Published in Transactions on Machine Learning Research (01/2024)

What is the Solution for State-Adversarial
Multi-Agent Reinforcement Learning?

Songyang Han songyang.han@uconn.edu
School of Computing

University of Connecticut

Sony Al

Sanbao Su sanbao.su@uconn.edu
School of Computing
University of Connecticut

Sihong He sithong.he@Quconn.edu
School of Computing
University of Connecticut

Shuo Han hanshuoQuic.edu
Department of Electrical and Computer Engineering
University of Illinois Chicago

Haizhao Yang hzyang@umd. edu
Department of Mathematics and Department of Computer Science
University of Maryland College Park

Shaofeng Zou szou8@buffalo.edu
Department of Electrical Engineering and Department of Computer Science and Engineering
University at Buffalo, The State University of New York

Fei Miao fei.miao@uconn.edu
School of Computing
University of Connecticut

Reviewed on OpenReview: https: //openreview. net/ forum? id=HyqSwNhM3z)

Abstract

Various methods for Multi-Agent Reinforcement Learning (MARL) have been developed
with the assumption that agents’ policies are based on accurate state information. However,
policies learned through Deep Reinforcement Learning (DRL) are susceptible to adversarial
state perturbation attacks. In this work, we propose a State-Adversarial Markov Game
(SAMG) and make the first attempt to investigate different solution concepts of MARL under
state uncertainties. Our analysis shows that the commonly used solution concepts of optimal
agent policy and robust Nash equilibrium do not always exist in SAMGs. To circumvent this
difficulty, we consider a new solution concept called robust agent policy, where agents aim to
maximize the worst-case expected state value. We prove the existence of robust agent policy
for finite state and finite action SAMGs. Additionally, we propose a Robust Multi-Agent
Adversarial Actor-Critic (RMA3C) algorithm to learn robust policies for MARL agents under
state uncertainties. Our experiments demonstrate that our algorithm outperforms existing
methods when faced with state perturbations and greatly improves the robustness of MARL
policies. Our code is public on https://songyanghan.github.io/what_is_solution/.

https://openreview.net/forum?id=HyqSwNhM3x)
https://songyanghan.github.io/what_is_solution/

Published in Transactions on Machine Learning Research (01/2024)

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has been successfully used to solve problems such as multi-robot
coordination (Hiittenrauch & Sosi¢, 2017), resource management (Pretorius et al., 2020), etc. However, Deep
Reinforcement Learning (DRL) policies are vulnerable to adversarial state perturbation attacks (Behzadan &
Munir, 2017; Pattanaik & Tang, 2017; Huang et al., 2017; Lin et al., 2017; Xiao et al., 2019). Even small
changes to the state can lead to drastically different actions (Huang et al., 2017; Lin et al., 2017). To address
this, it is important to develop robust policies that can handle adversarial state perturbations. An example
of this is shown in Fig. 1 where agents need to cooperate and avoid collisions while occupying landmarks. In
(a) with no adversarial state, the agents are able to target different landmarks, but in (b) with adversarial
state perturbations, agents head in the wrong direction.

* : True landmark state ‘i":g’: Perturbed state for agent 1 *: Perturbed state for agent 2

.: Agent 1 . : Agent 2 : Uncertainty set * : Adversary

a) Cooperative Navigation b) State Perturbations b) Robust Agent Policy

landmarks @] * @ Agent 1] * . —’.Agent 1
»" Agent 1 ‘1 '-, 21 e
ll * gen ‘ * ;‘ A |'Q§'

Figure 1: The agents’ goal is to occupy and cover all landmarks, requiring cooperation to decide which
landmark to cover. Figure a) illustrates the optimal target landmark for each agent without state perturbation.
However, in figure b), an adversary perturbs the state observation of agents, causing agents to head in the
wrong direction and leaving landmark 1 as uncovered. Our work demonstrates that traditional agent policies
can be easily corrupted by adversarial state perturbations. To counter this, we propose a robust agent policy
that maximizes average performance under worst-case state perturbations.

The adversarial state perturbation problem cannot be fully understood using existing research on the Partially
Observable Markov Decision Process (POMDP) or Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) (Oliehoek et al., 2016; Lerer et al., 2020), as the conditional observation probability
cannot capture the worst-case uncertainty under adversarial attacks. Adversarial perturbations have a greater
impact on an agent’s policy than random noise (Kos & Song, 2017; Pattanaik et al., 2018). However, due to
the complexity of interactions among agents and adversaries, it remains challenging to formally analyze the
existence of optimal or equilibrium solutions under adversarial state perturbations in MARL. Therefore, it is
essential to study the fundamental properties of MARL under adversarial state perturbations.

To the best of our knowledge, we make the first attempt to investigate different solution concepts of robust
MARL under adversarial state perturbations. We formulate a State-Adversarial Markov Game (SAMG) to
study the properties and solution concepts of MARL under adversarial state perturbations. We prove that
a state-robust totally optimal agent policy or robust total Nash equilibrium does not always exist in such
scenarios. Instead, we consider a new solution concept, the robust agent policy, and prove its existence for
finite state and action spaces. We design an algorithm, called Robust Multi-Agent Adversarial Actor-Critic
(RMA3C), to train robust policies for all agents under adversarial state perturbations. The algorithm uses a
Gradient Descent Ascent (GDA) optimizer to update each agent’s and adversary’s policy network. Results
from our experiments show that the proposed RMA3C algorithm improves the robustness of the agents’
policies compared to existing MARL methods.

In summary, the main contributions of this work are:

Published in Transactions on Machine Learning Research (01/2024)

o We study the fundamental properties of MARL under adversarial state perturbations and prove that
widely used solution concepts such as optimal agent policy or robust Nash equilibrium do not always
exist.

e We consider a new solution concept, robust agent policy, where each agent aims to maximize the
worst-case expected state value. We prove the existence of a robust agent policy for SAMGs with
finite state and action spaces. We propose a Robust Multi-Agent Adversarial Actor-Critic (RMA3C)
algorithm to solve the challenge of training robust policies under adversarial state perturbations
based on gradient descent ascent algorithm.

e We empirically evaluate our proposed RMA3C algorithm. Our algorithm outperforms baselines
with random or adversarial state perturbations and improves agent policies’ robustness under state
uncertainties.

2 Related Work

Multi-Agent Reinforcement Learning (M ARL) The MARL has a long history in the AT field (Littman,
1994; Hu et al., 1998; Busoniu et al., 2008). Recent works have been investigated to encourage the collaboration
of the agents by assigning rewards appropriately, such as a value decomposition network (Sunehag et al.,
2018; Rashid et al., 2020; Su et al., 2021), subtracting a counterfactual baseline (Foerster & Farquhar, 2018),
or an implicit method (Zhou et al., 2020). Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
proposes a centralized Q-function to alleviate the problem caused by the non-stationary environment (Lowe
et al., 2017). The scalability issue of MARL can be alleviated by adding attention to the critic (Igbal &
Sha, 2019), using neighbor information (Qu et al., 2020), or using V-learning (Jin et al., 2021). The “team
stochastic game” (Muniraj et al., 2018; Phan et al., 2020) splits the MARL agents into two teams to compete.
However, during training, all methods assume that agents get the true state value. None of the recent MARL
advances specifies how to deal with perturbed state values by malicious adversaries.

Robust Reinforcement Learning Most existing robust MARL works focus on uncertainties in reward,
transition dynamics, and training partners’ policies, while our work focuses on uncertainties in the state.
Robust reinforcement learning can be traced back to Morimoto & Doya (2005) in the single-agent setting.
With the advent of deep learning techniques, the robust MARL has been recently studied considering different
types of uncertainties such as reward (Chen & Bowling, 2012; Zhang et al., 2020b), transition dynamics (Zhang
et al., 2020b; Sinha et al., 2020; Hu et al., 2020; Yu et al., 2021; Wang et al., 2023), training partner’s
type (Shen & How, 2021), training partners’ policies (Li et al., 2019; van der Heiden et al., 2020; Sun et al.,
2021; 2022). The work in (Zhang et al., 2020b) considers the robust equilibrium of multi-agents with reward
uncertainties where agents can access true state information at each stage. The work in Shen & How (2021)
considers uncertain training partner’s type (e.g. adversary, neutral, or teammate) to the protagonist in
two-player scenarios. The M3DDPG algorithm extends the MADDPG to get a robust policy for the worst
situation by assuming all the training partners are adversaries (Li et al., 2019). However, none of the above
MARL works consider the state perturbations.

For adversarial state perturbations, there are some works (Mandlekar et al., 2017; Pinto et al., 2017; Pattanaik
et al., 2018; Zhang et al., 2020a; 2021; Liang et al., 2022) considering a robust policy in single-agent
reinforcement learning. Though the work (Lin et al., 2020a) studies state perturbation, only one single agent’s
state observation can be perturbed in their MARL. The work (He et al., 2023) shows Nash equilibrium exists
under a specific condition (bijective mapping for adversary policies). However, in this work, we show the
Nash equilibrium is not a good solution concept as it can be corrupted by state perturbation adversaries. We
also propose a new robust agent policy concept for state-adversarial MARL that is proven to exist.

3 State-Adversarial Markov Game (SAMG)

We formulate a State-Adversarial Markov Game (SAMG) G = (N, S, A, r, Ps, p, v, Pr(sg)) with n agents in
the agent set A" = {1,...,n}. Each agent i is associated with an action a’ € A*. The global joint action is
a=(a',...,a") € A, A:= A* x --- x A". The global joint state is s € S. The probability distribution of the

Published in Transactions on Machine Learning Research (01/2024)

initial state is Pr(sp). All agents share a stage-wise reward function r : S x A — R. We consider that each
agent is associated with an adversary as shown in Fig. 2. Each adversary decides a perturbed state p' € S
for the corresponding agent as the agent’s perturbed knowledge or observation about the global state. We
denote the joint perturbed state as p := [p%];ear. We consider the admissible perturbed state as a task-specific
“neighboring” state of s, e.g. the bounded sensor measurement errors, to model the challenges of getting
accurate states for multi-agent systems like connected and autonomous vehicles and multi-robots systems (Liu
et al., 2021; Kothandaraman et al., 2021). To analyze a realistic problem, the power of the state perturbation
should also be limited (Everett et al., 2021; Zhang et al., 2020a). We define an admissible perturbed state set
Ps to restrict the perturbed state only to be within a predefined subset of states such that p € Ps:

Definition 3.1 (Admissible Perturbed State Set). We consider the set of admissible perturbed state for
agent 7 at state s as P! C S. Denote the joint admissible perturbed state set at state s as Py := Pl x ... x P2,

Note that the true state is included in the admissible perturbed state set, i.e., s € P¢ for any i € N. For
example, consider a 2-agent 3-state system with & = {s1, s2, s3}. When the current true state is s; for both
agents, adversary 1 perturbs agent 1’s state observation within P;l = {s1, s2}; adversary 2 perturbs agent 2’s
state observation within P2 = {s1, s3}.

Observation PETiuTliedIState
- of pi~x' ('ls)
Function
. I : Tt)
" pn~xn (pnls)
& Function &
K
‘3 Reward 1 § Reward 1
& Action @ 7 Action
SO t+1 e
_:rm - e D s @ieD
Is
Is;iq t+1
SAMG
Dec — POMDP

Figure 2: Comparison between Dec-POMDP and SAMG. In Dec-POMDP, the observation probability
function is fixed, and it will not change according to the change of the agent policy. However, in SAMG the
adversary policy is not a fixed policy, it may change according to the agents’ policies and always select the
worst-case state perturbation for agents. In SAMG, each agent is associated with an adversary to perturb its
knowledge or observation of the true state. Agents want to find a policy 7 to maximize their total expected
return while adversaries want to find a policy x to minimize agents’ total expected return.

The state perturbation reflects the state uncertainty from the perspective of each agent, but it does not
change the true state of multi-agent systems. The state transition function is p: § x A — A(S), where A(S)
is a probability simplex denoting the set of all possible probability measures on S. The state still transits
from the true state to the next state. Each agent is associated with a policy 7* : S — A(A?) to choose
an action a* € A’ given the perturbed state p’. Note that the input of 7’ is the perturbed state p’. The
perturbed state affects each agent’s action. The set A(A?) includes all possible probability measures on A°.

We use 7 = (7!, 72,...,) to denote the joint agent policy.

The adversary policy, i.e. the state perturbation policy, associated with agent i is x'(:|s) : S — A(P?), where
the input of x’ is the true state s € S. The power of the adversary is limited by the admissible perturbed
state set Pi. We denote the joint adversary policy as x = (x!, x?, .-, X")- The agents want to find a policy =
to maximize their total expected return while adversaries want to find a policy x to minimize the agents’
total expected return. The total expected return is E[Y ;2 y'rip1(se, ar)|so, ar ~ 7(-|pe), pr ~ x(+|s¢)] where
v is a discount factor.

Our SAMG problem cannot be solved by the existing work for single-agent RL with adversarial state
perturbations (Mandlekar et al., 2017; Pattanaik et al., 2018; Zhang et al., 2020a; 2021; Liang et al., 2022).
Each agent’s action in SAMG is selected based on its own perturbed state observation and the state knowledge

Published in Transactions on Machine Learning Research (01/2024)

State-of-the-Art Solution Concepts

State Value Function Robust State Value | 1 zwreessssssssssmsnnsnn e
(Equation 1) Function (Definition 4.4) New Solution Concepts
imi Uniqueness in Theorem 4.5; :| Worst Case Expected |Maximize| Robust Agent Policy
Maximize State Value . : : aximize
v '\ Agent Deviates Unilaterally : | State Value (Definition 4.8) > (Definition 4.9)
Optimal Agent Policy Robust Nash Equilibrium v
(Definition 4.2) (Definition 4.6) | Existence of Robust Agent | | Equivalent to a Maximin
i o Policy (Theorem 4.11) Problem (Theorem 4.10)
N/

Figure 3: Solution concepts for the SAMGs. We first examine the widely used concepts (optimal agent policy
and robust Nash Equilibrium) and demonstrate their non-existence under adversarial state perturbations. In
response, we consider a new objective, the worst-case expected state value, and a new solution concept, the
robust agent policy.

of each agent can be different after adversarial perturbations, so the SAMG problem cannot be solved by the
above single-agent RL where the agent has only one state observation at each stage.

