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Optimal HVAC Energy and Regulation Reserve
Scheduling in Power Markets

Waleed Aslam *, Panagiotis Andrianesis

Abstract—This paper considers the optimal scheduling of the
hourly energy consumed and regulation reserve capacity offered
by a Heating, Ventilation and Air-Conditioning (HVAC) system
participating in a day-ahead electricity market. We formulate
an Integrated hourly energy and regulation reserve Scheduling
and Deployment (ISD) problem that optimizes the hourly costs
and benefits resulting from the power consumed, the regulation
reserve capacity offered, the occupant thermal comfort utility, and
the expected Intra-Hour Costs (IHCs) due to HVAC’s imperfect
tracking of the regulation signal broadcasted by the Independent
System Operator every few seconds. Addition of the IHCs to the
objective function is the major innovation of this paper. It enables
optimal HVAC scheduling to internalize expected regulation sig-
nal tracking error cost traded-off against incremental occupant
thermal discomfort that may result from perfect tracking. The
cost causation circle closes by noting that a high hourly regulation
reserve offer may result in higher expected IHCs by increasing
the associated tracking error and the incremental occupant dis-
comfort. The paper’s innovation is achieved by (i) estimating an
analytic function of the hourly HVAC scheduling decision and state
variables that approximates the expected IHCs, and (ii) including
this exogenously estimated analytic function in the objective of the
hourly ISD optimization problem. Non-convexities introduced to
the optimization problem resulting from high fidelity HVAC model
and the inclusion of the expected IHCs, are addressed efficiently
through piecewise convex relaxations that provide tight optimality
bounds. Extensive numerical results are provided to demonstrate
the applicability and performance of the proposed approach.

Index Terms—Energy and reserve scheduling, frequency regula-
tion, heating ventilation and air-conditioning (HVAC) systems.

NOMENCLATURE

Sets and Indices

t hour index, (At denotes interval duration)
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n, k partition index for m, @ in bilinear term

n,n' partition indices for m in quadratic term

Input Parameters

c specific heat capacity of air

R, R" thermal resistance (building mass, win-
dow)

c,ct thermal capacitance (inside air, building
mass)

Q heat transfer due to occupancy and irradi-
ance

0, 0° ambient temperature, supply air tempera-
ture

) valve position

n coefficient of performance of coil

« coefficient of fan power consumption

AP AR energy price, regulation reserve price

6 set-point temperature.

Variables

decision

m supply air flow rate

r regulation reserve capacity

state

6,0 inside air temperature, average 6

6°. b building mass temperature, average 0°

auxiliary

13 equivalent linear variable for the bilinear
term

¢ equivalent linear variable for the quadratic
term

w,u weights for discretization points

x,y indicators for interval activation

Functions of Decision and State Variables used for Compact
Notation

AG° air temperature change at the cooling coil

D HVAC power consumption

pf,p° power consumption (fan, cooling coil)

Q° heat exchange between inside air and sup-
ply air

Je(my,re,001,00 ,,0,) expected intra-hour cost (IHCs) for hour ¢

1. INTRODUCTION

HE ever increasing penetration of clean, albeit volatile,
renewable power generation is introducing a myriad of
challenges to the efficient and secure operation of the electric
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grid, calling upon demand to play a significant role. Storage-like
and bidirectional regulation reserve capabilities of distributed
energy resources including smart thermostats and electric vehi-
cles are coming to the forefront, with Heating, Ventilation and
Air-Conditioning (HVAC) systems being particularly relevant
due to their load-shifting capabilities in preheating/precooling
and their fast bi-directional power consumption response around
a nominal value [1], [2], [3], [4], [5], [6].

This work focuses on HVAC systems that present an attractive
value proposition for a number of reasons. Firstly, HVACs tend
to be an abundant resource; there were about 116 million HVAC
units globally in 2018 and their number is expected to rise to 151
million by 2024 [7]. Secondly, they are the largest contributor to
building energy consumption but possess unused energy storage-
like capabilities due to the associated thermal inertia of air and
building structures [8]. Thirdly, they are typically controlled by
buildings’ Energy Management Systems, whose capabilities can
be easily leveraged with minimal impact on occupant comfort.

