to derive di”erent individual and joint query

strategies.

This chapter aims to integrate these two previous studies by adding a new com-

ponent: A quantization scheme that allows the bit resolution to be varied at each iter-

ation. This new component is motivated by the fact that not all agents have the same

requirements or deal with the same amount of uncertainty in each round. The quantiza-

tion scheme used in Chapter 2 assigned the same resolution to all agents and did not vary

the given value during the execution of our algorithm. We propose generating a mecha-
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nism that allows the coordinator to increase or decrease the quantization resolution of

each agent according to their behavior. Furthermore, the query decision and quantization

resolution allocation mechanisms are aligned with the conditions considered in Chapter 3,

allowing us to apply the derived convergence analysis directly to the approach proposed in

this chapter.

Chapter Organization: We begin with the formulation of the problem in Section 5.1.

The general query and quantization allocation framework is presented in Section 5.2. We

present our proposed joint query and resolution allocation mechanism in Section 5.3, fol-

lowed by our proposed individual strategy in Section 5.4. The numerical results are pre-

sented in Section 5.5, and the conclusions are presented in Section 5.6.

5.1. Problem Formulation

This chapter addresses a collaborative optimization scenario that involves n agents

and a central coordinator, similar to the setup explored in Chapter 2. In this setup, the

objective is to minimize a global cost function comprising individual strongly convex cost

functions fi : Rp ↓ R where each agent has local decision variables xi → Rp, alongside a

convex shared cost function h : Rp ↓ R, formulated as follows:

minimize
n∑

i=1

fi (xi) + h

(
n∑

i=1

xi

)
. (5.1)

Here, fi is only accessible to the corresponding agent. Furthermore, communication for

solving (5.1) is restricted to exchanges between the coordinator and the agents, with no

direct interactions between the agents themselves.

The optimization problem (5.1) is addressed using the Alternative Direction
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Method of Multipliers (ADMM) with proximal operators following the query response

mechanism presented in Section 2.1.

5.1.1. Quantization Statistics with LGP Overview

In Chapter 2 we further reduced communication overhead compared to [23] by

considering uniform quantization in communications between agents and coordinator. In

that chapter, we consider a quantization scheme that adapts the quantizer by setting the

mid-value to the conditional mean given by GP, and the window length to be proportional

to the diagonal of the covariance matrix given by LGP.

When dealing with the total uncertainty introduced, the source of the uncertainty

is either the prediction error or the quantization error. The LGP gives its uncertainty

measurement per agent through the conditional covariance matrix $k
i (z

k
i ). The diagonal of

such a matrix gives the variance of the prediction uncertainty. Following the derivations

made in Chapter 2 the uniform quantization error variance is:

Var(φQ) =
1

12
q2, (5.2)

where q is the quantizer’s window length defined as q = 2c

2b
k
i
↼k
i (q is a vector). This leads to

the expression,

Var(φQ) =
c2

3(22b
k
i )
ski , (5.3)

for some given c > 0 and ski = diag($k
i (z

k
i )).

5.1.2. Query-Response Dynamics

In Figure 5.1, we present one round of the proposed algorithm for a network of 2

agents. This figure uses the notation defined throughout Chapter 2. The LGP regression

block named proxLGP refers to the prediction of f
1
ω

i (z
k
i ) and ≃f

1
ω

i (z
k
i ) as presented in
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ADMM proxLGP proxLGP

Coordinator Agent 1
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Quantizer
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Figure 5.1. Flow diagram of a query and response between the coordinator and an agent
in the proposed approach. The enhancements contributed by this chapter, compared with
the approach in Chapter 2, are highlighted in the blue-shaded boxes.

Theorem 1 in Chapter 2. The coordinator has a corresponding proxLGP for each agent,

which is trained on its past query data with the agent. The coordinator first calculates

the query variables zki for each agent and uses them as input to the agent’s proxLGP.

Using the covariance matrices $k
i (z

k
i ) given by the proxLGPs, the coordinator decides

which agents to query. Then, for the agents set to be queried, the coordinator assigns

a quantization resolution to each one. In Figure 5.1, agent 1 is set to be queried, so the

coordinator sends zk1 and bk1 to the agent, which solves its proximal minimization problem,

represented by block prox 1
ωfi

. Subsequently, agent 1 quantizes f
1
ω

1 (z
k
1 ) and ≃f

1
ω

1 (z
k
1 ),

≃f
1
ω

2 (z
k
2 ) adapting its mid-value, window length, and bit resolution. The quantized

response

{(
Q
(
f 1/ω
i (zki )

)
,Q

(
≃f 1/ω

i (zki )
))}

of agent 1 is sent back to the coordinator,

that uses a similar dequantization process based on the same predictive mean µk
1(z

k
1 ),
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covariance matrix $k
1(z

k
1 ), and quantization resolution bki to obtain the dequantized

response {f̂ 1/ω
i (zki ),≃f̂ 1/ω

i (zki )}. Finally the coordinator uses the approximated values

{f̄ 1/ω
i (zki ),≃f̄ 1/ω

i (zki )}, coming from the estimation process according to Theorem 2 in

Chapter 2, for the ADMM updates. Meanwhile, for agent 2, which is not queried, the

coordinator uses the corresponding predicted values µk
2(z

k
2 ) from its proxLGP to perform

the ADMM updates.

5.1.3. ADMM Updates with LGP and Adaptive Quantization

Following the query-response mechanism shown in Figure 5.1, the ADMM formula-

tions are adjusted to integrate the LGP regression. Initially, we define the communication

decision variable for agent i in iteration k as

2k
i =






1, if agent i is queried

0, otherwise.

(5.4)

When 2k
i = 1, the query zki is sent to agent i to acquire the quantized value of ≃f

1
ω

i (z
k
i )

given by ≃f̂ 1/ω
i (zki ). On the contrary, when 2k

i = 0, we utilize the predicted value µk
i (z

k
i )

from the LGP regression. Consequently, we introduce the received value ◁k
i as

◁k
i = 2k

i ≃f̂
1
ω

i (z
k
i ) + (1↔ 2k

i )µ
k
i (z

k
i ). (5.5)

Subsequently, the ADMM formulations for the sharing problem in (5.1) as:

xk+1
i = zki ↔ (1/ϑ)◁k

i

ȳk+1 = argmin
ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k+1 ↔ uk↘2

}

uk+1 = uk + x̄k+1 ↔ ȳk+1. (5.6)
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This chapter concentrates on the e”ective execution of query decision-making when

dealing with adaptive uniform quantization resolution allocation. The following section

presents the general framework used to derive our proposed solutions for making the com-

munication decision and assigning the quantization resolution optimally.

5.2. General Framework

The primary aim of integrating regression and quantization into the ADMM algo-

rithm to solve distributed optimization problems is to mitigate communication overhead.

However, it is crucial to ensure that this incorporation does not significantly impede algo-

rithm convergence or compromise the accuracy of the optimization solution. The pivotal

elements in ADMM updates when LGP is used, as illustrated in (5.6), are the variable

◁k
i and the quantization resolution bki . The variable ◁k

i assumes the role of the quantized

gradient ≃f̂
1
ω

i (z
k
i ) of the Moreau envelope or its predicted counterpart, dependent on 2k

i .

In the case where communication is required, a quantization resolution is assigned to each

communicating agent. In (5.6), the ensemble of xk+1, ȳk, and uk+1 can be construed as

a high-dimensional vector trajectory toward the global solution. This trajectory is influ-

enced by ◁k
i and bki , which are contingent on the communication decision variable 2k

i , as

defined in (5.4) and (5.5), thus a”ecting both the accuracy of the LGP regression and

the optimization performance. Consequently, the mechanism to determine 2k
i and bki will

inherently impact the overall performance of communication and optimization. In the

absence of a robust and systematic mechanism for the coordinator to discern when to dis-

patch queries to agents and allocate the quantization bits for the communicating ones, the

ADMM algorithm may either necessitate excessive iterations to converge or fail to achieve
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convergence altogether.

We propose a systematic approach in which the query decision and the bit resolu-

tion allocation are jointly analyzed and performed as one complex task. This means that

the trade-o” between uncertainty and communication expenditure does not depend only

on the binary communication decision of each agent 2k
i but also depends on the quantiza-

tion resolution bki assigned to each agent. Intuitively, we can model a minimization of the

form

minimize Comm(2k, bk),

subject to bk → N n,

2k → {0, 1},

Uncert(2k, bk) < ⇀k,

(5.7)

where 2k is a vector containing the binary communication variable of each agent, bk is

a vector containing the quantization resolution of each agent at the present iteration,

Uncert(2k, bk) is the uncertainty function, Comm(2k, bk) is a communication function, and

⇀k is a given threshold varying at each iteration.

This general framework relies on two opposing criteria: 1) reduce communication

overhead and 2) maintain the convergence and accuracy of the ADMM algorithm. This is

conceptually similar to the general querying framework presented in Section 4.2 but has

larger implications. The idea proposed in (5.7) has critical di”erences from the general

framework in Section 4.2, such as:

• The contribution of each agent to the uncertainty function without quantization
either came from the prediction error or was zero because the real value was used.
In (5.7) each agent will always contribute to the uncertainty because if we commu-
nicate, the quantization error will contribute to the overall uncertainty.
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• The communication cost in (5.7) is now a more complex cost because the payload
of the information shared now a”ects the communication overhead. This was not a
variable in Section 4.2 because the payload of the shared information was the same
for all agents. In this new setting, agents respond with di”erent payload sizes.