Our SAMG problem cannot be solved by the existing work in the Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Bernstein et al., 2002; Oliehoek et al., 2016) as shown in Fig. 2. In contrast,
the policy in SAMG needs to be robust under a set of admissible perturbed states. The adversary aims to
find the worst-case state perturbation policy x to minimize the MARL agents’ total expected return, but the
Dec-POMDP cannot characterize the worst-case state perturbations. Moreover, agents usually cannot get the
true state s in Dec-POMDP, while in SAMG, the true state s is known by the adversaries. Adversaries can
take the true state information and use it to select state perturbations for the MARL agents. The following
proposition 3.2 shows that under a fixed adversarial policy, the SAMG problem becomes a Dec-POMDP.
However, in SAMG the adversary policy is not a fixed policy, it may change according to the agents’ policies
(see Theorem 4.1 for detail) and always select the worst-case state perturbation for agents. The proof of
proposition 3.2 is in Appendix A. We also give a two-agent two-state SAMG that cannot be solved by
Dec-POMDP in Appendix A.

Proposition 3.2. When the adversary policy is a fized policy, the SAMG problem becomes a Dec-
POMDP (Oliehoek et al., 2016).

Proposition 3.3. When the adversary policy is a fized bijective mapping from S to S, the SAMG problem
becomes a Markov game.

Additionally, our SAMG problem cannot be solved by existing methods for robust Markov games considering
the uncertainties from reward (Chen & Bowling, 2012; Zhang et al., 2020b), transition dynamics (Zhang et al.,
2020b; Hu et al., 2020; Sinha et al., 2020; Yu et al., 2021; Wang et al., 2023), training partner’s policies (Li
et al., 2019; van der Heiden et al., 2020). These methods are not applicable to our problem because the
agents do not have access to the true state information after adversarial perturbations.

4 Solution Concepts

In this section, we delve into the solution concepts of the SAMG. We formally define key concepts such as
an optimal adversary policy, state-robust totally optimal agent policy, and robust total Nash equilibrium.
However, we also demonstrate that under an optimal adversary policy, the existence of a state-robust totally
optimal agent policy or robust total Nash equilibrium is not guaranteed as they can be easily corrupted by
adversaries. Therefore, we introduce a new objective, the worst-case expected state value, and prove that
there exists a robust agent policy to maximize it. A concept diagram of this section is shown in Fig. 3.

We first introduce the widely used state value function concept for our proposed SAMG as follows:

o

Vi x(8) = Baynn(lo) oimx(lse) Z’Ytrt+1(8t,at)|80 =5 (1)
=0

Published in Transactions on Machine Learning Research (01/2024)

where + is the discount factor.

4.1 Optimal Adversary Policy

For a fixed agent policy 7, define the worst-case state value function V, under 7 by

Vi(s) = min Ve o (5) (2)

for all s € §. An adversary policy x* is said to be optimal against an agent policy 7 if
V() = Va(s) (3)

for all s € §. The following proposition shows the existence of an optimal adversary for an SAMG.

Proposition 4.1 (Existence of Optimal Adversary Policy.). Given an SAMG, for any given agent
policy, there exists an optimal adversary policy.

The key process of the proof in Appendix B.4 is constructing an MDP for the adversary where the adversary
gets the negative of the agent reward. Since for an MDP with finite state and finite action spaces, there
always exists an optimal policy [Theorem 6.2.10 in Puterman (2014)], an optimal adversary policy of the
corresponding SAMG always exists as well.

4.2 State-robust Totally Optimal Agent Policy

An optimal adversary policy is very powerful and it can easily corrupt the MARL agents’ policies through
state perturbations. We first define a state-robust totally optimal agent policy as follows:

Definition 4.2 (State-robust Totally Optimal Agent Policy). An agent policy 7* is a state-robust
totally optimal agent policy if Vy«(s) > Vi (s) for any 7 and all s € S.

In the following theorem, we show that a state-robust totally optimal agent policy 7* does not always exist
for SAMGs under an optimal state perturbation adversary.

Theorem 4.3 (Non-existence of State-robust Totally Optimal Agent Policy). A state-robust totally
optimal agent policy does not always exist for SAMGS.

The proof in Appendix B.5 is done by constructing a counterexample where there is no optimal policy
for the agents. A state-robust totally optimal agent policy is expected to maximize the state value for all
states. However, under the adversarial state perturbations, sometimes agents have to make trade-offs between
different state values and no agent policy can maximize all the state values.

4.3 Robust Total Nash Equilibrium

Then we look at the widely-used Nash equilibrium concept in MARL for SAMGs. A Nash equilibrium is
used to describe policies where no agent wants to deviate unilaterally. If an agent deviates from a Nash
equilibrium, its total expected return won’t increase. Denote the agent pohc1es and adversary policies of
all other agents and adversaries except agent ¢ and adversary i as 7~ * and x~* respectively. Before giving
the definition of a robust total Nash equilibrium, we first show that there exists a unique robust state value
function for agent i given any 7—% and x .

Definition 4.4 (Robust state value function). A state value function V*Z : S — R for agent ¢

. . - * X
given 7% and x* is called a robust state value function if for all s € S,

Vjﬁl*x :(8) —maxmlnz Zﬂ(a|p)< s,a +’yz (8's,)V iy - (3’))

pEPs acA s'eS

Theorem 4.5 (Existence of Unique Robust State Value Function). For an SAMG with finite state
and finite action spaces, for any i € N, given any 7~ and x~* of other agents and adversaries except agent i

Published in Transactions on Machine Learning Research (01/2024)

and adversary i, there exists a unique robust state value function V*Z : S = R for agent i such that

forallse S, e
VZ7r k- (s)—maxmlnz Zﬂ'(a|p)< s, a —l—vz s,)V, i o - (s'))
pEPs acA s'eS

The proof is based on the contraction mapping property and Banach’s fixed point theorem in Appendix C.1.
The theorem could also follow from viewing the SAMG as an extensive form game under imperfect recall and
applying the approaches used to analyze those games Chen & Bowling (2012).

Based on the well-defined robust state value function, a robust total Nash equilibrium is defined considering
each agent is associated with an adversary that tries to minimize its total expected return.

Definition 4.6 (Robus Total Nash Equilibrium). For an SAMG, the policy (7*, x*) is a robust total
Nash equilibrium if for all s € S and all i € A and all 7% and x*, it holds that

Vﬂ%z T X X () < V;z* T X X () < Vﬂ.z* T X i (8)7 (4)

where 7% and x~* denotes the agent policies and adversary policies of all the other agents except agent 1,
respectively.

Definition 4.6 shows that 7* is in a robust total Nash equilibrium if each agent’s policy is a robust best
response to the other agents’ policies under adversarial state perturbations. When agent i is calculating its
robust best response, it assumes a worst-case perspective of the state perturbations.

Theorem 4.7 (Non-existence of Robust Total Nash Equilibrium). For SAMGs with finite state and
finite action spaces, the robust total Nash equilibrium defined in Definition 4.6 does not always exist.

The proof in Appendix C.3 is done by constructing a counterexample. For any state s € S, there exists
a stage-wise equilibrium among the agents and adversaries (See the proof for a stage-wise equilibrium
in Theorem C.6 in Appendix C.2). However, due to the uncertainty of the true state under adversarial
state perturbations, it is possible that the stage-wise equilibrium in one state conflicts with the stage-wise
equilibrium in another state. As a result, the agents may be required to make trade-offs between different
states, making it impossible to find an equilibrium that holds for all states.

4.4 Robust Agent Policy

The state-robust totally optimal agent policy and robust total Nash equilibrium concepts do not always
exist in our SAMG problem according to the above non-existence analysis. To circumvent this difficulty, we
consider another solution concept in which each agent adopts a policy (hereafter referred to as a robust agent
policy) that maximizes the reward under the worst-case state perturbation. We further show that a robust
policy always exists for all agents. We first introduce a new objective for SAMGs, the worst-case expected
state value:

Definition 4.8 (Worst-case Expected State Value). The worst-case expected state value under the
optimal state perturbation adversary is: Eg,pr(so) [Vr(s0)] ; where Pr(s) is the probability distribution of
the initial state.

To account for the fact that a policy is not able to maximize all state values in SAMG, we can use the
probability of each state as a measure of its importance, and balance the values of different states. The
worst-case expected state value is calculated by taking a weighted sum of all state values based on their initial
state distribution. The agent policy that aims to maximize this worst-case expected state value is referred to
as a robust agent policy.

Definition 4.9 (Robust Agent Policy). An agent policy 7* that maximizes the worst-case expected state
value is called a robust agent policy:

7 € argmax Eg wpy(sy) [Vir(50)] - (5)

Published in Transactions on Machine Learning Research (01/2024)

The following theorem shows finding a robust agent policy is equivalent to solving a maximin problem.

Theorem 4.10. Finding an agent policy m to maximize the worst-case expected state value under an optimal
adversary for m is equivalent to the mazimin problem: max, miny > Pr(so)Vr x(s0)-

In the following theorem, we show the existence of a robust agent policy for finite state and finite action
spaces.

Theorem 4.11 (Existence of Robust Agent Policy). For SAMGs with finite state and finite action spaces,
there exists a robust agent policy to maximize the worst-case expected state value defined in Definition 4.8.

The proof in Appendix C.4 is based on the Weierstrass M-test (Rudin et al., 1976), uniform limit theo-
rem (Rudin et al., 1976), and the extreme value theorem. Different from the definitions of the state-robust
totally optimal agent policy and robust total Nash equilibrium, the worst-case expected state value objective
does not require the optimality condition to hold for all states. Agents won’t get stuck in trade-offs between
different states, therefore, we can find a robust agent policy to maximize the worst-case expected state value
for the SAMG problem.

The robust agent policy, while motivated in specific instances of non-existence theorems, is designed to offer
broader applicability. The significance of the new solution concept lies in providing alternative solutions
where traditional methods may falter or be inapplicable. This versatility is crucial in advancing the field,
particularly in complex scenarios where standard solutions are inadequate.

Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm In general, it is challenging to develop
algorithms that compute optimal or equilibrium policies for MARL under uncertainties (Zhang et al., 2020b;
2021). We design a RMA3C Algorithm based on our theoretical analysis above. Each agent has one critic
network, one actor network 7¢ and one adversary network x¢. The critic @ takes in the true global state
and global action during the training process. It returns a Q-value denoting the total expected return given
s and a. We use Gradient Descent Ascent (GDA) optimizer (Lin et al., 2020b) to update parameters for
each agent’s actor network and adversary network for the maximin problem max, min, >, Pr(so)Vx x(s0)
in Theorem 4.10. A detailed introduction for the RMA3C and pseudocode is included in Appendix D.

Cooperative navigation Exchange target Keep-away

e ———

—400

1
o
3
U
|
o N
>

1
IS
o
o

° ° o _
© -500 & —100 57120
2 B3 3
2 550 [9 -150
3 g -150 kS
S -600 3 Q175
3 Algorithm 3 Algorithm =
@ _gs50 —— RMA3C @ 500 —— RMA3C @ _200
S MADDPG with noise & MADDPG with noise & Algorithm
© 700 MADDPG with x* } MADDPG with x* 0 555 —— RMA3C
£ —— M3DDPG with noise £ 250 —— M3DDPG with noise £ MADDPG with noise
~750 —— M3DDPG with x* - —— M3DDPG with x* 5.0 —— MADDPG with x*
—— MAPPO with noise —— MAPPO with noise : —— M3DDPG with noise
—800 MAPPO with x* MAPPO with x* —— M3DDPG with x*
-300 -27.5
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
episode(k) episode(k) episode(k)

Figure 4: Our RMA3C algorithm compared with several baseline algorithms in training. The results show
that our RMA3C algorithm outperforms the baselines, achieving higher mean episode rewards and greater
robustness to state perturbations. The baselines were trained under either random state perturbations or a
well-trained adversary policy x* (adversaries that are trained for the maximum training episodes in RMA3C).
Overall, our RMA3C algorithm achieved up to 58.46% higher mean episode rewards than the baselines.

5 Experiments

To demonstrate the effectiveness of our algorithm, we utilize the multi-agent particle environments developed
in Lowe et al. (2017) which consist of multiple agents and landmarks in a 2D world. The host machine
adopted in our experiments is a server configured with AMD Ryzen Threadripper 2990WX 32-core processors
and four Quadro RTX 6000 GPUs. Our experiments are performed on Python 3.5.4, Gym 0.10.5, Numpy
1.14.5, Tensorflow 1.8.0, and CUDA 9.0. In our experiments, we consider the set of admissible perturbed

Published in Transactions on Machine Learning Research (01/2024)

Table 1: Mean episode reward of 2000 episodes during testing. Our RMA3C policy achieves up to 46.56%
higher mean episode rewards than the baselines with random state perturbations A.

Environment CN ET KA PD
MA Lowe et al. (2017) —388.59 + 60.72 —45.79+23.50 -8.80 + 5.07 3.03 + 0.67
M3 Li et al. (2019) -390.94 £ 59.83 -39.55 4+ 20.53 -8.54 £5.04 2.12+1.04
MP Yu et al. (2022) -381.70 & 54.06 -37.62 £+ 18.94 - -

MADDPG (MA) w/ N -487.67 £ 72.28 -55.79 £ 26.78 -11.21 £6.82 1.24 £+ 0.47
M3DDPG (M3) w/ N -478.96 £+ 70.27 -54.40 £ 26.64 -11.28 £ 6.71 1.30 £ 0.58
MAPPO (MP) w/ N -523.83 + 78.45 -86.51 £ 30.86 - -

RMA3C w/ N (ours) -390.20 + 64.82 -46.23 + 24.76 -9.02 +5.87 2.48 + 1.26

state for agent i at state s as an £o, norm ball around s: P! := {p’ € S : ||p* — 8|l < d} where d is a radius
denoting the perturbation budget. In implementation, the adversary network takes in the true state s and
learns a state perturbation vector A% and we project s+ A’ to Pi. The environments used in our experiments
include cooperative navigation (CN), exchange target (ET), keep-away (KA), and physical deception (PD). A
detailed introduction to these environments can be found in Appendix E. All hyperparameters used in our
experiments for RMA3C and the baselines are listed in Appendix E, along with additional implementation
details and experiment results.