HVAC systems can regulate their power consumption by
modulating the fan/pump speed to control the flow rate of air
supplied into the building [9], [10], [11], or the flow rate of
water to the chiller [12]. HVAC systems can most efficiently
utilize their fans/pumps to track stochastic, albeit energy-neutral,
intra-hour regulation reserve signals broadcasted by an Indepen-
dent System Operator (ISO) [13]. This enables HVAC systems
to obtain revenues by offering regulation reserve capacity in
the day-ahead market, provided that they do not incur relatively
inordinate Intra-Hour Costs (IHCs) during the ISO’s deployment
of regulation reserve signals [14].

The HVAC scheduling problem is considered in [9], [10], [11],
[12], [15], [16], [17], [18] as a Non-Linear Programming (NLP)
problem that determines optimal power consumption and regu-
lation reserve capacity trajectories for given day-ahead market
energy and reserve prices. However, these works do not model
IHCs. They instead impose hard constraints that either incur
large IHCs by over-committing on the regulation reserve capac-
ity offer, or, assure negligible IHCs at the expense of limiting the
regulation reserve capacity offer and the associated opportunity
for additional revenues. For instance, the hard constraints are de-
termined by considering a confidence-interval-based worst-case
weather and regulation signal percentile (e.g., 95-thin [9], 97.5-
th in [10], [11]), or an uncertainty set based worst-case in [12],
[15], [17]. Indeed, the size of the hourly reserve capacity offered,
the HVAC/building state, and the level of the intra-hour regu-
lation signal broadcasted by the ISO, may result in IHCs con-
sisting of regulation signal tracking error penalties and occupant
discomfort [19], [20]. Modeling of IHCs and anticipating them
when hourly decisions are made, makes this work stand out in the
literature.

This paper focuses on optimizing the hourly energy consumed
and regulation reserve capacity offered by an HVAC system
participating in the day-ahead electricity market. Its novelty is
the incorporation into the objective function of the expected
IHCs resulting from the HVAC’s obligation to modulate its
power consumption during the ISO’s deployment of the hourly
offered regulation reserve capacity. These IHCs internalize the
expected regulation tracking error and incremental occupant
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discomfort incurred in the HVAC’s best effort to follow ISO
regulation reserve signals. We formulate an Integrated hourly
Scheduling and Deployment (ISD) problem by including into
the optimized objective function the IHCs along with the hourly
cost of power consumed, the revenue from regulation reserve
capacity offered, and the space-conditioning derived occupant
discomfort cost. As such, our ISD problem is unique in the
optimal HVAC scheduling literature in the context of hourly
day-ahead markets. We employ a pre-processor, exogenous to
the ISD problem, which draws from and expands work re-
ported in [21] and [22], to estimate the expected IHCs — i.e.,
the regulation signal tracking error and incremental building
occupant discomfort average cost, incurred during each hour
reflecting the optimal HVAC adaptation to intra-hour regulation
signals — as a closed-form analytic function of the hourly
decision variables (that refer to HVAC controls and offered
regulation reserve capacity) and state variables (that refer to
temperature).

Moreover, our ISD problem employs high fidelity models
of the HVAC and the building structure’s capability to store
energy [23] that contain non-convexities. To deal with the
non-convexities, in particular a bilinear term and a non-convex
quadratic constraint, we relax the complicating terms using
piecewise, convex polyhedra. Specifically, we employ a Special
Ordered Set (SOS2) based formulation, known as Piecewise
Polyhedral Relaxation (PPR) [24], which is known to be tighter
compared to standard and piecewise McCormick relaxations
while incurring small computational overhead [25]. The result-
ing formulation is a Mixed Integer Quadratic Program (MIQP)
problem, which can be efficiently solved using off-the-shelf
solvers, and provides tight bounds on the ISD problem objective.
We report numerical results of our formulation on a realistic
office building to demonstrate our ISD problem formulation
and quantify the tightness of the bounds on the ISD problem
objective. We compare with existing approaches and we analyze
the impact of different exogenous factors, namely of day-ahead
market prices, ambient temperature, and inside air tempera-
ture bounds, on the optimal ISD problem decision and state
variables.

