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Optimal HVAC Energy and Regulation Reserve

Scheduling in Power Markets
Waleed Aslam , Panagiotis Andrianesis , Member, IEEE, and Michael Caramanis , Senior Member, IEEE

Abstract—This paper considers the optimal scheduling of the
hourly energy consumed and regulation reserve capacity offered
by a Heating, Ventilation and Air-Conditioning (HVAC) system
participating in a day-ahead electricity market. We formulate
an Integrated hourly energy and regulation reserve Scheduling
and Deployment (ISD) problem that optimizes the hourly costs
and benefits resulting from the power consumed, the regulation
reserve capacity offered, the occupant thermal comfort utility, and
the expected Intra-Hour Costs (IHCs) due to HVAC’s imperfect
tracking of the regulation signal broadcasted by the Independent
System Operator every few seconds. Addition of the IHCs to the
objective function is the major innovation of this paper. It enables
optimal HVAC scheduling to internalize expected regulation sig-
nal tracking error cost traded-off against incremental occupant
thermal discomfort that may result from perfect tracking. The
cost causation circle closes by noting that a high hourly regulation
reserve offer may result in higher expected IHCs by increasing
the associated tracking error and the incremental occupant dis-
comfort. The paper’s innovation is achieved by (i) estimating an
analytic function of the hourly HVAC scheduling decision and state
variables that approximates the expected IHCs, and (ii) including
this exogenously estimated analytic function in the objective of the
hourly ISD optimization problem. Non-convexities introduced to
the optimization problem resulting from high fidelity HVAC model
and the inclusion of the expected IHCs, are addressed efficiently
through piecewise convex relaxations that provide tight optimality
bounds. Extensive numerical results are provided to demonstrate
the applicability and performance of the proposed approach.

Index Terms—Energy and reserve scheduling, frequency regula-
tion, heating ventilation and air-conditioning (HVAC) systems.

NOMENCLATURE

Sets and Indices

t hour index, (∆t denotes interval duration)
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n, k partition index for m, θ̄ in bilinear term

n, n′ partition indices for m in quadratic term

Input Parameters

c specific heat capacity of air

Rb, Rw thermal resistance (building mass, win-

dow)

C,Cb thermal capacitance (inside air, building

mass)

Q heat transfer due to occupancy and irradi-

ance

θa, θs ambient temperature, supply air tempera-

ture

δ valve position

η coefficient of performance of coil

α coefficient of fan power consumption

λ
P , λ

R energy price, regulation reserve price

θ̂ set-point temperature.

Variables

decision

m supply air flow rate

r regulation reserve capacity

state

θ, θ̄ inside air temperature, average θ
θb, θ̄b building mass temperature, average θb

auxiliary

ξ equivalent linear variable for the bilinear

term

ζ equivalent linear variable for the quadratic

term

w, u weights for discretization points

x, y indicators for interval activation

Functions of Decision and State Variables used for Compact

Notation

∆θc air temperature change at the cooling coil

p HVAC power consumption

pf , pc power consumption (fan, cooling coil)

Qs heat exchange between inside air and sup-

ply air

Jt(mt,rt,θt−1,θ
b

t−1,θ̄t) expected intra-hour cost (IHCs) for hour t

I. INTRODUCTION

T
HE ever increasing penetration of clean, albeit volatile,

renewable power generation is introducing a myriad of

challenges to the efficient and secure operation of the electric
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grid, calling upon demand to play a significant role. Storage-like

and bidirectional regulation reserve capabilities of distributed

energy resources including smart thermostats and electric vehi-

cles are coming to the forefront, with Heating, Ventilation and

Air-Conditioning (HVAC) systems being particularly relevant

due to their load-shifting capabilities in preheating/precooling

and their fast bi-directional power consumption response around

a nominal value [1], [2], [3], [4], [5], [6].

This work focuses on HVAC systems that present an attractive

value proposition for a number of reasons. Firstly, HVACs tend

to be an abundant resource; there were about 116 million HVAC

units globally in 2018 and their number is expected to rise to 151

million by 2024 [7]. Secondly, they are the largest contributor to

building energy consumption but possess unused energy storage-

like capabilities due to the associated thermal inertia of air and

building structures [8]. Thirdly, they are typically controlled by

buildings’ Energy Management Systems, whose capabilities can

be easily leveraged with minimal impact on occupant comfort.

HVAC systems can regulate their power consumption by

modulating the fan/pump speed to control the flow rate of air

supplied into the building [9], [10], [11], or the flow rate of

water to the chiller [12]. HVAC systems can most efficiently

utilize their fans/pumps to track stochastic, albeit energy-neutral,

intra-hour regulation reserve signals broadcasted by an Indepen-

dent System Operator (ISO) [13]. This enables HVAC systems

to obtain revenues by offering regulation reserve capacity in

the day-ahead market, provided that they do not incur relatively

inordinate Intra-Hour Costs (IHCs) during the ISO’s deployment

of regulation reserve signals [14].

The HVAC scheduling problem is considered in [9], [10], [11],

[12], [15], [16], [17], [18] as a Non-Linear Programming (NLP)

problem that determines optimal power consumption and regu-

lation reserve capacity trajectories for given day-ahead market

energy and reserve prices. However, these works do not model

IHCs. They instead impose hard constraints that either incur

large IHCs by over-committing on the regulation reserve capac-

ity offer, or, assure negligible IHCs at the expense of limiting the

regulation reserve capacity offer and the associated opportunity

for additional revenues. For instance, the hard constraints are de-

termined by considering a confidence-interval-based worst-case

weather and regulation signal percentile (e.g., 95-th in [9], 97.5-

th in [10], [11]), or an uncertainty set based worst-case in [12],

[15], [17]. Indeed, the size of the hourly reserve capacity offered,

the HVAC/building state, and the level of the intra-hour regu-

lation signal broadcasted by the ISO, may result in IHCs con-

sisting of regulation signal tracking error penalties and occupant

discomfort [19], [20]. Modeling of IHCs and anticipating them

when hourly decisions are made, makes this work stand out in the

literature.

This paper focuses on optimizing the hourly energy consumed

and regulation reserve capacity offered by an HVAC system

participating in the day-ahead electricity market. Its novelty is

the incorporation into the objective function of the expected

IHCs resulting from the HVAC’s obligation to modulate its

power consumption during the ISO’s deployment of the hourly

offered regulation reserve capacity. These IHCs internalize the

expected regulation tracking error and incremental occupant

discomfort incurred in the HVAC’s best effort to follow ISO

regulation reserve signals. We formulate an Integrated hourly

Scheduling and Deployment (ISD) problem by including into

the optimized objective function the IHCs along with the hourly

cost of power consumed, the revenue from regulation reserve

capacity offered, and the space-conditioning derived occupant

discomfort cost. As such, our ISD problem is unique in the

optimal HVAC scheduling literature in the context of hourly

day-ahead markets. We employ a pre-processor, exogenous to

the ISD problem, which draws from and expands work re-

ported in [21] and [22], to estimate the expected IHCs — i.e.,

the regulation signal tracking error and incremental building

occupant discomfort average cost, incurred during each hour

reflecting the optimal HVAC adaptation to intra-hour regulation

signals — as a closed-form analytic function of the hourly

decision variables (that refer to HVAC controls and offered

regulation reserve capacity) and state variables (that refer to

temperature).

