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1. Introduction: For the love of a paradigm

Establishing a unifying theory, a “paradigm” in Kuhnian his-
tory of science, is a Holy Grail of any scientific discipline
(Kuhn, 2012). As demonstrated by the success of atomic and
evolutionary theories in physical and biological sciences, it is
possible to have such unifying theories that transform piles of
“incommensurable” evidence into additive parts of a bigger
whole, not only guiding but also encouraging research in
relevant domains. In the absence of a similar grand theory, the
psychological and brain sciences remain in a “pre-paradig-
matic” state of unenviable confusion and infighting, though
not for a lack of trying. The radical behaviorism most
eloquently championed by Skinner (2002) was one attempt to
establish an all-encompassing paradigm for psychological
science. It failed because its proposed machinery could not
begin to explain the entirety of human behavior (Tolman,
1948), and the notion of reward it employed was deemed too
shapeshifting to allow falsifiability (Popper, 1972, p. 295).

But, it is argued, the Free Energy Principle (FEP) could
potentially fill the same ambitious role within the brain sci-
ences (Friston, 2010; Friston et al., 2012)." While the compu-
tational machinery associated with the notion is complicated,
the core ideas are as intuitive as those of any good unifying
principle: Humans are driven to reduce the error and uncer-
tainty (“Free Energy”) in their predictions of environmental
outcomes by building mental models that correspond to their
experiences, tweaking the models as bidden by informational
feedback. “Active inference” presents an important comple-
ment to this type of corrective “sensing” in reducing Free

! “This diversity allows the [Free Energy] principle to account
for many aspects of brain structure and function and lends it the
potential to unify different perspectives on how the brain works.”
(Friston, 2010, p. 127). A more definitive statement is found in
Friston et al. (2012), despite conceding that certain “idiosyncratic”
aspects of cognition may not be explainable by the FEP:
“Contrariwise, the greatest virtue of the free-energy framework, it
seems to me, is that it reveals the underlying unity beneath that
superficially heterogeneous array of ploys and policies, displaying
bodily form, biomechanics, learning, niche-construction,
perception, and action as manifestations of a single ongoing
adaptive imperative to reduce informational surprise. The
resulting unified model of brains, bodies, and active, environ-
mentally embedded agents seems to me to be one of the most
exciting new developments in the ancient quest to understand
mind and its place in nature.”

2 “Not only do hierarchical models have a key role in statistics
(for example, random effects and parametric empirical Bayes
models), they may also be used by the brain, given the hierar-
chical arrangement of cortical sensory areas” (Friston, 2010, p.
129) or “the free-energy principle entails the Bayesian brain hy-
pothesis” (Friston, 2010, p. 130). See also the discussion of suffi-
cient statistics needed for Bayesian inference on page 130 where
it is simply assumed that “the brain encodes these statistics™.

3 «.. agents move through a succession of states that have
acquired value to access states (rewards) with genetically speci-
fied innate value. ... So how does this relate to the optimization of
free energy? The answer is simple: value is inversely proportional
to surprise, in the sense that the probability of a phenotype being
in a particular state increases with the value of that state.
Furthermore, the evolutionary value of a phenotype is the nega-
tive surprise averaged over all the states ...” (Friston, 2010, p. 133).

Energy, as it guides an agent's actions to remake the envi-
ronment in the image of their internal representations (Clark,
2015). It has been suggested that the principle provides the
essence behind the turning of our neuronal cogs,” the guiding
principle of our phylogenetic neural evolution,’ and even de-
termines the strategies we employ to solve problems.* To
perform the Principle's computational edicts normatively re-
quires solving intractable equations. The “Bayesian brain”,
however, could use approximate Bayesian inference to find
practical solutions up to a given error bound (see Friston et al.,
2006, for a detailed discussion), as satisfying an answer as a
limited biological entity could hope for. Thus, a brain focused
on reducing Free Energy could claim (approximate) Bayesian
optimality.

Years have passed since the most impactful statement of
the principle as a paradigm candidate for the brain sciences
was published (Friston, 2010). In the intervening years, the
challenge to apply the FEP throughout the brain-related dis-
ciplines has been answered by ingenious attempts to explain
every aspect of higher cognition using this framework, from
conversing in natural language (Friston & Frith, 2015) to the
very nature of general intelligence (Ashton Smith, 2023).

For the attempts at fashioning the Principle into a para-
digm for the brain sciences to succeed, it must provide a
unifying account of the constraints bearing on our brains. All
our major cognitive functions, our non-idiosyncratic abilities,
must be reducible to attempts at minimizing prediction error
or uncertainty, be it through structured perception or iterative
actions on the environment. As Lucas (2005) laid out in a Cortex
theoretical article, the constraints to explain would encom-
pass the intertwined biological, neural, and cultural contexts
in which cognition is embedded. He proclaimed that no extant
theory of the brain satisfactorily fills this difficult role, but his
summary of the field came before the most impactful call to
action regarding the FEP in brain science (Friston, 2010), as
well as much of the work applying the framework to higher
cognition (e.g., Friston & Frith, 2015; Gershman, 2019).