To summarize, the contribution of this paper is three-fold.
First and most important, we formulate an ISD problem, which
explicitly accounts for the expected IHCs as a function of hourly
HVAC decision and state variables. This allows us to inter-
nalize the trade-off captured by the IHCs, between regulation
signal tracking error and intra-hour occupant discomfort, into
the hourly problem. This is the Second, we present an MIQP
relaxation of the (originally NLP) ISD problem, which provides
tight bounds for the NLP optimal solution, and we demonstrate
its computational performance and tightness through numerical
experimentation. To the best of our knowledge this is the first
work to provide a computationally efficient method for the
ISD problem of a high fidelity HVAC system model. Third,
we compare with existing works that employ hard constraints
and worst-case-based approaches which are shown to be overly
conservative and not adaptive to the frequency regulation signal
characteristics, which our approach inherently considers when
estimating the expected IHCs.
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Fig. 1. HVAC model.

The remainder of this paper is organized as follows. Section II
presents the HVAC and building model. Section III details the
ISD problem NLP formulation and estimation of the expected
IHCs. Section IV presents the ISD problem MIQP formulation.
Section V describes the Case Study, and Section VI discusses
the numerical results. Section VII concludes and suggests the
directions for future research.

1I. HVAC AND BUILDING MODEL

In this section. we detail the HVAC model (in Section II-A),
the building thermal dynamics (in Section II-B), and the hourly
decision and state variables (in Section II-C).

A. HVAC Model

We consider a unitary HVAC system as illustrated in
Fig. 1 [23], where, for simplicity and without loss of generality,
we model the cooling operation. The HVAC mixes the ambient
air with the return air from the building in a ratio that is governed
by the valve position. This air mixture is then cooled by the
cooling coil and circulated inside the building by the fan. The
supply air temperature, 6°, thus satisfies:

0 =50+ (1—08)0° — Ab°, (1)

where ¢ is the valve position, 6 is the inside air temperature that
is also the return air temperature, 6 is the ambient temperature,
and A@° is the air temperature change at the cooling coil.!
Typically, the values of the valve position, §, and supply air
temperature, 6°, are assumed to be fixed [12]. We note that we
have dropped the time index for simplicity.

The HVAC total power consumption, p, is given by:

p=rp°+p, 2)

where p€ is the power consumption of the cooling coil, and p/
is the power consumption of the fan.

The power consumption of the cooling coil, p©, is related to
the supply air flow rate, m, and the temperature change, A9, as
follows [26]:

P =m % AG°, 3)

! Considering a heating operation, the supply air temperature 0 would be
larger than the inside air temperature 6;. Thus, (1) would be written as 6° =
56 + (1 — 0)6* + AG", where AB" would be the air temperature change at
the heating coil.

where ¢ is the specific heat capacity of the air, and 7 the
coefficient of performance of the coil. Replacing A#€ using (1),
and rearranging terms, (3) becomes:

P = Somo+ S[(1—6)6° — 6% m. 4)
U U

Note that the first term in (4) contains a bilinear term m 6,
whereas the second term depends linearly on m.