Moreover, our ISD problem employs high fidelity models

of the HVAC and the building structure’s capability to store

energy [23] that contain non-convexities. To deal with the

non-convexities, in particular a bilinear term and a non-convex

quadratic constraint, we relax the complicating terms using

piecewise, convex polyhedra. Specifically, we employ a Special

Ordered Set (SOS2) based formulation, known as Piecewise

Polyhedral Relaxation (PPR) [24], which is known to be tighter

compared to standard and piecewise McCormick relaxations

while incurring small computational overhead [25]. The result-

ing formulation is a Mixed Integer Quadratic Program (MIQP)

problem, which can be efficiently solved using off-the-shelf

solvers, and provides tight bounds on the ISD problem objective.

We report numerical results of our formulation on a realistic

office building to demonstrate our ISD problem formulation

and quantify the tightness of the bounds on the ISD problem

objective. We compare with existing approaches and we analyze

the impact of different exogenous factors, namely of day-ahead

market prices, ambient temperature, and inside air tempera-

ture bounds, on the optimal ISD problem decision and state

variables.

To summarize, the contribution of this paper is three-fold.

First and most important, we formulate an ISD problem, which

explicitly accounts for the expected IHCs as a function of hourly

HVAC decision and state variables. This allows us to inter-

nalize the trade-off captured by the IHCs, between regulation

signal tracking error and intra-hour occupant discomfort, into

the hourly problem. This is the Second, we present an MIQP

relaxation of the (originally NLP) ISD problem, which provides

tight bounds for the NLP optimal solution, and we demonstrate

its computational performance and tightness through numerical

experimentation. To the best of our knowledge this is the first

work to provide a computationally efficient method for the

ISD problem of a high fidelity HVAC system model. Third,

we compare with existing works that employ hard constraints

and worst-case-based approaches which are shown to be overly

conservative and not adaptive to the frequency regulation signal

characteristics, which our approach inherently considers when

estimating the expected IHCs.
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Fig. 1. HVAC model.

The remainder of this paper is organized as follows. Section II

presents the HVAC and building model. Section III details the

ISD problem NLP formulation and estimation of the expected

IHCs. Section IV presents the ISD problem MIQP formulation.

Section V describes the Case Study, and Section VI discusses

the numerical results. Section VII concludes and suggests the

directions for future research.

II. HVAC AND BUILDING MODEL

In this section. we detail the HVAC model (in Section II-A),

the building thermal dynamics (in Section II-B), and the hourly

decision and state variables (in Section II-C).

A. HVAC Model

We consider a unitary HVAC system as illustrated in

Fig. 1 [23], where, for simplicity and without loss of generality,

we model the cooling operation. The HVAC mixes the ambient

air with the return air from the building in a ratio that is governed

by the valve position. This air mixture is then cooled by the

cooling coil and circulated inside the building by the fan. The

supply air temperature, θs, thus satisfies:

θs = δ θ + (1− δ)θa −∆θc, (1)

where δ is the valve position, θ is the inside air temperature that

is also the return air temperature, θa is the ambient temperature,

and ∆θc is the air temperature change at the cooling coil.1

Typically, the values of the valve position, δ, and supply air

temperature, θs, are assumed to be fixed [12]. We note that we

have dropped the time index for simplicity.

The HVAC total power consumption, p, is given by:

p = pc + pf , (2)

where pc is the power consumption of the cooling coil, and pf

is the power consumption of the fan.

The power consumption of the cooling coil, pc, is related to

the supply air flow rate, m, and the temperature change, ∆θc, as

follows [26]:

pc = m
c

η
∆θc, (3)

1Considering a heating operation, the supply air temperature θs would be
larger than the inside air temperature θt. Thus, (1) would be written as θs =
δθ + (1− θ)θa +∆θh, where ∆θh would be the air temperature change at
the heating coil.

where c is the specific heat capacity of the air, and η the

coefficient of performance of the coil. Replacing ∆θc using (1),

and rearranging terms, (3) becomes:

pc =
c

η
δ mθ +

c

η
[(1− δ)θa − θs]m. (4)

Note that the first term in (4) contains a bilinear term mθ,

whereas the second term depends linearly on m.

The power consumption of the fan, pf , is described by a

quadratic function of the supply air flow rate, m, as follows:

pf = α1 m+ α2 m2, (5)

where α1 and α2 are parameters that are fitted using historical

fan power data [23]. The fast response of the fan, by adjusting

the supply air flow rate, enables the HVAC to modulate its power

consumption and deploy regulation reserves [1]. In this work,

we consider that regulation reserve follows ISOs’ regulation

deployment practices, e.g., ISO New England (ISO-NE) and

Pennsylvania-Jersey-Maryland (PJM) [13], [27]. Specifically,

the regulation reserve capacity r is symmetric — i.e., equal in

the up and down directions around the hourly energy consump-

tion — and the regulation signal from the grid operator that

is used to modulate power and deploy regulation reserves is

energy-neutral over an hour — so that its impact on the HVAC

hourly energy consumption is negligible. Hence, the regulation

reserve capacity is constrained within the HVAC fan’s capability,

as follows:

pf − r ≥ pf−, pf + r ≤ pf+, (6)

where pf− and pf+ represent the minimum and maximum

power consumption of the fan, which are determined by the fan

capability and bounds on the supply air flow rate, m− and m+,

respectively. Obviously, the HVAC maximum regulation reserve

capability is (pf+ − pf−)/2, when the power consumption of

the fan is pf = (pf+ + pf−)/2.

The HVAC total power consumption (2), using (4) and (5), is

given by:

p =
c

η
δ mθ +

[

α1 +
c

η
[(1− δ)θa − θs]

]

m+ α2 m2. (7)

Note that (7) includes a bilinear term mθ, and a quadratic

dependence on m.

B. Building Thermal Dynamics

The building thermal dynamics are described using the

second-order Resistance-Capacitance (RC) model shown in

Fig. 2 [28], which represents temperature as a nodal voltage

and heat exchange as a current injection. Let Rb, Cb, and θb

denote the building mass thermal resistance, thermal capaci-

tance, and temperature, respectively, Rw the thermal resistance

of windows, and C the thermal capacitance of inside air. Let Qs

denote the heat exchange between inside air and supply air, and

Q the heat exchange between inside air and other sources (e.g.,

irradiance, occupancy).
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Fig. 2. Resistance-capacitance (RC) model for the building.

