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The Free Energy Principle (FEP) is a normative computational framework for iterative

reduction of prediction error and uncertainty through perceptioneintervention cycles that

has been presented as a potential unifying theory of all brain functions (Friston, 2006). Any

theory hoping to unify the brain sciences must be able to explain the mechanisms of

decision-making, an important cognitive faculty, without the addition of independent,

irreducible notions. This challenge has been accepted by several proponents of the FEP

(Friston, 2010; Gershman, 2019). We evaluate attempts to reduce decision-making to the

FEP, using Lucas' (2005) meta-theory of the brain's contextual constraints as a guidepost.

We find reductive variants of the FEP for decision-making unable to explain behavior in

certain types of diagnostic, predictive, and multi-armed bandit tasks. We trace the short-

comings to the core theory's lack of an adequate notion of subjective preference or “utility”,

a concept central to decision-making and grounded in the brain's biological reality. We

argue that any attempts to fully reduce utility to the FEP would require unrealistic as-

sumptions, making the principle an unlikely candidate for unifying brain science. We

suggest that researchers instead attempt to identify contexts in which either informational

or independent reward constraints predominate, delimiting the FEP's area of applicability.

To encourage this type of research, we propose a two-factor formal framework that can

subsume any FEP model and allows experimenters to compare the contributions of

informational versus reward constraints to behavior.
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1. Introduction: For the love of a paradigm

Establishing a unifying theory, a “paradigm” in Kuhnian his-

tory of science, is a Holy Grail of any scientific discipline

(Kuhn, 2012). As demonstrated by the success of atomic and

evolutionary theories in physical and biological sciences, it is

possible to have such unifying theories that transform piles of

“incommensurable” evidence into additive parts of a bigger

whole, not only guiding but also encouraging research in

relevant domains. In the absence of a similar grand theory, the

psychological and brain sciences remain in a “pre-paradig-

matic” state of unenviable confusion and infighting, though

not for a lack of trying. The radical behaviorism most

eloquently championed by Skinner (2002) was one attempt to

establish an all-encompassing paradigm for psychological

science. It failed because its proposed machinery could not

begin to explain the entirety of human behavior (Tolman,

1948), and the notion of reward it employed was deemed too

shapeshifting to allow falsifiability (Popper, 1972, p. 295).

But, it is argued, the Free Energy Principle (FEP) could

potentially fill the same ambitious role within the brain sci-

ences (Friston, 2010; Friston et al., 2012).1 While the compu-

tational machinery associated with the notion is complicated,

the core ideas are as intuitive as those of any good unifying

principle: Humans are driven to reduce the error and uncer-

tainty (“Free Energy”) in their predictions of environmental

outcomes by building mental models that correspond to their

experiences, tweaking the models as bidden by informational

feedback. “Active inference” presents an important comple-

ment to this type of corrective “sensing” in reducing Free
1
“This diversity allows the [Free Energy] principle to account

for many aspects of brain structure and function and lends it the
potential to unify different perspectives on how the brain works.”
(Friston, 2010, p. 127). A more definitive statement is found in
Friston et al. (2012), despite conceding that certain “idiosyncratic”
aspects of cognition may not be explainable by the FEP:
“Contrariwise, the greatest virtue of the free-energy framework, it
seems to me, is that it reveals the underlying unity beneath that
superficially heterogeneous array of ploys and policies, displaying
bodily form, biomechanics, learning, niche-construction,
perception, and action as manifestations of a single ongoing
adaptive imperative to reduce informational surprise. The
resulting unified model of brains, bodies, and active, environ-
mentally embedded agents seems to me to be one of the most
exciting new developments in the ancient quest to understand
mind and its place in nature.”

2
“Not only do hierarchical models have a key role in statistics

(for example, random effects and parametric empirical Bayes
models), they may also be used by the brain, given the hierar-
chical arrangement of cortical sensory areas” (Friston, 2010, p.
129) or “the free-energy principle entails the Bayesian brain hy-
pothesis” (Friston, 2010, p. 130). See also the discussion of suffi-
cient statistics needed for Bayesian inference on page 130 where
it is simply assumed that “the brain encodes these statistics”.

3
“… agents move through a succession of states that have

acquired value to access states (rewards) with genetically speci-
fied innate value. … So how does this relate to the optimization of
free energy? The answer is simple: value is inversely proportional
to surprise, in the sense that the probability of a phenotype being
in a particular state increases with the value of that state.
Furthermore, the evolutionary value of a phenotype is the nega-
tive surprise averaged over all the states …” (Friston, 2010, p. 133).
Energy, as it guides an agent's actions to remake the envi-

ronment in the image of their internal representations (Clark,

2015). It has been suggested that the principle provides the

essence behind the turning of our neuronal cogs,2 the guiding

principle of our phylogenetic neural evolution,3 and even de-

termines the strategies we employ to solve problems.4 To

perform the Principle's computational edicts normatively re-

quires solving intractable equations. The “Bayesian brain”,

however, could use approximate Bayesian inference to find

practical solutions up to a given error bound (see Friston et al.,

2006, for a detailed discussion), as satisfying an answer as a

limited biological entity could hope for. Thus, a brain focused

on reducing Free Energy could claim (approximate) Bayesian

optimality.

Years have passed since the most impactful statement of

the principle as a paradigm candidate for the brain sciences

was published (Friston, 2010). In the intervening years, the

challenge to apply the FEP throughout the brain-related dis-

ciplines has been answered by ingenious attempts to explain

every aspect of higher cognition using this framework, from

conversing in natural language (Friston & Frith, 2015) to the

very nature of general intelligence (Ashton Smith, 2023).