Typically, solving the optimization problem (5.7) requires a combinatorial approach due

to the n binary variables 2k
i i=1,··· ,n. However, computational costs can become prohibitive

as the number of agents increases. Consequently, in this chapter, our goal is to explore

methods for addressing (5.7) while adhering to specific communication and uncertainty

functions, without relying on combinatorial techniques.

5.3. Proposed Joint Approach

In this section, we introduce a collective approach to make the communication

decision and assign the quantization resolution based on the general framework presented

in the previous section. In this approach, the uncertainty measure defined in Equation

(5.7) is the sum of the diagonal elements of the joint covariance matrix of the ADMM

variables influenced by the LGP regression. In the following subsection, we provide the

measure of uncertainty used in our algorithm.

5.3.1. Uncertainty Expression when using the LGP approach

The analysis presented in Section 4.3.1 justifies using the trace of the covariance

matrix given by the LGP regression as the uncertainty function. In case we do not con-

sider quantization, this function is the trace of the LGP conditional covariance matrix

$k
i (z

k
i ). However, due to the inclusion of quantization, we have to account for the uncer-

tainty introduced by the quantization process. Following the study made in Section 2.3.1,

the gradient of the Moreau Envelope ≃f
1
ω

i (z
k
i ) is quantized element by element, where

each element of ≃f
1
ω

i (z
k
i ) is quantized by a uniform quantizer having its mid-value set by
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µk
i (z

k
i ) and its corresponding element of the window length vector defined as

qki =
2c

2b
k
i

√
diag($k

i (z
k
i )), (5.8)

where c > 0 is a given constant. Therefore, following Proposition 1 in Section 2.3.1 and

the adaptation of the window length in (5.8), we can approximate the quantization error

of a given agent in iteration k given by φkiQ with its l-th entry φkiQ[l], l → [1, . . . , p], to follow

a uniform distribution given by φkiQ[l] ⇐ U [↔qki[l]/2, q
k
i[l]/2]. Consequently, the variance vector

of the uniform quantization error for a given agent at iteration k is as follows:

Var(φkiQ) =
1

12
(qki )

2. (5.9)

Thus, the overall quantization uncertainty is given by the summation of each element of

the vector Var(φkiQ). Then, we can formulate an overall uncertainty function for all agents

depending on the decision variable 2k
i and each agent’s quantization resolution bki as:

Uncert(2k, bk) =
n∑

i=1

2k
i

ω

22b
k
i

tr
(
$k

i (z
k
i )
)
+ (1↔ 2k

i ) tr
(
$k

i (z
k
i )
)
, (5.10)

where ω = c2

3 and tr(·) is the trace operator.

5.3.2. Proposed Joint Query and Resolution Allocation Method

Using the general framework outlined in Section 5.2, we suggest employing the

total number of bits transmitted in the current iteration as the metric for the cost of com-

munication. This metric is denoted as the multiplication of the number of agents queried

in the current iteration and each of their assigned quantization resolutions. On the other

hand, the uncertainty function Uncert(2k, bk) is constructed using the trace of the condi-

tional covariance matrix presented in (5.10). Therefore, the specific form of the general

optimization problem (5.7) is:
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Algorithm 3 Joint Query and Quantization Resolution Allocation

Require: Each agent’s value of $k
i (z

k
i ), the initial value and adaptation of ⇀k, set all

2k
i ↙ 1.

1: Sort each tr($k
i (z

k
i )) from smallest to greatest, and store the sorting as mk =

[mk
1,m

k
2 . . .m

k
n].

2: Define idxki , as a flag corresponding to the position in the sorting that corresponds to
the value of mk

i .
3: Calculate the cumulative sum vector of mk as CMk = cumsum(mk).
4: Define ns as the largest value of CMk such that CMk

ns
⇒ ⇀k, and set 2k

j ↙ 0, where
j = [1, . . . , ns].

5: if ns = n then
6: Terminate
7: else
8: Run Algorithm 4
9: end if

minimize ↘2k↘1
n∑

i=1

(1↔ 2k
i )b

k
i

subject to 2k
i → {0, 1}, 1 ⇒ i ⇒ n,

bki → N ,

n∑

i=1

2k
i

ω

22b
k
i

tr
(
$k

i (z
k
i )
)
+ (1↔ 2k

i ) tr
(
$k

i (z
k
i )
)
⇒ ⇀k,

(5.11)

where the threshold ⇀k varies with each iteration. The rationale behind Equation (5.11) is

to select the smallest set of agents to query with the least possible quantization resolution

while ensuring that the joint uncertainty remains below the threshold ⇀k. This guarantees

a high probability that the uncertainty remains within a desired bound.

Subsequently, we introduce an e!cient solution to the problem stated in (5.11)

without relying on combinatorial methods, leveraging the convexity and linearity inherent

in the communication and uncertainty functions considered. This approach is constructed

by solving the problem in (5.11) in two parts. The first part focuses only on determining

the value of each of the communication decision variables 2k
i , while the second assigns the
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quantization resolution bki to each communicating agent. The approach revolves around

the following steps:

1. Define a global threshold ⇀k and a quantization threshold ⇀Q[k] both decaying at
each iteration. Also, define a minimum and maximum allowed quantization resolu-
tion.

2. Initiate the search for a query set with the scenario where communication cost is at
its peak while uncertainty is at its minimum.

3. Then, we calculate the contribution to the sum of all traces of each agent, where
the ones that contribute the least to the overall sum are the first candidates not to
be queried in the current round.

4. Rather than examining every potential combination, we analyze the threshold ⇀k

against the sum of the traces each time the next candidate is poised to skip commu-
nication until the constraint is satisfied with the largest possible number of agents
skipping communication. This number is defined as ns.

5. We calculate the remainder of the total threshold by subtracting the sum of the
uncertainty of the noncommunicating agents to ⇀k. This remainder is defined as φs.

6. We check feasibility by comparing the minimum possible uncertainty (when all
communicating agents use the maximum possible resolution) with φs. If feasibility
is not reached, we set another agent to communicate (increasing the value of ns by
1) according to its contribution to the total uncertainty and recalculate φs until the
problem is feasible.

7. Assign the quantization resolution of the communicating agents as bki =⌈
0.5 log2


↼(n↔ns)
ψQ[k]


tr
(
$k

i (z
k
i )
)⌉

, where ns is the number of communicating

agents. If bki is beyond the boundaries set by the minimum and maximum resolu-
tions, then we set it to the value of its closest boundary.

The details of the proposed approach are presented in Algorithm 3 and Algo-

rithm 4.

5.3.3. Threshold ⇀k and ⇀Q[k] Mechanism

During the execution of the ADMM algorithm, the uncertainty associated with the

LGP regression tends to decrease as the algorithm approaches convergence. This reduc-
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Algorithm 4 Joint Quantization Resolution Allocation

Require: The values of the minimum resolution l and maximum resolution h, the value of
ns, the vectors mk and 2k, and the initial value and adaptation of ⇀Q[k]

1: Calculate the slack: φs ↙ ⇀k ↔
∑ns

i=1 m
k
i .

2: for j = ns, . . . , 1 do ⇁ Go through a For Loop of the possible values we can decrease
ns

3: if
∑n

i=ns+1
1

22hm
k
i ⇒ φs/ω then ⇁ Check feasibility

4: break
5: else ⇁ if not feasible decrease ns and check feasibility again
6: ns ↙ ns ↔ 1, set 2k

idxkj
↙ 1

7: φs ↙ ⇀k ↔
∑ns

i=1 m
k
i

8: end if
9: end for
10: Define r = [ns + 1, ns + 2, . . . , n].
11: for j = r do

12: bk
idxkj

↙
⌈
0.5 log2


↼(n↔ns)
ψQ[k]


mk

j

⌉

13: if bk
idxkj

< l or bk
idxkj

> h then ⇁ Saturate if the bk
idxkj

is beyond boundaries

14: Set bk
idxkj

↙ l or bk
idxkj

↙ h

15: end if
16: end for

tion in uncertainty is attributable to the availability of more training data obtained from

responses to queries, thereby enhancing the accuracy of predictions. Consequently, it is

advisable for the threshold considered to decrease over successive ADMM iterations. To

address this, we propose a mechanism for decreasing the threshold that is based on both

the iteration count and k0, which denotes the iteration when the LGP regression is used

for the first time.

Initially, we define the threshold at iteration k0 as:

⇀k0 = ϖV k0 , (5.12)

where V k0 represents the total uncertainty variable utilized by the query method (in this

instance,
∑n

i=1 tr
(
$k0

i (zk0i )
)
), and ϖ, predetermined, is a scalar ranging between 0 and 1.