We therefore use the meta-theory proposed by Lucas (2005)
as a guidepost to evaluate how well the FEP has fared as a
potential paradigm for the brain sciences. To make the prob-
lem more tractable, we focus on one domain rather than the
entirety of human thought and behavior: classic problems
within decision-making research and some of the traditional
experimental paradigms used to model them (Keren & Wu,
2015). The FEP's proponents clearly consider this domain
within the theory's scope, as it figures prominently in both
early articles proclaiming the Principle's unifying potential
(Friston, 2010), and more recent extensions of the theory (e.g.,
Ashton Smith, 2023; Gershman, 2019; Sprevak & Smith, 2023;
Schwartenbeck et al., 2013). But regardless of whether it has
been a focus of FEP-inspired research, decision-making makes
for such an integral aspect of higher cognition that any theory
claiming to unify the brain sciences would need to explain it
adequately without the addition of independent, irreducible
notions.

* “More generally, it shows how rewards and goals can be
considered as prior expectations that an action is obliged to fulfil.
» (Friston, 2010, p. 134).
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To foreshadow, we identify classes of decision-making
problems with well-documented accompanying preferences
and strategies that the Principle cannot explain without FEP-
independent extensions. We trace these failures to the lack
of an adequate notion of utility, i.e., subjective valuation, in
the theory. We then examine several attempts at extending
the FEP to incorporate this cornerstone of decision-making
research in ways that fully reduce it to error/uncertainty
reduction (e.g., Friston, 2010, pp. 133—135). We present an
array of experimental and everyday decision-making contexts
in which these extensions fail and discuss why no similarly
reductive attempt is likely to succeed in the future.

The history of science is awash with irony. A paradigm
candidate proposing the reduction of reward to cognitive
variables may run into the same broad hurdles that its pre-
cursor reducing cognition to reward found fatal: A founda-
tional notion that is difficult to falsify without reinforcement
using independent concepts (Popper, 1972, p. 295), and inad-
equate machinery for dealing with certain dimensions of
human thought and behavior (Tolman, 1948). What are the
prospects of the FEP in brain science considering these hur-
dles? After the failure of early cognitive research to present a
unifying paradigm, many researchers settled for a more cir-
cumscribed goal, that of finding an ever-present principle that
crosses phylo-, onto-, and epigenetic boundaries on top of
disciplinary ones, to serve as a component of a future paradigm.
Shepard's “Universal Law of Generalization” (Shepard, 1987)
provides a prominent example of this approach. Can the FEP
satisfy the same role, as an ever-present, albeit incomplete,
component of the brain's processing?

We discuss decision contexts where the contributions of
the FEP appear minimal, if at all present. To preview our
closing argument, this is because prediction error and un-
certainty matter to decisions insofar as they relate to an agent's
goals, hence their valuation of different sensory states and
actions. While utility appears irreducible to error and uncer-
tainty reduction, any FEP-derived model could in principle be
incorporated into a utility-dependent model of choice valua-
tion.> The connections between reinforcement and deep
learningresearch on one hand and brain research on the other
provide a unique opportunity for supercharging cross-
disciplinary research, if neuroscientific models do not
mischaracterize utility using needlessly reductive approa
ches.

We recognize that not all extensions of the FEP to decision-
making have been reductive. For example, Sprevak and Smith
(2023) developed a non-reductive model of decision-making
that incorporates a prior preference distribution, rather than
relying solely on the FEP. Furthermore, Smith et al. (2022)
established a model of well-being that incorporates the Prin-
ciple but uses subjective preference as a foundational input.
Despite differences with what we propose in this article, we

®In fact, the Principle’s informational considerations are
arguably already reflected in computational cognitive neurosci-
ence of decision-making, where approximate Bayesian inference
is performed nowadays using neural networks (Fengler et al.,
2021). It is noteworthy that reinforcement learning in such
models prefers the reduction of uncertainty and error without
explicitly using the FEP, as less uncertain outcomes are often
important for the decisions of a rewards-maximizing agent.

believe such non-reductive models provide a promising path
forward in decision-making research. However, they do not
have the same implications for unifying the brain sciences
that the reductive approaches do: By design, they recognize
that the Principle's notions of error and uncertainty do not
suffice to account for behavior in some contexts and may be
less relevant in others. As such, they fall outside the scope of
our current critique.

If the FEP is neither all-encompassing nor ever-present in
human decision-making, it would not be a unifying principle
for the brain sciences, let alone a paradigm. It would simply be
yet another pre-paradigmatic theory among the many pro-
duced by brain researchers, each with its own delimited, even
if broad, domain of applicability. While this would be a
humbling, unfortunate outcome, it is one that all but a
handful of theories in science have faced, an eventuality that
does not automatically deny a framework its value as an in-
strument of disciplinary research.

Rather than unsuccessful attempts to reduce every brain
function to prediction error and uncertainty reduction, it
would be more productive to identify contexts in which the
FEP's considerations most strongly determine behavior.
Beyond supporting the Principle's application to domains
where it is most useful, such an approach would allow its
composition, if and where needed, with other fundamental
notions, in hopes of providing the brain sciences with a uni-
fying theory in the future.

To advance the discourse along these lines and considering
our preceding discussion of independent subjective prefer-
ence, we subsume the FEP into a preliminary two-factor
computational model that separates its informational con-
cerns from irreducible aspects of utility estimation. The rela-
tive contribution of the two factors is controlled by separate
parameters that may be empirically estimated. Importantly,
such a model can still accommodate normative, Bayesian
modeling, while also allowing the development of descriptive
computational theories. In the interest of brevity, we leave to a
future article the full details of how the parameters would be
estimated in such a model and how to experimentally test its
predictions. We give the interested reader a broad equation
and pointers to relevant experimental literatures for now. We
end the article by briefly discussing what ramifications this
more contextualized view of the brain, in line with Lucas'
suggestions in his 2005 Cortex article, has for the next 60 years
of studying the human cortex.