The power consumption of the fan, pf, is described by a
quadratic function of the supply air flow rate, m, as follows:

p/ = a1 m+asm?, )

where a;; and vy are parameters that are fitted using historical
fan power data [23]. The fast response of the fan, by adjusting
the supply air flow rate, enables the HVAC to modulate its power
consumption and deploy regulation reserves [1]. In this work,
we consider that regulation reserve follows ISOs’ regulation
deployment practices, e.g., ISO New England (ISO-NE) and
Pennsylvania-Jersey-Maryland (PJM) [13], [27]. Specifically,
the regulation reserve capacity r is symmetric — i.e., equal in
the up and down directions around the hourly energy consump-
tion — and the regulation signal from the grid operator that
is used to modulate power and deploy regulation reserves is
energy-neutral over an hour — so that its impact on the HVAC
hourly energy consumption is negligible. Hence, the regulation
reserve capacity is constrained within the HVAC fan’s capability,
as follows:
pl—r>p e <pTt, (6)

where p/~ and pfT represent the minimum and maximum
power consumption of the fan, which are determined by the fan
capability and bounds on the supply air flow rate, m~ and m™,
respectively. Obviously, the HVAC maximum regulation reserve
capability is (pfT — p/~)/2, when the power consumption of
the fan is p/ = (p/+ + p/7)/2.

The HVAC total power consumption (2), using (4) and (5), is
given by:

p:E§m9+ a1+5[(1—5)9a—95} m+ay m?. (7)
n n

Note that (7) includes a bilinear term m 6, and a quadratic
dependence on m.

B. Building Thermal Dynamics

The building thermal dynamics are described using the
second-order Resistance-Capacitance (RC) model shown in
Fig. 2 [28], which represents temperature as a nodal voltage
and heat exchange as a current injection. Let R?, C®, and 6°
denote the building mass thermal resistance, thermal capaci-
tance, and temperature, respectively, R* the thermal resistance
of windows, and C' the thermal capacitance of inside air. Let Q°
denote the heat exchange between inside air and supply air, and
(@ the heat exchange between inside air and other sources (e.g.,
irradiance, occupancy).
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Fig. 2. Resistance-capacitance (RC) model for the building.

Applying Kirchhoff’s Current Law at nodes 1 and 2 of Fig. 2,
we get the following thermal dynamics:

. 0—0 00 :
T A
Choh = Frmaa (8b)

where 6 and 6° represents the rate of change of the inside air and
the building mass temperatures, respectively.

C. Hourly Scheduling Decision and State Variables

Let us now consider the HVAC hourly scheduling. We intro-
duce index ¢ to denote an hour. The HVAC decides the amount
of offered regulation reserve capacity, r;, at each hour ¢, which
is linked to the supply air flow rate m,. Hence, m; and r; are
the HVAC decision variables for hour t.

The building thermal dynamics determine the state variables,
i.e., the inside air temperature, 6, and the building mass tempera-
ture Hf . Ascanbe seenin (8a), these state variables depend on the
heat exchange ()7 between the inside air and supply air, which
in turn is dependent on the decision variable m,, as follows:

Q; = My 0(95 — et) (9)

Since the thermal time constant of the building (in the order
of 30 hours) is much larger than the hourly granularity, we
can accurately approximate the building dynamics using Euler’s
mid-point method, as follows.

Let ; and §? denote the average hourly temperatures of inside
air and building mass, respectively. The inside air temperature
dynamics (8a) are approximated by:
0¢ — 0, 67 —6, c -
o T me % i (07 =60,

(10)
where we also replaced @) using (9). Rearranging the terms in
(10), we get:

ot - et—l =

C C RMC " RwC
1 o @ 43
— gyt 1
TR T ot Rec an

Similarly, the building mass temperature dynamics (8b) are
approximated by:
1 2

07
RbCP 0 = RbCP

RbCY’

0 — 0, = 0, + (12)
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Furthermore, the HVAC hourly energy consumption, denoted
by p; (since t refers to one hour), is given by:

P = %(5mt§t—|— o + % [(1—6)0% — 0%]| ms + agm?.
(13)

Notably, increasing participation of storage resources in the
provision of frequency regulation is expected to favor the cre-
ation of energy-neutral (over an hourly period) regulation sig-
nals, a la PIM RegD. However, relaxing the energy-neutrality
assumption, the deployment of regulation reserve may result
in a different temperature at the end of the hour than the
anticipated value. Hence, an offset to the energy consumption
may be required to be applied in real-time, to counter potential
persistence of the regulation signal in either direction. Again,
similarly to storage resources, HVACs may be allowed to update
their economic basepoints every 5 minutes to adapt to real-time
conditions, and correct any differences between the anticipated
and actual temperatures.