Subsequently, given a preselected decay rate ε → (0, 1), at a later iteration k > k0, the

112



threshold is updated as follows:

⇀k = ⇀k0εk↔k0 . (5.13)

The quantization threshold ⇀Q[k] is defined and adapted following the same

mechanism. In this case, ⇀Q[k] = ⇀Q[k0]εk↔k0
Q , where ⇀Q[k0] = ϖQV Q[k0], V Q[k0] =

∑n
i=1

↼
22l tr

(
$k0

i (zk0i )
)
, l is the minimum quantization resolution, and ϖQ and εQ are scalars

that vary between 0 and 1.

5.3.4. Convergence Analysis

The joint method proposed in this section uses the same uncertainty measure and

meets the conditions presented in the convergence analysis in Chapter 3. For that reason,

if there is no bound on the number of bits that can be assigned for quantization, then

the convergence analysis in Section 3.5, which concludes with Theorem 8, applies to the

method presented in this section.

In case the number of bits that can be assigned for quantization is bounded, then

our proposed approach convergence analysis is analogous to the one presented in Sec-

tion 3.6. This analysis concludes that the expectation of the ADMM residual is always

bounded and that this bound decreases with each iteration.

5.4. Proposed Individual Approach

In this section, we simplify the problem posed in (5.11). The idea of this approach

is that each agent makes its communication decision and assigns the quantization resolu-

tion without taking into account the decisions of the other agents. If we consider doing

our communication decision and quantization bits assignment individually, the two sources

of uncertainty are mutually exclusive. This approach significantly decreases the computa-
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tional complexity compared to the overarching method outlined in Section 5.2. However,

it overlooks the influence of an agent’s decision on the overall prediction error introduced

into the system. Nonetheless, by constraining the uncertainty of each agent per iteration,

we guarantee that the prediction error minimally impacts the performance of the ADMM

algorithm. While this strategy may not match the rigor of the joint method, its simplicity

makes it appropriate for scenarios prioritizing minimal computational expense.

In this individual method, each agent makes its own querying and resolution alloca-

tion decisions independently reflected in the agent’s corresponding binary decision variable

2k
i and resolution bits bki respectively. The concept behind this approach is that for each

agent i, the coordinator decides whether to refrain from sending a query to that agent if

the probability of an estimation error, both for the Moreau Envelope and its gradients,

falls within an acceptable individual threshold ⇀k. In the event that communication is re-

quired, the quantization resolution is determined by the variance of the quantization error

compared with a decaying threshold ⇀Q[k]
i . By adopting this approach, we circumvent the

minimization problem outlined in (5.11), determining each 2k
i and bki by comparing the es-

timated errors of each agent to individual thresholds. This method considers the following

steps to be performed for each agent:

1. Define the local threshold ⇀k
i and a local quantization threshold ⇀Q[k]

i both follow-
ing the mechanism presented in Section 5.3.3. Also, define a minimum and maxi-
mum allowed quantization resolution.

2. In case the trace of $k
i (z

k
i ) is below ⇀k

i , then agent i is set to not communicate so
the conditional mean µk

i (z
k
i ) is used in the ADMM algorithm updates.

3. In case the trace of $k
i (z

k
i ) is greater than ⇀k

i , then agent i is set to communicate
and its resolution is calculated by comparing the variance of the quantization error
to the quantization threshold ⇀Q[k]

i . If bki is beyond the boundaries set by the mini-
mum and maximum resolutions, then we set it to the value of its closest boundary.
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Algorithm 5 Individual Query and Quantization Resolution Allocation

Require: The value of $k
i (z

k
i ), the initial value and adaptation of ⇀k

i and ⇀Q[k]
i , and the

values of the minimum resolution l and maximum resolution h.
1: if tr

(
$k

i (z
k
i )
)
< ⇀k

i then
2: 2k

i = 0
3: else
4: 2k

i = 1

5: bki =

⌈
0.5 log2

((
↼

ψ
Q[k]
i

)
tr($k

i (z
k
i ))

)⌉

6: if bki < l or bki > h then
7: Set bki ↙ l or bki ↙ h
8: end if
9: end if

More details of the individual method are presented in Algorithm 5. The following section

presents numerical results to validate and compare our proposed methods.

5.5. Numerical Experiments

In this section, we assess the methods proposed in this study by addressing a shar-

ing problem in which the agent’s sub-problems are quadratic. We proceed by detailing the

specifics of the considered sharing problem, outlining the numerical experiment settings,

and presenting the results obtained.

5.5.1. Sharing Problem

5.5.1.1. Problem Definition

Our evaluation is based on a sharing problem inspired by the application presented

in [10]. In this scenario, we address a dynamic sharing problem where the problem’s vari-

ables remain fixed and do not change at each algorithmic step, unlike the original formula-

tion. We define the following sharing problem:
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minimize
n∑

i=1

(xi ↔ ωi)
T#i(xi ↔ ωi) + ζ↘

n∑

i=1

yi↘1

subject to xi ↔ yi = 0

(5.14)

Here, xi, yi → Rp, ωi → Rp, #i → Rp↑p are positive definite matrices, and ζ > 0

are given problem parameters. The generation of parameters ωi and #i is as presented in

Section 2.5.1.2 in Chapter 2.

5.5.1.2. Solution of the Sharing Problem with ADMM

The problem described in (5.14) resembles (5.1) from Section 5.1, and the corre-

sponding ADMM updates are summarized as follows:

xk+1
i = argmin

xi→Rp

{
fi(xi) + (ϑ/2)↘xi ↔ zki ↘22

}

ȳk+1 = argmin
ȳ→Rp

{
ζ↘nȳ↘1 + (nϑ/2)↘ȳ ↔ x̄k+1 ↔ (1/ϑ)λk↘22

}

λk+1 = λk + ϑ(x̄k+1 ↔ ȳk+1) (5.15)

where fi(xi) = (xi ↔ ωi)T#i(xi ↔ ωi), x̄k = (1/n)
∑n

i=1 x
k
i , ȳ

k = (1/n)
∑n

i=1 y
k
i , and

zki = xk
i ↔ x̄k + ȳk ↔ (1/ϑ)λk.

Given that the functions fi and the l1 norm are strongly convex, the ADMM up-

dates for xk+1
i and ȳk+1 provide solutions to unconstrained convex optimization problems.

Consequently, these problems can be solved by equating the derivatives of the objective

functions in (5.15) to zero. Subsequently, the closed-form solution for xk+1
i is given by

xk+1
i = (2#i + ϑIp)

↔1(2#iωi + ϑ(xk
i ↔ x̄k + ȳk)↔ λk), (5.16)
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where Ip is the p↖ p identity matrix. Similarly, the update for ȳ can be expressed as

ȳk+1 =






(x̄k+1 + λk/ϑ)↔ ϱ
ω , if x̄k+1 + λk/ϑ > ϱ

ω

0, if |x̄k+1 + λk/ϑ| ⇒ ϱ
ω

(x̄k+1 + λk/ϑ) + ϱ
ω , if x̄k+1 + λk/ϑ < ↔ ϱ

ω .

(5.17)

5.5.2. Numerical Experiments

We consider the case where n = 10. The problem described in (5.14) is solved with

three di”erent methods:

1. Sync: this algorithm uses ADMM with proximal operator as in (2.15), which simpli-
fies to (2.16) and (2.17) with ϑ = 10.

2. STEP-GP : the algorithm proposed in [23] combining ADMM with proximal opera-
tor with GP regression.

3. STEP-LGP : the hybrid algorithm proposed in Chapter 2, which combines the re-
gression algorithm developed in Section 2.4.2, the LMMSE approximation pre-
sented in Section 2.4.3, and uses an adaptive quantization scheme.

For each of the above algorithms, di”erent quantization methods, or no quantiza-

tion at all, or censoring methods are considered as follows:

• Exact : this method does not employ any quantization, but uses 64-bit floating
point numbers.

• UniQuant : this is the adaptive uniform quantization method presented in Sec-
tion 2.4.1 and performed element-wise following the Uncorrelated Adaptive Scheme

as presented in Section 2.3.2.1. This scheme adapts the middle point and windows
length of the quantizer to the conditional mean and covariance matrix given by the
regression process, respectively, at each iteration.

• UniAd-Joint : The joint adaptive quantization scheme presented in this chapter,
which makes its querying decision and quantization resolution allocation as ex-
plained in Section 5.3.

• UniAd-Indiv : The individual adaptive quantization scheme presented in this chap-
ter, which makes its querying decision and quantization resolution allocation as
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Algorithm 6 COCA: Communication-Censored ADMM for the Sharing Problem

Require: x0
i → Rp, ȳ0 → Rp, u0 → Rp, c → N, ε → [0, 1], w > 0

1: for k = 0, 1, . . . , kstop do
2: ȳk+1 ↙ argmin

ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k ↔ uk↘2

}

3: for each agent i do
4: ≃f̃ 1/ω

i (zk↔1
i ) is the previously transmitted Moreau Envelope gradient before

iteration k.
5: Coordinator sends zki ↙ xk

i ↔ x̄k + ȳk+1 ↔ uk

6: Compute f 1/ω
i (zki ) and ≃f 1/ω

i (zki )

7: Calculate 1ki = ≃f 1/ω
i (zki )↔≃f̃ 1/ω

i (zk↔1
i )

8: Calculate Hi(k, 1ki ) = ↘1ki ↘2 ↔ wεk

9: if Hi(k, 1ki ) ∋ 0 then

10: Send ≃f 1/ω
i (zki ) to Coordinator

11: xk+1
i ↙ zki ↔ (1/ϑ)≃f 1/ω

i (zki )
12: else
13: xk+1

i ↙ zki ↔ (1/ϑ)≃f̃ 1/ω
i (zki )

14: end if
15: end for
16: x̄k+1 ↙ (1/n)

∑n
i=1 x

k+1
i

17: uk+1 ↙ uk + x̄k+1 ↔ ȳk+1

18: If ↘x̄k ↔ ȳk↘↗ ⇒ φp(1 + ↘λk/ϑ↘↗) then Terminate.
19: end for

explained in Section 5.4.