2. Free Energy versus utility in decision-
making

Decision-making is a central human faculty. For the FEP to
serve as a unifying principle for the brain, it needs to address
its processes and outcomes without a need for additional,
irreducible notions. Valuation is at the core of decision-
making, reflected in the presumption of subjective utility's
existence across the behavioral decision sciences (Barbera
et al., 2004). For the FEP to unify the brain sciences, decision
goals and their mapping to options according to this valuation
process must be reducible to error and/or uncertainty reduc-
tion in ways reliably predicted by the Principle. That the
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theory's proponents consider short- and long-term decision-
making within the scope of the FEP's unifying power is re-
flected in several attempts to explain away choice valuation as
a function of the Principle's core equations, including within
the most impactful call to action for exploring the theory's
potential in the brain sciences (Friston, 2010; Gershman, 2019).

The idea that the FEP obviates the need for independent
notions of value, reward, or utility features prominently in
Friston et al. (2009, 2014), but is most broadly stated in an
article titled “The free-energy principle: a unified brain the-
ory?” (Friston, 2010). There, it is argued that value could sim-
ply be the complement of surprise, while a goal could be
considered a state an agent expects to spend much of its time
in. How did this valuation of the most expected outcomes
develop? The explanation is that natural selection pressured
neural ensembles capable of associative learning (Hebb, 2005;
Von Der Malsburg, 1994), leading to the development of
attractor states that an agent predicts and is simultaneously
drawn towards. More recently, the same notion was used to
explain goal-directed behavior as key to general intelligence,
building an account of decision-making most broadly
construed based on choosing the option with the least ex-
pected prediction error or uncertainty (Ashton Smith, 2023).

If we take “the most expected option” to mean the option
with the highest a priori probability, as is the common sense of
the term and seemingly the definition used in Friston (2010, p.
133), it is difficult to see how our account would provide a
compelling case for two classes of reasoning problems and
their associated decision rules. We look at each of these
classes briefly in turn.

In diagnostic reasoning an agent reasons backwards from
an effect to its cause, trying to identify what could have
created an observed attribute. The most intuitive everyday
example of this type of task is clinical testing. Consider a lab
test devised to identify cancer. As in all decision-making
contexts, there are two possible ways in which the test
could lead us astray: There could be no cancer in a sample
while the test flags it as cancerous (Type 1 error), or the sample
could be cancerous while the test identifies no abnormality
(Type 2 error). It is not difficult to see why cancer tests should
be optimized to minimize Type 2 error even at the expense of
increasing false positive rates: A false positive outcome exacts
a miniscule cost, as further testing would dispel any worries;
while missing a present cancer could prove fatal to a patient.
In this context, a cancerous sample is not the most expected
outcome. In fact, if the test is routine, it has very low proba-
bility. However, the negative utility of a false negative is so
immense that it overpowers the probabilistic constraints and
guides our decision about which test to employ. The same is
not true of every diagnostic reasoning context. In research, for
instance, it is customary to cap Type 1 error rates at .05 while
Type 2 error rates are allowed to get as high as .2. The
reasoning is that a fake positive result can lead to much
greater waste of research potential than a missed positive
finding. This adaptive adjustment of error rates in line with
the utility of less likely outcomes is an example of the im-
mediate physical context constraining brain processing in a
structured manner (Lucas, 2005).

Predictive reasoning is the opposite of diagnostic thinking,
reasoning forwards from a cause to determine what effects it

might have. Nonetheless, it poses similar dilemmas for iden-
tifying utility with expectation. Consider instrumental pre-
dictive reasoning, or identifying actions one should take to
obtain a desired outcome. The pursuit of political ideals often
involves this type of processing.® Many throughout history
have been willing to die for their visions of a better society
even when the fight has been hopeless, i.e., when the proba-
bility of achieving the goal state approached (or even reached)
zero. In this case, the positive utility of even imagining the
political ideal being implemented is so great that it can over-
power even the deep-seated self-preservation instinct. The
ideal has that effect without requiring that the goal state be
likely, just the knowledge that it is desired. Like diagnostic
reasoning, predictive problems need not be about extreme
utility. A more mundane example would be determining how
much effort to spend on preparing for a test. The adjustment
of actions based on the utility of what they support provides
an interface for the intermediate cultural context to constrain
the brain's decision processes (Lucas, 2005).

One possible way to avoid these issues while maintaining
that utility boils down to expectation in the traditional FEP
sense is by changing the intuitive meaning of the latter term:
Perhaps “not having active cancer”, “being a good fighter in
the path of one's ideals” or “having gotten good grades” are the
awkwardly defined yet imaginable states that our evolution
has led us to “expect” being in most of the time. There are two
major problems with this idea. The first is that one's desire
towards such states might still differ strongly from one's
expectation. We might consider it most likely that we will fail
an exam yet be motivated to study on the off chance that the
desired, less likely outcome could happen. The second prob-
lem with this framing is that it would make the notion of
expectation so broad and so vague as to render the FEP's
application to such decision-making contexts all but untest-
able. That would obviate any empirical benefits from the
Principle's adoption as a paradigm for the domain.