Applying Kirchhoff’s Current Law at nodes 1 and 2 of Fig. 2,

we get the following thermal dynamics:

Cθ̇ =
θa − θ

Rw
+

θb − θ

Rb
+Q+Qs, (8a)

Cbθ̇b =
θa − θb

Rb
+

θ − θb

Rb
, (8b)

where θ̇ and θ̇b represents the rate of change of the inside air and

the building mass temperatures, respectively.

C. Hourly Scheduling Decision and State Variables

Let us now consider the HVAC hourly scheduling. We intro-

duce index t to denote an hour. The HVAC decides the amount

of offered regulation reserve capacity, rt, at each hour t, which

is linked to the supply air flow rate mt. Hence, mt and rt are

the HVAC decision variables for hour t.
The building thermal dynamics determine the state variables,

i.e., the inside air temperature, θt, and the building mass tempera-

ture θbt . As can be seen in (8a), these state variables depend on the

heat exchange Qs
t between the inside air and supply air, which

in turn is dependent on the decision variable mt, as follows:

Qs
t = mt c (θ

s − θt). (9)

Since the thermal time constant of the building (in the order

of 30 hours) is much larger than the hourly granularity, we

can accurately approximate the building dynamics using Euler’s

mid-point method, as follows.

Let θ̄t and θ̄bt denote the average hourly temperatures of inside

air and building mass, respectively. The inside air temperature

dynamics (8a) are approximated by:

θt − θt−1 =
θat − θ̄t
RwC

+
θ̄bt − θ̄t
RbC

+
Qt

C
+mt

c

C
(θs − θ̄t),

(10)

where we also replaced Qs
t using (9). Rearranging the terms in

(10), we get:

θt − θt−1 =
cθs

C
mt −

c

C
mtθ̄t −

(

1

RbC
+

1

RwC

)

θ̄t

+
1

RbC
θ̄bt +

Qt

C
+

θat
RwC

. (11)

Similarly, the building mass temperature dynamics (8b) are

approximated by:

θbt − θbt−1 =
1

RbCb
θ̄t −

2

RbCb
θ̄bt +

θat
RbCb

. (12)

Furthermore, the HVAC hourly energy consumption, denoted

by pt (since t refers to one hour), is given by:

pt =
c

η
δ mt θ̄t +

[

α1 +
c

η
[(1− δ)θa − θs]

]

mt + α2m
2
t .

(13)

Notably, increasing participation of storage resources in the

provision of frequency regulation is expected to favor the cre-

ation of energy-neutral (over an hourly period) regulation sig-

nals, a la PJM RegD. However, relaxing the energy-neutrality

assumption, the deployment of regulation reserve may result

in a different temperature at the end of the hour than the

anticipated value. Hence, an offset to the energy consumption

may be required to be applied in real-time, to counter potential

persistence of the regulation signal in either direction. Again,

similarly to storage resources, HVACs may be allowed to update

their economic basepoints every 5 minutes to adapt to real-time

conditions, and correct any differences between the anticipated

and actual temperatures.

III. ISD PROBLEM

In this section, we detail the NLP formulation of the ISD

problem (in Section III-A), and we detail the estimation of the

expected IHCs (in Section III-B).

A. NLP Problem Formulation

Let t ∈ T = {1, . . ., 24} denote the set of hours in a day. The

NLP formulation is presented below.

1) Objective Function: We reiterate that the ISD problem

optimizes the hourly energy consumption and regulation reserve

capacity offered by the HVAC in the day-ahead market, while

also considering the hourly discomfort cost, and the expected

IHCs associated with regulation reserve deployment. The ISD

problem objective is:

minimize{Energy Cost–Regulation Revenue

+ Discomfort Cost + Total IHCs}. (14)

We define each term in (14) below.

Energy Cost =
∑

t

λ
p
t pt, (14a)

where λ
p
t is the energy price at hour t, and pt is the HVAC energy

consumption at hour t — see (13) — given by

pt = β1mtθ̄t + β2mt + α2m
2
t , ∀t, (14b)

with β1 = c
η
δ, and β2 = α1 +

c
η
[(1− δ)θat − θs].

Regulation Revenue =
∑

t

λ
r
t rt, (14c)

where λ
r
t is the regulation reserve price at hour t, and rt is the

HVAC offered regulation reserve capacity at hour t.

Discomfort Cost =
∑

t

εt(θ̄t − θ̂t)
2, (14d)
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where εt is the penalty factor for thermal discomfort at hour t,
and θ̂t is the HVAC temperature set-point at hour t.

Total IHCs =
∑

t

Jt(mt, rt, θt−1, θ
b
t−1, θ̄t), (14e)

where, Jt is the “expected IHCs” during hour t. We express Jt as

a closed-form analytic function of the hourly decision variables

(mt and rt) and state variables (θt−1, θ
b
t−1, θ̄t). The expected

IHCs,Jt, includes regulation signal tracking error and intra-hour

occupant discomfort costs (incremental to the average hourly

discomfort cost), which are incurred during regulation reserve

deployment when the HVAC discomfort preferences limit regu-

lation signal tracking capabilities. For example, scheduling high

regulation reserve capacity will render tracking large regulation

signals impossible without compromising occupant discomfort.

Therefore, optimal deployment is achieved through the best

trade-off between the tracking error and incremental occupant

discomfort costs. We essentially capture this trade-off through

the use of closed-form Jt acting as a soft constraint penalty.

We note that the decision variables appear in Jt’s expression

since they impact the intra-hour power modulation (and hence

the tracking error), with air flow ratemt also impacting the intra-

hour thermal dynamics (and hence the intra-hour discomfort).

The state variables are also included in Jt since they impact the

intra-hour building occupant discomfort costs. Specifically, the

intra-hour incremental occupant discomfort cost is calculated

around the average inside air temperature θ̄t, whereas the inside

air and building mass temperatures at the start of the hour, θt−1

and θbt−1, affect the intra-hour temperature dynamics (and thus

the intra-hour discomfort costs). This should come as no surprise

since Jt is in fact the expected cost-to-go over the hour when the

system state at the beginning of the hour is described by θt−1

and θbt−1. We detail the estimation of Jt in Section III-B.

2) Constraints: The ISD problem includes thermal dynam-

ics, regulation and bound constraints.