For the attempts at fashioning the Principle into a para-

digm for the brain sciences to succeed, it must provide a

unifying account of the constraints bearing on our brains. All

our major cognitive functions, our non-idiosyncratic abilities,

must be reducible to attempts at minimizing prediction error

or uncertainty, be it through structured perception or iterative

actions on the environment. As Lucas (2005) laid out in a Cortex

theoretical article, the constraints to explain would encom-

pass the intertwined biological, neural, and cultural contexts

in which cognition is embedded. He proclaimed that no extant

theory of the brain satisfactorily fills this difficult role, but his

summary of the field came before the most impactful call to

action regarding the FEP in brain science (Friston, 2010), as

well as much of the work applying the framework to higher

cognition (e.g., Friston & Frith, 2015; Gershman, 2019).

We therefore use themeta-theory proposed by Lucas (2005)

as a guidepost to evaluate how well the FEP has fared as a

potential paradigm for the brain sciences. To make the prob-

lem more tractable, we focus on one domain rather than the

entirety of human thought and behavior: classic problems

within decision-making research and some of the traditional

experimental paradigms used to model them (Keren & Wu,

2015). The FEP's proponents clearly consider this domain

within the theory's scope, as it figures prominently in both

early articles proclaiming the Principle's unifying potential

(Friston, 2010), and more recent extensions of the theory (e.g.,

Ashton Smith, 2023; Gershman, 2019; Sprevak & Smith, 2023;

Schwartenbeck et al., 2013). But regardless of whether it has

been a focus of FEP-inspired research, decision-makingmakes

for such an integral aspect of higher cognition that any theory

claiming to unify the brain sciences would need to explain it

adequately without the addition of independent, irreducible

notions.
4
“More generally, it shows how rewards and goals can be

considered as prior expectations that an action is obliged to fulfil.
” (Friston, 2010, p. 134).
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To foreshadow, we identify classes of decision-making

problems with well-documented accompanying preferences

and strategies that the Principle cannot explain without FEP-

independent extensions. We trace these failures to the lack

of an adequate notion of utility, i.e., subjective valuation, in

the theory. We then examine several attempts at extending

the FEP to incorporate this cornerstone of decision-making

research in ways that fully reduce it to error/uncertainty

reduction (e.g., Friston, 2010, pp. 133e135). We present an

array of experimental and everyday decision-making contexts

in which these extensions fail and discuss why no similarly

reductive attempt is likely to succeed in the future.

The history of science is awash with irony. A paradigm

candidate proposing the reduction of reward to cognitive

variables may run into the same broad hurdles that its pre-

cursor reducing cognition to reward found fatal: A founda-

tional notion that is difficult to falsify without reinforcement

using independent concepts (Popper, 1972, p. 295), and inad-

equate machinery for dealing with certain dimensions of

human thought and behavior (Tolman, 1948). What are the

prospects of the FEP in brain science considering these hur-

dles? After the failure of early cognitive research to present a

unifying paradigm, many researchers settled for a more cir-

cumscribed goal, that of finding an ever-present principle that

crosses phylo-, onto-, and epigenetic boundaries on top of

disciplinary ones, to serve as a component of a future paradigm.

Shepard's “Universal Law of Generalization” (Shepard, 1987)

provides a prominent example of this approach. Can the FEP

satisfy the same role, as an ever-present, albeit incomplete,

component of the brain's processing?

We discuss decision contexts where the contributions of

the FEP appear minimal, if at all present. To preview our

closing argument, this is because prediction error and un-

certaintymatter to decisions insofar as they relate to an agent's
goals, hence their valuation of different sensory states and

actions. While utility appears irreducible to error and uncer-

tainty reduction, any FEP-derived model could in principle be

incorporated into a utility-dependent model of choice valua-

tion.5 The connections between reinforcement and deep

learning research on one hand and brain research on the other

provide a unique opportunity for supercharging cross-

disciplinary research, if neuroscientific models do not

mischaracterize utility using needlessly reductive approa

ches.

We recognize that not all extensions of the FEP to decision-

making have been reductive. For example, Sprevak and Smith

(2023) developed a non-reductive model of decision-making

that incorporates a prior preference distribution, rather than

relying solely on the FEP. Furthermore, Smith et al. (2022)

established a model of well-being that incorporates the Prin-

ciple but uses subjective preference as a foundational input.

Despite differences with what we propose in this article, we
5 In fact, the Principle's informational considerations are
arguably already reflected in computational cognitive neurosci-
ence of decision-making, where approximate Bayesian inference
is performed nowadays using neural networks (Fengler et al.,
2021). It is noteworthy that reinforcement learning in such
models prefers the reduction of uncertainty and error without
explicitly using the FEP, as less uncertain outcomes are often
important for the decisions of a rewards-maximizing agent.
believe such non-reductive models provide a promising path

forward in decision-making research. However, they do not

have the same implications for unifying the brain sciences

that the reductive approaches do: By design, they recognize

that the Principle's notions of error and uncertainty do not

suffice to account for behavior in some contexts and may be

less relevant in others. As such, they fall outside the scope of

our current critique.

If the FEP is neither all-encompassing nor ever-present in

human decision-making, it would not be a unifying principle

for the brain sciences, let alone a paradigm. It would simply be

yet another pre-paradigmatic theory among the many pro-

duced by brain researchers, each with its own delimited, even

if broad, domain of applicability. While this would be a

humbling, unfortunate outcome, it is one that all but a

handful of theories in science have faced, an eventuality that

does not automatically deny a framework its value as an in-

strument of disciplinary research.