5.1 Baselines

In our experiment, we have a total of 9 baselines: MADDPG Lowe et al. (2017), M3DDPG Li et al. (2019),
MAPPO Yu et al. (2022), as well as versions of these algorithms with random and well-trained adversarial
state perturbations. Detailed explanation of these baselines can be found in Appendix E.2. To evaluate
robustness under state uncertainty, we add state noise to MADDPG, M3DDPG, and MAPPO produced
by a truncated normal distribution N (0, A, u,l) where X is the uncertainty level, u and ! are the upper and
lower bounds to ensure noise’s compactness. This simulates adversaries selecting random state perturbations.
In contrast, our RMA3C algorithm trains agents under adversaries that try to minimize the agents’ total
expected return. We save the well-trained adversaries x* for each scenario in RMA3C to represent the optimal
state perturbation adversaries. The well-trained adversaries are the adversary policies trained in the RMA3C
algorithm when the algorithm reaches the maximum training episodes (100k episodes). We then use these
adversaries to perturb the states for MADDPG, M3DDPG, and MAPPO to train and test their robustness
under adversarial state perturbations. Because MAPPO provided in Yu et al. (2022) only works in fully
cooperative tasks, we only report its results in cooperative navigation and exchange target. For both training
and testing, we report statistics that are averaged across 10 runs in each scenario and algorithm.

5.2 Comparison Results

Training Comparison Under different Perturbations We compare our RMA3C algorithm with
baselines during the training process to demonstrate its superiority in terms of mean episode rewards under
different state perturbations as shown in Fig. 4. As RMA3C has a built-in adversary to perturb states, we
do not train it under random state perturbations. In comparison to other baselines with different state
perturbations, RMA3C consistently achieved higher mean episode rewards, demonstrating its robustness under
varying state perturbations. Furthermore, when comparing each baseline with random state perturbations to
the same baseline with the well-trained adversary policy x*, we can see that the adversary policy trained by
RMAS3C is more effective than random state perturbations. This is because x* is designed to intentionally
select state perturbations that minimize the agents’ total expected return. The mean episode rewards of the
last 1000 episodes during training are shown in the table in Appendix E.5. Our RMA3C algorithm achieved
up to 58.46% higher mean episode rewards than the baselines under different state perturbations.

Training Comparison With More Agents Our RMA3C algorithm is compared with baselines in
the cooperative navigation scenario with an increasing number of agents. As shown in Fig.4, the original
cooperative navigation environment has 3 agents and our RMA3C algorithm outperforms the baselines in
terms of mean episode rewards. In Fig.5(a), we present the results of training with 4 agents, where our

Published in Transactions on Machine Learning Research (01/2024)

_gooCOOPerative navigation with more agents Cooperative navigation with different d-value

-900 ~400

kel

- el
5 1000 Algorithm H]
3 1100 —— RMA3C = 450
o MADDPG with noise 2 d-value
B 1200 —— MADDPG with x*] d=0.5
@ —— M3DDPG with noise 3 500 — d=1.0
T, —— M3DDPG with x* s — d=20
s 300 —— MAPPO with noise c d=4.0
191 y MAPPO with x* b5t
£ —1400 2 _ss0

-1500

1 ~

600, 20 40 60 80 100 600 20 40 60 80 100
episode(k) episode(k)

(@) (b)
Figure 5: 5(a): Our RMA3C algorithm continues to achieve higher mean episode rewards, even with an
increasing number of agents in the environment. 5(b):Our RMA3C algorithm is trained in the cooperative
navigation environment with different perturbation budgets d. When d increases, adversaries get more
advantage, and may further decrease agents’ total expected return.

RMA3C algorithm still surpasses the baselines. We include the training results with 6 agents in Appendix E.6.
Our RMA3C algorithm continues to achieve higher mean episode rewards, even with an increasing number of
agents in the environment.

Table 2: Our RMA3C policy achieves up to 54.02% higher mean episode reward than the baselines with
well-trained x*.

Environment CN ET KA PD

MADDPG (MA) w/x* -537.56 & 72.28 -71.65 + 42.50 -14.72 + 544 -0.95 + 1.32
M3DDPG (M3) w/x* -515.85 + 74.58 -70.68 + 41.54 -13.51 + 5.30 -0.70 + 0.96
MAPPO (MP) w/x* -572.39 & 79.34 -109.26 + 47.97 - -

RMA3C w/x* (ours) -400.82 + 62.59 -50.23 + 26.97 -9.64 + 531 1.23 + 0.82

Training Comparison With Different Perturbation Budgets We compare our algorithm with baselines
in the cooperative navigation scenario with varying levels of perturbation budgets d. We consider the set of
admissible perturbed state for agent i at state s as an £, norm ball around s: P! := {p* € S : ||p* — 5|00 < d}
where d is a radius denoting the perturbation budget. As shown in Fig. 5(b), when d increases, adversaries
have greater freedom to perturb the state within a larger admissible perturbed state set. As d increases,
adversaries get more powerful and lead to a decrease in agents’ total expected return.

Testing Comparison in different Environments Our RMA3C algorithm is tested in different envi-
ronments to demonstrate its robustness under state perturbations. As shown in Table 1, the mean episode
rewards are averaged across 2000 episodes and 10 test runs in each environment. The results of MADDPG,
M3DDPG, and MAPPO, which are not designed to handle state perturbations, are shown as a reference for
the no state perturbation scenario. These algorithms perform poorly when random state perturbations are
introduced, indicating the need for an algorithm that can handle state perturbations. As seen in Table 2,
the RMA3C policy achieves up to 46.56% higher mean episode rewards than the baselines in environments
with random state perturbations. Additionally, we also test the learned policies using different algorithms in
environments with well-trained adversary policies x* to perturb states. The results indicate that the RMA3C
policy achieves up to 54.02% higher mean episode reward than the baselines with well-trained adversarial
state perturbations. Overall, these tests demonstrate that the RMA3C algorithm achieves higher robustness
in different environments with state perturbations.

6 Conclusion

In this work, we propose a State-Adversarial Markov Game (SAMG) and investigate the fundamental
properties of robust MARL under adversarial state perturbations. We prove that the widely used solution

10

Published in Transactions on Machine Learning Research (01/2024)

concepts such as optimal agent policy and robust Nash equilibrium do not always exist for SAMGs. Instead,
we consider a new solution concept (the robust agent policy) to maximize the worst-case expected state value
and prove its existence. This is the primary theoretical contribution of our work. Additionally, we also propose
a RMA3C algorithm to find a robust policy for MARL agents under state perturbations. Our numerical
experiments demonstrate that the RMA3C algorithm improves the robustness of the trained policies against
both random and adversarial state perturbations. Some discussions and future directions are provided in
Appendix F.

Acknowledgments

Songyang Han, Sanbao Su, Sihong He, and Fei Miao are supported by the National Science Foundation under
Grants CNS-1952096, and CNS-2047354 grants. Haizhao Yang was partially supported by the US National
Science Foundation under awards DMS-2244988, DMS-2206333, and the Office of Naval Research Award
N00014-23-1-2007.

Shaofeng Zou is supported by the National Science Foundation under Grants CCF-2106560, and CCF-2007783.
This material is based upon work supported under the AT Research Institutes program by National Science
Foundation and the Institute of Education Sciences, U.S. Department of Education through Award # 2229873
- National AI Institute for Exceptional Education. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation, the Institute of Education Sciences, or the U.S. Department of Education.

We extend our thanks to Peter Stone and Dustin Morrill in Sony Al for their assistance in proofreading this
paper and for their insightful suggestions that have significantly enhanced the quality of this work. Their
careful attention to detail and valuable feedback were greatly appreciated.

References

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction attacks.
In MLDM, pp. 262-275. Springer, 2017.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized
control of markov decision processes. Mathematics of operations research, 27(4):819-840, 2002.

Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of multiagent reinforcement
learning. IEEFE Trans. Syst., Man, Cybern. Syst., 38(2):156-172, 2008.

Katherine Chen and Michael Bowling. Tractable objectives for robust policy optimization. Advances in
Neural Information Processing Systems, 25, 2012.

Gerard Debreu. A social equilibrium existence theorem. Proceedings of the National Academy of Sciences, 38
(10):886-893, 1952.

Michael Everett, Bjérn Liitjens, and Jonathan P How. Certifiable robustness to adversarial state uncertainty
in deep reinforcement learning. IEEE Trans. Neural Netw. Learn. Syst., 2021.

Ky Fan. Fixed-point and minimax theorems in locally convex topological linear spaces. Proceedings of the
National Academy of Sciences of the United States of America, 38(2):121, 1952.

Arlington M Fink. Equilibrium in a stochastic n-person game. Journal of science of the hiroshima university,
series ai (mathematics), 28(1):89-93, 1964.

Jakob Foerster and Gregory Farquhar. Counterfactual multi-agent policy gradients. In AAAI 2018.

Irving L Glicksberg. A further generalization of the kakutani fixed point theorem, with application to nash
equilibrium points. Proceedings of the American Mathematical Society, 3(1):170-174, 1952.

Delin Guo, Lan Tang, Xinggan Zhang, and Ying-Chang Liang. Joint optimization of handover control and
power allocation based on multi-agent deep reinforcement learning. IEEE Trans. Veh. Technol., 69(11):
13124-13138, 2020.

11

Published in Transactions on Machine Learning Research (01/2024)

Sihong He, Songyang Han, Sanbao Su, Shuo Han, Shaofeng Zou, and Fei Miao. Robust multi-agent
reinforcement learning with state uncertainty. Transactions on Machine Learning Research, 2023.

Junling Hu, Michael P Wellman, et al. Multiagent reinforcement learning: theoretical framework and an
algorithm. In ICML, volume 98, pp. 242-250. Citeseer, 1998.

Yizheng Hu, Kun Shao, Dong Li, HAO Jianye, Wulong Liu, Yaodong Yang, Jun Wang, and Zhanxing Zhu.
Robust multi-agent reinforcement learning driven by correlated equilibrium. 2020.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial attacks on
neural network policies. ICLR, 2017.

Maximilian Hiittenrauch and Adrian Sogi¢. Guided deep reinforcement learning for swarm systems. arXiv
preprint arXiw:1709.06011, 2017.

Shariq Igbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In ICML, pp.
2961-2970. PMLR, 2019.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):257-280, 2005.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave minimax
optimization? In ICML, pp. 4880-4889. PMLR, 2020.

Chi Jin, Qinghua Liu, Yuanhao Wang, and Tiancheng Yu. V-learning-a simple, efficient, decentralized
algorithm for multiagent rl. arXiv preprint arXiv:2110.14555, 2021.

Erim Kardeg, Fernando Ordoénez, and Randolph W Hall. Discounted robust stochastic games and an
application to queueing control. Operations research, 59(2):365-382, 2011.

Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies. ICLR, 2017.

Divya Kothandaraman, Rohan Chandra, and Dinesh Manocha. Ss-sfda: Self-supervised source-free domain
adaptation for road segmentation in hazardous environments. In ICCV, pp. 3049-3059, 2021.

Erwin Kreyszig. Introductory functional analysis with applications, volume 17. John Wiley & Sons, 1991.

Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search in cooperative
partially observable games. In AAAI volume 34, pp. 7187-7194, 2020.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent reinforcement
learning via minimax deep deterministic policy gradient. In AAAI volume 33, pp. 4213-4220, 2019.

Yongyuan Liang, Yanchao Sun, Ruijie Zheng, and Furong Huang. Efficient adversarial training without
attacking: Worst-case-aware robust reinforcement learning. NeurIPS, 2022.

Jieyu Lin, Kristina Dzeparoska, Sai Qian Zhang, Alberto Leon-Garcia, and Nicolas Papernot. On the
robustness of cooperative multi-agent reinforcement learning. In 2020 IEEE Security and Privacy Workshops
(SPW), pp. 62-68. IEEE, 2020a.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pp. 6083-6093. PMLR, 2020b.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min Sun. Tactics of
adversarial attack on deep reinforcement learning agents. IJCAI 2017.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In Machine
learning proceedings 1994, pp. 157-163. Elsevier, 1994.

Ze Liu, Yingfeng Cai, Hai Wang, Long Chen, Hongbo Gao, Yunyi Jia, and Yicheng Li. Robust target
recognition and tracking of self-driving cars with radar and camera information fusion under severe weather
conditions. IEEE Trans. Intell. Transp. Syst., 2021.

12

Published in Transactions on Machine Learning Research (01/2024)

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In NeurIPS, pp. 6379-6390, 2017.

Ajay Mandlekar, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Adversarially robust policy
learning: Active construction of physically-plausible perturbations. In TROS, pp. 3932-3939. IEEE, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529-533, 2015.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335-359, 2005.

Devaprakash Muniraj, Kyriakos G Vamvoudakis, and Mazen Farhood. Enforcing signal temporal logic
specifications in multi-agent adversarial environments: A deep g-learning approach. In 2018 IEEE
Conference on Decision and Control (CDC), pp. 4141-4146. IEEE, 2018.

John Nash. Non-cooperative games. Annals of mathematics, pp. 286-295, 1951.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain transition
matrices. Operations Research, 53(5):780-798, 2005.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs, volume 1.
Springer, 2016.

Anay Pattanaik and Zhenyi Tang. Robust deep reinforcement learning with adversarial attacks. AAMAS,
2017.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust deep
reinforcement learning with adversarial attacks. In AAMAS, pp. 2040-2042, 2018.

Thomy Phan, Thomas Gabor, Andreas Sedlmeier, Fabian Ritz, Bernhard Kempter, Cornel Klein, Horst
Sauer, Reiner Schmid, Jan Wieghardt, Marc Zeller, et al. Learning and testing resilience in cooperative
multi-agent systems. In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 1055-1063, 2020.

Lerrel Pinto, James Davidson, and Rahul Sukthankar. Robust adversarial reinforcement learning. In ICML,
pp. 2817-2826. PMLR, 2017.

Arnu Pretorius, Scott Cameron, et al. A game-theoretic analysis of networked system control for common-pool
resource management using multi-agent reinforcement learning. In NeurIPS, volume 33, pp. 9983-9994,
2020.

Martin L, Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Somns, 2014.

