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ABSTRACT

The increased availability of datasets during the COVID-19 pan-
demic enabled machine-learning approaches for modeling and fore-
casting infectious diseases. However, such approaches are known
to amplify the bias in the data they are trained on. Bias in such input
data like clinical case data for COVID-19 is difficult to measure due
to disparities in testing availability, reporting standards, and health-
care access among different populations and regions. Furthermore,
the way such biases may propagate through the modeling pipeline
to decision-making is relatively unknown. Therefore, we present a
system that leverages a highly detailed agent-based model (ABM)
of infectious disease spread in a city to simulate the collection of
biased clinical case data where the bias is known. Our system allows
users to load either a pre-selected region or select their own (using
OpenStreetMap data for the environment and census data for the
population), specify population and infectious disease parameters,
and the degree(s) to which different populations will be overrep-
resented or underrepresented in the case data. In addition to the
system, we provide a large number of benchmark datasets that
produce case data at different levels of bias for different regions.
We hope that infectious disease modelers will use these datasets to
investigate how well their models are robust to data bias or whether
their model is overfit to biased data.
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1 INTRODUCTION
Recent epidemics and pandemics caused by infectious diseases such
as SARS-CoV-2, monkeypox, and influenza have led to a plethora
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of research efforts in modeling and forecasting the spread of infec-
tious diseases. The availability of large infectious disease datasets
has enabled many data-driven models including sequential [23],
graph neural network [6], density estimation [5], ensemble [16], and
contrastive predictive coding [19]. A recent survey of data-driven
infectious disease forecasting models can be found in [17].

Datasets for these models come from local health organizations
collecting clinical test results and voluntary positive at-home test
reports. These observed datasets of cases are known to suffer from
numerous types of bias across geographic regions and demographic
populations [9]. For COVID-19 case data, some of this bias stems
from the willingness, access, or ability of certain groups to partici-
pate in testing. Participation in testing is influenced by symptom
severity [9], symptom recognition [4], occupation [20], ethnicity [7],
frailty (susceptibility of more significant adverse effects) [10], place
of residence [8], social connectedness [14], internet access [3] and
medical/scientific interest [21]. Addressing and correcting the bias
in key datasets used as inputs for disease models is essential. How-
ever, this is a challenging task. Although we know that these biases
exist (as surved in [9]), we don’t know the exact degrees of bias to
be corrected. This raises an imminent question that has been raised
in a recent vision paper [26]: To what degree does biased data yield
biased infectious disease predictions?

For example, assume an outbreak of a novel infectious disease
that spreads equally across all populations. For this disease, kits to
test, detect, and report the disease are available but expensive. We
can expect that low-income populations will be under-sampled in
the observed data, but we don’t know to what degree. Now assume
a predictive Al model (such as those in [17]) trained on the observed
data predicts a steady number of cases in affluent neighborhoods,
but a low number of cases in all low-income neighborhoods. Later,
as actual case numbers are observed, this model may indeed yield
a smaller prediction error than classic infectious disease prediction
models that aim to capture underlying processes driving the disease
outcomes. But due to the data bias, these predictions, despite being
close to the (biased) observed cases, may be far from the (unob-
servable) ground truth. In contrast, a traditional compartmental
Susceptible-Infectious-Recovered (SIR) model [11] may be able to
leverage epidemiological information to predict equal spread across
all populations. Such predictions would be closer to the ground
truth (as the equal spread assumed in the example) but would have
a high error compared to the observed but bias data.

This example assumes that AI models may overfit to observable
biased data and fail to model unobservable true cases. Whether this
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(a) Simulation GUI: Spatial Network with Agents (Left), Epidemiological
Curves (Top-Right), Dynamic Disease Spread Parameters (Bottom-Right)

(b) GUI to Generate Single- (¢) GUI to Generate Multi-
Parameter Bias (Section 2.3) Parameter Bias (Section 2.4)

Figure 1: Screenshot of Modules of our Demonstration

overfitting really happens is hardly proven in the real-world, where
we cannot observe unobservable data as we don’t know what we
don’t know. This demonstration aims to bridge this gap using a
simulated world, in which we can control the bias in the collected
data and empirically evaluate the robustness of different infectious
disease models to data bias. Our goal is not to provide realistic
unbiased disease data but to understand the bias in silico [25] in the
simulated world. This simulation builds upon the Patterns of Life
simulation [12, 28], a scalable agent-based simulation of human
behavior that was recently used to generate large-scale and socially
plausible location-based social network data [27] and trajectory
data [2]. To simulate the spread of disease and the process of gen-
erating observable biased datasets, we extended the Pattern of Life
Simulation with the following features:

o An infectious disease model as detailed in Section 2.1.

o Functionality to use real-world population census data described
in Section 2.2 to simulate any region in the world.

o To generate biased observations, we offer a feature to adjust
the proportion of different population groups (e.g., age, gender,
income) reporting their cases as described in Section 2.3.

o To understand multivariate bias that is confounded by multiple
population attributes, Section 2.4 provides a logistic regression
to define the probability of an agent reporting their cases based
on all their population characteristic.

e We provide a demonstration of simulation and data generation
for showcase at SIGSPATIAL’24 described in Section 3. The im-
plementation details can be found on our Github [18].