In contrast, the simplest FEP-independent notions of util-
ity, i.e., the value of an outcome or an event expressed in
terms of an individual's personal judgment or degree of
satisfaction (Oxford University Press, 2009), can easily account
for behavior in the cases mentioned. Where does this valua-
tion come from? One could simply trace it to pleasure and
pain as shaped by evolutionary pressures (Hagen et al., 2012).
Note that adopting a non-reductive utility-based approach to
reasoning and consequently decision-making does not
necessitate abandoning the Bayesian Brain Hypothesis.
Bayesian accounts of diagnostic and predictive reasoning
have longbeen developed (Fernbach et al., 2011), and expected
utility approaches allow for the incorporation of risk in
translating them into decision rules (Fishburn, 1981).

If goals are not most fruitfully modeled as the most ex-
pected outcomes, is there an alternative way of reducing
utility to Free Energy minimization? The most plausible
formal candidate for this role is discussed by Gershman (2019).
His account considers utility maximization as the goal of

¢ The FEP has been used to explain communication and her-
meneutics (Friston & Frith, 2015). Therefore, the theory's pro-
ponents seem to consider abstract concepts like a political ideal
within the scope of its unifying potential.
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decision-making but casts reward as information gain. This
essentially has the effect of turning the agent's focus away
from prediction error reduction towards uncertainty reduc-
tion. In other words, it suggests that agents are compelled to
take actions that teach them the most about the potential
states of their environment.

That the well-studied phenomenon of “motivated forget-
ting” exists and has been studied in the brain (Anderson &
Hanslmayr, 2014) should immediately give us pause in
considering this a complete account of human behavior. In
cases of motivated forgetting, information is actively removed
from memory, such that uncertainty (and plausibly often
error) is increased. This is done in ways that have positive
utility for the agent, for instance by allowing them not to
ruminate on expected experiences that are unpleasant. But for
the sake of the argument, let us consider such phenomena as
edge cases and look at the error and uncertainty reduction
aspects of the FEP in more canonical decision-making
contexts.

In many such situations, the two elements of the FEP
conflict, with no clear way of choosing between the two
without an independent notion. Consider, for example, a
classic multi-armed bandit problem (Gittins, 1989). In this
class of problems, a fixed, limited set of resources must be
allocated between competing, alternative choices, when each
choice's properties are only partially known at the time of
allocation and may become better understood as time passes
or by allocating resources to the choice. A common example is
choosing between different restaurants. Consider two op-
tions: a familiar restaurant with decent food and a newly
opened restaurant that is an unknown quantity. For
simplicity, assume that the new place has a 50% chance of
being terrible and a 50% chance of being great in the agent's
mind. In this context, an information gain goal would support
going to the new restaurant. However, unexpectedly eating
terrible food is a prediction error the agent would also want to
avoid. Wanting to minimize that error would lead to choosing
the safe option. It is not clear which goal should be more
prominent according to the FEP. One possibility would be to
define the expected state the agent is drawn towards less
intuitively as “having eaten good food”. This would encourage
exploration or exploitation based on which option is more
likely to bring that state about. But the key term in such a
characterization would be “good”, i.e., the subjective valuation
or utility that appears indispensable.

Knowing the subjective utility helps us explain behavior in
this and many other multi-armed bandit problems. Depend-
ing on the agent's risk-aversion (Edwards, 1996), if the known
restaurant is only decent, i.e., the difference between its ex-
pected utility and the perceived maximum available in one's
environment is large, agents may “explore” by visiting the
new restaurant. But if they feel that the known location
“satisfices” as an option, i.e., surpasses their personal
threshold for how good a meal should be, there is less impetus
for exploration. Such utility-based solutions to bandit prob-
lems are so readily formalizable that reinforcement learning-
based approaches to finding them are used in many applied
settings (Bouneffouf & Rish, 2019).

In less mundane contexts, an irreducible notion of utility
provides even more clear-cut predictions for whether

uncertainty reduction would be pursued. Consider someone
who sees the vague silhouette of a large animal at night in the
wilderness. It could be a harmless grazing deer or a vicious
leopard. In such a situation, the negative utility of being
within the reach of a potentially dangerous animal outweighs
any decision-relevant insights to be gained from reducing
uncertainty about the shadow's identity. This means that
most individuals would simply keep their distance and let go
of their information gain goals. A contrasting situation where
information gain aligns more with utility is in the Twenty
Questions game, information-theoretic accounts of human
behavior in which have been developed (Nelson, 2005).

Even when focusing on highly similar decision contexts,
the preference for prediction error versus uncertainty reduc-
tion can dynamically change in ways predicted by subjective
preference. For students practicing in preparation for an
exam, information gain may be more important: They would
want to focus on problems the answers to which appear most
uncertain (although even then the incentive structure matters
for determining one's strategy; Oxoby, 2009). But the relative
importance of information gain flips for the test itself:
Reduction of prediction error would be more important than
“trying out” uncertain strategies to learn more about the topic
while one's grade hangs in the balance. The distinction can be
explained by noticing that much less negative utility is
attached to making mistakes during a practice than in an
actual test. Note that “having obtained good grades” or
“remaining healthy” may be highly unlikely outcomes, but
that does not detract from their desirability.

It is difficult to see how any notion of utility that relies
solely on prediction error or uncertainty reduction would fully
explain humans' highly adaptive behavior in response to
these diagnostic, predictive and bandit problems. Responses
to these tasks are linked to an unavoidable property of natural
cognitive agents: One may desire states that not only differ
from those of the environment or the most likely outcomes,
but that could even be unachievable in principle. This is
simply a consequence of our brains maintaining two inter-
connected yet different systems, one for representing real and
imaginable worlds, and another for evaluating the utility of
various states. This distinction is reflected in the neuroscience
of decision-making, where representation and evaluation's
neural underpinnings are distinctly characterized (Gold &
Shadlen, 2007; Rangel et al., 2008).