• COCA: The censoring method presented in [49]. This method checks if there is
a considerable variation between the current agent’s response and the previously
transmitted one. If there is not enough variation, the coordinator uses the previ-
ously transmitted reply in this iteration for the ADMM updates. The specifics of
this censoring method in the context of our problem are presented in Algorithm 6.

• QuantRef : The quantization refinement scheme presented in [50]. This simple
quantization scheme sets the middle point to the previous quantized agent’s re-
sponse and adapts the windows length by making it decay at each iteration. The
specifics of this adaptive quantization in the context of our problem are presented
in Algorithm 7.

In our results, we consider the following combinations: STEP-GP:Exact, STEP-

LGP:UniQuant, STEP-LGP:UniAd-Joint, STEP-LGP:UniAd-Indiv, Sync:COCA,

and Sync:QuantRef.
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Algorithm 7 Quantization Refinement Scheme

Require: x0
i → Rp, ȳ0 → Rp, u0 → Rp, c → N, b → N, ε → [0, 1]

1: for k = 0, 1, . . . , kstop do
2: ȳk+1 ↙ argmin

ȳ→Rp

{
h(nȳ) + (nϑ/2)↘ȳ ↔ x̄k ↔ uk↘2

}

3: for each agent i do
4: zki ↙ xk

i ↔ x̄k + ȳk+1 ↔ uk

5: Send zki to Agent i

6: Compute f 1/ω
i (zki ) and ≃f 1/ω

i (zki ) ⇁ Agent i
7: Update lk+1

i = cεk ⇁ Agent i

8: Calculate ≃f̂ 1/ω
i (zki ) = Q(≃f 1/ω

i (zki );≃f̂ 1/ω
i (zk↔1

i ), lki , b) ⇁ Agent i

9: Send ≃f̂ 1/ω
i (zki ) to coordinator. ⇁ Agent i

10: xk+1
i ↙ zki ↔ (1/ϑ)≃f̂ 1/ω

i (zki )
11: end for
12: x̄k+1 ↙ (1/n)

∑n
i=1 x

k+1
i

13: uk+1 ↙ uk + x̄k+1 ↔ ȳk+1

14: If ↘x̄k ↔ ȳk↘↗ ⇒ φp(1 + ↘λk/ϑ↘↗) then Terminate.
15: end for

The numerical experiments were implemented in MATLAB. The solutions of

the minimization problems (5.14) are obtained directly using a convex solver from the

YALMIP toolbox [41]. We used the GPstu” toolbox [42] for the regression training and

inference.

5.5.3. Metrics and Considerations

5.5.3.1. Communication Metric

A communication cost metric can be derived following the contention tree algo-

rithm and the derivations presented in [51]. The contention tree algorithm defines t con-

tending transmitters that want to transmit to an m number of slots. The number of

frames is Lt,m, the number of slots is mLt,m, and the number of bits in the payload for

agent i is Bk
i mLt,m, where Bk

i is the number of bits per slot of agent i. The work in [51]

presents statistical results for the contention tree algorithm and presents the expectation
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of the variable Lt in terms of t and m, given by

L̄t,m ̸ t

logm

In the context of our problem, the agents transmit their Moreau Envelope which

is a scalar, and its gradient with dimension p, so each agent transmits a variable with

dimension p+ 1. So, the number of bits per slot is

Bk
i = (p+ 1)bki

Following the proposed adaptive quantization scheme, the value of bki varies from agent to

agent then the metric would be expressed as:

TBits = (p+ 1)
kc∑

j=1

⌈
1

↘2j↘1

n∑

i=1

bji

⌉
mjL̄⇔φj⇔1 ,

where kc is the iteration where convergence was reached, L⇔φk⇔1 accounts for the number of

frames.

5.5.3.2. ADMM Termination Criterion

For our numerical experiments, we use the ADMM termination criterion presented

in Section 4.6.4.2 in Chapter 4.

5.5.3.3. Performance Trade-o”

We propose to present the results showing directly the trade-o” between the total

transmitted bits and the accuracy of the algorithm. Define the negative logarithm of the

relative error (NLRE) expression as

NLRE = ↔ log(|Jgt ↔ J≃|/Jgt), (5.18)

where Jgt is the true optimal value calculated directly with a convex solver, and J≃ is the

objective value obtained by a particular approach. Also, let us define the logarithm of the
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total number of bits (LTbits) transmitted as

LTBits = log

(
(p+ 1)

kc∑

j=1

⌈
1

↘2j↘1

n∑

i=1

bji

⌉
mjL̄⇔φj⇔1

)
. (5.19)

We present our results in a graph where the vertical axis shows the values of LT-

Bits and the horizontal axis shows the values of NLRE. Each point in the graph is a

tuple of total transmitted bits and accuracy, and its location shows how well it performs

in terms of the trade-o” between these two metrics. In particular, the ideal scenario is

when NLRE is as large as possible and LTbits is as small as possible. Hence, we want the

points to be as close to the right lower corner of the graph as possible.

5.5.4. Initial Parameter Tuning

Since the initial threshold and decay rate variation a”ect the tested algorithms’

overall performance, we propose fine-tuning these parameters for the multiple methods

proposed in this work. The threshold mechanism presented in Section 5.3.3 initializes

its initial threshold ⇀k0 following the expression in (5.12). This initialization requires

manually setting the variables ϖ and ϖQ, which indicate how proportional we want V k0

and V Q[k0] to be with respect to ⇀k0 and ⇀Q[k]. For the STEP-LGP:UniAd-Joint and

STEP-LGP:UniAd-Indiv methods presented in this chapter, we tune ⇀k0 considering ϖ

and ϖQ in the range [0.7, 0.8 . . . , 1.2, 1.3]. In addition, we consider the decay rate ε =

[0.85, 0.86 . . . , 0.94, 0.95] and the quantization decay rate εQ = [0.65, 0.66 . . . , 0.74, 0.75].

The algorithms used for comparison also have initial parameters that require tun-

ing. For STEP-GP:Exact and STEP-LGP:UniQuant, we consider the same variation of

the initial threshold and decay rate as ϖ and ε considered for STEP-LGP:UniAd-Joint and

STEP-LGP:UniAd-Indiv. The STEP-LGP:UniQuant method does not adapt its quantiza-
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tion resolution, so for all tested results for this algorithm we fixed the resolution to 9 bits.

With respect to Sync:COCA, it tunes the constant that multiplies the decay rate (w on

line 8 of Algorithm 6) by assigning the values [1, 1.5, 2, 2.5, 3] and setting the decay rate in

the range [0.81, 0.82, . . . , 0.87]. Finally, Sync:QuantRef tunes its quantization resolution

from 8 to 14 bits, the constant that multiplies the decay rate in the range [1.5, 2, 2.5, 3],

and the decay rate in the range [0.9, 0.91, . . . , 0.99].

5.5.5. Numerical Experiment Results

In this subsection, we present the results for 10 agents when the dimension of the

variables is set to p = 5. We consider tuning the initial parameters of all tested methods

following the description in Section 5.5.4. Each graph presented shows results for di”erent

sets of Mi, Mh, wi, wh, ci and ch. In the generated graphs, each point among the same

colored cluster represents a ranked tuple of metrics NLRE and LTBits, as presented in

Section 5.5.3.3. This ranking is done by setting a tuple as an upper bound with a value of

NLRE and LTBits that is higher than any of the values obtained in our results. Then we

will calculate the Euclidean distance of all the points obtained across the di”erent initial

parameters considered to the upper bound tuple. The 11 points that reach the lowest

distance are included in the graph. This set of results considered values of ▷ = 0.2, φd = 1,

ϑ = 10, p = 5, an absolute tolerance value of φabs = 10↔6, a relative tolerance value of

φrel = 10↔5, x0
i = ȳ0 = u0 = 0, and constant c = 3 for quantization. Also, we consider

a minimum quantization resolution of 8 bits and a maximum resolution of 14 for all the

methods that requires quantization.