Rather than unsuccessful attempts to reduce every brain

function to prediction error and uncertainty reduction, it

would be more productive to identify contexts in which the

FEP's considerations most strongly determine behavior.

Beyond supporting the Principle's application to domains

where it is most useful, such an approach would allow its

composition, if and where needed, with other fundamental

notions, in hopes of providing the brain sciences with a uni-

fying theory in the future.

To advance the discourse along these lines and considering

our preceding discussion of independent subjective prefer-

ence, we subsume the FEP into a preliminary two-factor

computational model that separates its informational con-

cerns from irreducible aspects of utility estimation. The rela-

tive contribution of the two factors is controlled by separate

parameters that may be empirically estimated. Importantly,

such a model can still accommodate normative, Bayesian

modeling, while also allowing the development of descriptive

computational theories. In the interest of brevity, we leave to a

future article the full details of how the parameters would be

estimated in such a model and how to experimentally test its

predictions. We give the interested reader a broad equation

and pointers to relevant experimental literatures for now. We

end the article by briefly discussing what ramifications this

more contextualized view of the brain, in line with Lucas'
suggestions in his 2005 Cortex article, has for the next 60 years

of studying the human cortex.
2. Free Energy versus utility in decision-
making

Decision-making is a central human faculty. For the FEP to

serve as a unifying principle for the brain, it needs to address

its processes and outcomes without a need for additional,

irreducible notions. Valuation is at the core of decision-

making, reflected in the presumption of subjective utility's
existence across the behavioral decision sciences (Barber�a

et al., 2004). For the FEP to unify the brain sciences, decision

goals and their mapping to options according to this valuation

process must be reducible to error and/or uncertainty reduc-

tion in ways reliably predicted by the Principle. That the

https://doi.org/10.1016/j.cortex.2023.11.013
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theory's proponents consider short- and long-term decision-

making within the scope of the FEP's unifying power is re-

flected in several attempts to explain away choice valuation as

a function of the Principle's core equations, including within

the most impactful call to action for exploring the theory's
potential in the brain sciences (Friston, 2010; Gershman, 2019).

The idea that the FEP obviates the need for independent

notions of value, reward, or utility features prominently in

Friston et al. (2009, 2014), but is most broadly stated in an

article titled “The free-energy principle: a unified brain the-

ory?” (Friston, 2010). There, it is argued that value could sim-

ply be the complement of surprise, while a goal could be

considered a state an agent expects to spend much of its time

in. How did this valuation of the most expected outcomes

develop? The explanation is that natural selection pressured

neural ensembles capable of associative learning (Hebb, 2005;

Von Der Malsburg, 1994), leading to the development of

attractor states that an agent predicts and is simultaneously

drawn towards. More recently, the same notion was used to

explain goal-directed behavior as key to general intelligence,

building an account of decision-making most broadly

construed based on choosing the option with the least ex-

pected prediction error or uncertainty (Ashton Smith, 2023).

If we take “the most expected option” to mean the option

with the highest a priori probability, as is the common sense of

the term and seemingly the definition used in Friston (2010, p.

133), it is difficult to see how our account would provide a

compelling case for two classes of reasoning problems and

their associated decision rules. We look at each of these

classes briefly in turn.

In diagnostic reasoning an agent reasons backwards from

an effect to its cause, trying to identify what could have

created an observed attribute. The most intuitive everyday

example of this type of task is clinical testing. Consider a lab

test devised to identify cancer. As in all decision-making

contexts, there are two possible ways in which the test

could lead us astray: There could be no cancer in a sample

while the test flags it as cancerous (Type 1 error), or the sample

could be cancerous while the test identifies no abnormality

(Type 2 error). It is not difficult to see why cancer tests should

be optimized to minimize Type 2 error even at the expense of

increasing false positive rates: A false positive outcome exacts

a miniscule cost, as further testing would dispel any worries;

while missing a present cancer could prove fatal to a patient.

In this context, a cancerous sample is not the most expected

outcome. In fact, if the test is routine, it has very low proba-

bility. However, the negative utility of a false negative is so

immense that it overpowers the probabilistic constraints and

guides our decision about which test to employ. The same is

not true of every diagnostic reasoning context. In research, for

instance, it is customary to cap Type 1 error rates at .05 while

Type 2 error rates are allowed to get as high as .2. The

reasoning is that a fake positive result can lead to much

greater waste of research potential than a missed positive

finding. This adaptive adjustment of error rates in line with

the utility of less likely outcomes is an example of the im-

mediate physical context constraining brain processing in a

structured manner (Lucas, 2005).

Predictive reasoning is the opposite of diagnostic thinking,

reasoning forwards from a cause to determine what effects it
might have. Nonetheless, it poses similar dilemmas for iden-

tifying utility with expectation. Consider instrumental pre-

dictive reasoning, or identifying actions one should take to

obtain a desired outcome. The pursuit of political ideals often

involves this type of processing.6 Many throughout history

have been willing to die for their visions of a better society

even when the fight has been hopeless, i.e., when the proba-

bility of achieving the goal state approached (or even reached)

zero. In this case, the positive utility of even imagining the

political ideal being implemented is so great that it can over-

power even the deep-seated self-preservation instinct. The

ideal has that effect without requiring that the goal state be

likely, just the knowledge that it is desired. Like diagnostic

reasoning, predictive problems need not be about extreme

utility. A more mundane example would be determining how

much effort to spend on preparing for a test. The adjustment

of actions based on the utility of what they support provides

an interface for the intermediate cultural context to constrain

the brain's decision processes (Lucas, 2005).