2 FRAMEWORK

The Patterns of Life simulator is an open-source software written
in Java that mimics human behavior by simulating Maslowian [15]
needs of individual agents. Agents need to go home to satisfy their
Shelter Need, agents need to go home or to a restaurant to eat and
satisfy their Food Need, agents need to go to work to satisfy their
Financial Needs, an agents need to meet and interact with other
agents to satisfy their Love Need. Based on their needs, agents
trigger actions and plan their activities following the Theory of
Planned Behavior [1]. A detailed simulation description is found
n [28]. This section describes how we extend the Patterns of Life
simulation to 1) simulate the spread of an infectious disease among
the agents, 2) use real-world census data to sample realistic agent
attributes, and 3) generate biased infectious disease case data by
controlling the rates at which different populations report cases.

For all following simulation runs, we used a population of 5,000
agents for 30 simulation days. Each simulation took approximately
5 hours running single-threaded on an Intel NUC using an Intel
i5-1135G7 CPU with 2.40GHz.

2.1 Infectious Disease Model

We implemented the spread of an arbitrary infectious disease in the
ABM following an SEIR model [11]. In the SEIR model, an agent
is initially Susceptible (S) and can be infected by Infectious agents.
Then after being infected, the agent immediately becomes Exposed
(E) and is unable to spread the disease or be infected again by
another source, but will become Infectious after dg simulation days.
Once Infectious (I), the agent may spread the disease to other agents
at the same physical location with an infection probability pr. An
Infectious agent will stay at home for a number of d} ;. days.
The infectious stage lasts dy days after which the agent becomes
Recovered (R) who will be immune to the disease for dr days. The
simulator will collect when, where, and by which agent, an agent
is infected, and write into the output file in chronic order.

The functionalities of the disease model are presented with the
Graphical User Interface (GUI) shown in Figure 1a. The left part
shows the environment (roads and buildings). Figure 1a shows the
environment for Downtown Atlanta, GA, USA, but users can obtain
the environment data from OpenStreetMap as described in [13].
Agents are color-coded by their disease status. The percentages of
agents in each disease status (S,E,LR) over time are plotted on the top
right window of Figure 1a. The parameters of the infectious disease,
such as dg, py, A ome- 41> and dg can be changed at simulation run-
time using the GUI elements shown at the bottom right window.

2.2 Agent Generation with Census data

Instead of uniformly assigning attributes of agents and locating
them over the map, agent generation is informed by real census
data. We first split the entire map used in the simulation into census
regions such as census tracts for the United States or Townships in
China. Based on the census population of each census region, we
create a stratified population sample to ensure that regions having
a large population in the real world have a large population in the
simulation. For each generated agent, we calculate the distribu-
tion of agent attributes based on census distributions. For example,
Figures 2a)-d) depict the map of Atlanta downtown, divided into
census tracts. Figures 2a and 2d show that the age and gender dis-
tributions in this area are quite uniform but Figures 2b and 2c show
a trend of increasing income and White population from East to
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Figure 2: Visualization of sampling rates in the Atlanta Downtown study region. Figures a)-d) show census data. Figures e)-t)
show biased sampling rates of a simulated infectious disease using respective sampling rates. For example, Figure e) shows
resulting sampling rates for agents aged 50 or older having a probability of 80% and a probability of 20% for other agents.

West. We also observe a small census tract to the West that ap-
pears to have an unusual high aged population with extremely low
income. This is explained by the low population (and thus, high
variance of the mean) of this census as shown in Figure 3a which
shows the census population for each region. In addition to the
attributes depicted in Figure 2 our simulation also supports any
other attributes provided by census data, such as education level,
annual household income, or residency status as used in Tianhe,
Guangzhou, China. Technically, any attributes with census data
could be considered by slightly modifying the source files. Census
data and corresponding shapefiles [22] across the United States is
available online and instructions on how to obtain the data for a
new study region (for any place in the United States) is described in
our Github repository [18]. We note that, as census data provides
attribute distributions of agents independently for each attribute, it
is possible that the simulation may generate a 16-year-old agent
having a graduate degree earning $300k a year.