In Figure 5.2 we present the tradeo” performance of all algorithms considered
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Figure 5.2. Performance trade-o” between the Logarithm of the Total Transmitted Bits
and the Negative Logarithm of the Relative Error for 10 Agents with variable’s dimension
p = 5. The plots show the 11 best-ranked tuples for four di”erent sets of parameters Mi,
Mh, wi, wh, ci, and ch.

for 10 Agents with variable’s dimension p = 5. The plots show the 11 best-ranked tu-

ples for four di”erent sets of parameters Mi, Mh, wi, wh, ci, and ch. The di”erent plots

also present the centroid among ranked tuples of the same color. It can be observed that

among all the scenarios tested, STEP-GP:Exact presents the worst tradeo” between accu-

racy and total transmitted bits. In addition, STEP-LGP:UniQuant is as good in commu-
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Figure 5.3. Top 5 best results in terms of the Logarithm of the Total Transmitted Bits
and Top 5 best results in terms of Negative Logarithm of the Relative Error for 10 Agents
with variable’s dimension p = 5 for STEP-LGP:UniAd-Joint, STEP-LGP:UniAd-Indiv,
and Sync:QuantRef. The plots are generated for four di”erent sets of parameters Mi, Mh,
wi, wh, ci, and ch.

nication reduction as Sync:COCA and STEP-LGP:UniAd-Joint, but in all cases it is close

to the worst Negative Logarithm of the Relative Error values. Although some points of

Sync:COCA compete among the best trade-o” points as in Figures 5.2 (a) and (b), it also

presents the worst overall accuracy values in all cases. This shows that Sync:COCA is sus-

ceptible to initial parameter tuning, allowing it to achieve remarkable results if tuned cor-
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rectly, but also presents a very poor accuracy otherwise. In all cases, STEP-LGP:UniAd-

Indiv presents a good Negative Logarithm of the Relative Error values but presents the

most transmitted bits only behind STEP-GP:Exact. Finally, the best results are obtained

by STEP-LGP:UniAd-Joint and Sync:QuantRefL. In Figures 5.2 (a),(b) and (d), STEP-

LGP:UniAd-Joint presents the best accuracy results, while Sync:QuantRef presents the

most communication reduction. The exception is Figure 5.2 (c) where Sync:QuantRef

presents the best overall results.

Due to the competing results between STEP-LGP:UniAd-Joint and Sync:QuantRef

we present the results in Figure 5.3. This set of graphs presents the top 5 points in terms

of the Logarithm of the Total Transmitted Bits and the top 5 best results in terms of Neg-

ative Logarithm of the Relative Error for 10 Agents with variable’s dimension p = 5 for

STEP-LGP:UniAd-Joint, STEP-LGP:UniAd-Indiv, and Sync:QuantRef. These figures use

the same sets of problem parameters Mi, Mh, wi, wh, ci, and ch as in Figure 5.2. The re-

sults in Figure 5.3 show a clear trend that the best 5 points in terms of communication

and the best 5 points in terms of precision for STEP-LGP:UniAd-Joint are significantly

closer together than for STEP-LGP:UniAd-Indiv and Sync:QuantRef. These results show

that STEP-LGP:UniAd-Joint is the most robust method that presents consistent results

regardless of initial parameter tuning. Thus, even though STEP-LGP:UniAd-Joint and

Sync:QuantRef present the best results in terms of accuracy and communication, respec-

tively, it is STEP-LGP:UniAd-Joint that is more reliable without regard to the considered

initial conditions.
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5.6. Conclusion to Chapter 5

In this chapter, we extend the LGP algorithm presented in Chapter 2 to allow

adaptive quantization resolution. We proposed two new quantization schemes: one that

makes the communication decision and the bits for quantization collectively, and another

that does so individually. Numerical solutions to a distributed sharing problem showed

that our proposed collective method becomes significantly more accurate than the quan-

tization scheme presented in Chapter 2 while maintaining a similar reduction in commu-

nication. On the other hand, the proposed individual adaptive quantization scheme also

presented better accuracy compared to the method in Chapter 2 but it presented more

communication overhead. Finally, compared to a proposed censoring method and quan-

tization scheme in other works, our proposed collective method was competitive for the

best tradeo” between communication reduction and accuracy, while presenting the most

robustness against the initial parameters tuning.
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Chapter 6. Conclusions and Future Directions

6.1. Conclusions

In distributed optimization frameworks where a cluster of agents interfaces with

a central coordinator, the optimization process typically entails each agent tackling indi-

vidual local subproblems privately while engaging in frequent data exchanges with the

coordinator to collectively solve the overarching distributed problem. In such scenarios,

the conventional query-response mechanism tends to escalate communication expenses

for the system, thereby prompting the need for communication minimization, particularly

in situations where communication resources are constrained or expensive. Integrating

Gaussian processes (GP) as a learning component to the Alternating Direction Method of

Multipliers (ADMM) has proven e”ective in learning each agent’s local proximal operator

to reduce the required communication exchange. For this reason, the initial stage of this

work (Chapter 2) proposes a novel hybrid method named LGP that integrates GP-based

learning with an adaptive uniform quantization strategy to further minimize communica-

tion costs in distributed optimization. Quantization is used to reduce the communication

overhead even further by reducing the payload of the shared information. Also, this ini-

tial proposed quantization scheme sets its middle point and windows length to the con-

ditional mean and covariance given by the regression process, respectively. Although the

resulting quantization error deviates from a Gaussian distribution, we introduced a new

regression algorithm. Inspired by GP, this algorithm, termed LGP-R, employed a Linear

Minimum Mean Square Estimator that factored in the statistics of the quantization error.

Furthermore, communication overhead was mitigated by enhancing the uniform quantizer
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through an orthogonalization process of its input, addressing inherent input correlation,

and incorporating dithering to ensure uncorrelated noise introduction. Through numeri-

cal experiments on a distributed sharing problem, our hybrid approaches demonstrated

a significant reduction in total communication costs compared to baseline methods, even

achieving global solution discovery at low quantization resolutions.

Next, we continue our study by presenting a convergence analysis for the STEP-GP

and LGP algorithms. These analyzes were based on the convergence analysis of the gen-

eralized ADMM and SI-ADMM algorithms. Following that, we outline the derivation of a

convergence proof for the STEP-GP algorithm, where we establish that the expected value

of the ADMM residual converges to zero as the algorithmic iterations approach infinity,

achieving this convergence at a geometric rate. For the case of the analysis of the LGP

algorithm, we reached a similar conclusion; however, we assumed that the coordinator can

vary the quantization resolution at each iteration and that it can assign infinitely large

bits for quantization. We also present convergence properties in the case where the quan-

tization resolution is upper bounded using the LGP algorithm, leading to the conclusion

that the expectation of the ADMM residual is bounded, and such bound is explicitly dis-

played. Finally, we present an analysis of the connection between the analysis in this chap-

ter and the algorithms defined in Chapter 2. Since the specific query mechanism used in

the LGP algorithm in Chapter 2 is di”erent from the one used in the convergence analysis,

we established a direct relationship between the two mechanisms, allowing us to determine

that the expectation of the ADMM residual is also bounded for the method presented in

Chapter 2.

One of the most important aspects for the correct performance of our LGP algo-
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rithm is how we determine the agents to be queried in each iteration. Hence, in Chapter 4

we introduced multiple query strategies aimed at determining whether the coordinator

should initiate queries to the agents during a specific iteration when executing the STEP-

GP algorithm, leveraging the concept of a general querying framework. As this decision-

making process significantly influences how regression influences the ADMM algorithm,

our objective was to focus on ADMM performance in the absence of quantization. Con-

sequently, in the study in Chapter 4, we intend to examine the e”ects of various query

strategies on ADMM without being influenced by potential quantization errors. The pro-

posed general framework addresses a constrained optimization problem by e”ectively bal-

ancing two conflicting objectives: maximizing communication reduction while minimizing

error in the final solution. Motivated by this optimization challenge and an alternative rep-

resentation of the regular ADMM updates that underscores the inherent interdependence

among agents, we proposed a collective query strategy to minimize a convex communica-

tion cost constrained by the trace of the joint uncertainty of the ADMM variables. In con-

trast, to alleviate the computational overhead imposed on our algorithm, we introduced

individual query strategies for each agent, utilizing individual uncertainty metrics to gauge

whether the prediction is su!ciently reliable to forego a communication round. Numerical

experiments on a sharing problem with quadratic cost functions revealed di”erent perfor-

mances of the proposed methodologies concerning the trade-o” between communication

cost reduction and accuracy loss in solving the optimization problem. It is particularly

noteworthy that the proposed collective query method achieves superior trade-o” perfor-

mance compared to the independent query strategies.

Finally, in Chapter 5 we expand the LGP algorithm discussed in Chapter 2 to
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incorporate adaptive quantization resolution. We introduce two novel quantization ap-

proaches: one that jointly determines the communication decision and the quantization

bit allocation, and another that handles these aspects independently. Through numerical

experiments involving a distributed sharing problem, we demonstrate that our collective

quantization method achieves significantly higher accuracy than the quantization scheme

outlined in Chapter 2 while maintaining a similar level of communication reduction. In

contrast, the individually adaptive quantization scheme also exhibits improved accuracy

compared to the method in Chapter 2, albeit with increased communication overhead.

Furthermore, in comparison to a censoring method and a quantization scheme proposed

in prior research, our collective approach demonstrates competitiveness in achieving the

optimal balance between communication reduction and accuracy, while displaying greater

robustness against variations in initial parameter settings.