One possible way to avoid these issues while maintaining

that utility boils down to expectation in the traditional FEP

sense is by changing the intuitive meaning of the latter term:

Perhaps “not having active cancer”, “being a good fighter in

the path of one's ideals” or “having gotten good grades” are the

awkwardly defined yet imaginable states that our evolution

has led us to “expect” being in most of the time. There are two

major problems with this idea. The first is that one's desire

towards such states might still differ strongly from one's
expectation. We might consider it most likely that we will fail

an exam yet be motivated to study on the off chance that the

desired, less likely outcome could happen. The second prob-

lem with this framing is that it would make the notion of

expectation so broad and so vague as to render the FEP's
application to such decision-making contexts all but untest-

able. That would obviate any empirical benefits from the

Principle's adoption as a paradigm for the domain.

In contrast, the simplest FEP-independent notions of util-

ity, i.e., the value of an outcome or an event expressed in

terms of an individual's personal judgment or degree of

satisfaction (Oxford University Press, 2009), can easily account

for behavior in the cases mentioned. Where does this valua-

tion come from? One could simply trace it to pleasure and

pain as shaped by evolutionary pressures (Hagen et al., 2012).

Note that adopting a non-reductive utility-based approach to

reasoning and consequently decision-making does not

necessitate abandoning the Bayesian Brain Hypothesis.

Bayesian accounts of diagnostic and predictive reasoning

have long been developed (Fernbach et al., 2011), and expected

utility approaches allow for the incorporation of risk in

translating them into decision rules (Fishburn, 1981).

If goals are not most fruitfully modeled as the most ex-

pected outcomes, is there an alternative way of reducing

utility to Free Energy minimization? The most plausible

formal candidate for this role is discussed by Gershman (2019).

His account considers utility maximization as the goal of

https://doi.org/10.1016/j.cortex.2023.11.013
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decision-making but casts reward as information gain. This

essentially has the effect of turning the agent's focus away

from prediction error reduction towards uncertainty reduc-

tion. In other words, it suggests that agents are compelled to

take actions that teach them the most about the potential

states of their environment.

That the well-studied phenomenon of “motivated forget-

ting” exists and has been studied in the brain (Anderson &

Hanslmayr, 2014) should immediately give us pause in

considering this a complete account of human behavior. In

cases of motivated forgetting, information is actively removed

from memory, such that uncertainty (and plausibly often

error) is increased. This is done in ways that have positive

utility for the agent, for instance by allowing them not to

ruminate on expected experiences that are unpleasant. But for

the sake of the argument, let us consider such phenomena as

edge cases and look at the error and uncertainty reduction

aspects of the FEP in more canonical decision-making

contexts.

In many such situations, the two elements of the FEP

conflict, with no clear way of choosing between the two

without an independent notion. Consider, for example, a

classic multi-armed bandit problem (Gittins, 1989). In this

class of problems, a fixed, limited set of resources must be

allocated between competing, alternative choices, when each

choice's properties are only partially known at the time of

allocation and may become better understood as time passes

or by allocating resources to the choice. A common example is

choosing between different restaurants. Consider two op-

tions: a familiar restaurant with decent food and a newly

opened restaurant that is an unknown quantity. For

simplicity, assume that the new place has a 50% chance of

being terrible and a 50% chance of being great in the agent's
mind. In this context, an information gain goal would support

going to the new restaurant. However, unexpectedly eating

terrible food is a prediction error the agent would also want to

avoid. Wanting to minimize that error would lead to choosing

the safe option. It is not clear which goal should be more

prominent according to the FEP. One possibility would be to

define the expected state the agent is drawn towards less

intuitively as “having eaten good food”. This would encourage

exploration or exploitation based on which option is more

likely to bring that state about. But the key term in such a

characterizationwould be “good”, i.e., the subjective valuation

or utility that appears indispensable.

Knowing the subjective utility helps us explain behavior in

this and many other multi-armed bandit problems. Depend-

ing on the agent's risk-aversion (Edwards, 1996), if the known

restaurant is only decent, i.e., the difference between its ex-

pected utility and the perceived maximum available in one's
environment is large, agents may “explore” by visiting the

new restaurant. But if they feel that the known location

“satisfices” as an option, i.e., surpasses their personal

threshold for how good ameal should be, there is less impetus

for exploration. Such utility-based solutions to bandit prob-

lems are so readily formalizable that reinforcement learning-

based approaches to finding them are used in many applied

settings (Bouneffouf & Rish, 2019).

In less mundane contexts, an irreducible notion of utility

provides even more clear-cut predictions for whether
uncertainty reduction would be pursued. Consider someone

who sees the vague silhouette of a large animal at night in the

wilderness. It could be a harmless grazing deer or a vicious

leopard. In such a situation, the negative utility of being

within the reach of a potentially dangerous animal outweighs

any decision-relevant insights to be gained from reducing

uncertainty about the shadow's identity. This means that

most individuals would simply keep their distance and let go

of their information gain goals. A contrasting situation where

information gain aligns more with utility is in the Twenty

Questions game, information-theoretic accounts of human

behavior in which have been developed (Nelson, 2005).

Even when focusing on highly similar decision contexts,

the preference for prediction error versus uncertainty reduc-

tion can dynamically change in ways predicted by subjective

preference. For students practicing in preparation for an

exam, information gain may be more important: They would

want to focus on problems the answers to which appear most

uncertain (although even then the incentive structurematters

for determining one's strategy; Oxoby, 2009). But the relative

importance of information gain flips for the test itself:

Reduction of prediction error would be more important than

“trying out” uncertain strategies to learn more about the topic

while one's grade hangs in the balance. The distinction can be

explained by noticing that much less negative utility is

attached to making mistakes during a practice than in an

actual test. Note that “having obtained good grades” or

“remaining healthy” may be highly unlikely outcomes, but

that does not detract from their desirability.