III. ISD PROBLEM

In this section, we detail the NLP formulation of the ISD
problem (in Section III-A), and we detail the estimation of the
expected IHCs (in Section III-B).

A. NLP Problem Formulation

Lett € T = {1,...,24} denote the set of hours in a day. The
NLP formulation is presented below.

1) Objective Function: We reiterate that the ISD problem
optimizes the hourly energy consumption and regulation reserve
capacity offered by the HVAC in the day-ahead market, while
also considering the hourly discomfort cost, and the expected
IHCs associated with regulation reserve deployment. The ISD
problem objective is:

minimize{Energy Cost-Regulation Revenue

+ Discomfort Cost + Total IHCs}. (14)

We define each term in (14) below.

Energy Cost = Z Ay, (14a)
t

where A is the energy price at hour ¢, and p; is the HVAC energy
consumption at hour ¢ — see (13) — given by

pr = Bimi0; + Pamy + aom?, Vi, (14b)

with 51 = 70, and f = a; + %[(1 —0)0¢ —0°].
Regulation Revenue = Z ALTes (14c¢)
t
where A} is the regulation reserve price at hour ¢, and 7 is the

HVAC offered regulation reserve capacity at hour .

Discomfort Cost = » _ €4(6; — 6;)°, (14d)

t
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where €, is the penalty factor for thermal discomfort at hour ¢,
and 0, is the HVAC temperature set-point at hour ¢.

Total IHCs = Y _ Jy (my, 1, 611,07, 604), (14e)
t

where, J; is the “expected IHCs” during hour ¢. We express .J; as
a closed-form analytic function of the hourly decision variables
(my and 7;) and state variables (6;_1,6? ,, 6,). The expected
IHCs, J¢, includes regulation signal tracking error and intra-hour
occupant discomfort costs (incremental to the average hourly
discomfort cost), which are incurred during regulation reserve
deployment when the HVAC discomfort preferences limit regu-
lation signal tracking capabilities. For example, scheduling high
regulation reserve capacity will render tracking large regulation
signals impossible without compromising occupant discomfort.
Therefore, optimal deployment is achieved through the best
trade-off between the tracking error and incremental occupant
discomfort costs. We essentially capture this trade-off through
the use of closed-form .J; acting as a soft constraint penalty.

We note that the decision variables appear in J;’s expression
since they impact the intra-hour power modulation (and hence
the tracking error), with air flow rate m; also impacting the intra-
hour thermal dynamics (and hence the intra-hour discomfort).
The state variables are also included in .J; since they impact the
intra-hour building occupant discomfort costs. Specifically, the
intra-hour incremental occupant discomfort cost is calculated
around the average inside air temperature 0;, whereas the inside
air and building mass temperatures at the start of the hour, 6;_
and 6?_,, affect the intra-hour temperature dynamics (and thus
the intra-hour discomfort costs). This should come as no surprise
since J; is in fact the expected cost-to-go over the hour when the
system state at the beginning of the hour is described by 6; 1
and 0% . We detail the estimation of .J; in Section III-B.

2) Constraints: The ISD problem includes thermal dynam-
ics, regulation and bound constraints.

Thermal Dynamic Constraints: The inside air and building
mass temperatures are obtained by (11) and (12) as follows:

- - —b
0 = 01 + yime + yamu0p + 30, + 740, + 5., VE,
(15)

07 =67 1 + 760y + v70; + V8,0, VE, (16)

where 1 =c0°/C, yp=-—/C, y3=-1/(R°C) —1/(R*O),
ya=1/(R'C) and 75, =Q;/C+6;/(R"C), 7=
—2/(RbC?), 47 =1/(R°C®) and ~g; = 0¢/(R*C®). For
completeness, the average hourly temperatures for the inside
air and the building mass are given by:

g _ O +6: 0+ 0
t — 92 - ) )