Thermal Dynamic Constraints: The inside air and building

mass temperatures are obtained by (11) and (12) as follows:

θt = θt−1 + γ1mt + γ2mtθ̄t + γ3θ̄t + γ4θ̄t
b
+ γ5,t, ∀t,

(15)

θbt = θbt−1 + γ6θ̄
b
t + γ7θ̄t + γ8,t, ∀t, (16)

where γ1=cθs/C, γ2=−c/C, γ3=−1/(RbC)− 1/(RwC),

γ4 = 1/(RbC) and γ5,t = Qt/C + θat /(R
wC), γ6 =

−2/(RbCb), γ7 = 1/(RbCb) and γ8,t = θat /(R
bCb). For

completeness, the average hourly temperatures for the inside

air and the building mass are given by:

θ̄t =
θt−1 + θt

2
, θ̄bt =

θbt−1 + θbt
2

, ∀t. (17)

Regulation Constraints: Following (6), and using (5), the

regulation reserve capacity, rt, is constrained as given below:

Regulation Up: α1mt + α2m
2
t − rt ≥ pf−, ∀t, (18)

Regulation Down: α1mt + α2m
2
t + rt ≤ pf+, ∀t. (19)

Bound Constraints: The fan capability and potential inside air

temperature hard limits impose the following bound constraints

on mt and θt, respectively:

m− ≤ mt ≤ m+, θ−t ≤ θt ≤ θ+t , ∀t. (20)

3) NLP Problem Summary: The NLP problem formulation

is summarized as follows:

NLP : minimize (14), subject to: (15)−(20), (21)

with variables rt non-negative, and mt, θt, θ
b
t , θ̄t, θ̄

b
t real, ∀t.

Note that the NLP problem formulation includes the bilinear

term mtθ̄t in the Jt representation of the objective function

(14b) and in constraint (15), as well as a non-convex quadratic

inequality (18) that includes m2
t .2 We treat these complicating

terms and constraints with mixed integer linear relaxations

next.

B. Estimation of the Expected IHCs.

We employ a pre-processor which is run off line, i.e. prior

to the solution of the ISD problem, to estimate parameters of

a quadratic approximation of the expected IHCs, Jt, expressed

in terms of state and decision variables (mt, rt, θt−1, θ
b
t−1, θ̄t)

optimized in the ISD problem. The pre-processor executes the

following tasks.

A reasonable seconds time scale regulation reserve de-

ployment controller is used to simulate different l in-

dexed, l = 1, 2, . . ., L, values of expected IHCs, J l
t , associ-

ated with similarly indexed state and decision variable levels

(ml
t, r

l
t, θ

l
t−1, θ

b,l
t−1, θ̄

l
t).

A range of different state and decision variable levels, l =
1, 2, . . ., L, that span the possible hourly state and decision

variables which may be encountered in the solution of the ISD

problem, is selected and for each of them the average IHCs, J l
t ,

are simulated.

We finally estimate the unknown parameters to fit the

quadratic function of (ml
t, r

l
t, θ

l
t−1, θ

b,l
t−1, θ̄

l
t) to the J l

t values.

The fully specified quadratic, which as noted below is a con-

vex second-degree polynomial (with a single cross-term mtθ̄t),
is then included in the ISD problem’s objective function to inte-

grate expected deployment costs incurred for each contemplated

scheduling decision. Estimated parameters for a medium-sized

office building are listed in Section V-B.

The pre-processor simulation of the regulation deployment

controller and the resulting intra-hour costs depends on

intra-hour time scale dynamics that involve a new state variable

representing the regulation reserve signal broadcasted by the

ISO after 2, 4 or 6 s intervals [13], [27], [30]. In this work, we

consider 4 s deployment intervals. Accounting for intra-hour

time by τ , the regulation signal state is denoted by Sτ and

the control decision representing the modulation in the airflow

is denoted by ∆mτ . Sτ is associated with random dynamics

2An extension to multi-zone systems, — e.g., [29] considers additional valves
in Fig. 1 to control the supply air flow rate to each zone — would involve one
bilinear term per zone (with different temperatures per zone), and a quadratic
term for the HVAC system. The thermal discomfort cost and IHCs would also
be expressed as the sum of the respective costs per zone.
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described by a Markov Chain whose transition probabilities

are estimated from historical data [21] and can be simulated

accordingly. As detailed next, hourly state and decision variables

are also associated with the short time scale τ in the intra-hour

simulator of IHCs. The simulator of IHCs: (i) starts from the

instance l of the HVAC state at the beginning of the hour,

(ii) employs Monte Carlo to simulate the regulation signal

dynamics to determine Sτ , (iii) applies a myopic controller to

select a feasible ∆mτ to minimizes current period τ costs by

trading off incremental impact on occupant thermal comfort

and regulation signal tracking, and as such instantiates a myopic

controller (iv) propagates state variables to the next τ period,

and (v) sums period costs to arrive to the hourly total, J l
t .

1) State Variables: Intra-hour simulator state variables in-

clude the supply air flow rate mτ , inside air temperature, θτ and

building mass temperature θbτ , as well and the regulation signal

Sτ . The regulation signal is modeled using the approach in [21].

For simplicity of exposition we disregard a second variable used

only in the simulation of the underlying Markov chain, focusing

instead on Sτ which takes values in the interval [-1, +1] and

explicitly impacting each τ period cost. The variables mτ , θτ
and θbτ are subject to the bound constraints, same as the ones

in the scheduling problem, i.e., (20), which can be enforced as

hard or soft constraints. Collectively, all the state variables are

denoted as xτ .

2) Control Variable: The change in air flow rate, ∆mτ , is

the control variable which modifies the fan power consumption

pfτ – see (5) – and allows the tracking of the reference regulation

signal. The control variable is limited by the ramp rate and

thus allowed to vary within a range [∆m−,∆m+]. Note that

the cooling coil consumption is not impacted by the control

variable since the coil has a slow response and the net change in

the control variable over a longer timescale can be considered

negligible (due to energy-neutrality assumption).

3) State Dynamics: Dynamics for the air flow rate are

given by mτ = mτ−1 +∆mτ . Temperature dynamics for θτ
and θbτ are governed by (15) and (16), where the hourly

interval t is replaced by the shorter, seconds scale interval

τ . As noted, Regulation signal dynamics are simulated us-

ing the procedure described in [21] which employs a second

variable associated with increasing or decreasing regulation

signal.

4) Fixed Hour-Specific Information: Hour specific Informa-

tion that is considered to be approximately constant during the

simulation of IHCs includes the scheduling variables, i.e., air

flow rate mt, regulation reserve capacity rt, inside air temper-

ature θt−1, building mass temperature θbt−1, and average inside

air temperature θ̄t. Other information that is intra-hour constant

includes the temperature set-point θ̂t and allowable temperature

range (θ−t , θ
+
t ), as well as the thermal discomfort penalty factor ε̃

and tracking error penalty factor κ. Ambient temperature θaτ and

heatQτ for each interval may either be considered deterministic,

or stochastic, but in any case independent of ISD problem

decisions.

5) Controller Objective: The intra-hour controller’s objec-

tive is to minimize the cost of regulation reserve deployment

tracking error plus the incremental intra-hour thermal discom-

fort. In particular:

minimize
∆mt

E
xτ+1|xτ

[

∑

τ

κ (pt + Sτrt − pτ )
2

+ ε̃
(

2(θ̄t − θ̂t)(θτ − θ̄t) + (θτ − θ̄t)
2
)

]

. (22)

The first term penalizes (by κ) the square of the tracking error

during intra-hour period τ , defined as the deviation from the

regulation signal specified power consumption above or below

the ISD scheduled power consumption (pt + Sτrt) and the

actual power output pτ . The actual power output is calculated

as pτ = pct + pfτ , with the cooling coil power pct considered

fixed and the fan power pfτ dependent on the control ∆mτ . The

second term penalizes (by ε̃) the incremental thermal discomfort

incurred during intra-hour period τ .