It is difficult to see how any notion of utility that relies

solely on prediction error or uncertainty reduction would fully

explain humans' highly adaptive behavior in response to

these diagnostic, predictive and bandit problems. Responses

to these tasks are linked to an unavoidable property of natural

cognitive agents: One may desire states that not only differ

from those of the environment or the most likely outcomes,

but that could even be unachievable in principle. This is

simply a consequence of our brains maintaining two inter-

connected yet different systems, one for representing real and

imaginable worlds, and another for evaluating the utility of

various states. This distinction is reflected in the neuroscience

of decision-making, where representation and evaluation's
neural underpinnings are distinctly characterized (Gold &

Shadlen, 2007; Rangel et al., 2008).

A side effect of this separation is that in some decision-

making contexts neither prediction error nor uncertainty

reduction may be important: Consider a situation where an

agent is forced to perform a decision-making task, or the

reward does not depend on the quality of responses. In this

situation, there is littlemotivation to find the right answers, as

the utility is uniformly distributed across each trial's options.

A subject might therefore choose the least effortful action of

randomly responding instead of trying to reduce uncertainty

or prediction error. Even the indifference between options in

this example is explainable using utility. The effectiveness of

manipulating the utility distribution is reflected in the fact

that researchers often add a bonus to a subject's baseline

compensation based on performance to encourage accurate

response. In comparative neuroscience studieswithmonkeys,

this takes the form of sweet nectars offered through a tube

https://doi.org/10.1016/j.cortex.2023.11.013
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(e.g., Montague& Berns, 2002). Inmany human experiments, a

random trial is chosen to determine a monetary bonus (e.g.,

Tomov et al., 2020). These interventions tip the expected

utility balance in favor ofminimizing the subjects' Free Energy

in the task, giving them a reason to focus their efforts on

prediction error or uncertainty.

This example not only denies the FEP its ubiquity across

brain functions in general and decision-making contexts in

particular, but it also highlights a broader point aboutwhen its

considerations would be relevant to a task: Prediction error

and uncertainty reduction matter to agents insofar as they

relate to subjective utility. That is why focusing on long-term

optimization rather than short-term decisions (as we have in

this section, in contrast with Friston, 2010) would not save the

reductive FEP-based accounts of decision-making: Agents are

driven to optimize their long-term utility as well as their

short-term rewards. If any part of the utility to be accrued in

the long-term does not depend on the FEP's considerations,

that undermines the Principle's ability to explain behavior

with broader horizons.

To summarize, while it is unlikely that utility can be

reduced to Free Energy minimization, the only characteriza-

tion of Free Energy that could hope to account for human

decision-making would be one complemented by irreducible

notions of subjective preference. If the FEP is less relevant to

some decision-making contexts and cannot independently

explain human behavior in classes of heavily studied prob-

lems, it falls short of being a unifying principle, let alone a

paradigmatic theory to subsume all of brain science. The is-

sues we raised in this section with accounts of choice valua-

tion that rely solely on the FEP appear profound. Therefore, we

do not find further pursuit of reductive research projects at the

intersection of the FEP and decision-making (e.g., Friston,

2010; Gershman, 2019) helpful.
7 Alternatively, one could combine utility with the FEP by using
subjective preferences as constraints on a model optimizing Free
Energy. An example is the model of holistic wellbeing developed
by Smith et al. (2022). Whether using utility as a constraint in an
FEP model produces better or worse explanations for behavior
than vice versa, awaits further research.
3. Free Energy and utility in decision-making

If we concede that the FEP is an unlikely candidate for a uni-

fying theory of the brain, what would the prospect be for

moving towards a paradigmatic brain science? One possibility

is that there will never be a unifying theory. Although the

optimization approach to biology has been fruitful in

explainingwhy brains developed certain properties (Varshney

et al., 2016), some describe the mind-brain system as a

kludgeda quick-and-dirty solution that is clumsy, inelegant,

inefficient, difficult to extend, and hard to maintainddue to

the limitations of evolution (Marcus, 2009) and perhaps of

development (Witvliet, et al., 2021).

But the brain scientist's task would remain the same

regardless of whether a unifying theory can be developed:

Delineating each framework's area of applicability. This is

because even the broadest paradigms of the physical sciences

still have delimited domains of explanatory power. If our

brains are alternatively like Swiss army knives, a set of ill-

aligned tools that are each pulled out according to situa-

tional demands, we should still identify the contexts in which

a framework's edicts are most prominent. If we find a way of

formally combining the various tools, we could still develop a

modular model of the brain in its totality which, though not
nearly as elegant as a single theory, would have far greater

explanatory power than would otherwise be available to us.

If we accept the delineation of theories' domains as our

task, what could be the area where the FEP is most helpful

without independent notions? When the learning of genera-

tive models aligns with an agent's utility considerations, the

FEP explains behavior well. One example is trial-and-error in

causal learning, where active inference is arguably used to

iteratively reduce uncertainty about effects by using predic-

tion error as a teaching signal (Friston et al., 2009).