Regulation Constraints: Following (6), and using (5), the
regulation reserve capacity, r, is constrained as given below:

, 0 Vt. (17)

Regulation Up:  aym; + agmf —rm>plT, W, (18)

Regulation Down: aymy; 4+ aom? + 7, <p/*, Vt. (19)

Bound Constraints: The fan capability and potential inside air
temperature hard limits impose the following bound constraints
on m; and 6y, respectively:

m- <m;<mt, 07 <0, <0, Vvt (20)

3) NLP Problem Summary: The NLP problem formulation
is summarized as follows:

NLP : minimize (14), subject to: (15)—(20), (21)

with variables r; non-negative, and m;, 0;, 6%, 0;, 67 real, Vt.

Note that the NLP problem formulation includes the bilinear
term 7m0, in the .J; representation of the objective function
(14b) and in constraint (15), as well as a non-convex quadratic
inequality (18) that includes m?.> We treat these complicating
terms and constraints with mixed integer linear relaxations
next.

B. Estimation of the Expected IHCs.

We employ a pre-processor which is run off line, i.e. prior
to the solution of the ISD problem, to estimate parameters of
a quadratic approximation of the expected IHCs, J;, expressed
in terms of state and decision variables (1,7, 0; 1,0° |, 0;)
optimized in the ISD problem. The pre-processor executes the
following tasks.

A reasonable seconds time scale regulation reserve de-
ployment controller is used to simulate different [ in-
dexed, [ =1,2,..., L, values of expected IHCs, JL, associ-
ated with similarly indexed state and decision variable levels
(miv ’I“i, 9,1571, 911677—[17 éi)

A range of different state and decision variable levels, | =
1,2,..., L, that span the possible hourly state and decision
variables which may be encountered in the solution of the ISD
problem, is selected and for each of them the average IHCs, J. L
are simulated.

We finally estimate the unknown parameters to fit the
quadratic function of (m},rL, 6!, 6%'  8l) to the J! values.

The fully specified quadratic, which as noted below is a con-
vex second-degree polynomial (with a single cross-term m;6;),
is then included in the ISD problem’s objective function to inte-
grate expected deployment costs incurred for each contemplated
scheduling decision. Estimated parameters for a medium-sized
office building are listed in Section V-B.

The pre-processor simulation of the regulation deployment
controller and the resulting intra-hour costs depends on
intra-hour time scale dynamics that involve a new state variable
representing the regulation reserve signal broadcasted by the
ISO after 2, 4 or 6 s intervals [13], [27], [30]. In this work, we
consider 4 s deployment intervals. Accounting for intra-hour
time by 7, the regulation signal state is denoted by ST and
the control decision representing the modulation in the airflow
is denoted by Am... ST is associated with random dynamics

2 An extension to multi-zone systems, — e.g., [29] considers additional valves
in Fig. 1 to control the supply air flow rate to each zone — would involve one
bilinear term per zone (with different temperatures per zone), and a quadratic
term for the HVAC system. The thermal discomfort cost and IHCs would also
be expressed as the sum of the respective costs per zone.
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described by a Markov Chain whose transition probabilities
are estimated from historical data [21] and can be simulated
accordingly. As detailed next, hourly state and decision variables
are also associated with the short time scale 7 in the intra-hour
simulator of IHCs. The simulator of IHCs: (i) starts from the
instance [ of the HVAC state at the beginning of the hour,
(i) employs Monte Carlo to simulate the regulation signal
dynamics to determine ST, (iii) applies a myopic controller to
select a feasible Am., to minimizes current period 7 costs by
trading off incremental impact on occupant thermal comfort
and regulation signal tracking, and as such instantiates a myopic
controller (iv) propagates state variables to the next 7 period,
and (v) sums period costs to arrive to the hourly total, .J}.