Guannan Qu, Yiheng Lin, Adam Wierman, and Na Li. Scalable multi-agent reinforcement learning for
networked systems with average reward. In NeurIPS, volume 33, pp. 2074—2086, 2020.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding monotonic
value function factorisation for deep multi-agent reinforcement learning. In NeurIPS, December 2020.

Meisam Razaviyayn, Tianjian Huang, Songtao Lu, Maher Nouiehed, Maziar Sanjabi, and Mingyi Hong.
Nonconvex min-max optimization: Applications, challenges, and recent theoretical advances. IEEE Signal
Process. Mag., 37(5):55-66, 2020.

Walter Rudin et al. Principles of mathematical analysis, volume 3. McGraw-hill New York, 1976.
Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences, 39(10):1095-1100, 1953.
Macheng Shen and Jonathan P How. Robust opponent modeling via adversarial ensemble reinforcement

learning. In ICAPS, volume 31, pp. 578-587, 2021.

13

Published in Transactions on Machine Learning Research (01/2024)

Aman Sinha, Matthew O’Kelly, et al. Formulazero: Distributionally robust online adaptation via offline
population synthesis. In ICML, pp. 8992-9004. PMLR, 2020.

Jianyu Su, Stephen Adams, and Peter Beling. Value-decomposition multi-agent actor-critics. In AAAIL
volume 35, pp. 11352-11360, 2021.

Chuangchuang Sun, Dong-Ki Kim, and Jonathan P How. Romax: Certifiably robust deep multiagent
reinforcement learning via convex relaxation. arXiv preprint arXiv:2109.06795, 2021.

Yanchao Sun, Ruijie Zheng, Parisa Hassanzadeh, Yongyuan Liang, Soheil Feizi, Sumitra Ganesh, and Furong
Huang. Certifiably robust policy learning against adversarial communication in multi-agent systems. ICLR,
2022.

Peter Sunehag, Guy Lever, et al. Value-decomposition networks for cooperative multi-agent learning based
on team reward. In AAMAS, pp. 20852087, 2018.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 135. MIT press
Cambridge, 1998.

Tessa van der Heiden, C Salge, Efstratios Gavves, and H van Hoof. Robust multi-agent reinforcement learning
with social empowerment for coordination and communication. arXiv preprint arXiv:2012.08255, 2020.

Kaixin Wang, Uri Gadot, Navdeep Kumar, Kfir Levy, and Shie Mannor. Robust reinforcement learning via
adversarial kernel approximation. ar@articlechen2012tractable, title="Tractable objectives for robust policy
optimization, author=Chen, Katherine and Bowling, Michael, journal=Advances in Neural Information
Processing Systems, volume=25, year=2012 Xiv preprint arXiv:2306.05859, 2023.

Chaowei Xiao, Xinlei Pan, et al. Characterizing attacks on deep reinforcement learning. arXiv preprint
arXiv:1907.09470, 2019.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness
of ppo in cooperative multi-agent games. NeurlIPS, 2022.

Jing Yu, Clement Gehring, Florian Schéfer, and Animashree Anandkumar. Robust reinforcement learning: A
constrained game-theoretic approach. In Learning for Dynamics and Control, pp. 1242-1254. PMLR, 2021.

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh. Robust
deep reinforcement learning against adversarial perturbations on state observations. NeurIPS, 33:21024—
21037, 2020a.

Huan Zhang, Hongge Chen, Duane Boning, and Cho-Jui Hsieh. Robust reinforcement learning on state
observations with learned optimal adversary. arXiv preprint arXiv:2101.08452, 2021.

Kaiqing Zhang, Tao Sun, Yunzhe Tao, Sahika Genc, Sunil Mallya, and Tamer Basar. Robust multi-agent
reinforcement learning with model uncertainty. In NeurIPS, 2020b.

Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learning implicit credit assignment for
cooperative multi-agent reinforcement learning. In NeurIPS, volume 33, pp. 11853-11864, 2020.

14

Published in Transactions on Machine Learning Research (01/2024)

A Comparison with Dec-POMDP and Markov Games

A.1 Comparison with Dec-POMDP

Our SAMG problem cannot be solved by the existing work in the Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) (Oliehoek et al., 2016). In contrast, the policy in our problem needs to
be robust under a set of admissible perturbed states. The adversary aims to find the worst-case state
perturbation policy x to minimize the MARL agents’ total expected return. In the following proposition,
we show that under certain additional conditions our proposed SAMG problem becomes a Dec-POMDP
problem.

Observation Perturbed State
. of pi~x* (p'1s)
Function
. Tt : T]
A pE~x" (p"s)
& Function &
Q
§ Reward 1 § Reward 1%
4 Action “ 17 Action
| e ai~n (a'lo") e ai~r (allp")
1
1 St41 | St+1
SAMG
Dec — POMDP

Figure 6: Comparison between Dec-POMDP and SAMG. In Dec-POMDP, the observation probability
function is fixed, and it will not change according to the change of the agent policy. However, in SAMG the
adversary policy is not a fixed policy, it may change according to the agents’ policies and always select the
worst-case state perturbation for agents.

Proposition 3.2. When the adversary policy is a fixed policy, the SAMG problem becomes a Dec-
POMDP (Oliehoek et al., 2016).

Proof. When the adversary policy x is a fixed policy, an SAMG (N, S, A, 7, Ps, p,7, Pr(sg)) becomes a Dec-
POMDP (N, S, A,7,0,0,p,7,Pr(so)). The agent set N' = {1,...,n}. The global joint state is s € S. Each
agent i is associated with an action a’ € A’. The global joint action is a = (a!,...,a") € A, A 1= Al x-- - x A™.
All agents share a stage-wise reward function r : S X A — R. The state transition function is p : Sx A — A(S),
where A(S) is a probability simplex denoting the set of all possible probability measures on S. The state
transits from the true state to the next state. The discount factor is . The joint observation set O is the same
as the joint state set S. The observation probability function O(o|s) = x(o|s) for any o € Py and O(o|s) =0
for any o ¢ Ps, where o is the observation given the state s. The Pr(sg) is the probability distribution of the
initial state. O

In Dec-POMDP, the observation probability function is fixed, and it will not change according to the change
of the agent policy. However, in SAMG the adversary policy is not a fixed policy, it may change according to
the agents’ policies and always select the worst-case state perturbation for agents. In contrast to Dec-POMDP,
the adversary’s policy x is chosen to minimize the total expected return of the agents in our problem.
Additionally, in Dec-POMDP the agents do not have access to the true state s, whereas in our problem, the
adversaries are aware of the true state and can use it to select perturbed states.

15

Published in Transactions on Machine Learning Research (01/2024)

A.2 SAMG cannot be solved by Dec-POMDP: Two-Agent Two-State Game Example

We use a two-agent two-state game to show the difference between Dec-POMDP and SAMG. Consider a
game with two agents N/ = {1,2} and two states S = {s1, s2} as shown in Fig. 7. Each agent has two actions
Al = A% = {a1,az}. The transition probabilities are defined below.

p(s =s1ls =s1,a" #a”) =1,
/ 1 2
p(s’ =ssls =s1,a =a®) =1,
! 1 2
p(s _32|5—327 #CL):17
/ 1 2
p(s =s1ls = s9,a” =a®) =1. (6)
Specifically, a' = a? includes two cases: a' = a® = a; or a' = a? = as. Similarly, a' # a? includes two cases:
al = al,az = ag Or al = 0/2,0/2 = az.
al = a?
r =1
a # a? al # a?
r=0 r=1
a' = a?
r=20

Figure 7: A two-agent two-state game example. Agents get reward 1 at state s; if they choose the same
action. Agents get reward 1 at state sy if they choose different actions.

Two agents share the same reward function:

a' =a? and s = s,

at #a? and s = s,

7
, a'' =da? and s = so, @

r(s,at,a®) =

_ o O =

. a'' #a® and s = so.

In a SAMG, each agent is associated with an adversary to perturb its knowledge or observation of the true
state. For the power of the adversary, we allow the adversary to perturb any state to the other state:

Pi =PI ={s1,52}. (8)

We use v = 0.99 as the discount factor. Agents want to find a policy m to maximize their total expected
return while adversaries want to find a policy x to minimize agents’ total expected return.

This problem cannot be formulated as a Dec-POMDP Consider one agent policy where both
agents select the same action in s; and select different actions in so: ml(ai|s1) = m(ai|s2) = 72(a1|s1) =
72(ag|s2) = 1. When there is no adversary, agents keep receiving rewards. The values for each state are
V(sy) = V(sa) = ﬁ = 100. Because agents share the same reward function, they also share the same
values for each state. However, this policy receives V(s1) = V(s2) = 0 when agents are facing the worst-case

adversaries x*(s1]s2) = x*(s2]s1) = 1 for i = 1,2 and always taking the wrong actions with 0 reward.

If the adversary policy is fixed at x*(s1|s2) = x*(s2]s1) = 1 for i = 1,2, this problem becomes a Dec-POMDP
with the observation space O = {01 = 51,02 = sa}. The observation function is 0’(01|s2) = 0%(02|s1) = 1 for
i = 1,2. The agent policy is 7' (a|o1) = 7 (ai|o2) = 7%(a1]o1) = 7%(az]oz) = 1.

However, when we consider a different agent policy where both agents select the same action in sy and
select different actions in sy: 7t(ai|se) = 7t(ay|s1) = 7%(a1|s2) = 72(az|s1) = 1, agents keep receiving 0
rewards even when the adversary does nothing. For the new agent policy, the worst-case adversary policy is
X'(s1]51) = X*(s2]s2) = 1 for i = 1,2. The corresponding observation function for the new adversary policy is
0'(01]s1) = 0%(02|s2) = 1 for i = 1,2, which is completely different from the previous observation functions.
Because the observation function in Dec-POMDP won’t change according to agents’ policies, therefore, the
SAMG problem cannot be formulated by Dec-POMDP when adversary policy is not fixed.

16

Published in Transactions on Machine Learning Research (01/2024)

Under different observation functions, Dec-POMDP can lead to contradictory agent policies.
Besides the analysis of why this problem cannot be formulated as a Dec-POMDP, we also demonstrate that
Dec-POMDPs fail to solve this problem from a different perspective.

Let’s consider a Dec-POMDP with the observation space O = {01 = s1,02 = s2}. The observation function
is defined as 0*(01|s2) = 0*(02]s1) = 1 for i = 1,2. In this scenario, the optimal agent policy is to select the
same action in response to oo and choose different actions for o;. Agents keep receiving rewards based on
this policy.

Now let’s consider another Dec-POMDP with the observation space O = {01 = s1,02 = s2}. The observation
function is defined as 0%(o01|s1) = 0*(02|s2) = 1 for i = 1,2. In this case, the optimal agent policy is to select
the same action in response to o7 and choose different actions for oo. Agents keep receiving rewards based on
this policy. However, the new optimal agent policy contradicts the previous one.

By comparing these two Dec-POMDPs with different observation functions, we observe that Dec-POMDPs
can yield different agent policies based on different observation functions. This implies that Dec-POMDPs
do not address the problem of selecting an agent policy when the observation function is determined by an
adversary.

Furthermore, we will reanalyze this problem and demonstrate how a SAMG can solve this two-agent two-state
game in Appendix B and C. The SAMG formulation addresses this problem by selecting the agent policy
against the worst-case observation function.

A.3 Comparison with Markov Games

Under a specific condition, when the adversary policy x is a bijective mapping from S to S, the SAMG
problem is equivalent to a Markov game, as demonstrated in the following proposition. This proposition
illustrates the relationship between a SAMG and a Markov game with a particular form of state perturbation.

When x is a bijective mapping from S to S, the adversary policy follows x(p|s) = 1 selecting the perturbed
state p for the true state s with probability 1. Let us use the notation x(s) = p for this special case.

Proposition 3.3. When the adversary policy is a fixed bijective mapping from S to S, the SAMG problem

becomes a Markov game.

Proof. When the adversary policy x is a fixed bijective mapping from S to S, an SAMG problem
(N, S, A, r, Ps,p, v, Pr(so)) becomes a Markov game (Npew, Snews Anew, Mhews Prews Vs PT(Snew,0)) that is con-
structed as follows:

Taking spew = p = X(s) as the new state, the new global joint state set is Spew := S. The global joint action
set Apew = A=A x --- x A" and the agent set N, = N stay the same.

We can construct a new reward function 7},

: Spew X Anew — R for each agent i as
Thew(Snew = X(8); Gnew = @) = (s, a), (9)
and a new state transition function ppew : Snew X Anew — A(Snew) defined as
Prew(p’ = X(s")lp = x(5),a) = p(s'ls, a). (10)

The new probability of the initial state is

Pr(spew,0 = X(s0)) = Pr(so). (11)
Each agent uses a policy 7., : Snew — A(A?) to choose an action based on the new state. Hence, the
SAMG problem becomes a Markov game. O

If the adversary’s policy x is a fixed bijective mapping from S to S, the new global joint state set Syey is a
perturbation of S and each state is assigned a new "label" by the adversary. Under this condition, the SAMG
is equivalent to a Markov game.

17

Published in Transactions on Machine Learning Research (01/2024)

B Optimal Adversary Policy and Optimal Agent Policy

In this section, we analyze the existence of the optimal adversary policy and the optimal agent policy. We
will utilize the two-agent two-state game introduced in Appendix A. For completeness, let us revisit this
game with two agents ' = {1,2} and two states S = {s1, s2} as shown in Fig. 8. Each agent has two actions
A! = A% = {a1,az}. The transition probabilities are defined below.

/

p(S 1|sfsl,a17éa2):1,
1 2
p(s’ = sa|s =s1,a =a”) =1,
p(S/ - 82|S - 827CL1 7é CL2) =]-7
p(s’ = s1]s = s9,a' =a®) = 1. (12)
Specifically, a'! = a? includes two cases: a! = a®? = a; or a' = a? = ay. Similarly, a' # a? includes two cases:
CLl = al,a2 = a2 Or (Zl = CLQ,(I2 = aj.
a' # a? a' # a?
r=20 r=1
a' = a?
r=20

Figure 8: A two-agent two-state game example. Agents get reward 1 at state s; if they choose the same
action. Agents get reward 1 at state so if they choose different actions. This example was used in Appendix A
to show the difference between Dec-POMDP and SAMG. We will revisit this game in Appendix B to discuss
optimal adversary policy and optimal agent policy.