To make use of the FEP's explanatory value in such con-

texts while maintaining greater range for explaining brain

function, we could reframe subjective utility such that it iso-

lates the influence of FEP's information optimization goals,

compares it with irreducible aspects of subjective preference

and allows for the selective activation of either element based

on situational demands.7 Such an extension would make it

easier to identify the Principle's domain of applicability,

therefore integrating FEP findings with exciting developments

in the formal modeling of higher-level cognition and bringing

us closer than ever to the goal of providing a unifying

computational account of the brain. There are already cogni-

tive theories that combine notions of uncertainty reduction

with the optimization of utility in domains as complex as

social learning (FeldmanHall & Nassar, 2021) and moral

reasoning (Cushman et al., 2017). Such models would benefit

from further integration of their normative aspects with the

FEP if the necessary and superfluous contributions of the

Principle to utility estimation are distinguished. Even if the

Bayesian Brain Hypothesis proves to be false in certain do-

mains and individuals are found to deviate systematically

from the normative edicts, a clearer quantification of those

deviations using normative models like the FEP would set the

stage for better descriptive accounts.

In what follows, we provide a preliminary version of what a

utility model could look like that directly compares the impact

of FEP as a module with that of irreducible subjective prefer-

ence. Because prediction error is the main determinant of

actions in the canonical version of the FEP (Friston, 2010), we

focus on this element in the following discussion. But similar

accounts could be easily developed for alternative, more so-

phisticated notions of prediction error as well as versions of

the FEP that focus on uncertainty reduction (e.g., Gershman,

2019) or combine error and uncertainty in a structured

manner.

Let s stand for the decision context that has produced

certain sensations in the agent. In the context of choosing a

restaurant, this could be the agent's level of hunger. Let the

vector A ¼ {a1, …, an} denote the possible actions the agent

could take in light of the sensations. The action could be the

agent going to Restaurant One or Restaurant Two. We could

represent the possible outcomes as the vector Y¼ {y1,…, yn}, in

this case how filling the food is, i.e., how good of a solution it
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provides to the current problem sensation. The agent's valu-

ation of a given action in the context of the sensations could

then be determined using the sum of two terms, one repre-

senting prediction error for the action outcomes couched in

information-theoretic terms, and the other the utility of out-

comes relative to the status quo. In our example, Restaurant

Onemay have been visitedmany times, inwhich case it would

be associated with very low expected prediction error: Our

agent would know rather accurately how filling their food will

be and is therefore unlikely to heavily update the learned

distributions based on outcomes. The utility, however, has to

do with more than this knowledge. Perhaps our agents would

expect the portion sizes at Restaurant One to be too large for

their current level of hunger. This would encourage them to

try Restaurant Two instead, because an overfull belly has a

negative utility. Of course, whether they would prefer

Restaurant Two depends on their expectation of how large the

portion sizes will be there. If they have never been to

Restaurant Two, they may think of the average portion size at

a restaurant of that type. An intuitive characterization of

either action's valuation is given in Equation (1),8:

VðaijsÞ¼aðsÞ
 X

y

Uðyjs;aiÞpðyjs; aiÞ � UðsÞÞ �bðsÞ
 
D½pðyjs;aiÞ

kpðyjsÞ�
!

(1)

An agent considers through the first term each possible

outcome of an action in terms of its expected utility given the

sensations. Importantly, the expected utility after the action is

considered relative to the status quo, U(s): There is no point in

taking effortful steps if the utility remains the same.

For the second term, the expected difference between the

outcome probability distribution before and after the action is

calculated using KullbackeLeibler Divergence, an entropy-

based measure of prediction error.9 To encourage the mini-

mization of this difference, negative value is assigned to the

divergence.

Here, aðsÞ and bðsÞ would be the context-specific and

empirically derived normalized weights that determine the

relative prominence of prediction error reduction and inde-

pendent utility maximization in the overall valuation scheme.

This form allows the FEP to be the sole consideration in certain

cases, or for it to be completely abandoned in favor of utility

maximization in others. We anticipate the weight of
8 Our proposed equation is very similar to the Lagrangian form
of the novelty-utility trade-off in Varshney's (2019a) mathemat-
ical theory of creativity. The similarity is far from coincidental:
Creativity is one domain where utility constraints (“can the cre-
ative solution aid the agent?”) are intertwined with surprisal
considerations in evaluating behavior (Guilford, 1967).

9 The second term in Equation (1) is a contextualized variant of
the objective minimized in variational Rate Distortion Theory
(RDT). Incidentally, its optimization given an expected upper
bound on distortion is given by a two-term characterization in the
method of Lagrange Multipliers that is visually similar to Equa-
tion (1). The classic characterizations of variational RDT, how-
ever, contain no independent notion of utility. See Jakob and
Gershman (2023) for an application of variational RDT to neural
coding.
irreducible subjective preference to be greater in our running

example of choosing a restaurant. In other situations, how-

ever, FEP-based considerations may hold greater independent

weight. For instance, if we are playing a Twenty Questions

game, assuming that we are motivated to play well and win,

we would probably choose questions that minimize our pre-

diction error or maximize our information gain for the target

category (Nelson, 2005). Since aðsÞ and bðsÞ can vary based on

context, they should be estimated empirically in each study.

Once enough experimental evidence has accrued, the range of

estimations across contexts can help identify domains where

one term is most helpful for explanations, as well as places

where a combination of information and reward optimization

are necessary to explain behavior.

One context where such an interaction could feature

prominently in overall action utility is during teaching. Ho

et al. (2017) provide a compelling case in their experiments

on navigating a grid world where some steps along the path to

a rewarding destination are penalized. During learning trials,

the players are encouraged to reduce their uncertainty and

prediction error about where these “traps” are located, i.e.,

gather information about the distribution of (negative) re-

wards. The subjects are then told that other participants, also

unaware of the traps' locations, would be shown records of

their gameplay to learn how to succeed at the game. The

subjects' behavior changes in these “teaching” trials. The best

formal account for the subjects' responses is then provided by

assuming that they are minimizing the uncertainty in the

observer's expected distribution of rewards, a combination of

Free Energy reduction and irreducible utility maximization.