Each l indexed instance of the pre-processor’s estimation

of IHCs has been solved by Monte Carlo simulation of the

Regulation reserve signal using the underlying Markov Process

and the myopic or greedy heuristic controller described above.

It is interesting to note that the myopic controller trades off

tracking error cost for thermal comfort, which, when the in-

ternal air temperature is way above the maximum comfort set

point, will be biased towards positive tracking errors resulting

in AC power consumption that exceeds the level scheduled in

the hourly ISD problem. The opposite will be true when the

internal air temperature is below the max comfort set point.

This bias may be welcome in the short term mitigating the

impact of unplanned behavior such as open windows that bring

hot air into the building, but may it may also interfere with

pre-cooling strategies implemented by the ISD problem. Al-

ternative controller designs aiming at discovering optimal or

near optimal controllers would have to rely on much more

cumbersome stochastic Dynamic Programming formulations

of the IHCs pre-processor. This points to interesting future

work.

IV. ISD PROBLEM MIQP FORMULATION

In this section, we describe the relaxations that are used to

handle the non-convexities in the NLP formulation of the ISD

problem (in Section IV-A), and we summarize the resulting

MIQP formulation (in Section IV-B).

A. Mixed Integer Linear Relaxations

Unlike existing works that deal with an NLP formulation of

the ISD problem [9], [10], [11], [12], [15], [16], [17], [18],

we consider an SOS2-based formulation, known as Piecewise

Polyhedral Relaxation (PPR), to relax the bilinear/quadratic

terms using piecewise, convex polyhedra [24]. The PPR relax-

ation provides a piecewise convex hull representation for the

feasible region of the NLP problem. It is more powerful than

linearization techniques – e.g., a linear approximation of the

bilinear / quadratic terms – and provides bounds to the NLP
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problem objective. It also offers a tighter relaxation and simi-

lar/better computational performance compared to other convex

relaxations, such as the standard and piecewise McCormick

relaxation [25]. In what follows, we detail the PPR relaxation

employed to treat the bilinear termmtθ̄t in the objective function

and (15), and the quadratic termm2
t of the non-convex quadratic

inequality (18).

1) Bilinear Term (mtθ̄t): PPR uses a spatial disjunction on

the variables and a vertex representation for the bilinear term. It

associates a spatial disjunction with each variable, mt and θ̄t, by

defining a set of discretization points and intervals that partition

the domain of the variable. Note that each pair of discretization

points from the domain of variables mt and θ̄t represents a ver-

tex. Also note that for a given partition, the convex combination

of the bilinear term mtθ̄t values at the vertices represents a

convex polyhedron, which is a relaxation of the bilinear term

within that partition. Therefore, the convex combination of the

bilinear term values at the vertices, considered disjunctively

for different domain partitions using special ordered sets, helps

characterize the piecewise, convex polyhedral relaxation of the

bilinear term.

Let the feasible regions of variables mt and θ̄t be parti-

tioned into N and K intervals using (N + 1) and (K + 1)
discretization points respectively. Let [μn, μn+1] and [φk, φk+1]
denote the discretization values associated with n-th and k-th

intervals of variables mt and θ̄t respectively. Let wt,n,k denote

a (non-negative) weight associated with vertex (n, k), with

N+1
∑

n=1

K+1
∑

k=1

wt,n,k = 1, ∀t, (23)

so that the domains of mt and θ̄t are spanned as follows:

mt =

N+1
∑

n=1

K+1
∑

k=1

wt,n,k μn, θ̄t =

N+1
∑

n=1

K+1
∑

k=1

wt,n,k φk, ∀t. (24)

Hence, the domain of the bilinear term mtθ̄t, which for ease of

exposition is denoted by ξt, is spanned as follows:

ξt =
N+1
∑

n=1

K+1
∑

k=1

wt,n,k μn φk, ∀t. (25)

Let xt,n and be a binary indicator denoting if the n-th interval of

variable mt is active, and yt,k a binary indicator denoting if the

k-th interval of variable θ̄t is active. The following constraints

ensure that only one interval per variable is active:

N
∑

n=1

xt,n = 1,

K
∑

k=1

yt,k = 1, ∀t. (26)

Using indicators xt,n and yt,k, we ensure that weights wt,n,k

that correspond to vertices of non-active intervals are forced to

zero as follows:

wt,n,k ≤ xt,n−1 + xt,n, n = 2, . . .., N, k = 1, ..,K, (27)

wt,1,k ≤ xt,1, wt,N+1,k ≤ xt,N , k = 1, ..,K, (28)

wt,n,k ≤ yt,k−1 + yt,k, n = 1, . . ., N, k = 2, . . .,K, (29)

wt,n,1 ≤ yt,1, wt,n,K+1 ≤ yt,K , n = 1, . . ., N. (30)

Note that when the two adjoining intervals for a weight are

not active, the rhs of its corresponding constraints in (27) and

(29) will be zero, hence also forcing the lhs to zero. Constraints

(28) and (30) account for the first and last discretization point.

Observe that constraints (26)–(30) enforce adjacency conditions

on the weights akin to SOS2 constraints [31]. Overall, (23)–(30)

exploit the vertices to have for each domain partition, a convex

polyhedral relaxation of the bilinear term — through (23)–(25),

and use special ordered sets to have a disjunctive union of these

polyhedral relaxations — through (26)–(30).

2) Quadratic Term (m2
t ) in (18): We similarly treat the

quadratic term m2
t using PPR and the aforementioned partition

of variable mt into N intervals and (N + 1) discretization

points, yielding a total of (N + 1)× (N + 1) vertices. Let

ut,n,n′ be the weight associated with vertex (n, n′), with

N+1
∑

n=1

N+1
∑

i=1

ut,n,i = 1, ∀t. (31)

The domain of the quadratic term m2
t , which for ease of expo-

sition is denoted by ζt, is spanned as follows:

mt =

N+1
∑

n=1

N+1
∑

n′=1

ut,n,n′ μn, ∀t. (32)

ζt =

N+1
∑

n=1

N+1
∑

n′=1

ut,n,n′ μn μn′ , ∀t. (33)

Using the aforementioned indicator xt,n, we ensure that weights

ut,n,n′ that correspond to vertices of non-active intervals are

forced to zero as follows:

ut,n,n′ ≤ xt,n−1 + xt,n, n = 2, . . ., N, n′ = 1, . . ., N, (34)

ut,1,n′ ≤ xt,1, ut,N+1,n′ ≤ xt,N , n′ = 1, . . ., N, (35)

ut,n,n′ ≤ xt,n′−1 + xt,n′ , n = 1, . . ., N, n′ = 2, . . ., N, (36)

ut,n,1 ≤ xt,1, ut,n,N+1 ≤ xt,N , n = 1, . . ., N. (37)

B. MIQP Problem Summary

Replacing the bilinear term mtθ̄t and the quadratic term m2
t

by ξt and ζt, respectively, the NLP problem objective function

and constraints are modified as follows.