1) State Variables: Intra-hour simulator state variables in-
clude the supply air flow rate m., inside air temperature, 6, and
building mass temperature 62, as well and the regulation signal
St. The regulation signal is modeled using the approach in [21].
For simplicity of exposition we disregard a second variable used
only in the simulation of the underlying Markov chain, focusing
instead on ST which takes values in the interval [-1, +1] and
explicitly impacting each 7 period cost. The variables m, 6,
and 92 are subject to the bound constraints, same as the ones
in the scheduling problem, i.e., (20), which can be enforced as
hard or soft constraints. Collectively, all the state variables are
denoted as z,.

2) Control Variable: The change in air flow rate, Am., is
the control variable which modifies the fan power consumption
pf —see (5) —and allows the tracking of the reference regulation
signal. The control variable is limited by the ramp rate and
thus allowed to vary within a range [Am~, Am™]. Note that
the cooling coil consumption is not impacted by the control
variable since the coil has a slow response and the net change in
the control variable over a longer timescale can be considered
negligible (due to energy-neutrality assumption).

3) State Dynamics: Dynamics for the air flow rate are
given by m, = m,_1 + Am,. Temperature dynamics for 0,
and 93 are governed by (15) and (16), where the hourly
interval ¢ is replaced by the shorter, seconds scale interval
7. As noted, Regulation signal dynamics are simulated us-
ing the procedure described in [21] which employs a second
variable associated with increasing or decreasing regulation
signal.

4) Fixed Hour-Specific Information: Hour specific Informa-
tion that is considered to be approximately constant during the
simulation of IHCs includes the scheduling variables, i.e., air
flow rate m,, regulation reserve capacity r, inside air temper-
ature 6;_1, building mass temperature Hf,l, and average inside
air temperature 6,. Other information that is intra-hour constant
includes the temperature set-point 6, and allowable temperature
range (6, ,6;"), as well as the thermal discomfort penalty factor €
and tracking error penalty factor x. Ambient temperature §¢ and
heat .- for each interval may either be considered deterministic,
or stochastic, but in any case independent of ISD problem
decisions.

5) Controller Objective: The intra-hour controller’s objec-
tive is to minimize the cost of regulation reserve deployment
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tracking error plus the incremental intra-hour thermal discom-
fort. In particular:

minimize E
my Ty,

[ZH (pt + Srry 7177')2

+ ¢ (2(@ —04)(0; — 0,) + (0, — 9})2) 1 7))

The first term penalizes (by ~) the square of the tracking error
during intra-hour period 7, defined as the deviation from the
regulation signal specified power consumption above or below
the ISD scheduled power consumption (p; + S.r;) and the
actual power output p.. The actual power output is calculated
as p, = pf + pf, with the cooling coil power p§ considered
fixed and the fan power p/ dependent on the control Am.,. The
second term penalizes (by €) the incremental thermal discomfort
incurred during intra-hour period 7.

Each [ indexed instance of the pre-processor’s estimation
of THCs has been solved by Monte Carlo simulation of the
Regulation reserve signal using the underlying Markov Process
and the myopic or greedy heuristic controller described above.
It is interesting to note that the myopic controller trades off
tracking error cost for thermal comfort, which, when the in-
ternal air temperature is way above the maximum comfort set
point, will be biased towards positive tracking errors resulting
in AC power consumption that exceeds the level scheduled in
the hourly ISD problem. The opposite will be true when the
internal air temperature is below the max comfort set point.
This bias may be welcome in the short term mitigating the
impact of unplanned behavior such as open windows that bring
hot air into the building, but may it may also interfere with
pre-cooling strategies implemented by the ISD problem. Al-
ternative controller designs aiming at discovering optimal or
near optimal controllers would have to rely on much more
cumbersome stochastic Dynamic Programming formulations
of the IHCs pre-processor. This points to interesting future
work.

IV. ISD PROBLEM MIQP FORMULATION

In this section, we describe the relaxations that are used to
handle the non-convexities in the NLP formulation of the ISD
problem (in Section IV-A), and we summarize the resulting
MIQP formulation (in Section IV-B).