Ho et al.'s (2017) normative account is more focused on

encoding-decoding accuracy than disentangling reward and

information considerations. Nonetheless, it could serve as a

helpful starting point for an analysis of the type proposed in

this section.

Once the values of actions are determined using Equation

(1), they can be transformed into normative choice probabili-

ties using a variety of tools developed in the decision sciences

(Barber�a et al., 2004). This would allow researchers to compare

human behavior directly with the predictions of a given utility

model. Amore normative transformation would be the widely

used SoftMax function (Sutton & Barto, 2018). An alternative

approach would be estimating context-dependent thresholds:

Once an option's value surpasses that threshold, evaluation is

ended, and the corresponding action is chosen. Which deci-

sion rule to use would depend on the researchers' hypothesis
and the modeling's normative or descriptive goal. The key

takeaway, however, is that translating the value estimations

into behavioral predictions that can be fed into traditional

statistical analyses for experiments would not be difficult.

Equation (1) is meant as an explanation at Marr's (2012)

computational level of analysis: Representing the abstract

problem that the agent wants to solve and the broad formal

strategy for doing so. To transform it into an algorithmic ac-

count that, for instance, incorporates the limited resources of

humans as boundedly rational agents (Lieder & Griffiths,

2020), a sequential ordering of behaviors needs to be map-

ped onto the computational framework. While the develop-

ment and validation of such an account is beyond the scope of

this viewpoint article, we present in Fig. 1 a simple decision

https://doi.org/10.1016/j.cortex.2023.11.013
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be optimized using grid search or through a context-sensitive heuristic.
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tree to make the explanation level distinction clearer for

readers. Each plain language element is accompanied by an

example of how it could be formalized considering Equation

(1).

Of course, to say that utility is indispensable to theories of

cognition and can be empirically studied in brain and behavior

does not mean its characterization would be easy in every

context. Much like error and uncertainty, utility is a complex

notion, its form shifting based on the decision parameters.

More so than the FEP's purely informational considerations, it

also has a subjective aspect that makes it more difficult to

directly measure. In fact, it was this same subjectivity that

prompted radical behaviorists like Skinner (2002) to resist

conversion to cognitivism.

Still, there are clear-cut ways of grounding utility estima-

tion in more objective measures. The largely dopaminergic

network underlying reward-related perception and behavior

is well-studied (Gold & Shadlen, 2007). Simple decision-

making tasks and reinforcement learning-derived formaliza-

tions have proven successful at identifying the operating

mechanisms of this network (e.g., Collins & Frank, 2014). By

providing clear predictions about the brain regions and even

the chemical processes underpinning choice valuation, the

computational cognitive neuroscience of decision-making

will be crucial for developing falsifiable, formalized accounts

of utility estimation. The field's careful consideration of

structural and functional brain constraints in these modeling

frameworks also maps well onto the biological constraints in

Lucas' (2005) meta-theory.

At a higher, more computational level of analysis (Marr,

2010), reinforcement learning algorithms have been success-

ful at modeling behavior across a range of decision-making

tasks, particularly when implemented within “drift diffusion

models” (Fengler et al., 2021). Thesemodels have already been

applied to explain the abstract, functional elements of cogni-

tion (Ratcliff et al., 2016). The functional focus of this field's
research, removed from the implementational details of a

brain or a computer's processing, maps well onto the abstract

constraints in Lucas' (2005) meta-theory.

For researchers more interested in the FEP's insights about

prediction, these research programs provide ample opportu-

nities to perform integrative research, as they were built from
the ground up with an awareness of uncertainty's role in

decision-making. Such integrations could be more fruitfully

developed if the reductive approach to utility (e.g., Friston,

2010; Friston et al., 2009, 2014) is not pursued any further.
4. Optimality versus efficiency in brain
science

A major appeal of the FEP's computational machinery lies in

the use of approximate Bayesian inference to estimate pa-

rameters in a manner that is optimal up to a given threshold.

This allows normative models to be developed without

adjusting the theory's fundamental equations, the claimed

aligning of which with empirical data provides the basis for

supporting the ambitious Bayesian Brain Hypothesis (Friston,

2010). Would the adoption of an independent preference

concept mean the Hypothesis must be abandoned?

The answer is unequivocally no. Many ways of performing

approximate inference are being developed that do away with

the difficult-to-satisfy assumptions of classical Bayesian

modeling while maintaining notions of optimality. Re-

searchers in the computational decision sciences are now

widely using neural networks for computations over models

of utility and choice behavior not unlike those discussed in

this article (Fengler et al., 2022). While many studies rely on

drift-diffusion models of preference that we have not sur-

veyed in this article (Ratcliff & McKoon, 2008), their use of

universal function approximators means that the same deep

learning frameworks could be applied to the estimation of any

observable or latent variables in Equation (1), including in an

approximately Bayes-optimal manner. While the training of

neural networks is effort-intensive, it must be done for a given

model-task pair only once. As such, the approach provides a

promising avenue for future research on the neural un-

derpinnings of behavior, which may bring us closer to a uni-

fying theory of the mind-brain.