Two agents share the same reward function:

a' =a? and s = s,

at #a? and s = s,

1_ 2 _
, a =a",and s = sg,

r(s,a',a?®) = (13)

_ o O =

. a'' #a® and s = so.

In a SAMG, each agent is associated with an adversary to perturb its knowledge or observation of the true
state. For the power of the adversary, we allow the adversary to perturb any state to the other state:

Pl =PI ={s1,5}. (14)

We use v = 0.99 as the discount factor. Agents want to find a policy m to maximize their total expected
return while adversaries want to find a policy x to minimize agents’ total expected return.

B.1 Optimal Agent Policy Without Adversaries

When there is no adversary, the optimal policy for agents is to choose the same action in s; and choose
different actions in s3. One example is 7' (ai|s1) = 7t(a1]s2) = 72(a1]s1) = m2(az|s2) = 1. The agents
keep receiving rewards. The values for each state are V(s;) = V(sq) = ﬁ = 100. Because agents share
the same reward function, they also share the same values for each state. However, this policy receives
V(s1) = V(s2) = 0 when agents are facing adversaries x*(s1]s2) = x*(s2|s1) = 1 for i = 1,2 and always taking
the wrong actions with 0 reward.

B.2 A Stochastic Policy With Adversaries

We consider a stochastic policy m!(ay|s1) = 7 (a1|s2) = 7%(a1]s1) = 7%(az|s2) = 0.5. Under this policy, the
probabilities of taking the same or different actions are the same for each state Pr(a! = a? | s1) = Pr(a! #

18

Published in Transactions on Machine Learning Research (01/2024)

a? | s1) = Pr(a' = a? | s2) = Pr(a! # a® | s3) = 0.5. Agents randomly stay or transit in each state and
receive a positive reward with a 50% probability. The adversary has no power under this policy because 7 is
the same for both states. The values for each state are V(s1) = V(sz) = V(s1) = V(s3) = % = 50.

B.3 Deterministic Policies With Adversaries

Since each agent has two actions for each state, there are in total 2 = 16 possible deterministic policies for
the two-agent two-state game example. All possible deterministic policies can be classified into three cases:
(1) If agents select the same action in one state s; and select different actions in the other state s;, then
we always have V(s;) = V(s2) = 0. This is because adversaries can always use x*(s1|s;) = x*(sa]s;) = 1
for k = 1,2 such that agents always receive a 0 reward. (2) If agents always select different actions
in both states, then V(s;) = 0,V (s2) = 100. This is because agents never transit to the other state
and keep receiving the same reward. (3) If agents always select the same action in both states, then
V(s1) = ﬁ ~ 50.25,V (s2) = 117 ~ 49.75. This is because agents circulate through both states and
adversaries have no power to change it.

B.4 Optimal Adversary Policy

In this section, we examine optimal policies for both the adversary and the agent in a State-Adversarial
Markov Game (SAMG). The following proposition demonstrates the existence of an optimal adversary in an
SAMG.

Proposition 4.1 (Existence of Optimal Adversary Policy). Given an SAMG, for any given agent
policy, there exists an optimal adversary policy.

Proof. We prove this by constructing an MDP M = (S, ,Zl, 7,D,7y) such that an optimal policy of M is an
optimal adversary policy x* for the SAMG given the fixed 7. In the MDP M, we take all adversaries as a
joint adversary agent. The joint adversary learns a policy x to find a joint perturbed state given the current
true state. The action space A=8x8x---x8. Note that the joint admissible perturbed state set in
Definition 3.1 P, C A.

The reward function 7 is defined as:

P(s,a) = — Y _ m(ala)r(s,a) for & € P,. (15)
a€A

The transition probability p is defined as

p(s'|s,a) = Z w(ala)p(s’|s,a) for a € Ps. (16)
acA

The reward function is defined based on the intuition that when the agent receives r given s,a, the
reward of the adversary is the negative of the agent reward, that is to say, # = —r. Considering that
r(s,a) = E[R|s,a] = —E[R]s, al,

Published in Transactions on Machine Learning Research (01/2024)

:—Z (s,a)m(ala). (17)

acA

Based on the properties of MDPA (Sutton et al., 1998; Puterman, 2014), we kAnow that the MDP M has an
optimal policy x* that satisfies Vi y+(s) > Vi () for all s and all x, where V. , is the state value function
of the MDP M.

The Bellman equation for the MDP M is

Vﬂ,x(s) = Z <7" +7 Z s'|s,a) (5/)>

acPs s'eS
:E:XQQE:MW1<4+W§: (s'|s,)V, wo. (18)
GEPs acA s'€S
By multiplying —1 on both sides, we have

(~Vex(s)) = D xlals) Y w(ala)

ac€Ps acA

r+y > p(s]s,a)(— ﬁX@w]. (19)

s'eS

On the other side, for the SAMG, we have the Bellman equation for any fixed policies = and x as

Vi(s) = > x(pls) Y wlalp)

PEP; a€A

(r + Z s'|s, a) (s’)) . (20)

s'eS

When 7 and x are fixed, they can be taken together as a single policy, and the existing results from
Dec-POMDP can be directly applied. Comparing Eq. (20) and (19), we know that V ,(s) = (—=Vz 4 (5)).

An optimal adversary policy x* for the MDP M satisfies VW,X* (s) > f/ﬂ,x(s) for any s and any Y. Therefore,
Xx* also satisfies Vi y+(s) < Vi ,(s) for any s and any x, and an optimal policy of the MDP M is an optimal
adversary policy for the SAMG given the fixed 7.

O

B.5 Optimal Agent Policy With Adversaries

We have established the existence of an optimal adversary in SAMGs. Next, we consider a state-robust
totally optimal agent policy under this optimal adversary. The following proposition demonstrates that a
deterministic agent policy is not always superior to a stochastic policy in SAMGs.

Proposition B.1. There exists an SAMG and some stochastic policy m such that we cannot find a better
deterministic policy ' satisfying Var(s) > Vi(s) for all s € S.

Proof. We prove this theorem by giving a counter-example where no deterministic policy is better than a
stochastic policy. As shown in the two-agent two-state game example in Fig. 8, all 16 deterministic policies
are no better than the stochastic policy 7t(a1|s1) = 7t(a1|s2) = 72(a1|s1) = 72(az|s2) = 0.5. O

Finally, we show a state-robust totally optimal agent policy 7* does not always exist such that Vi (s) > Vi (s)
for any 7 and all s € S in SAMGs in the following theorem.

Theorem 4.3 (Non-existence of State-robust Totally Optimal Agent Policy). A state-robust totally
optimal agent policy does not always exist for SAMGS.

20

Published in Transactions on Machine Learning Research (01/2024)

Proof. We prove this theorem by showing that the two-agent two-state game in Fig. 8 does not have an
optimal policy. We first show that the policy 7 : 7t (a1]s1) = 7t (a1]s2) = 72(az|s1) = 72(az|s2) = 1 is not an
optimal policy. Because agents always select different actions in both states, agents always stay in the same
state and adversaries have no power to change it. The values for each state are Vy, (s1) = 0, Vj, (s2) = 100.
Now we consider the stochastic policy w3 : 7t (a1|s1) = 7t(a1|s2) = 72(ay|s1) = 7%(az|s2) = 0.5. The values
for each state are Vi, (s1) = Vi, (s2) = 50. Because Vj,(s1) > Vy, (s1), the policy 7 is not an optimal policy
for agents.

If there exists an optimal policy 7*, then it must be better than 7; and have Vy-(s1) > 0, Vi« (s2) = 100. In
order to have Vy«(s3) = 100, agents must select different actions in s, and keep receiving the positive rewards
from each step. In order to have Vy«(s1) > 0, agents must have a chance to select the same action in sy, i.e.,
Pr(a' = a? | s1) > 0. However, if Pr(a' = a? | s1) > 0, then adversaries can have x*(s1|s2) > 0 for i = 1,2 to
perturb the state so to s; and reduce Voo (s2). Therefore, no policy can do better than 7y and since 7 is not
an optimal policy, there is no optimal policy for agents. O

In the comparison of 71 and ms in the above proof, it is apparent that it is not always possible to maximize
the state value of all states and that trade-offs may need to be made among different states. Using the
traditional definition of an optimal policy, it is not possible to determine which policy, w1 or m, is better.
However, if we use the worst-case expected state value concept from Definition 4.8 and assume that the
initial state is always so, then we can conclude that 71 is an optimal agent policy, as it gives the maximum
worst-case expected state value of 100 in this case.

C Stage-wise Equilibrium, Robust Total Nash Equilibrium, and Robust Agent Policy

In Theorem 4.3, it has been proven that a state-robust totally optimal agent policy does not always exist for
SAMGs. This section explores alternative solution concepts for the agent policy in SAMGs. We begin by
demonstrating the existence of a unique robust state value function for each agent in C.1. Building on this
property, we establish the existence of a stage-wise equilibrium for each state in C.2. However, we show in C.3
that the robust total Nash equilibrium may not always exist. As an alternative, we propose the concept of a
robust agent policy and demonstrate its existence in C.4.

We first give a review of the Nash equilibrium used in the literature. The Nash equilibrium is a widely
used solution concept in game theory, first proposed by Nash in Nash (1951) for general-sum finite one-shot
games. It states that each player selects the best response strategy to the others’ strategies and no player
would want to deviate from the equilibrium, as doing so would result in a worse utility. This concept was
later extended to infinite games by Debreu (Debreu, 1952), Glicksberg (Glicksberg, 1952), and Fan (Fan,
1952). Markov games, which involve a sequential decision process in a two-player zero-sum setting, were first
defined by Shapley in Shapley (1953). Fink extended the Nash equilibrium concept to Markov games in Fink
(1964) and proved that an equilibrium point exists in n-player general-sum discounted Markov games. The
uncertainty in transition dynamics of a Markov game was considered in Nilim & El Ghaoui (2005); Iyengar
(2005) using a robust optimization approach, with independent proofs for the existence of the equilibrium
point. Additionally, uncertainty in utility (or "reward" in reinforcement learning) was also taken into account
in Kardes et al. (2011) for n-player finite state/action discounted Markov games, with a proof for the existence
of the equilibrium point.

Despite the extensive study of the Nash equilibrium in game theory, the uncertainty in the state has not yet
been explored in the context of Markov games. To the best of our knowledge, we are the first to formulate the
problem of n-player finite state/action discounted Markov games with state uncertainty and to demonstrate
the existence of a stage-wise equilibrium, as well as the non-existence of a robust total Nash equilibrium.

We use the following Assumption C.1 throughout this section.

Assumption C.1. The global state set S and the global action set A are finite sets.

21

Published in Transactions on Machine Learning Research (01/2024)

C.1 Unique Robust State Value Function

Denote the agent policies and adversary policies of all other agents and adversaries except agent i and
adversary i as w~" and x " respectively. We show that there exists a unique robust state value function for

agent ¢ given any 7 ¢ and y .

Definition 4.4 (Robust state value function). A state value function erﬁ* i

:S — R for agent ¢
given 7% and y~? is called a robust state value function if for all s € S,

Vit er(s) = maxcmin 3 x(pls) > w(alp)

pEPs a€A

<r<s,)+ 3 pls']s, a)Vz,,Ti,*,Xms’)) . (21)

s'eS

Note that we use 7(a|p) = IT%_; 7% (a’|p?) to denote the joint agent policy. We use x(p|s) = II'_; x*(p|s) to
denote the joint adversary policy.

Before proving the existence of the unique robust state value function, we first introduce some notations

for this proof. For a given state value function V; __; i S — R defined on a finite state set S, we can
i i _ i

construct a state value vector v* = vec(V; ., .) =[V] . -

where vec(+) is a vectorization function. The infinity norm on V is ||v s = maxses |[Vi(s)|. Define the total
expected return in state s for 7" and x* as

fi@hmt m XX = Y x(pls) Y wlalp)

pEP; acA

<7'(S, a)+v Y p(]s, a)[vecl(vi)}(S')> ; (22)

s'eS

(5)]ses € V := RIS by traversing all states,

where 7% and x~* denotes the agent policies and the adversary policies of all other agents except agent i.

Define the robust state value in state s given 7% and x~* as a function ¢ : V — R,

Yi(v', 7 xTT) = maxmin f{(v, 7, 7T X X T, (23)

i X

Note that 9% gives a real number that denotes the total expected return in state s given 7—¢ and x~*. We can
construct a mapping W3 | :V — V from any state value vector v* to a robust state value vector [} (v')]ses
by traversing all s, that is to say, [P4 | (v")]ses = ¢ (v, 7", x 7).

i

Lemma C.2. For any i € N, the function \IIZT’X :V — V is a contraction mapping given any 7~ and x ' of

other agents and adversaries except agent i and adversary i.

Proof. Let us consider two vectors v?, z* € V. For any i € N, given any 7% and x %, for all s € S, we have
YA XY = maxmin £ (o, 7, 7 X XT)
= fo(o', 7w XX T, (24)
where 7% is the corresponding maximizer, and x** is the corresponding optimizer for 7%*. Similarly, with the
optimizers w"* and ¢7* for the following maximin optimization problem, we have

i

(2, w7 XY = maxmin fI(2', 0, 77 0 xTY)

S w‘L Lpl
> [, T oy x T, (25)

22

Published in Transactions on Machine Learning Research (01/2024)

where

i%

8012* = arg mln fi(Zi, T ,71—_7;7 goi7 X_l)

pi

Then, for any i € N, given any 7—% and x %, for all s € S, it holds that

A C
= fl(vzaﬂ— , T
< fl(,UZ’ 771—

< fah,m,mT

= > 5(p']s)

pPEP;
I @"1s")
ki
=D e
PEPs

I @"1s")
ki

= o5 (p'ls
pEP;
[17*(a*10")
k#i

—z) _¢z(zz 7T_i7X)

T LW T e X T
XX = T T e x T
a(p27X 7,) f; z77T T ’(ADZQ*?X_z)
V[T (P1s) Y- 7™ (a'|p')x
j#i acA
(r—l—’yz s'|s,a)[vec 1(vi)](s')>
s'eS
(P'1s) [TX7 (P71s) D> w™(a’]p") %
j#i acA
(r—l—’yz s'|s,a)[vec 1(2”)](5'))
s’eS
VI (1s) Y 7 (a
V) acA
Zp(s'|s,a)><
s’eS

{[Vec*l(vi)](S') = [vec ™ (2N)](s")}

<D e

PEPs

| ECal)

k#i

=" = 'l

The second inequality in Eq. (27) follows

1) [T (1s) D 7 (a’lp") x

YE] acA
3 B 15 @)l — 2o
s'eS

%

Xi* = argminf;(vi,ﬂ' 77T7iaxi7xii)'

X?