A side effect of this separation is that in some decision-
making contexts neither prediction error nor uncertainty
reduction may be important: Consider a situation where an
agent is forced to perform a decision-making task, or the
reward does not depend on the quality of responses. In this
situation, there is little motivation to find the right answers, as
the utility is uniformly distributed across each trial's options.
A subject might therefore choose the least effortful action of
randomly responding instead of trying to reduce uncertainty
or prediction error. Even the indifference between options in
this example is explainable using utility. The effectiveness of
manipulating the utility distribution is reflected in the fact
that researchers often add a bonus to a subject's baseline
compensation based on performance to encourage accurate
response. In comparative neuroscience studies with monkeys,
this takes the form of sweet nectars offered through a tube
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(e.g., Montague & Berns, 2002). In many human experiments, a
random trial is chosen to determine a monetary bonus (e.g.,
Tomov et al.,, 2020). These interventions tip the expected
utility balance in favor of minimizing the subjects' Free Energy
in the task, giving them a reason to focus their efforts on
prediction error or uncertainty.

This example not only denies the FEP its ubiquity across
brain functions in general and decision-making contexts in
particular, but it also highlights a broader point about when its
considerations would be relevant to a task: Prediction error
and uncertainty reduction matter to agents insofar as they
relate to subjective utility. That is why focusing on long-term
optimization rather than short-term decisions (as we have in
this section, in contrast with Friston, 2010) would not save the
reductive FEP-based accounts of decision-making: Agents are
driven to optimize their long-term utility as well as their
short-term rewards. If any part of the utility to be accrued in
the long-term does not depend on the FEP's considerations,
that undermines the Principle's ability to explain behavior
with broader horizons.

To summarize, while it is unlikely that utility can be
reduced to Free Energy minimization, the only characteriza-
tion of Free Energy that could hope to account for human
decision-making would be one complemented by irreducible
notions of subjective preference. If the FEP is less relevant to
some decision-making contexts and cannot independently
explain human behavior in classes of heavily studied prob-
lems, it falls short of being a unifying principle, let alone a
paradigmatic theory to subsume all of brain science. The is-
sues we raised in this section with accounts of choice valua-
tion that rely solely on the FEP appear profound. Therefore, we
do not find further pursuit of reductive research projects at the
intersection of the FEP and decision-making (e.g., Friston,
2010; Gershman, 2019) helpful.

3. Free Energy and utility in decision-making

If we concede that the FEP is an unlikely candidate for a uni-
fying theory of the brain, what would the prospect be for
moving towards a paradigmatic brain science? One possibility
is that there will never be a unifying theory. Although the
optimization approach to biology has been fruitful in
explaining why brains developed certain properties (Varshney
et al, 2016), some describe the mind-brain system as a
kludge—a quick-and-dirty solution that is clumsy, inelegant,
inefficient, difficult to extend, and hard to maintain—due to
the limitations of evolution (Marcus, 2009) and perhaps of
development (Witvliet, et al., 2021).

But the brain scientist's task would remain the same
regardless of whether a unifying theory can be developed:
Delineating each framework's area of applicability. This is
because even the broadest paradigms of the physical sciences
still have delimited domains of explanatory power. If our
brains are alternatively like Swiss army knives, a set of ill-
aligned tools that are each pulled out according to situa-
tional demands, we should still identify the contexts in which
a framework's edicts are most prominent. If we find a way of
formally combining the various tools, we could still develop a
modular model of the brain in its totality which, though not

nearly as elegant as a single theory, would have far greater
explanatory power than would otherwise be available to us.

If we accept the delineation of theories' domains as our
task, what could be the area where the FEP is most helpful
without independent notions? When the learning of genera-
tive models aligns with an agent's utility considerations, the
FEP explains behavior well. One example is trial-and-error in
causal learning, where active inference is arguably used to
iteratively reduce uncertainty about effects by using predic-
tion error as a teaching signal (Friston et al., 2009).

To make use of the FEP's explanatory value in such con-
texts while maintaining greater range for explaining brain
function, we could reframe subjective utility such that it iso-
lates the influence of FEP's information optimization goals,
compares it with irreducible aspects of subjective preference
and allows for the selective activation of either element based
on situational demands.” Such an extension would make it
easier to identify the Principle's domain of applicability,
therefore integrating FEP findings with exciting developments
in the formal modeling of higher-level cognition and bringing
us closer than ever to the goal of providing a unifying
computational account of the brain. There are already cogni-
tive theories that combine notions of uncertainty reduction
with the optimization of utility in domains as complex as
social learning (FeldmanHall & Nassar, 2021) and moral
reasoning (Cushman et al., 2017). Such models would benefit
from further integration of their normative aspects with the
FEP if the necessary and superfluous contributions of the
Principle to utility estimation are distinguished. Even if the
Bayesian Brain Hypothesis proves to be false in certain do-
mains and individuals are found to deviate systematically
from the normative edicts, a clearer quantification of those
deviations using normative models like the FEP would set the
stage for better descriptive accounts.

In what follows, we provide a preliminary version of what a
utility model could look like that directly compares the impact
of FEP as a module with that of irreducible subjective prefer-
ence. Because prediction error is the main determinant of
actions in the canonical version of the FEP (Friston, 2010), we
focus on this element in the following discussion. But similar
accounts could be easily developed for alternative, more so-
phisticated notions of prediction error as well as versions of
the FEP that focus on uncertainty reduction (e.g., Gershman,
2019) or combine error and uncertainty in a structured
manner.