But researchers need not limit themselves to the pre-

dictions of the Bayesian Brain Hypothesis either. The func-

tions that make up Equation (1) could be set up in a way that is

most predictive of human behavior, which may turn out to

deviate from optimality in reliable ways. How well such
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models fit behavior could inform mechanistic theories of

cognition. For instance,Uðyjs;aiÞ in Equation (1) could be easily

replaced with its Prospect Theory equivalent (Kahneman &

Tversky, 1979) that incorporates risk aversion, while pðyjs; aiÞ
could be adjusted to conform to the theory's predicted warped

estimates of extreme probabilities.

We consider the descriptive focus particularly helpful for

delineating the physical and cultural constraints in Lucas'
(2005) meta-theory. Many judgments in complex social envi-

ronments rely on heuristics activated by contextual cues

(Hemmatian & Sloman, 2020), while time constraints make

the use of normative strategies less likely even in canonical

tasks (Payne et al., 1988). The fast-and-dirty rules-of-thumb

offer a variety of cost-effective problem-solving approaches

that are especially attractive to humans given their limited

cognitive-behavioral capacity (Gigerenzer& Todd, 1999). Many

heuristics have already been formalized and as such, can be

incorporated intomore encompassing computational models.

Examples of such formalizations include domains like moral

reasoning (Levine et al., 2020), suggesting that the same

approach would be just as fruitful for explaining less-complex

behaviors.
5. Summary and open questions

Unifying theories, or at least unifying principles that can serve

as their components, are the Holy Grails of every science

(Kuhn, 2012). We examined the performance of one proposed

candidate for fulfilling this role in the brain sciences: the FEP

(Friston et al., 2006; Friston, 2010). According to the theory, the

cornerstone of brain processing is an attempt to reduce pre-

diction error and uncertainty. Agents are driven to accomplish

this through developing accurate models of the environment,

but also by adapting it to better fit their internal representa-

tions (Clark, 2015). The challenge to reduce higher-level

cognition to this Principle has been answered in a series of

publications (e.g., Ashton Smith, 2023; Friston, 2010; Friston &

Frith, 2015; Gershman, 2019). To evaluate the theory's poten-

tial for universal applicability across the brain sciences, we

looked more closely at the reductive FEP-based models in a

domain that has received much attention in recent years:

human decision-making. We used Lucas' (2005) meta-theory

of the embedded brain to frame our discussion of con-

straints on this cognitive function.

The bedrock of decision-making research is the subjective

valuation of options, i.e., utility (Barber�a et al., 2004). We

argued that attempts to reduce this notion to FEP concepts,

regardless of their focus on prediction error (e.g., Friston, 2010)

or uncertainty reduction (e.g., Gershman, 2019), invariably fail

to fully explain behavior in certain diagnostic, predictive and

multi-armed bandit tasks. This is because the desirability of

options does not solely depend on their expectedness, but also

on irreducible subjective preference. That there is more to us

than simply optimizing for surprise has implications far

beyond the laboratory. For instance, when examining political

decision-making in the context of today's social media, the
utility of informationmust be considered on top of its surprise

value to predict a message's persuasiveness (Varshney,

2019b).

To provide a stronger foundation for a future unifying

perspective on the brain sciences, we presented a two-factor

model of choice valuation that directly contrasts the infor-

mational considerations of the FEP with the independent

utilitarian aspects of decision-making. We briefly discussed

how the model's parameters may be estimated empirically

using neural networks, as well as how more fine-grained

algorithmic or implementational accounts may be devel-

oped. We believe the clear connections with network neuro-

science (Barbey, 2018), reinforcement learning, and deep

learning will prove crucial for the development of more

comprehensive theories in this domain for years to come if

needlessly reductive approaches to modeling are dropped.

We then reflected on our framework's implications for the

Bayesian Brain Hypothesis (Hip�olito & Kirchhoff, 2023). Our

new framing of choice valuation allows for both normative

and descriptive characterizations. The empirical estimation of

variables using neural networks would also remain largely

unchanged regardless of normative focus. As such, the utili-

tarian model can prove helpful in adjudicating between the

accounts of decision-making behavior that rely on Bayesian

principles and those that argue for systematic deviations from

them. We ended by pointing to literatures that suggest each

approachmay be more useful for explaining human decision-

making in certain tasks.

If we accept that utility must be characterized for us to

have a full picture of human cognition, what would that mean

for the future of brain science? There are three unavoidable

properties of utility that make its characterization difficult.

Firstly, it is only indirectly observed through behavior and

must be estimated using latent variable analysis (cf., Barbey

et al., 2021). Secondly, utility is constructed in each context

based on the agent's goals, needs and task constraints.

Thirdly, a complete image of human utility can only be

derived by accepting its multi-dimensionality. Sen (1999)

made a compelling case for the latter two properties in eco-

nomics, but his critique applies just aswell to cognition.While

behavioral scientists often reduce utility to a scalar dollar

value for ease of calculation, when thinking of complex no-

tions like welfare, there is immense information loss associ-

ated with the dimensionality reduction. As such, for utility

theories to remain true to their subjects beyond perceptual

and economic game paradigms, the expansion of models to

include different facets of preference in a contextual manner

would be needed.

Fortunately, many approaches have been proposed for

overcoming these complications in utility research, refer-

ences to which are included throughout this article. Indeed,

formal models of decision-making that combine the FEP with

independent notions of subjective preference are already

being developed (e.g., Smith et al., 2022). Beyond the existing

models, promising connections exist in neighboring disci-

plines as we explored throughout this article. Therefore, even

though we cannot yet rely on a single principle to explain all
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behaviors and havemuch work to do perfecting our models of

the irreducible subjective preference, there is no reason for

despair. A unifying framework may yet be found.
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