Because for any i € NV, given any 7% and x %, forall s € S

wé(vi’ ﬂ-iivxii) - %[}i(zi?ﬂ-iivxii) < FYH’UZ- - Zl”OOv

Based on symmetry, we have

P, x T =i T X T < A2 - v

Thus, it holds that for any i € N, given any 7—¢ and x—

=v" = 2'l|oo-

%

5 5 (0") = oy (Z)lloo <A[[0" = 2"loo,

that is to say, the function W% is a contraction mapping.

23

(28)

(29)

Published in Transactions on Machine Learning Research (01/2024)

Theorem 4.5 (Existence of Unique Robust State Value Function). For an SAMG with finite state
and finite action spaces, for any i € N, given any 7% and x~* of other agents and adversaries except agent 1

and adversary i, there exists a unique robust state value function V! :S = R for agent i such that
forallse S,

71'1*)(

V*i7ﬂ,i7*7x,i(s) maxmm Z Z m(alp)

pPEPS acA
(s,a —l—wZ s's,)V i - (s’)) (32)
s'eS
Proof. For any i € N, there exists a state value function V*’W i« satisfying (32) if and only if v* =
vec(Vjﬂ_7 <) 15 a fixed point of iV =V, where U] (v z)]565 =i, 7% x %) and ¥ (v, 7% x)

is defined in (23). We use Banach’s fixed point theorem to prove this as follows.

Because any finite-dimensional normed vector space is complete (Kreyszig, 1991), the (V, || - [[o) is a complete
Banach space. Also, for any i € N, given any 7—% and x ¢, the function w7 | is a contraction mapping
according to Lemma C.2. Therefore, by Banach’s fixed point theorem there is a unique fixed point v* such
that ¥ | (v') = v". In other words, for any i € N, given any 7% and x*, there exists a unique V!
such that

ST Z*X

Vi i i(s) = maxmlnf(v mtrh xh x Y. (33)

i
X povi X

Denote the state value function for agent ¢ given any 7% and y~? of other agents and adversaries except

agent ¢ and adversary ¢ as

V;i,w*i,xi7x*i(s) = fo', 7" m XX T, (34)
where vt = vec(V* =i x*l) Then we have the following corollary for Theorem C.1.
Corollary C.3. For an SAMG with finite state and finite action spaces, let V! P ; be the unique robust

state value function for agent i given any w—* and x ¢ such that for all s € S,

V*’7T - (8)—maxm1nf(v o x x)
s Y
= fo(', 7 T X T, (35)

¥ is the corresponding mazimizer at state s, and x** is the corresponding

_i(s) > VT:;i,ﬂ'_i,Xi*,X_i(s) for any 7,

J— 1
where v’ VGC(V* i X_l)’ w

optimizer for ™ at state s, then for state s it holds that V;
and V7, [(s) <V . (8) for any x*.

Wz*ﬂzxz*x Tr”‘n'lxx

XX

C.2 Existence of the Stage-wise Equilibrium

Before we show the existence of the robust total Nash equilibrium, we first show a concept of the stage-wise
equilibrium.

Definition C.4 (Stage-wise Equilibrium). For an SAMG, the policy (7%, x*) is a stage-wise equilibrium
for state s if for all i € A" and all ¢ and x?, it holds that

Vi peie i neie (8) S Vi e e 0a(5)

< Vi i e (5) (36)

where 7% and ¥~ denotes the agent policies and adversary policies of all the other agents except agent 3,
respectively.

24

Published in Transactions on Machine Learning Research (01/2024)

The Nash equilibrium was originally proposed by Nash for finite one-shot games, in which the state transition
of the environment is not considered. When the concept of Nash equilibrium is extended to Markov games,
the existence of the equilibrium is shown through the existence of a state-wise equilibrium for each state. A
policy that is a stage-wise equilibrium for all states is considered a Nash equilibrium for the Markov game.

This idea brings the following proposition to show the relationship between the robust total Nash equilibrium
and the stage-wise equilibrium for SAMGs.

Proposition C.5. The policy (7*,x*) is a robust total Nash equilibrium for an SAMG if the policy (7*, x*)
is a stage-wise equilibrium for all s € S.

Proof. 1t is a natural result according to the Definition 4.6 and the Definition C.4. O

We show the existence of the stage-wise equilibrium defined in Definition C.4 in the following theorem.

Theorem C.6 (Existence of Stage-wise equilibrium). For SAMGSs with finite state and finite action
spaces, the stage-wise equilibrium defined in Definition C.4 exists for any s € S.

Proof. Let us construct a 2n player game for any s € S. We have n agents and n adversaries in the player
set. We introduce uniform notations for the agents and adversaries to describe a 2n player game at state s.
The player set Z = {1,...,n,n+ 1,...,2n}. The first half of the player set {1,...,n} represents agents, while
the second half {n 4 1,...,2n} represents adversaries. The set of available actions for player 7 is

Al x Ao AN =1,
; —
A; = total number: |PZ| (37)
pi-n i=n+1,..,2n.

Each adversary’s action set includes all possible perturbed states in the admissible perturbed state set at
state s. Fach agent’s action set includes all possible joint actions given every possible perturbed state.
Take the two-agent two-state game in Fig. 8 as an example, the player set Z = {1,2,3,4}. Player 3 is the
adversary for agent player 1. Player 4 is the adversary for agent player 2. If the current true state is sy, then
Al = AZ ={(a1,a1), (a1,a2), (az,a2), (az,a1)} are the action sets for two agent players. In A} for agent
1, the joint action (a1, az) means selecting a; if the perturbed state for agent 1 is s; and selecting as if the
perturbed state for agent 1 is so. For two adversary players, A = A;ll = {s1, 52}, as adversaries can perturb
the true state s; to ss.

3
s1

We consider the mixed strategy ol € A(A?) for player i. Note that the mixed strategy for each adversary
gives us the probability distribution of all possible perturbed states for state s, i.e. X'~ "(p'~"|s) = o%(p'™")
for i =n +1,...,2n. Then we show how we can get each agent’s policy 7%(a‘|p’) based on its mixed strategy
ol by calculating the marginal probabilities. Denote the total number of possible perturbed state for agent
i at state s as P such that P = |P{|. Here we drop the subscript s in P for a concise representation.
The perturbed state set for agent i is represented as {pi, p}, ..., p%}. Denote the joint action of agent i as
bl = (b, bY,...,b%) where b is the action selected for the perturbed state p, € Pi. Then the mixed strategy
ol(bi,bs, ..., b%) gives us the joint probability of selecting b} for pt fqr all k =1,2,..., P. We can get the
marginal probability of selecting action a' given the perturbed state pj, € P! as

mailpp) = Y. ol(bl, b, .. b). (38)
{bicAi|bi=ai}

The marginal probability of selecting action a’ given the perturbed state pt is calculated by summing up
the joint probability over all joint actions in which agent ¢ selects a* given the perturbed state pj,. Take the
two-agent two-state game in Fig. 8 as an example, if the current perturbed state for agent 1 is p! = s1, then
agent 1’s policy is

7l (ai|pt = s1) = o' (a1,a1) + o' (ay, a9)

' (aglpt = s1) = o' (ag,a1) + o (ag, az). (39)

25

Published in Transactions on Machine Learning Research (01/2024)

Note that the mixed strategy 0! € A(A%) only gives part of the agent and adversary policies. For example,
the mixed strategy for the adversaries only gives a distribution of the perturbed states for s; = s. We
construct the complete agent and adversary policies as follows: For i = 1,...,n, the agent i’s policy is

Z{bieAgb;ﬂ:ai} Ui(biv bév o bZIID)a

i il i fOI' i: ? GP;,
wi(d'|pt) = U(,Z> Pk (40)
for p' ¢ P,

where U(A?) represents a uniform distribution on A’. For i = 1,...,n, the adversary i’s policy is

o ot (p?), for s; =s;
i i ’ ’ 41
X (#lse) { U(PY), for s; # s, (1)

where U(P?) represents a uniform distribution on P¢.

The utility function for player i is

e e
fo w7t XY,
fori=1,...,n;

ok ;) = § =i O o i, (42)
X x0T,
fori=n+1,...,2n.
where o, denotes the strategies of all other players except player i, v'* = Vec(mi7w_i7*7x_l) and V;ﬂ_, o

is the unique robust state value function of agent ¢ when the policies of other agents and adversaries are
given by 77% and x~*. The v"* satisfies
[vec ™ (v®™)](s) = maxmmf (T x x T, (43)
e x*

where f! is defined for player i in (22) as

fihm m T x T =) xlels) Y w(alp)

pEPs acA

< s,a +72 s'|s,a)[vec 1(vi)}(s’)>.

s'eS

Note that ;% includes both 7=% and x ¢ for any i € Z, and the existence of V!

iy i 18 guaranteed by
Theorem C.1. Thus, the utility function is well-defined.

Since the state set S is finite, P! C S is a finite set for all i € N/, Also, A’ is a finite set for all i € N. Therefore,
A(AY) is compact and convex for all ¢ € Z. Moreover, for all i € 7, u i(ct,-) is linear in of and therefore
continuous and concave in 0. According to the theorem (Debreu Debreu (1952), Glicksberg Glicksberg (1952),
Fan Fan (1952)), the conditions for the existence of a Nash Equilibrium are satisfied, hence, there exists a
Nash equilibrium o for this 2n player game for any s € S such that for any i € Z, ul (a;’ o7 ™) > ul(ol, o7™)
for any o?.

Denote the agent and adversary policies as (7*, x*) that are constructed following Eq. (40) and Eq. (41) by
plugging in the Nash equilibrium (c%*, 0 %). Substituting the (7*, x*) into ul(c®*, o) > ui(ol, o7 %) and

plugging in the definition of the utility functions, for any ¢ = 1,2, ..., n, it holds that

f;:(Ui*,?Ti*,ﬂ'_i*,X”, X—z*) Z f;:(Ui*,ﬂ'i,ﬂ'_i*,Xi*, X—i*), (44)
for any 7w?. Also, for any i = 1,2, ..., n, it holds that
f;'(vi*’ ﬂ_i*, ﬂ,fi*’ Xi*’ Xfi*) S f;(’Ui*, ﬂ_i*, 7_‘,71'*7 Xi’ Xfi*), (45)

26

Published in Transactions on Machine Learning Research (01/2024)

for any x°. Therefore,

max mi_n f;‘(vi*’ ,/Ti7 Wﬁi*, Xia Xfi*)
Tr’l X'L
:fg(vi*awi*7ﬂ_i*7Xi*7X_i*)~ (46)
According to Corollary C.3, for any ¢, it holds that
Vﬂz.i*,ﬂ.—i*7xi*7x—i* (8) > Vﬂz—i,ﬂ-—i*7xi*7x—i>« (S), (47)
Also, for any x?, it holds that
V;i*,ﬂ_i*7xi*7x_n (S) < V,n?:q‘,*,ﬂ.—i*7xi,x—i* (S) (48)
Thus, the stage-wise equilibrium defined in Definition C.4 exists for any s € S. O

C.3 Non-existence of Robust Total Nash Equilibrium

Theorem C.6 demonstrates the existence of a stage-wise equilibrium for any state s € S. In classic Markov
games (Fink, 1964) and Markov games with reward/transition uncertainties (Kardeg et al., 2011; Nilim &
El Ghaoui, 2005; Iyengar, 2005), this result naturally extends to the existence of a Nash equilibrium policy,
as all agents’ and adversaries’ policies are based on the current true state. If a stage-wise equilibrium exists
for any state s € S, then a Nash equilibrium can be constructed by taking the policies for each state s from
their corresponding stage-wise equilibrium for state s (Fink, 1964; Kardes et al., 2011; Nilim & El Ghaoui,
2005; Iyengar, 2005). However, this natural extension cannot be used for our SAMG problem because the
agent’s policy is based on the perturbed state instead of the true state. The problem is that the agent’s
stage-wise equilibrium in one state may not be consistent with its stage-wise equilibrium in a different state.
We illustrate this idea in the following theorem to show that the robust total Nash equilibrium does not
always exist for SAMGs.

Theorem 4.7 (Non-existence of Robust Total Nash Equilibrium). For SAMGs with finite state and
finite action spaces, the robust total Nash equilibrium defined in Definition 4.6 does not always exist.

Proof. We prove this theorem by showing that the following two-agent two-state game in Fig. 9 does not
have a robust total Nash equilibrium. The two-agent two-state game in Fig. 9 is basically the same as the

al # a?
r=20
Ey ®—’£aliaz
r=1 — r=
al = a?
r=20

Figure 9: A new two-agent two-state game example. Agents get reward 1 at state s; if they choose the same
action. Agents get reward 1 at state sy if they choose different actions.

two-agent two-state game in Fig. 8. The only difference is we changed the state transition for the state s;.
The new state transition functions for the state s; are

p(s’ = sols = 51,0 # a2)

p(s’ = s1|s = s1,at = a2)

9

1
1. (49)

We first consider the stage-wise equilibriums for each state.

For state s1, the stage-wise equilibrium requires Pr(a; = a?) = 1 for all . One example of the agent policy is
7t(ay]s1) = wt(a1]s2) = 7%(a1]s1) = 72(a1|s2) = 1. Note that the agent should have a policy for both s; and
s9 even when considering the state-wise equilibrium for the state s; (This means the current true state is s1).

27

Published in Transactions on Machine Learning Research (01/2024)

This is because the adversary can perturb each agent’s state observation to be so. There is no requirement
for the adversary policy in the state-wise equilibrium because when Pr(a} = a?) = 1, the true state never
transits. The state value for sy is V(s1) = 100.

Similarly, for state so, the stage-wise equilibrium requires Pr(aj # a?) = 1 for all t. One example of the agent
policy is wt(ay|s1) = 7t (ay|s2) = 7%(as|s1) = 7%(az|s2) = 1. There is no requirement for the adversary policy
in the state-wise equilibrium of so. The state value for sy is V' (s2) = 100.