The objective function term (14b) becomes:

pt = β1ξt + β2mt + α2ζt, ∀t. (14b′)

and similar changes are made in the functional form of Jt in

(14e). We refer to this modified objective as (14′).

Constraints (15), (18) and (19) are written as follows:

θt = θt−1 + γ1mt + γ2ξt + γ3θ̄t + γ4θ̄
b
t + γ5,t, ∀t, (38)

α1mt + α2ζt − rt ≥ pf−, ∀t, (39)

α1mt + α2ζt + rt ≤ pf+, ∀t. (40)

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on March 17,2025 at 20:19:48 UTC from IEEE Xplore.  Restrictions apply. 



208 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 15, NO. 1, JANUARY 2024

TABLE I
BUILDING, HVAC AND TEMPERATURE PREFERENCE DATA

Hence, the ISD NLP problem is transformed to an MIQP

problem which is summarized below:

MIQP : minimize (14′),

subject to:(16), (17), (20), (23)−(40), (41)

with variables mt, θt, θ
b
t , θ̄t, θ̄

b
t , ξt, ζt real, rt, ut,n,n′ , wt,n,k

non-negative, and xt,n, yt,k binary.

V. CASE STUDY

In this section, we present a Case Study, which uses an office

building on a summer day. In Section V-A, we list the input

data. In Section V-B, we present the parameter values in the

closed-form expression of the expected IHCs, Jt.

A. Input Data

We consider a medium-sized office building using data from

the DOE commercial reference building library [32]. The data

for the building and HVAC parameters as well as temperature

related preferences is given in Table I. The energy and regulation

reserve prices are obtained from the PJM market [13], and the

ambient temperature and irradiance (used along with occupancy

to calculate heatQt) from the National Solar Radiation Database

(NSRDB) [33] for a summer day (July 19th, 2017) in New

Brunswick, New Jersey; they are shown in Fig. 3. The opti-

mization problems are implemented with YALMIP toolbox in

MATLAB [34] on a laptop Intel i 7− 6500 U at 2.5 GHz with

16 GB RAM. The NLP and MIQP formulations are solved using

IPOPT 3.12.10 [35], and GUROBI 9.0.1 [36], respectively. For

the MIQP formulation, the number of discretization intervals

used is N = 10 and K = 4.

Fig. 3. Energy & regulation prices (PJM), and, ambient temperature & heat
(NSRDB, new brunswick, NJ), for July 19th, 2017.

TABLE II
NORMALIZED PARAMETER VALUES IN Jt

B. Parameter Values in Jt

In this subsection, we derive the functional form of the

expected IHCs, Jt, distinguishing between low and high-

occupancy hours. We remind the reader that Jt is a second-

degree polynomial in terms of the hourly decision variables,

mt, rt, and the state variables, θt−1, θ
b
t−1, θ̄t, which captures

the regulation signal tracking error and intra-hour incremental

occupant discomfort costs.

Table II presents normalized Jt parameters. The costs calcu-

lated using these parameters compare well to the actual costs

from the pre-processor; R2 is high (> 0.90), and normalized

root-mean-square errors are low (< 7%). Note that a second-

degree polynomial is required only for the high-occupancy hours

— see values for m2
t and θ̄2t in Table II; however, both mt and

θ̄t appear in the bilinear term and in linear terms, which renders

their interpretation not straightforward. Next, we proceed to

some remarks for the parameters in Table II.

First, we observe that the parameters of rt are positive and

their values are larger in high-occupancy hours. Indeed, positive

parameters imply that if an HVAC increased the regulation

reserve capacity, rt, the IHCs would increase, because tracking

the regulation signal would become more difficult, which would

in turn result in higher regulation signal tracking error cost.

Larger values in high-occupancy hours are explained by the fact

that the stricter temperature bounds limit the HVAC’s signal

tracking ability.

Second, we observe that if an HVAC increased the supply

air flow rate, mt, the IHCs would increase in low-occupancy

hours (positive parameters are associated with terms containing

mt), but would either increase or decrease in high-occupancy
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hours (both positive and negative parameters are associated with

terms containing mt). During most of the low-occupancy hours,

the ambient temperature θat and heat Qt are smaller, thus a

higher supply air flow rate would result in intra-hour inside air

temperature that would be lower and further away from the pre-

ferred set-point, which would in turn result in higher intra-hour

incremental occupant discomfort cost. During high-occupancy

hours, however, a higher supply air flow rate would move the

intra-hour inside air temperature either close to or away from the

preferred set-point, depending on the HVAC’s hourly operating

point, which would in turn result in lower or higher, respectively,

intra-hour incremental occupant discomfort cost.

Third, we observe that an increase in the average inside air

temperature θ̄t would increase the IHCs, with a higher impact

during high-occupancy hours (see the θ̄2t term), implying that a

higher average inside air temperature would considerably reduce

the intra-hour temperature buffer (to the upper bound of the

inside air temperature — notably stricter during high-occupancy

hours) for performing signal tracking, and would hence increase

the IHCs. On the other hand, an increase in the inside air

temperature and the building mass temperature at the start of the

hour, θt−1 and θbt−1, would decrease the IHCs. Collectively, the

parameters associated with the temperature terms also account

for the intra-hour incremental occupant discomfort cost. For

example, if the starting temperatures were higher than the aver-

age inside air temperature, it would be possible to maintain the

intra-hour temperature closer to the preferred set-point, without

compromising signal tracking performance; hence, the actual

discomfort incurred during that hour would be less than the

average discomfort calculated in (14d), which would in turn

result in negative IHCs.

VI. NUMERICAL RESULTS

In this section, we discuss the numerical results for the Case

Study. In Section VI-A, we present a base-case using the NLP

formulation. In Section VI-B, we compare the NLP and MIQP

formulations. In Section VI-D, we analyze the impact of differ-

ent exogenous factors.

A. Base-Case

In this subsection, we present the solution of the ISD problem,

using the NLP formulation, for a base-case that refers to the input

data and IHCs parameter values listed in Section V. The decision

and state variable trajectories are shown in Fig. 4. The supply

air flow rate, mt (see Fig. 4(a)), rises above its minimum value

only during the high-occupancy hours, when the high ambient

temperature, θat , and heat, Qt, as well as the stricter tempera-

ture bounds, (θ−t , θ
+
t ), and larger discomfort penalty factor, εt,

necessitate larger cooling. The regulation reserve capacity, rt
(see Fig. 4(b)), which is related to mt through (18) and (19),

also takes non-zero values during high-occupancy hours, when

it is cost-efficient to do so. The inside air temperature, θt (see

Fig. 4(c)), is lower and stays further away from the set-point,

θ̂t, during most of the low-occupancy hours; it is higher than

the set-point during the high-occupancy (warmer) hours. The

building mass temperature, θbt (see Fig. 4(d)), follows a smoother

Fig. 4. Decision and state variables in the base-case.