In general, the di”erent algorithms proposed throughout this study achieved their

main objective of reducing the overall communication overhead while maintaining satisfac-

tory accuracy in their global solutions. The good accuracy of the numerical experiments

is aligned with the derived convergence analysis, where, for the cases where convergence

is not guaranteed, we proved that the overall ADMM residual is bounded by a decaying

bound, so we can expect the solutions of our algorithms to be in the vicinity of the real

solution.

6.2. Future Directions

In this brief section, we present future directions that can be taken from our re-

search.
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6.2.1. Alleviate the Computational Burden Coming from the Regression Pro-
cess

During the course of collecting numerical results using our various proposed meth-

ods, we observed that the greatest computational burden comes from the update of the

hyperparameters performed each time the training set of the regression process is updated.

This optimization in our algorithm uses the square-exponential covariance function defined

as

ϱ(xs, xj) = ↼2
f exp

(
↔ 1

2L2
s

(xs ↔ xj)
2

)
,

where ↼2
f is the variance of the signal and Ls is the length scale. These two variables are

the hyperparameters that are updated at each iteration.

Observations of the numerical results among all algorithms proposed in this work

showed that the hyperparameter behavior is similar in most cases. In the first iterations,

the hyperparameters start to increase their values rapidly, while close to convergence, the

increment of those values is each time smaller. This trend induces us to question whether

it is possible to use the increasing trend of the hyperparameters updates to skip such up-

date procedures in some iterations or skip them completely once we reach the iteration

where the hyperparameters values do not vary much. The reduction of the hyperparam-

eter updates would significantly reduce the computation complexity of our proposed al-

gorithms, making them suitable for applications where high computation complexity is

undesirable.

6.2.2. Extend the Derived Convergence Analysis for LGP

The convergence analysis presented in Section 3.6 of Chapter 3, presents an anal-

ysis for the LGP algorithm when the quantization resolution is constrained. In this dis-
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cussion, we defined k↓ as the last iteration where the global uncertainty constraint is

met before the quantization uncertainty can’t decrease further. This convergence anal-

ysis would become stronger if some property or bound could be imposed on k↓. The chal-

lenge is that this involves bounding the sum of the traces of the covariance matrices of the

agents, which depends on the iteration k↓, which is unknown. An in-depth analytical study

can be conducted in this matter to achieve a complete and global proof of convergence for

the LGP algorithm.

6.2.3. Enhance the Numerical Examples

In this work, we conducted extensive numerical experiments to test and compare

the di”erent proposed methods. We considered using an optimization problem involving

quadratic functions for its simplicity and properties. It will be beneficial to test our pro-

posed algorithms in more complex problems with clear real-life applicability.

6.2.4. Regression Improvement

When performing the prediction, we could exploit the similarity between local ob-

jective functions, which may be captured and characterized by vector Gaussian processes.

At the center, we may exploit such correlation across agents to further improve the accu-

racy of regression using the corresponding vector GP. However, it should be noted that

there will be an asymmetry between the models used by the center and agents. How we

can resolve such an asymmetry in both regression and optimization problems remains as

one of our future problems to tackle.
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6.2.5. Better Communication Channel Modeling

In our numerical results, we account for channel contention among simultaneous

communications, either through a MAC modeling or using the contention tree algorithm.

However, these techniques are simple and do not account for more complex communica-

tion events. For example, due to contention, packets might get lost and never reach their

destination. Furthermore, these packets could come with a delay of several iterations, ar-

riving later after the coordinator assumed that the information was lost. Mechanisms for

adjusting for such events are an interesting topic to study.
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Appendix A. Proof of Proposition 1 in Chapter 2

Define x = y↔µy ⇐ N
(
0, ↼2

y

)
. The output of the adaptive uniform quantizer is given

by the standard uniform quantizer Qu(y;µy,
2cϑy

2b ), which is equivalent to µy +Qu(x; 0,
2cϑy

2b ).

Using the result presented in [39, Section V-A] on the quantization error of a uniform

quantizer on a zero-mean Gaussian random variable, we can derive the equations of E[φQ]

and E[φQφ↓Q].

The correlation between y and φQ is

E[yφQ] = E[(x+ µy)φQ] = E[xφQ] + µyE[φQ] = E[xφQ].

Using the result presented in [39, Section V-B] on the correlation between a zero-mean

Gaussian random variable and its uniform quantization error, we have that

E[xφQ] = 2↼y

↗∑

m=1

(↔1)m exp
(
↔2↽2m2r2

)
,

which results in the same equation for E[yφQ].
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Appendix B. Proof of Lemmas 1 and 2 in Chapter 2

We first need the following result.

Proposition 6 For r > 1↘
2ϖ
,

↗∑

m=1

(↔1)mm2 exp
(
↔2↽2m2r2

)
< 0.

Proof: Define S(m) = m2 exp (↔2↽2m2r2). Then the series is
∑↗

m=1(↔1)mS(m). We have

dS(m)

dm
= 2m exp

(
↔2↽2m2r2

)
↔ 4↽2r2m3 exp

(
↔2↽2m2r2

)

= 2m exp
(
↔2↽2m2r2

) (
1↔ 2↽2r2m2

)
.

For r > 1↘
2ϖ

and m ∋ 1, we have 1↔ 2↽2r2m2 < 0, thus dS(m)
dm < 0, which implies that S(m)

is strictly decreasing with m, i.e., S(1) > S(2) > S(3) > S(4) > . . . . Therefore, the series

is
∑↗

m=1(↔1)mS(m) = (↔S(1) + S(2)) + (↔S(3) + S(4)) + · · · < 0. ↭

We will now prove Lemmas 1 and 2. Consider the series s(r) =
∑↗

m=1
(↔1)m

m2 exp (↔2↽2m2r2)

as a function of r. Define sm(r) =
1
m2 exp (↔2↽2m2r2). Then s(r) =

∑↗
m=1(↔1)msm(r). For

an integer m ∋ 1, we have

sm+1(r) =
1

(m+ 1)2
exp

(
↔2↽2(m+ 1)2r2

)

<
1

m2
exp

(
↔2↽2(m+ 1)2r2

)

=
1

m2
exp

(
↔2↽2m2r2

)
exp

(
↔2↽2(2m+ 1)r2

)

<
1

m2
exp

(
↔2↽2m2r2

)

= sm(r),

where the last inequality holds due to exp (↔2↽2(2m+ 1)r2) < 1. Therefore

s(r) = (↔s1(r) + s2(r)) + (↔s3(r) + s4(r)) + · · · < 0.
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Using the same approach, we can show that
∑↗

m=1(↔1)m exp (↔2↽2m2r2) < 0.

To show that s(r) is increasing with r, we di”erentiate it with respect to r:

ds(r)

dr
= ↔4↽2r

↗∑

m=1

(↔1)m exp
(
↔2↽2m2r2

)

which is positive because we have just shown that
∑↗

m=1(↔1)m exp (↔2↽2m2r2) < 0.

Therefore, s(r) is increasing with r.

Similarly, for the series in Lemma 2, we have

d

dr

↗∑

m=1

(↔1)m exp
(
↔2↽2m2r2

)

= ↔4↽2r
↗∑

m=1

(↔1)mm2 exp
(
↔2↽2m2r2

)
> 0

for all r > 1↘
2ϖ
, due to Proposition 6. Therefore, the series

∑↗
m=1(↔1)m exp (↔2↽2m2r2) is

increasing with r for all r > 1↘
2ϖ
.
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Appendix C. Proof of Proposition 3 in Chapter 2

The dequantized value ŷ will be ŷ = A↔1Qua(yA; 0, ↼w, c, b) + µy, but can be also

expressed as

ŷ = A↔1[A(y ↔ µy) + φQ] + µy = y + A↔1φQ = y + φ̂Q.

Analyzing the auto correlation of φ̂Q we have:

E[φ̂Qφ̂↓Q] = (A)↔1E[φQφ↓Q]((A)↔1)↓

= (A)↔1&▷Q((A)
↔1)↓,

where E[φQφ↓Q] is the auto correlation of the quantization error and &▷Q is a diagonal ma-

trix with its diagonal given by the vector v(2
b/2c)
12 q̃2, with v(2b/2c) as defined in Proposi-

tion 1.