Let s stand for the decision context that has produced
certain sensations in the agent. In the context of choosing a
restaurant, this could be the agent's level of hunger. Let the
vector A = {a,, ..., a,} denote the possible actions the agent
could take in light of the sensations. The action could be the
agent going to Restaurant One or Restaurant Two. We could
represent the possible outcomes as the vector Y ={yj, ..., yu}, in
this case how filling the food is, i.e., how good of a solution it

7 Alternatively, one could combine utility with the FEP by using
subjective preferences as constraints on a model optimizing Free
Energy. An example is the model of holistic wellbeing developed
by Smith et al. (2022). Whether using utility as a constraint in an
FEP model produces better or worse explanations for behavior
than vice versa, awaits further research.
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provides to the current problem sensation. The agent's valu-
ation of a given action in the context of the sensations could
then be determined using the sum of two terms, one repre-
senting prediction error for the action outcomes couched in
information-theoretic terms, and the other the utility of out-
comes relative to the status quo. In our example, Restaurant
One may have been visited many times, in which case it would
be associated with very low expected prediction error: Our
agent would know rather accurately how filling their food will
be and is therefore unlikely to heavily update the learned
distributions based on outcomes. The utility, however, has to
do with more than this knowledge. Perhaps our agents would
expect the portion sizes at Restaurant One to be too large for
their current level of hunger. This would encourage them to
try Restaurant Two instead, because an overfull belly has a
negative utility. Of course, whether they would prefer
Restaurant Two depends on their expectation of how large the
portion sizes will be there. If they have never been to
Restaurant Two, they may think of the average portion size at
a restaurant of that type. An intuitive characterization of
either action's valuation is given in Equation (1)%:

V(ails) = a(s) (ZU()’I& ap(yls, a) — U(s)) —B(s) (DLP(Y& a)
y

IP(YIS)]> 1)

An agent considers through the first term each possible
outcome of an action in terms of its expected utility given the
sensations. Importantly, the expected utility after the action is
considered relative to the status quo, U(s): There is no point in
taking effortful steps if the utility remains the same.

For the second term, the expected difference between the
outcome probability distribution before and after the action is
calculated using Kullback—Leibler Divergence, an entropy-
based measure of prediction error.” To encourage the mini-
mization of this difference, negative value is assigned to the
divergence.

Here, «(s) and B(s) would be the context-specific and
empirically derived normalized weights that determine the
relative prominence of prediction error reduction and inde-
pendent utility maximization in the overall valuation scheme.
This form allows the FEP to be the sole consideration in certain
cases, or for it to be completely abandoned in favor of utility
maximization in others. We anticipate the weight of

8 Our proposed equation is very similar to the Lagrangian form
of the novelty-utility trade-off in Varshney's (2019a) mathemat-
ical theory of creativity. The similarity is far from coincidental:
Creativity is one domain where utility constraints (“can the cre-
ative solution aid the agent?”) are intertwined with surprisal
considerations in evaluating behavior (Guilford, 1967).

° The second term in Equation (1) is a contextualized variant of
the objective minimized in variational Rate Distortion Theory
(RDT). Incidentally, its optimization given an expected upper
bound on distortion is given by a two-term characterization in the
method of Lagrange Multipliers that is visually similar to Equa-
tion (1). The classic characterizations of variational RDT, how-
ever, contain no independent notion of utility. See Jakob and
Gershman (2023) for an application of variational RDT to neural
coding.

irreducible subjective preference to be greater in our running
example of choosing a restaurant. In other situations, how-
ever, FEP-based considerations may hold greater independent
weight. For instance, if we are playing a Twenty Questions
game, assuming that we are motivated to play well and win,
we would probably choose questions that minimize our pre-
diction error or maximize our information gain for the target
category (Nelson, 2005). Since «(s) and 3(s) can vary based on
context, they should be estimated empirically in each study.
Once enough experimental evidence has accrued, the range of
estimations across contexts can help identify domains where
one term is most helpful for explanations, as well as places
where a combination of information and reward optimization
are necessary to explain behavior.

One context where such an interaction could feature
prominently in overall action utility is during teaching. Ho
et al. (2017) provide a compelling case in their experiments
on navigating a grid world where some steps along the path to
a rewarding destination are penalized. During learning trials,
the players are encouraged to reduce their uncertainty and
prediction error about where these “traps” are located, i.e.,
gather information about the distribution of (negative) re-
wards. The subjects are then told that other participants, also
unaware of the traps' locations, would be shown records of
their gameplay to learn how to succeed at the game. The
subjects' behavior changes in these “teaching” trials. The best
formal account for the subjects' responses is then provided by
assuming that they are minimizing the uncertainty in the
observer's expected distribution of rewards, a combination of
Free Energy reduction and irreducible utility maximization.
Ho et al's (2017) normative account is more focused on
encoding-decoding accuracy than disentangling reward and
information considerations. Nonetheless, it could serve as a
helpful starting point for an analysis of the type proposed in
this section.

Once the values of actions are determined using Equation
(1), they can be transformed into normative choice probabili-
ties using a variety of tools developed in the decision sciences
(Barbera et al., 2004). This would allow researchers to compare
human behavior directly with the predictions of a given utility
model. A more normative transformation would be the widely
used SoftMax function (Sutton & Barto, 2018). An alternative
approach would be estimating context-dependent thresholds:
Once an option's value surpasses that threshold, evaluation is
ended, and the corresponding action is chosen. Which deci-
sion rule to use would depend on the researchers' hypothesis
and the modeling's normative or descriptive goal. The key
takeaway, however, is that translating the value estimations
into behavioral predictions that can be fed into traditional
statistical analyses for experiments would not be difficult.