Fig. 5. Objective function terms in the base-case.

trajectory, due to the large thermal capacitance of the building

mass.

The trajectories for the different objective function terms in

(14) are shown in Fig. 5. The energy cost (see Fig. 5(a)) is

in general much higher during the high-occupancy hours, due

to the higher energy prices and consumption. The regulation

revenue (see Fig. 5(b)) is only earned during the high-occupancy

hours, when the regulation reserve capacity has been sched-

uled. The aggregate discomfort cost (see Fig. 5(c)) during the

high-occupancy hours is higher compared to the low-occupancy

hours, due to the larger penalty factor, εt, even though the aver-

age inside air temperature stays mostly closer to the set-point.
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Fig. 6. Breakdown of Jt in the base-case.

Fig. 7. Regulation reserve deployment during hour 10.

The expected IHCs (see Fig. 5(d)) takes overall larger values

during the high-occupancy hours, when the average inside air

temperature, θ̄t, is close to its upper bound and the offered

regulation reserve capacity, rt, is high (see, e.g., hours 10− 15 in

Fig. 4(b) and (c)). When the inside air temperature is decreasing

and is further away from the bounds (see, e.g., hours 9 and 20 in

Fig. 4(c)), the intra-hour temperature stays much closer to the

set-point compared to the average inside air temperature, which

results in intra-hour discomfort cost that is lower than the average

discomfort calculated in (14d), and hence negative IHCs.

The contribution of different terms towards the expected

IHCs, Jt, is shown in Fig. 6. The quadratic terms, m2
t and θ̄2t ,

add to the cost during the high-occupancy hours, whereas the

cross-term, mtθ̄t, does not appear during the low-occupancy

hours since the air flow rate, mt, is at its minimum value (i.e.,

its normalized value is 0). Likewise, the terms mt and rt only

appear during the high-occupancy hours (when mt is above its

minimum value). Finally, the temperature terms θt−1, θ
b
t−1, and

θ̄t appear during all hours, with their net contribution being

larger during the high-occupancy hours.

The regulation reserve deployment, which occurs under the

control policy for which the expected IHCs is determined and

incorporated into the ISD problem, is presented in Fig. 7. The de-

ployment is shown for hour 10, where it occurs every 4 seconds

by modulating the fan power consumption to track the reference

regulation signal (Fig. 7(a)). The signal is tracked fairly well

and the corresponding inside air temperature change over the

hour is the same as the anticipated value (Fig. 7(b)), which

is expected due to the symmetric regulation reserve provision

and energy-neutral regulation signal. Notably, in Fig. 7(b), we

also illustrate two cases where the initial temperature was 0.5oC

lower/higher from the predicted temperature — see offset(+/-).

Interestingly, the controller will mitigate this difference, which

is reduced to 0.05oC at the end of the hour.

B. NLP vs. MIQP

In this subsection, we compare the NLP and MIQP formula-

tions, in terms of accuracy and computational performance.

We first consider the base-case, where the NLP and MIQP

objective values are 43.681 and 43.666, respectively; their differ-

ence is about 0.03%. Notably, the MIQP objective value provides

a lower bound (lb) to the NLP objective value. An upper bound

(ub) can be straightforwardly calculated by plugging the MIQP

solution into the NLP objective, where mt is determined using

(15) and rt using (18) and (19). The upper bound is 43.687

(i.e., about 0.013% higher than the NLP objective value). Note

the bounds on the objective values are tight since the gaps

between the bilinear and quadratic terms (mtθ̄t and m2
t ), and

their respective relaxations (ξt and ζt), are extremely small in the

MIQP formulation. The average gap (expressed as percentage of

the bilinear/quadratic term) between the bilinear term (mtθ̄t) and

its relaxation (ξt) is 0.02%, whereas between the quadratic term

(m2
t ) and its relaxation (ζt) is 0.11%. In terms of computational

time, the NLP formulation took an order of magnitude more to

solve (129 seconds) than the MIQP formulation (11 seconds).

We further compare the NLP and MIQP formulations by

perturbing the base-case in terms of the regulation reserve price,

ambient temperature and inside air temperature bounds. The

considered cases are shown in Table III, where: (i) we scale

the regulation reserve price, λ
r
t , by a factor that varies from 0.5

to 5 in increments of 0.5; (ii) we decrease/increase the ambient

temperature θat by a constant value, in steps of 0.5 ◦C up to 3 ◦C,

and (iii) we modify the inside air temperature bounds (θ−t , θ
+
t ),

in steps of 0.25 ◦C, up to 1 ◦C. Table III shows that the average

gap (and its standard deviation) between the bilinear/quadratic

terms and their relaxations are small (less that 1%), and the

bounds on the objective values are extremely tight (the largest

difference between the lb and ub is 0.22%).

In terms of computational time, the results in Fig. 8 indicate

that the NLP formulation is highly sensitive to input data and can

take significantly longer to solve. For example, if the regulation

reserve price λ
r is scaled by 0.5 (case R1) or if the ambient

temperature θa is decreased/increased by 0.5 ◦C (cases A1, A2)

across all hours, the solution time for the NLP formulation is

more than 1 h. On the other hand, the MIQP formulation has

a consistent solution time in the order of seconds. Notably,

high computational times associated with the NLP formulation

are undesirable, especially in a market-based setting, since the

HVAC system may be required to solve the ISD problem mul-

tiple times before market clearing [37]. We also note that the

solution time for the deployment controller was about 3 ms,

which is appropriate for the fast few-second deployment of reg-

ulation reserve. The pre-processor solves many 3 ms problems,

however, this time is not critical as it can be done offline to

estimate the parameters of the expected IHCs.
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TABLE III
TIGHTNESS OF OBJECTIVE BOUNDS IN DIFFERENT CASES

Fig. 8. Computational time in different cases for the NLP and MIQP formu-
lations.

C. Comparison With Existing Approaches

In this subsection, we compare our ISD problem to existing

approaches that consider hard constraints, and worst-case-based

approaches [9], [10] and [15], which, essentially, consider a

worst case deployment of regulation reserve (in either direction)

and hard temperature limits, without allowing the HVAC to

overbid. A comparison for the Base Case with our approach is

shown in Fig. 9. Evidently, [15] leads to conservative estimates

for the regulation reserve capacity (Fig. 9(a)), although the

differences in the supply air flow rates are small (Fig. 9(b)).

Fig. 9. Decision variables for the ISD and worst-case (WC) problems in the
base-case.

Fig. 10. PJM RegD signal over 15-minute intervals for july, 2019.

The conservativeness can potentially be overcome by offering

more capacity than allowed by the HVAC’s capability, based

on regulation signal statistics. [9] and [10] observe the average

change in the signal over 15 minutes to be within 10% and

25% of the capacity, and thus overbid the HVAC capability.