If A1 is used then q̃ will be q̃ = 2c
2b Ip+1 = ((b, c)Ip+1, where ((b, c) = 2c

2b . On the

other hand, if A2 is used then q̃ = 2c
2b

∞
& = ((b, c)

∞
&. Therefore we will have that

E[φ̂Qφ̂↓Q] = A↔1&▷Q(A
↔1)

=
(2(b, c)v(2b/2c)

12
(A↔1&̃▷Q(A

↔1)↓),

with &̃▷Q being Ip+1 or & depending on the selection of A. Finally, we have that since

A↔1&̃▷Q(A
↔1)↓ = $y, then no matter the selection of A the result will be

E[φ̂Qφ̂↓Q] =
(2(b, c)v(2b/2c)

12
$y = %.
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Appendix D. Proof of Theorem 1 in Chapter 2

The proposed LMMSE will be given by the linear combination

µ(x≃) = HŶ . (D.1)

Then, if (D.1) is a LMMSE then it must follow the orthogonal principle which will

be given by E[(µ(x≃)↔ ŷ≃)(Ŷ )↓] = 0. From this point we can obtain an expression for H

E[(HŶ ↔ ŷ≃)(Ŷ )↓] = 0

HE[(Y + φn + φQ)(Y + φn + φQ)
↓] = ’(x≃, X). (D.2)

Since φn is independent from the rest, all cross products involving φn will be turn to

zero by the expectation. Therefore we can simplify the expression to

H[’(X,X) + E[φQφ↓Q] + ↼nIm(p+1) + 2E[Y φ↓Q] = ’(x≃, X). (D.3)

Defining E[φQφ↓Q] = %, we have the expression

H = ’(x≃, X)[’(X,X) +%+ ↼nIm(p+1) + 2E[Y φ↓Q]]
↔1. (D.4)

The term E[Y φ↓Q] expresses the correlation between the input of the quantizer and the

quantization error. In Proposition 1 a way to calculate this correlation is presented. Be-

cause we subtract the mean of the input of the quantizer before performing the quan-

tization, we have E[φ↓Q] = 0, following Proposition 1. Thus, the following holds true,

E[Y φ↓Q] = E[(Y ↔ µ(Y ))φ↓Q] + µ(Y )E[φ↓Q] = E[(Y ↔ µ(Y ))φ↓Q]. This means that the results of

Proposition 1 can be extended to calculate the elements conforming matrix E[Y φ↓Q]. This

is done directly for the diagonal terms that come from the same dimension, for example,

E[Y[1]φ↓Q[1]] where Y[1] and φ↓Q[1] refer to the first element of vectors Y and φ↓Q, respectively.
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In case we want to calculate E[Y[i]φ↓Q[j]], i ▽= j, we define Ỹ[i] = Y[i] ↔ µ(Y[i]) and do the

following:

E[Y[i]φ
↓
Q[j]] = E[Ỹ[i]φ

↓
Q[j]] = E[(Ỹ[i] ↔ 1ijỸ[j] + 1ijỸ[j])φ

↓
Q[j]]

= E[(Ỹ[i] ↔ 1ijỸ[j])φ
↓
Q[j]] + 1ijE[Ỹ[j]φ

↓
Q[j]],

where 1ijỸ[j] is the MMSE of Ỹ[i] with 1ij being the operator to estimate Ỹ[i] from Ỹ[j].

Since the error of the MMSE is given by φij = Ỹ[i] ↔ 1ijỸ[j], then φij is independent of

Ỹ[j]. Therefore,

E[(Ỹ[i] ↔ 1ijỸ[j])φ
↓
Q[j]] = E[Ỹ[i] ↔ 1ijỸ[j]]E[φ↓Q[j]] = 0.

Thus,

E[Y[i]φ
↓
Q[j]] = 1ijE[Ỹ[j]φ

↓
Q[j]].

Consequently, we can calculate any correlation E[Y[i]φ↓Q[j]] following the correlation expres-

sion presented in Proposition 1.

Finally, the error covariance of the estimator will be given by

$(x≃) = E[(ŷ≃ ↔HŶ )(ŷ≃ ↔HŶ )T ].

Expanding this expression and operating the expectations we get

$(x≃) = ’(X≃, X≃)↔HT’(X,X≃)↔ ’(X≃, X)H ↔HT’(X,X)H. (D.5)

Finally, introducing the expression of H in (D.4) we get

$(x≃) = ’(X≃, X≃)↔ ’(X≃, X)[’(X,X) + ↼2
nIm(p+1) +%+ 2E[Y φ↓Q]]

↔1’(X,X≃).
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Appendix E. Proof of Theorem 2 in Chapter 2

The expression for our estimator will be defined as

ȳ≃ ↔ µ(x≃) = B(ŷ≃ ↔ µ(x≃)),

where B is the matrix determined by resorting to the orthogonal principle. Using the

orthogonal principle for this LMMSE like in the LGP case the expression for B will be

B E[(ŷ≃ ↔ µ(x≃))(ŷ≃ ↔ µ(x≃))
↓] = E[(ŷ≃ ↔ µ(x≃))(ŷ≃ ↔ µ(x≃))

↓]. (E.1)

So, inserting the definition of µ(x≃) and $(x≃) from Theorem 2 into (E.1) will lead to the

simplified version

B = $(x≃)[$(x≃) + ↼nIp+1 +%p+1 + 2E[y≃φ↓Q≃]]
↔1
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Appendix F. Details of MAC Metric

Assuming that the coordinator communicates with the agents wirelessly follow-

ing the IEEE 802.11 specification, a MAC layer simulator was implemented. The 802.11

CSMA/CA simulator presented in [43] was chosen because of its simplicity, which was

modified to our purposes. The simulator implemented in MATLAB will return the num-

ber of total transmissions, successful transmissions, and an e!ciency value defined by

1 = st/tt, where st is the successful transmissions observed and tt the total amount of

transmissions performed. The simulation was run o)ine 1000 times to obtain an average

e!ciency 1. Once the average values are obtained for di”erent payloads and number of

agents, those values will be used with the results given by the distributed optimization

simulation to calculate the communication time for each round. In particular, at the k-th

iteration, the coordinator will receive a certain amount of simultaneous responses which

are expressed in the variable T k
simul. The expected transmission time in one iteration round

will be T k
round = T k

simul/1
≃, where 1≃ is the average e!ciency in the MAC simulation for

the given scenario. The total transmission time will be Txt =
∑N

k=1 T
k
round, where N is

the number of iterations taken to reach convergence. This metric is not only a”ected by

the total number of communications that were performed but also the number of agents

communicating at each iteration and the payload size, thereby making it a more robust

metric to compare the performance of the proposed methods.
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Appendix G. Proof of Proposition 4 in Chapter 4

Consider the condition in (4.10). We introduce a unitary transformation U , whose

columns are normalized eigenvectors of $F , i.e., $F = U&U⇐, where & is the diagonal

matrix whose diagonal entries are the eigenvalues of $F sorted in descending order λ1 ∋

λ2 ∋ · · · ∋ λp > 0. Given F ⇐ N (µ,$F ), define G = U⇐(F ↔ µ), which follows N (0,&).

Moreover, ↘G↘2 = ↘F ↔ µ↘2. Consequently,

P
[
↘F ↔ µ↘2 ⇒ ↘µ↘20

]
= P

[
↘G↘2 ⇒ ↘µ↘20

]
∋ 1↔ 1. (G.1)

Let us define Zl =
Gl↘
⇁l

for 1 ⇒ l ⇒ p, with Zl ⇐ N (0, 1). Then, (G.1) can be expressed in

terms of Z as

P


p∑

l=1

λlZ
2
l ∋ ↘µ↘2202


⇒ 1, (G.2)

requiring the probability of being outside of an error sphere to be small.

Let R =
∑p

l=1 λlZ2
l , which follows a weighted chi-square distribution, and X =

R↔
∑p

l=1 λl, we transform (G.2) as

P


X +

p∑

l=1

λl ∋ ↘µ↘2202

⇒ 1. (G.3)

We will follow the proof of Lemma 1 in [52] to get a bound for the inequality in

(G.3). For a random vector Z with individual components Zl ⇐ N (0, 1), the logarithm of

the Laplace transform of Z2
l ↔ 1 is given by

⇀(u) = log[E[exp(u(Z2
l ↔ 1))]] = ↔u↔ 1

2
log(1↔ 2u),

which for 0 < u < 1/2 we get the bound

⇀(u) ⇒ u2

1↔ 2u
.
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Therefore, extending the previous expressions for a variable Y =
∑p

l=1 al(Z
2
l ↔ 1), with

al ∋ 0, we get

log[E[exp(uY )]] =
p∑

l=1

log
[
E[exp(ual(Z2

l ↔ 1))]
]
⇒

p∑

l=1

a2l u
2

1↔ 2alu
, (G.4)

which leads to the inequality

log[E[exp(uY )]] ⇒ ↘a↘22u2

1↔ 2↘a↘↗u
. (G.5)

On the other hand, in [53] it was proven that if

log[E[exp(uY )]] ⇒ vu2

2(1↔ 2cu)
, (G.6)

then, for any positive x,

P(Y ∋ cx+
∞
2vx) ⇒ exp(↔x). (G.7)

Thus, given (G.5) and (G.6) we get v/2 = ↘a↘22 and c = 2↘a↘↗, which allow us to rewrite

(G.7) as

P(Y ∋ 2↘a↘↗x+ 2↘a↘2
∞
x) ⇒ exp(↔x). (G.8)

We can define ε = 2↘a↘↗ and ◁ = 2↘a↘2, and by equalling 2↘a↘↗x+ 2↘a↘2
∞
x to a

positive number w we get

εx+ ◁
∞
x = w

εx+ ◁
∞
x↔ w = 0.