Equation (1) is meant as an explanation at Marr's (2012)
computational level of analysis: Representing the abstract
problem that the agent wants to solve and the broad formal
strategy for doing so. To transform it into an algorithmic ac-
count that, for instance, incorporates the limited resources of
humans as boundedly rational agents (Lieder & Griffiths,
2020), a sequential ordering of behaviors needs to be map-
ped onto the computational framework. While the develop-
ment and validation of such an account is beyond the scope of
this viewpoint article, we present in Fig. 1 a simple decision
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Choose the least
effortful option

Stop the optimization of
W a;|s), optimize the cost
of actions instead.

Ll Does the agent care
about the outcome?

Check whether E[AV(a;|s)] > x forany a;

Yes

SetB(s) = 0in Eq. 1. Optimize Utility

Does error align
with utility?

Optimize Free _
- a(S) -om Eq' .

Partially

Optimize Free

Energy and
independent utility

Find the best combination of a;, a(s) and B(s)
such that V (a;|s) is maximized in Eq. 1.

Fig. 1 — An example of how a model of choice valuation could be translated into an algorithmic computational theory that
contrasts risk- and independent preference-based consideration. x in the top row is a contextually determined threshold for
how much difference in expected option value is worth optimizing for. Utility and error are “partially” aligned when
objective performance on the task matters for utility, but its value also reflects independent considerations (see text for
examples). The first half of Eq. (1) can be used to model information-independent aspects of utility. Then «(s) and 3(s) may
be optimized using grid search or through a context-sensitive heuristic.

tree to make the explanation level distinction clearer for
readers. Each plain language element is accompanied by an
example of how it could be formalized considering Equation
(1).

Of course, to say that utility is indispensable to theories of
cognition and can be empirically studied in brain and behavior
does not mean its characterization would be easy in every
context. Much like error and uncertainty, utility is a complex
notion, its form shifting based on the decision parameters.
More so than the FEP's purely informational considerations, it
also has a subjective aspect that makes it more difficult to
directly measure. In fact, it was this same subjectivity that
prompted radical behaviorists like Skinner (2002) to resist
conversion to cognitivism.

Still, there are clear-cut ways of grounding utility estima-
tion in more objective measures. The largely dopaminergic
network underlying reward-related perception and behavior
is well-studied (Gold & Shadlen, 2007). Simple decision-
making tasks and reinforcement learning-derived formaliza-
tions have proven successful at identifying the operating
mechanisms of this network (e.g., Collins & Frank, 2014). By
providing clear predictions about the brain regions and even
the chemical processes underpinning choice valuation, the
computational cognitive neuroscience of decision-making
will be crucial for developing falsifiable, formalized accounts
of utility estimation. The field's careful consideration of
structural and functional brain constraints in these modeling
frameworks also maps well onto the biological constraints in
Lucas' (2005) meta-theory.

At a higher, more computational level of analysis (Marr,
2010), reinforcement learning algorithms have been success-
ful at modeling behavior across a range of decision-making
tasks, particularly when implemented within “drift diffusion
models” (Fengler et al., 2021). These models have already been
applied to explain the abstract, functional elements of cogni-
tion (Ratcliff et al., 2016). The functional focus of this field's
research, removed from the implementational details of a
brain or a computer's processing, maps well onto the abstract
constraints in Lucas' (2005) meta-theory.

For researchers more interested in the FEP's insights about
prediction, these research programs provide ample opportu-
nities to perform integrative research, as they were built from

the ground up with an awareness of uncertainty's role in
decision-making. Such integrations could be more fruitfully
developed if the reductive approach to utility (e.g., Friston,
2010; Friston et al., 2009, 2014) is not pursued any further.

4. Optimality versus efficiency in brain
science

A major appeal of the FEP's computational machinery lies in
the use of approximate Bayesian inference to estimate pa-
rameters in a manner that is optimal up to a given threshold.
This allows normative models to be developed without
adjusting the theory's fundamental equations, the claimed
aligning of which with empirical data provides the basis for
supporting the ambitious Bayesian Brain Hypothesis (Friston,
2010). Would the adoption of an independent preference
concept mean the Hypothesis must be abandoned?

The answer is unequivocally no. Many ways of performing
approximate inference are being developed that do away with
the difficult-to-satisfy assumptions of classical Bayesian
modeling while maintaining notions of optimality. Re-
searchers in the computational decision sciences are now
widely using neural networks for computations over models
of utility and choice behavior not unlike those discussed in
this article (Fengler et al., 2022). While many studies rely on
drift-diffusion models of preference that we have not sur-
veyed in this article (Ratcliff & McKoon, 2008), their use of
universal function approximators means that the same deep
learning frameworks could be applied to the estimation of any
observable or latent variables in Equation (1), including in an
approximately Bayes-optimal manner. While the training of
neural networks is effort-intensive, it must be done for a given
model-task pair only once. As such, the approach provides a
promising avenue for future research on the neural un-
derpinnings of behavior, which may bring us closer to a uni-
fying theory of the mind-brain.