Since the stage-wise equilibriums have conflict requirements for the agent policy in s; and ss, there is no
agent policy satisfying the requirements of the stage-wise equilibriums in both s; and ss at the same time.
Therefore, there is no robust total Nash equilibrium for agents in this two-agent two-state game. O

In the proof of Theorem 4.7, we intended to present a straightforward example for ease of understanding.
However, more counter-examples can be more illustrative in demonstrating the prevalence of non-existence
scenarios. As long as the two stage-wise equilibriums have different requirements (not necessarily contrary to
each other), there is no Nash equilibrium.

To elaborate, consider a 2-state 2-action game. If, for state s1, the stage-wise equilibrium necessitates choosing
action a' with probability 0.2 and a? with probability 0.8, and for state sg, the stage-wise equilibrium requires
choosing a' with probability 0.6 and a? with probability 0.4, then it’s clear that no Nash equilibrium can
simultaneously satisfy these requirements. This example illustrates the absence of a robust Nash equilibrium
in such a 2-state 2-action game scenario.

Our conclusion is similar to that of Theorem 4.3, in that it is not always possible to find a policy that is a
stage-wise equilibrium for all states. When facing adversarial state perturbations, trade-offs must be made
among different states. As a result, the traditional solution concepts of an optimal agent policy and the
robust total Nash equilibrium cannot be applied to SAMGs.

C.4 Existence of Robust Agent Policy

We need to consider a new objective that is not state-dependent. Therefore, we propose a new objective, the
worst-case expected state value, in Definition 4.8 as

EsowPr(so) [Vﬂ(SO)])
where Pr(sg) is the probability distribution of the initial state.

The new objective of "worst-case expected state value" is designed specifically for the state perturbation
problem present in SAMGs. It is proposed as a response to our analysis of the non-existence of widely-used
concepts. We demonstrate that these concepts can be easily corrupted by adversaries, requiring agents to
make trade-offs between different states. This is the reason for introducing the new objective. The agent
policy that aims to maximize this worst-case expected state value is referred to as a robust agent policy.

In this section, we show the existence of a robust agent policy to maximize the worst-case expected state
value. We first introduce lemmas for this proof.

Denote p™X°0(s;) as the probability of reaching state s; given the agent policy 7, adversary policy x, and
initial state sg. Let p™X:%°(sq) = 1. The connection between p™X:50(s; 1) and p™X:%0 (s;) is:

P (5441) =

YD D plseralsea)maclp)x(pel s)™ (s:). (50)

st€S ar€Ap€P

For a concise representation, we omit the subscript s; of Ps, in this section. Consider the function

go(mx) = Y D > P (sh)x

st€ES ar€Apt€P

m(arlpe)x(pelse)y rev1 (se, ar)- (51)

28

Published in Transactions on Machine Learning Research (01/2024)

Lemma C.7. The function g;° is continuous on A(A) x A(P) for anyt =0,1,2,...,n where n € N,.
Proof. To prove the continuity, we construct some equivalent vectors as follows. We define a vector @ € RI4I/P!
and 7(a, p) = w(alp) for a € A, p € P, and a vector ¥ € RIPIISI where ¥(p, s) = x(p|s) for p € P,s € S. And
a vector constant 7 € RISIM| where 7(s,a) = (s, a).

ﬁzT = [7T((Z1|p1)7 e 77T(Q‘A| |p1)’ W(a2|p1)7 T aﬂ—(a‘AI |P|P‘)}
X7 =Dt lsh), - x(Plsh), x(p?1sh), -+ x (o Pt
o= [P0 (s = 81), - pT0 (s = 819 (52)

Note that when p ¢ P, then the entry x(p|s) = 0. §; € RISl can be expressed as a linear combination of
Pi—1,7 and X according to (50). Let’s first consider the case ¢ = 0,

Z Z (aolpo)x(polso)r(so, ao) (53)

ag€A poEP

Function g;° can be expressed as a linear combination of 7, @ and . We consider the general case

)=) D> pr(se)x

stES at€EA pL€P

m(adlp)x(pelse)y res (se, ar). (54)

Function ¢;° can be expressed as a linear combination of 7,p;, @ and). Therefore, ¢g;° is continuous on
A(A) x A(P) for any t =0,1,2,...,n where n € N,. O

Lemma C.8. For any so € S, the series {d> 1 9;° (7, x)},n = 1,2, ..., converges uniformly on A(A) x A(P).

Proof. Consider M;°(m,x) = 7' R™** where R™ is the largest absolute value of the rewards. We can check
that |g;°(m, x)| < M;°(m, x) for ¢ > 0 as follows.

197" (7, X)]

= Z Z Zpﬂxw se)m(at|pe)x (pt\st)vtml(swt)

st€ES ar€A p€P

Z Z Z P (s)m(a|pe) x (Pt‘St)’YtRmaw

st€S at€A peP

:,thmaw « Z Z Z P ’X’so St at|pt) (pt|st)

st€ES a€EA pLEP

—~t RMaT o Z Z Z Pr(s¢, at, pt | s0,7,)

st€Sar€ApeP

IN

=7'R™* x 1= My (m, x). (55)
Meanwhile,
e Rmam
ZMS" T X) Z'thmM = — (56)
t=0

29

Published in Transactions on Machine Learning Research (01/2024)

so > g;° converges uniformly on A(A) x A(P) according to the Weierstrass M-test in Theorem 7.10 of Rudin
et al. (1976). O

Lemma C.8 shows the series {}.; ,¢:°(m,x)},n = 1,2, ..., converges uniformly on A(A) x A(P) for any
so € S. In the following lemma, we show Y .2 ¢;°(m, x) is continuous on A(A) x A(P) for any sg € S.

Denote h (m, x) = Y00 9:° (T, X).
Lemma C.9. The function h*° is continuous on A(A) x A(P) for any so € S.

Proof. Consider hio(m, x) = > g:°(m, x) for n € N4. Since h2° is a linear combination of {g;° }+=0,1,2,..- n
and g¢;° is continuous on A(A) x A(P) for any t =0,1,2,--- ,n according to Lemma C.7, the sequence {h5°}
is a sequence of continuous functions on A(A) x A(P). Meanwhile, h?® — h® uniformly on A(A) x A(P) for
any sg € S according to Lemma C.8, therefore h%0 is continuous on A(A) x A(P) for any sg € S according
to the uniform limit theorem in Theorem 7.12 of Rudin et al. (1976). O

The following theorem shows finding a robust agent policy is equivalent to solving a maximin problem.

Theorem 4.10. Finding an agent policy m to maximize the worst-case expected state value under an optimal
adversary for m is equivalent to the mazimin problem: max, miny > Pr(so)Vz y(s0)-

Proof. According to the Proposition 4.1, for any fixed agent policy 7, there exists an optimal adversary policy
x* such that V(s¢) = min, Vx ,(so) for any sop € S. Thus,

Hl;lX ESONPI‘(SO) [‘77\' (50)}
i Eey) i Ve (s0)| (B (2)

= max Z Pr(so) min Vy ,(so) (Definition of Expectation)
m X

S0

= max min Z Pr(so)Vzx(s0), (Proposition 4.1) (57)

™ X
S0

Finally, we show the existence of the robust agent policy to maximize the worst-case expected state value in
the following theorem.

Theorem 4.11 (Existence of Robust Agent Policy). For SAMGSs with finite state and finite action spaces,
there exists a robust agent policy to maximize the worst-case expected state value defined in Definition 4.8.

Proof. According to Theorem 4.10, finding an agent policy 7 to maximize the worst-case expected state value
under an optimal adversary for 7 is equivalent to the following maximin problem:

max F(m)

= max Eg~Pr(so) [Vw(so)]

= i P Va
max min Z (50)Vr x(s0)

s0

= max min J(m, x), (58)
T X

where the objective function in (58) can be expanded as follows:

J(m,x)
= ESONP[‘(S[)) [Vﬂ',x (80)]

30

Published in Transactions on Machine Learning Research (01/2024)

= Z PI‘(S())VmX(SO)
s0

- ZPT(SO)anmpwx Z“Ytrtﬂ(st,at) | 50
50 t=0

oo
= ZPr(sO) ZEatNﬂ'7pt"’X [’Ytrt+1(5t,at) | 30]

S0 t=0

(linearity of the expectation)

= 2_Prle0) DI SIS

t=0 s; €S ar €A pEP

m(a|pe)x (Pt\St)’V Ter1(St, at)

= ZPr 50 th ™, X)
= ZPI‘ 30 hSO' (59)
S0

Because J(m,x) is a linear combination of {h*0}s cs, S is finite, and A is continuous on A(A) x A(P)
for any sy € S according to Lemma C.9, the objective function J(m, x) = >_, Pr(so)h* is continuous on
A(A) x A(P). Consider the function F'(r) = min, J(m, x). Since the adversary policy space A(P) is compact,
the function F is continuous in 7. Meanwhile, the agent policy space A(A) is closed. Therefore, there exists
an agent policy 7 to maximize F according to the extreme value theorem.

O

Theorem 4.11 shows the existence of a robust agent policy. Different from the definitions of the state-robust
totally optimal agent policy and robust total Nash equilibrium, the worst-case expected state value objective
does not require the optimality condition to hold for all states. Agents won’t get stuck in trade-offs between
different states, therefore, we can find a robust agent policy to maximize the worst-case expected state value
for the SAMG problem.

Now look back at the two-agent two-state game in Fig. 8. If we use the worst-case expected state value
concept from Definition 4.8 and assume that the initial state is always so, then we can conclude that 7 :
7l(a1]s1) = 7t(ai|s2) = m2(az|s1) = m2(az|s2) = 1 is a robust agent policy, as it gives the maximum
worst-case expected state value of 100 for this game.

D Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm

In general, it is challenging to develop algorithms that compute optimal or equilibrium policies for MARL
under uncertainties (Zhang et al., 2020b; 2021). Our algorithm adopts centralized training and decentralized
execution paradigm following the popular framework in Lowe et al. (2017). During training, there is a
centralized critic Q(s, a) that records the total expected return given the global state s and global action a.
The connection between Q(s,a) and V (s) is that for any i € N, s € S,a € A,

Q(s,a) =r(s,a) —&—72 s'|s,a)V(s'). (60)

s’eS

Each agent’s state input for the actor is perturbed by an adversary x*(-|s) : S — A(P?). During execution,
each agent i selects action a’ based on the perturbed state p' € S using a trained policy 7 : S — A(A?).
We want to find a policy 7 for each agent to maximize the worst-case expected state value in Definition 4.8
under adversarial state perturbations.

As shown in Alg. 1, our algorithm has a centralized critic network @ for training. Each agent has one actor
network 7" and one adversary network x’. The critic @ takes in the true global state and global action

31

1

2
3
4

© ® N O @

10
11
12
13
14
15
16
17
18
19
20
21

Published in Transactions on Machine Learning Research (01/2024)

Algorithm 1: Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm

Randomly initialize the critic network @, the actor network 7?, and the adversary network x* for each
agent;

Initialize target networks @Q’, %, x*;

for each episode do

The initial state so < sample from Pr(sg);
Initialize a random process X for action exploration;
for each time step do
for i=1 to n do
p' < sample from x*(-|s);
a’ <+ sample from 7¢(-|p?) + X;
end
Execute actions a = (a', ..., a");
Obtain the reward r and the next state s’;
D+ DU(s,a,rs);
s+ s
Q@ + MGD_ Optimizer(Q, D, Q", 7', x');
/* Mini-batch gradient descent optimizer for critic. */
m, x + GDA_ Optimizer(Q, m, x);
/* Gradient descent ascent optimizer for policies. */
Update all target networks: 0% < 76° + (1 — 7)6".
end
end

during the training process. It returns a Q-value denoting the total expected return given s and a. The state
transition experience is represented by (s, a,r,s’) where s’ is the next state. It is stored in a replay buffer
D for the critic network’s training. We apply "replay buffer" and "target network" techniques (Mnih et al.,
2015). The critic network is trained with a mini-batch gradient descent optimizer in line 15. In line 16, we
use Gradient Descent Ascent (GDA) optimizer (Lin et al., 2020b) to update parameters for each agent’s actor
network and adversary network for the maximin problem max, min, > Pr(so)Vz x(so) in Theorem 4.10. A
detailed introduction for the GDA optimizer is included in Appendix E.4.

We have added an adversarial network that inputs the true state and outputs a perturbed state in RMA3C.
This is in contrast to MADDPG and MAPPO, which do not include such a network. Compared to M3DDPG,
which has a target policy network for each agent with outputs for the action space, our adversarial network’s
output pertains to the state space, indicating a different computational load.

E Implementation Detail

All hyperparameters used in experiments are listed in table 3.

E.1 Environments

We have tested our algorithm in environments provided by Lowe et al. (2017) as shown in Fig. 10.

E.1.1 Cooperative navigation (CN)
This is a cooperative task. There are 3 agents and 3 landmarks. Agents want to occupy/cover all the

landmarks. They need to cooperate through physical actions about their preferred landmark to cover. Also,
they will be penalized when collisions happen.

32

Published in Transactions on Machine Learning Research (01/2024)

Table 3: Hyperparameters for our RMA3C algorithm and the baselines.

Parameter | RMA3C | M3DDPG | MADDPG | MAPPO
optimizer for the critic network Adam Adam Adam Adam
learning rate for agent policy 7 0.01 0.01 0.01 0.0007
learning rate for adversary policy x 0.001 / / /
discount factor 0.95 0.95 0.95 0.99
replay buffer size 108 108 106 /
activation function Relu Relu Relu Relu
number of hidden layers 2 2 2 1
number of hidden units per layer 64 64 64 64
number of samples per minibatch 1024 1024 1024 1
target network update coefficient 7 0.01 0.01 0.01 /
GDA optimizer steps 20 / / /
radius d 1.0 / / /
uncertainty level A 0.5 0.5 0.5 0.5
upper boundary u 1.0 1.0 1.0 1.0
lower boundary [-1.0 -1.0 -1.0 -1.0
episodes in training 10k 10k 10k 10k
time steps in one episode 25 25 25 25

a) Cooperative navigation b) Exchange target

t3
agent 2 agen agent 2

c) Keep-way d) Physical deception
®—. 4w/
agent 1 A i NS
/" landmar i]
27k i \

" ‘ adversary

agent 1 agent 2
adversary

Figure 10: Some environments to test our algorithm, including a) Cooperative navigation (CN) b) Exchange
target (ET) ¢) Keep-away (KA) d) Physical deception (PD).
E.1.2 Exchange target (ET)

This is a cooperative task. There are 2 agents and 3 landmarks. Each agent needs to get to its target
landmark, which is known only by another agent. They have to learn communication and get to landmarks.
Besides, both of them are generous agents that pay more attention to helping others, i.e. rewarded more if
the other agent gets closer to the target landmark.