However, these numbers were observed using the PJM RegD

signal characteristics from 2012− 2013, which no longer hold.

PJM has made significant changes since then. Based on recent

data, the potential for overbidding is drastically reduced, and

the regulation reserve capacity offers should be much more in

line with the HVAC capability. Fig. 10 illustrates the average

change over 15-minute intervals for the PJM RegD signal in July

2019 (Fig. 10(a)), and the cumulative distribution of the signal’s

energy content over 15 minute intervals (Fig. 10). Fig. 10(b)

also illustrates the comparison with the data provided [10].

Indicatively, in 2013, the average change requested by RegD

over 15 minutes was less than 25% of the regulation capacity

with 97.5% probability, whereas in 2019, it was less than 88%

of the regulation capacity with the same probability. Notably,

88% was the worst case in [10], which was deemed to be

too conservative. Hence, the characteristics of the signal have

changed, which do not favor the application of approaches such

as [9] and [10] that would still lead to conservative regulation

reserve provision.

D. Sensitivity Analysis

In this subsection, we perform sensitivity analysis w.r.t. the

regulation reserve capacity prices, the ambient temperature, and

the inside air temperature bounds.
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Fig. 11. Impact of regulation reserve prices, λ
r

t
.

1) Regulation Reserve Prices: Fig. 11 compares the base-

case with case R9, in which the regulation reserve prices are 5

times higher. Unsurprisingly, case R9 offers, in general, a higher

amount of regulation reserve capacity rt (see Fig. 11(a)). Case

R9 also exhibits an increase in the supply air flow rate, mt (see

Fig. 11(b), which follows a pattern that is similar to Fig. 11(a)).

Indeed,mt and rt are related by (18) and (19), and the capability

for offering rt is maximized when the fan energy consumption,

pft , expressed as α1mt + α2m
2
t , equals the mid-point (pf− +

pf+)/2. For example, see Fig. 11(c), hours 11, 13, 22, and 24,

during which pft is at the mid-point and the HVAC provides the

maximum amount of rt (see Fig. 11(a)). Notably, in the base-

case, pft is lower than the mid-point (see Fig. 11(c)), and hence,

an increase of mt (up to the mid-point) in case R9 enables the

provision of higher rt. Evidently, the increase of mt translates

to more cooling and, in general, a lower inside air temperature

θt (see Fig. 11(d)). Hour 20 (the last high-occupancy hour of the

day) is an interesting hour, since θt drops to its lower bound, θ−t .

Taking a closer look, we note that hour 20 has a similar (high)

regulation reserve price to hour 13 (see Fig. 11(a)), however, the

amount of offered rt is much lower in hour 20 compared to hour

13. The reason is that if mt were to increase more in hour 20

(which would enable higher rt), θt would drop below its lower

bound (which is not allowed).

2) Ambient Temperature: Fig. 12 compares the base-case

with case A12, in which the ambient temperature, θat , is in-

creased by 3 ◦C. Evidently, a warmer day would require more

cooling, i.e., a higher supply air flow rate, mt (see Fig. 12(b)),

which in turn enables the provision of more regulation reserve

capacity, rt (see Fig. 12(a)). The fan power consumption, pft ,

increases due to the higher mt (see Fig. 12(c)), however, since

the energy prices dominate the regulation reserve prices, pft
increases only to the extent required to keep the inside air

Fig. 12. Impact of ambient temperature, θa
t

.

temperature θt (which is in general elevated compared to the

base-case) within the bounds during the high occupancy hours

(see Fig. 12(d)).

3) Temperature Bounds: Stricter temperature bounds,

(θ−t , θ
+
t ), require an increase in the supply air flow rate,

mt, to satisfy thermal discomfort preferences during the

high-occupancy hours when the inside air temperature, θt, is

close to the upper bound. Because the HVAC fan operation is

in the lower half of its energy consumption, higher mt due to

stricter bounds also leads to higher regulation reserve capacity,

rt. For example, case B8, which has stricter bounds by 1 ◦C,

i.e., (θ−t + 1, θ+t − 1), results in the provision of about 21%

more regulation reserve capacity compared to the base-case.

E. Additional Results

In this subsection, we provide additional numerical results for

seven summer days from 2017, which span different values for

ambient temperature, irradiance, energy and regulation reserve

prices, as shown in Fig. 13.

We estimated the normalized Jt parameter, and calculated

the costs which compared well to the actual costs from the

pre-processor; average R2 about 0.90, and normalized root-

mean-square errors about 7%. Computational times for the

MIQP formulation ranged from 2.2 to 5.0 seconds, indicating a

robust performation of the proposed relaxation. The bounds of

the relaxation were also tight with the difference between the

upper and lower bounds ranging between 0.06% and 0.15%.

The energy consumption and offered regulation reserve ca-

pacity are presented in Fig. 14. We make a few interesting obser-

vations that illustrate the various factors at play in determining

the regulation reserve capacity. For example, July 21st and

August 1st are similar days in terms of the cooling requirements
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Fig. 13. Ambient temperature, irradiance and prices for other representative
days.

Fig. 14. Supply air flow rate and regulation reserve capacity for other repre-
sentative days.

(similar ambient temperatures and heat). However, lower energy

prices and relatively higher regulation prices in August 1st result

in the HVAC offering significantly more regulation capacity

(aggregate 7.3 kW over the entire day compared with 3.5 kW

in July 21st). Interestingly, in July 21st, the HVAC is unable to

profit from the spike in regulation prices during hour 21 because

it is already operating at its minimum fan power consumption.

On the other hand, July 3 rd has moderate cooling requirements

and relatively smaller energy prices, and hence, it is able to offer

the highest regulation capacity observed in single hour during

hour 13 profiting from the spike in the regulation reserve price.

VII. CONCLUSION

In this paper, we considered an integrated scheduling and

deployment problem for optimizing the hourly energy consump-

tion and regulation reserve capacity of an HVAC system in a day-

ahead market. Our proposal internalized the intra-hour trade-off

between regulation signal tracking error and incremental occu-

pant discomfort into the hourly decision-making, by using a pre-

processor estimated closed-form representation of the expected

intra-hour cost. Computationally efficient piecewise convex re-

laxations for the complicating non-convex terms in the original

NLP problem were also presented, which resulted in an MIQP

problem formulation that provided tight bounds for the original

NLP problem’s objective. We demonstrated the efficacy of our

approach, and its relevance pertaining to existing approaches.

Next, we plan to present an optimal stochastic formulation for the

pre-processor, which will provide detailed characterization of

the expected intra-hour cost and optimal intra-hour deployment

control policy. Another direction of work will be to quantify the

energy consumption and regulation performance of an aggre-

gation of buildings with integrated scheduling and deployment

capability (homogeneous/heterogeneous preferences), and to

assess the system level impact under wholesale and retail market

prices.
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