But researchers need not limit themselves to the pre-
dictions of the Bayesian Brain Hypothesis either. The func-
tions that make up Equation (1) could be set up in a way thatis
most predictive of human behavior, which may turn out to
deviate from optimality in reliable ways. How well such
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models fit behavior could inform mechanistic theories of
cognition. For instance, U(y|s, a;) in Equation (1) could be easily
replaced with its Prospect Theory equivalent (Kahneman &
Tversky, 1979) that incorporates risk aversion, while p(y|s, a;)
could be adjusted to conform to the theory's predicted warped
estimates of extreme probabilities.

We consider the descriptive focus particularly helpful for
delineating the physical and cultural constraints in Lucas'
(2005) meta-theory. Many judgments in complex social envi-
ronments rely on heuristics activated by contextual cues
(Hemmatian & Sloman, 2020), while time constraints make
the use of normative strategies less likely even in canonical
tasks (Payne et al., 1988). The fast-and-dirty rules-of-thumb
offer a variety of cost-effective problem-solving approaches
that are especially attractive to humans given their limited
cognitive-behavioral capacity (Gigerenzer & Todd, 1999). Many
heuristics have already been formalized and as such, can be
incorporated into more encompassing computational models.
Examples of such formalizations include domains like moral
reasoning (Levine et al., 2020), suggesting that the same
approach would be just as fruitful for explaining less-complex
behaviors.

5. Summary and open questions

Unifying theories, or at least unifying principles that can serve
as their components, are the Holy Grails of every science
(Kuhn, 2012). We examined the performance of one proposed
candidate for fulfilling this role in the brain sciences: the FEP
(Friston et al., 2006; Friston, 2010). According to the theory, the
cornerstone of brain processing is an attempt to reduce pre-
diction error and uncertainty. Agents are driven to accomplish
this through developing accurate models of the environment,
but also by adapting it to better fit their internal representa-
tions (Clark, 2015). The challenge to reduce higher-level
cognition to this Principle has been answered in a series of
publications (e.g., Ashton Smith, 2023; Friston, 2010; Friston &
Frith, 2015; Gershman, 2019). To evaluate the theory's poten-
tial for universal applicability across the brain sciences, we
looked more closely at the reductive FEP-based models in a
domain that has received much attention in recent years:
human decision-making. We used Lucas' (2005) meta-theory
of the embedded brain to frame our discussion of con-
straints on this cognitive function.

The bedrock of decision-making research is the subjective
valuation of options, i.e., utility (Barbera et al.,, 2004). We
argued that attempts to reduce this notion to FEP concepts,
regardless of their focus on prediction error (e.g., Friston, 2010)
or uncertainty reduction (e.g., Gershman, 2019), invariably fail
to fully explain behavior in certain diagnostic, predictive and
multi-armed bandit tasks. This is because the desirability of
options does not solely depend on their expectedness, but also
on irreducible subjective preference. That there is more to us
than simply optimizing for surprise has implications far
beyond the laboratory. For instance, when examining political
decision-making in the context of today's social media, the

utility of information must be considered on top of its surprise
value to predict a message's persuasiveness (Varshney,
2019b).

To provide a stronger foundation for a future unifying
perspective on the brain sciences, we presented a two-factor
model of choice valuation that directly contrasts the infor-
mational considerations of the FEP with the independent
utilitarian aspects of decision-making. We briefly discussed
how the model's parameters may be estimated empirically
using neural networks, as well as how more fine-grained
algorithmic or implementational accounts may be devel-
oped. We believe the clear connections with network neuro-
science (Barbey, 2018), reinforcement learning, and deep
learning will prove crucial for the development of more
comprehensive theories in this domain for years to come if
needlessly reductive approaches to modeling are dropped.

We then reflected on our framework's implications for the
Bayesian Brain Hypothesis (Hipdlito & Kirchhoff, 2023). Our
new framing of choice valuation allows for both normative
and descriptive characterizations. The empirical estimation of
variables using neural networks would also remain largely
unchanged regardless of normative focus. As such, the utili-
tarian model can prove helpful in adjudicating between the
accounts of decision-making behavior that rely on Bayesian
principles and those that argue for systematic deviations from
them. We ended by pointing to literatures that suggest each
approach may be more useful for explaining human decision-
making in certain tasks.

If we accept that utility must be characterized for us to
have a full picture of human cognition, what would that mean
for the future of brain science? There are three unavoidable
properties of utility that make its characterization difficult.
Firstly, it is only indirectly observed through behavior and
must be estimated using latent variable analysis (cf., Barbey
et al., 2021). Secondly, utility is constructed in each context
based on the agent's goals, needs and task constraints.
Thirdly, a complete image of human utility can only be
derived by accepting its multi-dimensionality. Sen (1999)
made a compelling case for the latter two properties in eco-
nomics, but his critique applies just as well to cognition. While
behavioral scientists often reduce utility to a scalar dollar
value for ease of calculation, when thinking of complex no-
tions like welfare, there is immense information loss associ-
ated with the dimensionality reduction. As such, for utility
theories to remain true to their subjects beyond perceptual
and economic game paradigms, the expansion of models to
include different facets of preference in a contextual manner
would be needed.

Fortunately, many approaches have been proposed for
overcoming these complications in utility research, refer-
ences to which are included throughout this article. Indeed,
formal models of decision-making that combine the FEP with
independent notions of subjective preference are already
being developed (e.g., Smith et al., 2022). Beyond the existing
models, promising connections exist in neighboring disci-
plines as we explored throughout this article. Therefore, even
though we cannot yet rely on a single principle to explain all
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behaviors and have much work to do perfecting our models of
the irreducible subjective preference, there is no reason for
despair. A unifying framework may yet be found.
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