33

Published in Transactions on Machine Learning Research (01/2024)

E.1.3 Keep-away (KA)

This is a competitive task. There is 1 agent, 1 adversary, and 1 landmark. The agent knows the position of
the target landmark and wants to reach it. The adversary does not know the target landmark and wants to
prevent the agent from reaching the target by pushing them away or occupying the target temporarily.

E.1.4 Physical deception (PD)

This is a mixed cooperative and competitive task. There are 2 collaborative agents, 2 landmarks including
a target, and 1 adversary. Both the collaborative agents and the adversary want to reach the target, but
only collaborative agents know the correct target. The collaborative agents should learn a policy to cover all
landmarks so that the adversary does not know which one is the true target.

E.2 Baselines

We compare the performance of our algorithm with MADDPG (Lowe et al., 2017), M3DDPG (Li et al., 2019),
and MAPPO (Yu et al., 2022) and follow their open-source implementation. We have a brief introduction of
these methods in the following sections. There is no robustness considered in MADDPG and MAPPO. The
M3DDPG considers the robustness of training partner’s policies, but it does not consider state uncertainty.
The MAPPO is the multi-agent version of the Proximal Policy Optimization (PPO), a popular policy gradient
algorithm. Because MAPPO only works in fully cooperative tasks, we only report its results in cooperative
navigation and exchange target. Note that MAPPO is also used in Guo et al. (2020) but they do not provide
an open-source implementation. Therefore, we select the latest implementation in Yu et al. (2022) with the
open-source code.

E.3 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

It is difficult to apply single-agent RL algorithms directly to the multi-agent case because the environment’s
state transition is also influenced by the policy of other agents and it is non-stationary from a single agent’s
view. To alleviate this problem and stabilize training, the MADDPG algorithm is proposed using a centralized
@ function that has global state and global action information (Lowe et al., 2017). It assumes all agents are
self-interested and every agent’s objective is to maximize its own total expected return. The objective for
agent i is J(0") = E[R] and its gradient is

Vi J(07) = (61)
Ex a~D [VQiui(Oi)vaiQi(X7 a',..,a")

at=p’t (oi):l ;

where Q%(x,al,...,a") is a centralized action-value function, x = (o',...,0"), and o' represents agent
i’s observation. The experience replay buffer D contains transition experience x,al,...,a”, x', 7!,,r™ to
decorrelate data. The centralized @' can be trained using the Bellman loss:

‘C(ez) = Ex,am,x’wD[y - Qi(xv a17 LEED) an)]Q’

y=r"+vQ"(x,a", ..., a")|ai =i (o) (62)

where Q¥ is the target network whose parameters are copied from Q with a delay to stabilize the moving
target. Note that this algorithm adopts a centralized training and decentralized execution paradigm. When
testing, each agent can only access its local observation to select actions.

In M3DDPG (Li et al., 2019), the uncertainty from the training partner’s policies is considered: all other
partners are considered as adversaries that select actions to minimize the total expected return of the
training agent. In other words, when updating both actor and critic, they select training partner’s actions by
a’7' = argming;» Q'(x,a', ...,a").

34

Published in Transactions on Machine Learning Research (01/2024)

E.4 Gradient Descent Ascent (GDA)

Gradient Descent Ascent (GDA) (Lin et al., 2020b) is currently one widely-used algorithm for solving the
following minimax optimization problem:

minmex f (z,y). (63)

GDA simultaneously performs gradient descent update on the variable x and gradient ascent update on the
variable y according to (64) with step sizes 7, and 7.

Ti41 = Tt — nzvmf(xtu yt)7
Yer1 = Yt + 0y Vy f (26, y1)- (64)

It has a variety of variants to accommodate different types of geometries of the minimax problem, such as
convex-concave geometry, nonconvex-concave geometry, nonconvex-nonconcave geometry, etc.

Cooperative navigation Exchange target

-50 :/\-: é 5;5
WV

Keep-away

1
~
[

|
=
o
=)

he) ke el
-125
© -500 © —100 T
2 2 2
g _550 g g -15.0
s - Bous
-600 -
2 Algorithm 2 Algorithm 2
@ _650 — RMA3C @ 500 —— RMA3C @ _20.0
< MADDPG with noise MADDPG with noise & Algorithm
@ -700 MADDPG with x* 11 MADDPG with x* 9 55 —— RMA3C
£ —— M3DDPG with noise £ 250 —— M3DDPG with noise £ MADDPG with noise
~750 —— M3DDPG with x* - —— M3DDPG with x* 250 —— MADDPG with x*
‘ —— MAPPO with noise —— MAPPO with noise ’ —— M3DDPG with noise
—800 MAPPO with x* MAPPO with x* —— M3DDPG with x*

-300 =275

80 100 0 20 80 100 0 20 60 80 100

40 60 40 60 40
episode(k) episode(k) episode(k)
Figure 11: Our RMA3C algorithm compared with several baseline algorithms during the training process. The
results showed that our RMA3C algorithm outperforms the baselines, achieving higher mean episode rewards
and displaying greater robustness to state perturbations. The baselines were trained under either random
state perturbations or a well-trained adversary policy x* (adversaries that are trained for the maximum
training episodes in RMA3C). Overall, our RMA3C algorithm achieved up to 58.46% higher mean episode

rewards than the baselines.

E.5 Training Comparison Under different Perturbations

We first compare our algorithm with baselines during the training process to show that our RMA3C algorithm
can outperform baselines to get higher mean episode rewards under different state perturbations. Note
that our RMA3C algorithm has a built-in adversary to perturb states, so we do not train it under random
state perturbations. Comparing RMA3C to other baselines with different state perturbations, the RMA3C
gets higher mean episode rewards. It shows our RMA3C algorithm is more robust under different state
perturbations. Comparing each baseline with random state perturbations to the same baseline with the
well-trained adversary policy x*, we can see the adversary trained by the RMA3C is more powerful than
the random state perturbations. Because the adversary policy x* intentionally selects state perturbations to
minimize agents’ total expected return. The mean episode reward of the last 1000 episodes during training
is shown in Table 4. Our RMA3C algorithm achieves up to 58.46% higher mean episode rewards than the
baselines under different state perturbations.

E.6 Cooperative Navigation With 6 Agents

We compare our RMA3C algorithm with baselines in the cooperative navigation scenario with more agents
added. The original cooperative navigation environment has 3 agents and the training results are shown in
Fig. 4. We show the training results with 6 agents in Fig. 12. After increasing the total number of agents

35

Published in Transactions on Machine Learning Research (01/2024)

Table 4: Mean episode reward of the last 1000 episodes during the training. Our RMA3C algorithm achieves
up to 58.46% higher mean episode rewards than the baselines. The corresponding figure is 11, and it is also
included in the main content.

CN ET KA

RMA3C (ours) -401.7 -47.02 -8.93
MADDPG w/ N -506.48 -63.76 -13.76
M3DDPG w/ N -506.54 -61.71 -13.45
MAPPO w/ N -569.07 -94.28 -
MADDPG w/ x* -548.80 -77.01 -16.30
M3DDPG w/ x* -547.99 -75.87 -16.26
MAPPO w/ x* -585.83 -113.19 -

Cooperative navigation with 6 agents

|
w
5
o
o

Algorithm
_4200 —— RMA3C
MADDPG with x*
—— M3DDPG with x*
—— MAPPO with x*

mean episode reward

0 20 40 60 80 100
episode(k)

Figure 12: Our RMA3C algorithm compared with baselines during the training process in the cooperative
navigation scenario with 6 agents added. Our algorithm gets higher mean episode rewards in the environment
with an increased agent number.

in the environment, our RMA3C algorithm still gets higher mean episode rewards than baselines under
adversarial state perturbations.

We also test the learned policies in the 6-agent Cooperative Navigation (CN) environment to show our
RMA3C policy is more robust under adversarial state perturbations. During testing, the mean episode
rewards are averaged across 2000 episodes and 10 test runs for each algorithm. We put all the well-trained
agents using different algorithms into the 6-agent CN environment with well-trained adversary policies x*
to perturb states. The result is shown in Table 5. Our RMA3C policy achieves up to 9.57% higher mean
episode reward than the baselines with well-trained adversarial state perturbations. The result shows that our
RMAZ3C algorithm achieves higher robustness for a multi-agent system under adversarial state perturbations.

F Discussions and Future Work

In this section, we add several discussions of our work as a first attempt to study different solution concepts
of the SAMG problem. We also point out several future directions for the SAMG problem.

F.1 GDA Convergence

In our RMA3C algorithm, we use Gradient Descent Ascent (GDA) optimizer (Lin et al., 2020b) to update
parameters for each agent’s actor network and the adversary network. Each agent updates the actor network to
maximize the worst-case expected state value in Definition 4.8, while the corresponding adversary updates the
adversary network to minimize the worst-case expected state value. How to solve a non-convex non-concave
minimax problem is a very challenging and not yet well-solved problem. To the best of our knowledge, the
GDA optimizer is currently one of the most widely used and accepted optimizers for this type of problem,

36

Published in Transactions on Machine Learning Research (01/2024)

Table 5: Mean episode rewards of 2000 episodes during testing under well-trained adversarial state perturba-
tions in the cooperative navigation environment with 6 agents. Our RMA3C policy achieves up to 9.57%
higher mean episode reward than the baselines with well-trained x*.

Environment CN with 6 agents

MADDPG w/x* -3405.274 + 66.18
M3DDPG w/x* -3452.22 + 80.16
MAPPO w/x* -3121.90 + 18.49
RMA3C w/x* -3079.37 + 16.16

though it is not guaranteed to always converge (Jin et al., 2020; Razaviyayn et al., 2020; Lin et al., 2020Db).
Our RMA3C algorithm with GDA optimizer shows performance improvement in terms of policy robustness
in our experiments. Note that we only use the GDA optimizer as a tool in our algorithm by leveraging
the existing literature on solving non-convex non-concave minimax problems. Future advances of numerical
algorithms and solvers for this kind of minimax problem will also benefit our algorithm by replacing the GDA
optimizer with new advances.

F.2 Non-Markovian Policy

In this work, we give the first attempt to focus on the Markovian policy under adversarial state perturbations.
Dealing with the non-Markovian policy will significantly complicate the problem. We are aware of the
suboptimality of Markovian policies, however, considering the computational cost of the non-Markovian
policy of MARL, we decide to focus on Markovian policies in this work for computational tractability.
Moreover, as shown in Proposition 3.2, our SAMG problem is different from a Dec-POMDP. Considering
a non-Markovian policy based on the observation-action history may not give an advantage to the agents.
For example, for the two-agent two-state game in Fig. 8, if the adversary randomly perturbs the state with
X'(s1]s2) = 0.5 for i = 1,2, then the agents still only have a 50% chance to guess the true state even with
observation-action history. Considering another example for the two-agent two-state game in Fig. 8, if the
adversary perturbs all states to state s; with x%(s1]s2) = 1 and x%(s1]s1) = 1 for i = 1,2, then the agents
cannot get extra information for the true state even with observation-action history. We leave the formal
analysis of non-Markovian, non-stationary policy as future work.

F.3 Non-collaborative Game

In the problem formulation, we consider a collaborative game, where all agents share one stage-wise reward
function. The new objective for the SAMG, the worst-case expected state value under state perturbations, is
well-defined as proved in Theorem 4.11. For non-collaborative games, if each agent has its own reward function,
and adversary ¢ wants to minimize the total expected return of agent ¢, then for a fixed agent policy m, the n
adversaries are playing a Markov game. In this case, only the Nash equilibrium exists among n adversaries,
but optimal adversary policy may not exist. Therefore, for non-collaborative games, the worst-case expected
state value is not well-defined. Even though the worst-case expected state value is not well-defined for
non-collaborative games, the experiment results of the competitive games and mixed-cooperative-competitive
game environments in Table 1 also show that our RMA3C algorithm can get larger mean episode rewards in
non-collaborative games under adversarial state perturbations. Hence, our RMA3C algorithm can increase
the robustness of policies of non-collaborative games in empirical experiments. We leave the formal analysis
of the non-collaborative games as future work.

37

	Introduction
	Related Work
	State-Adversarial Markov Game (SAMG)
	Solution Concepts
	Optimal Adversary Policy
	State-robust Totally Optimal Agent Policy
	Robust Total Nash Equilibrium
	Robust Agent Policy

	Experiments
	Baselines
	Comparison Results

	Conclusion
	Comparison with Dec-POMDP and Markov Games
	Comparison with Dec-POMDP
	SAMG cannot be solved by Dec-POMDP: Two-Agent Two-State Game Example
	Comparison with Markov Games

	Optimal Adversary Policy and Optimal Agent Policy
	Optimal Agent Policy Without Adversaries
	A Stochastic Policy With Adversaries
	Deterministic Policies With Adversaries
	Optimal Adversary Policy
	Optimal Agent Policy With Adversaries

	Stage-wise Equilibrium, Robust Total Nash Equilibrium, and Robust Agent Policy
	Unique Robust State Value Function
	Existence of the Stage-wise Equilibrium
	Non-existence of Robust Total Nash Equilibrium
	Existence of Robust Agent Policy

	Robust Multi-Agent Adversarial Actor-Critic (RMA3C) Algorithm
	Implementation Detail
	Environments
	Cooperative navigation (CN)
	Exchange target (ET)
	Keep-away (KA)
	Physical deception (PD)

	Baselines
	Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
	Gradient Descent Ascent (GDA)
	Training Comparison Under different Perturbations
	Cooperative Navigation With 6 Agents

	Discussions and Future Work
	GDA Convergence
	Non-Markovian Policy
	Non-collaborative Game