2.3 Data Generation with Single-Parameter Bias
The simulation GUI, as in Figure 1b, provides the capability to inject
different biases into the case dataset, simulating reporting bias based
on population demographics. Users may select an attribute (e.g. age)
and inject a bias within it, where some groups (e.g. ages 15-30) are
underrepresented or overrepresented in the case data. In the GUI,
for each attribute, multiple key-value pairs can be assigned. The key
of a pair can be a consecutive range of value (e.g., [15-30] for age), a
specific characteristic (e.g., “White” for race), or "other". The value
of the pair should be a positive real value in [0, 1] representing
the corresponding reporting rate. Following the previous example
of “Age”, the line [15-30]:0.3/[50-80]:0.8/0ther: 0.5 implies

that agents between the ages of 15 and 30 will have a 30% chance
of reporting, agents between the ages of 50 and 80 will have an 80%
chance, and all others will have 50% chance.

The system allows to generate different types and degrees of
biased data as we exemplary show for the Atlanta region in Fig-
ures 2e-2p. In this example, each attribute is binary: age over 50
years, annual income exceeding $70,000, belonging to a non-white
racial group, and being female. We generated biased observational
datasets using three scenarios having a reporting rate of 0.8/0.7/0.6
for the corresponding group and 0.2/0.3/0.4 for all other groups. We
observe that, depending on the data collection bias, the correspond-
ing infectious disease cases become similar to the corresponding
census distributions. To understand the bias in these datasets, we
can compare these datasets to the corresponding simulated “Ground
Truth”! of case rates shown in Figure 3b. As we see, the simulated
disease was oblivious of population characteristics and affected
all populations equally (subject to random variance due to agents
chance of coming into contact with an infected agent). We can see
that the Ground Truth of case rates differs drastically from the bases
observed in the biased datasets shown in Figures 2e-2p. We share all
datasets used to create these figures in our GitHub repository [18].
2.4 Data Generation with Multivariate Biases
We also implemented a model considering multivariate biases by
calculating the reporting rate with a logistic regression model. Due
to the current lack of data about the relationship between human
characteristics and chances of reporting, we used a model originally
fitted to predict mask usage in the United States [24] and assume
that wearing a mask is a proxy for self-reporting of positive tests.

1Ground Truth in the simulated world, not the real-world.
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Figure 3: Choropleth maps of the census population numbers
and the simulated infectious diseases cases.

The original model takes the input of five binary variables, where
‘true’ indicates the following: an individual’s perceived vulnerabil-
ity is greater than 50%, their annual income is greater than 70k,
their race is white, their political leaning is Democratic, and their
gender is male. The model from Von Hoene et al. [24], trained on
individual-level survey data, learns the odds that individuals with
these different attributes will report their positive test. We modified
the model slightly, assuming an agent age over the age of 50 has a
"perceived vulnerability > 50" (true), and ignoring the political vari-
able, as these features are not available in the simulation. The model
is used to predict the reporting rate of each agent, stored in file
bias.properties in our system. These parameters are also editable
for future research. Figure 1c presents the settings of this model that
the user can interact with. The considered attributes are specified
under the “Init” tag, separated by the symbol “/”. The intercepts and
the odds ratios can be edited. With this default setup, a 16-year-old
white male with a 20k income would have a reporting probability

4.54x(3.571°%2.471°%0.289! x0.438') .
Of T 5 (3. 5710x2.47100.289Tx0.4387) ~ 0-305- Results of this model

applied to the Atlanta, GA, USA population are omitted for brevity
but can be found on our GitHub [18].

3 DEMONSTRATION

We will present the demonstration for SIGSPATIAL’24 with the
following functionalities. The SIGSPATIAL audience may change
parameters and run the simulation, single bias, and multivariate
bias models on the Atlanta downtown map. By clicking on the run
bottom, agents shown on the map start to move, and the epidemi-
ological curves are calculated as shown in Figure 1a. During the
agent generation step, the attributes of each agent and the distribu-
tion of attributes of each region are shown on the terminal. While
the simulation runs, data is continuously collected including: The
file DiseaseReports. tsv collects all epidemiologic data including
information about whether an agent is included in the (biased)
data sampling. The file patterns_of_lifes.log stores general
logging information, and the file AgentCharacteristics. tsv con-
tains all agent attributes including age, income, race, gender, and
their chance of reporting their infection. During our demonstration,
we will show how to switch to other maps such as San Fransisco,
and the Guangzhou Tianhe District, and how to control the parame-
ters for reporting rates. We will also present the way of running the
simulation without GUI for data generation. Lastly, we will show
the generated datasets and reproduce the corresponding bias plots
such as shown in Figure 2.

We hope that researchers and health professionals may find these
datasets useful to evaluate their infectious disease spread prediction
models to understand the robustness of their models to data bias.
We also provide instructions to help users to simulate their own
study regions using globally available OpenStreetMap data and
location-specific census data.

Ruochen Kong, Taylor Anderson, David Heslop, and Andreas Zufle
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