Solving the quadratic equation we get that

∞
x =

↔◁ +


◁2 + 4εw

2ε
,

where we can obtain a value for x that depends on w and will be named x(w) defined as

x(w) =
◁2

2ε2
↔ ◁

2ε2


◁2 + 4εw +

w

ε
. (G.9)
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Introducing the definition of ε and ◁ into (G.9) we get

x(w) =
↘a↘22
2↘a↘2↗

↔ ↘a↘22
2↘a↘2↗

√

1 +
2w↘a↘↗
↘a↘22

+
w

2↘a↘↗
, (G.10)

which after some algebraic manipulations can be expressed as

x(w) =

(√
w

2↘a↘↗
+

↘a↘22
4↘a↘2↗

↔ ↘a↘2
2↘a↘↗

)2

. (G.11)

Inserting (G.11) and εx + ◁
∞
x = w into (G.8), we get the expression for the desired

probability as

P [Y ∋ w] ⇒ exp(↔x(w)), ↗w ∋ 0. (G.12)

Going back to the context of the inequality in (G.3) given by

P


X +

p∑

l=1

λl ∋ ↘µ↘2202

⇒ 1,

and since
∑p

l=1 λl = tr($F ) this inequality is expressed as

P
[
X ∋ ↘µ↘2202 ↔ tr($F )

]
⇒ 1. (G.13)

This probability can be also bounded following (G.12) as

P
[
X ∋ ↘µ↘2202 ↔ tr($F )

]
⇒ exp(↔x≃

(⇔µ⇔22↽2↔tr(!F ))) ⇒ 1, (G.14)

where x≃
(⇔µ⇔22↽2↔tr(!F )) is the specific form for our problem of (G.11) which is defined as

x≃
(⇔µ⇔22↽2↔tr(!F )) =

(√
↘µ↘2202 ↔ tr($F )

2λ1
+

∑p
l=1 λ

2
l

4λ2
1

↔
∑p

l=1 λ
2
l

2λ1

)2

, (G.15)

with λl representing the eigenvalues of the covariance matrix $F and λ1 representing the

biggest of those eigenvalues. Combining (G.14) and (G.15) we find a bound on the trace of

$F given by

↔
(√

↘µ↘2202 ↔ tr($F )

2λ1
+

∑p
l=1 λ

2
l

4λ2
1

↔
∑p

l=1 λ
2
l

2λ1

)2

⇒ ln(1)
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√
↘µ↘2202 ↔ tr($F )

2λ1
+

∑p
l=1 λ

2
l

4λ2
1

↔
∑p

l=1 λ
2
l

2λ1
∋


ln(1/1)

↘µ↘2202 ↔ tr($F )

2λ1
+

∑p
l=1 λ

2
l

4λ2
1

∋
(


ln(1/1) +

∑p
l=1 λ

2
l

2λ1

)2

tr($F ) ⇒ ↘µ↘2202 ↔ 2



λ1 ln(1/1) +


ln(1/1)

√√√√
p∑

l=1

λ2
l




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Appendix H. Proof of Proposition 5 in Chapter 4

Combining the definition of zki = xk
i + ȳk ↔ x̄k ↔ uk and the expression for xk+1

i

defined in (4.5), we can express the update of ȳ in (4.8) as

ȳk+1 = (1/n)argmin
ŷ→Rp

{
h(ŷ) + (ϑ/2n)↘ŷ ↔ n(x̄k+1 + uk)↘2

}
,

where ŷ = nȳ. Then, we can express ȳk+1 in terms of its proximal operator ȳk+1 =

(1/n)prox(n/ω)h[n(x̄
k+1 + uk)], which can be expressed in terms of the gradient of the

Moreau Envelope of h, as in (4.5), leading to

ȳk+1 = (x̄k+1 + uk)↔ (1/ϑ)≃hn/ω
(
n(x̄k+1 + uk)

)
. (H.1)

Now, expressing the u-update presented in (4.2) in terms of (H.1) gives

uk+1 = (1/ϑ)≃hn/ω
(
n(x̄k+1 + uk)

)
. (H.2)

Next, we can express (H.1) in terms of zki as

ȳk+1 = (1/n)
n∑

i=1

[zki ↔ (1/ϑ)≃f 1/ω
i (zki )] + uk ↔ (1/ϑ)≃hn/ω

(
n(x̄k+1 + uk)

)
,

and by inserting the definition of zki we get

ȳk+1 = ȳk ↔ 1/(ϑn)
n∑

i=1

≃f 1/ω
i (zki )↔ (1/ϑ)≃hn/ω(n(x̄k+1 + uk)). (H.3)

Taking the average of the definition of zki we get z̄k = ȳk ↔ uk, and by inserting it into the

average of the xi-updates given by x̄k = z̄k ↔ 1/(ϑn)
∑n

i=1 ≃f 1/ω
i (zki ) we get the equality

ȳk ↔ 1/(ϑn)
n∑

i=1

≃f 1/ω
i (zki ) = x̄k+1 + uk. (H.4)

Thus, combining (H.3) and (H.4), we obtain

ȳk+1 = ȳk ↔ 1/(ϑn)
n∑

i=1

≃f 1/ω
i (zki )↔ (1/ϑ)≃hn/ω

(
nȳk ↔ (1/ϑ)

n∑

i=1

≃f 1/ω
i (zki )

)
, (H.5)
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and the u-update combining (H.2) with (H.4) is expressed as

uk+1 = (1/ϑ)≃hn/ω

(
nȳk ↔ (1/ϑ)

n∑

i=1

≃f 1/ω
i (zki )

)
. (H.6)

As presented in Section 4.1, each agent’s ≃f 1/ω
i (zki ) is predicted by the GP and this

prediction is used by the ADMM algorithm when the coordinator skips a communication

round with an agent. This dynamic is expressed in (4.7) with the variable ◁k
i , where de-

pending on the communication decision, ◁k
i takes the value of ≃f 1/ω

i (zki ) or its predicted

value. In the context of our problem, we replace ≃f 1/ω
i (zki ) from the expressions in (H.5)

and (H.6) with the dynamics defined in (4.7), giving the ADMM expression

xk+1
i = zki ↔ (1/ϑ)◁k

i

uk+1 = (1/ϑ)≃hn/ω

(
nȳk ↔ (1/ϑ)

n∑

i=1

◁k
i

)

ȳk+1 = ȳk ↔ 1/(ϑn)
n∑

i=1

◁k
i ↔ uk+1.

Defining the variable vk = nȳk ↔ (1/ϑ)
∑n

i=1 ◁
k
i , we get that the u-update is given by

uk+1 = (1/ϑ)≃hn/ω
(
vk
)
.
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A B S T R A C T

In distributed optimization schemes consisting of a group of agents connected to a central coordinator, the
optimization algorithm often involves the agents solving private local sub-problems and exchanging data
frequently with the coordinator to solve the global distributed problem. In those cases, the query-response
mechanism usually causes excessive communication costs to the system, necessitating communication reduction
in scenarios where communication is costly. Integrating Gaussian processes (GP) as a learning component to
the Alternating Direction Method of Multipliers (ADMM) has proven effective in learning each agent’s local
proximal operator to reduce the required communication exchange. A key element for integrating GP into the
ADMM algorithm is the querying mechanism upon which the coordinator decides when communication with
an agent is required. In this paper, we formulate a general querying decision framework as an optimization
problem that balances reducing the communication cost and decreasing the prediction error. Under this
framework, we propose a joint query strategy that takes into account the joint statistics of the query and
ADMM variables and the total communication cost of all agents in the presence of uncertainty caused by the GP
regression. In addition, we derive three different decision mechanisms that simplify the general framework by
making the communication decision for each agent individually. We integrate multiple measures to quantify the
trade-off between the communication cost reduction and the optimization solution’s accuracy/optimality. The
proposed methods can achieve significant communication reduction and good optimization solution accuracy
for distributed optimization, as demonstrated by extensive simulations of a distributed sharing problem.

1. Introduction

In a distributed optimization scheme that consists of a group of
agents connected to a central coordinator, the optimization algorithm
often involves the agents solving private local sub-problems and ex-
changing data frequently with the coordinator. In many of those
schemes, the underlying local sub-problems in the form of proximal
minimization problems [1] are solved by the agents in response to queries
sent by the coordinator. Proximal minimization is suitable for networks
with privacy constraints because it prevents each agent’s local objec-
tive and constraints from being disclosed to the coordinator or other
agents. Once the coordinator receives the local proximal minimization
solutions from the agents, it uses them to calculate new queries for
the agents that keep on driving the agents’ solutions to the global
solution. Such distributed optimization schemes have been applied to
power management for smart buildings and distribution power systems,
among other applications, as shown in [2].
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The Alternating Direction Method of Multipliers (ADMM) [3] is
an algorithm well suited for distributed optimization settings. It has
found great success in distributed optimization due to its simplicity
of implementation and its suitability for parallelization. As a result,
ADMM has found many applications in machine learning problems [4]
and other distributed optimization problems [5–8].

The query-response mechanism inherent to distributed optimization
algorithms (ADMM included) often requires many iterations before
the algorithm converges to a solution. An extensive amount of com-
munication between the coordinator and the agents could make the
system unviable in cases where communication is expensive, such as
underwater communication for robot formation control [9]. For that
reason, reducing communication expenditure is highly desirable, even
critical, for the viability of these distributed optimization schemes in
real-life applications.

Communication reduction in distributed optimization settings has
previously been studied. The authors of [10] presented a hierarchi-
cal distributed optimization algorithm for the predictive control of a
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