A. Mixed Integer Linear Relaxations

Unlike existing works that deal with an NLP formulation of
the ISD problem [9], [10], [11], [12], [15], [16], [17], [18],
we consider an SOS2-based formulation, known as Piecewise
Polyhedral Relaxation (PPR), to relax the bilinear/quadratic
terms using piecewise, convex polyhedra [24]. The PPR relax-
ation provides a piecewise convex hull representation for the
feasible region of the NLP problem. It is more powerful than
linearization techniques — e.g., a linear approximation of the
bilinear / quadratic terms — and provides bounds to the NLP
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problem objective. It also offers a tighter relaxation and simi-
lar/better computational performance compared to other convex
relaxations, such as the standard and piecewise McCormick
relaxation [25]. In what follows, we detail the PPR relaxation
employed to treat the bilinear term 17,6, in the objective function
and (15), and the quadratic term m? of the non-convex quadratic
inequality (18).

1) Bilinear Term (m0,;): PPR uses a spatial disjunction on
the variables and a vertex representation for the bilinear term. It
associates a spatial disjunction with each variable, m; and 6;, by
defining a set of discretization points and intervals that partition
the domain of the variable. Note that each pair of discretization
points from the domain of variables m; and @, represents a ver-
tex. Also note that for a given partition, the convex combination
of the bilinear term m,f, values at the vertices represents a
convex polyhedron, which is a relaxation of the bilinear term
within that partition. Therefore, the convex combination of the
bilinear term values at the vertices, considered disjunctively
for different domain partitions using special ordered sets, helps
characterize the piecewise, convex polyhedral relaxation of the
bilinear term.

Let the feasible regions of variables m; and 6, be parti-
tioned into N and K intervals using (N + 1) and (K + 1)
discretization points respectively. Let [y, fin+1] and [dr, dp41]
denote the discretization values associated with n-th and k-th
intervals of variables m; and 0, respectively. Let wy ,, 1, denote
a (non-negative) weight associated with vertex (n, k), with

N+1K+1
YD wink =1, Wt (23)
n=1 k=1
so that the domains of m, and 8, are spanned as follows:
N+1 K+1 N+1K+1
Me= > Wikt O =D D Wik dr, VE (24)
n=1 k=1 n=1 k=1

Hence, the domain of the bilinear term m.0;, which for ease of
exposition is denoted by &;, is spanned as follows:

N+1 K+1

gt = Z Z Wt n,k Mn ¢k7 Vt.

n=1 k=1

(25)

Let x4 ,, and be a binary indicator denoting if the n-th interval of
variable m is active, and ¥, ;, a binary indicator denoting if the
k-th interval of variable 6, is active. The following constraints
ensure that only one interval per variable is active:

N K
Z Ttn = 17 Zyt,k = 1a vt.
n=1 k=1

Using indicators x;, and ¥ j, we ensure that weights wy ,
that correspond to vertices of non-active intervals are forced to
zero as follows:

(26)

n=2....N, k=1,.K, (27)
W¢, N+1,k S Tt N k= ]-a "7K7 (28)

n=1,..,N, k=2...K, (29

Wik < Tin-1 1 Tin,
Wy 1k < Ty 1,

Wik < Yt k-1 T Yt k)

Wt n,1 < Yt,1, Win K+1 < Yk, N = 1,...,N. (30)

Note that when the two adjoining intervals for a weight are
not active, the rhs of its corresponding constraints in (27) and
(29) will be zero, hence also forcing the /hs to zero. Constraints
(28) and (30) account for the first and last discretization point.
Observe that constraints (26)—(30) enforce adjacency conditions
on the weights akin to SOS2 constraints [31]. Overall, (23)—(30)
exploit the vertices to have for each domain partition, a convex
polyhedral relaxation of the bilinear term — through (23)—(25),
and use special ordered sets to have a disjunctive union of these
polyhedral relaxations — through (26)—(30).

2) Quadratic Term (m?) in (18): We similarly treat the
quadratic term m? using PPR and the aforementioned partition
of variable m; into N intervals and (N + 1) discretization
points, yielding a total of (N + 1) x (N + 1) vertices. Let
Uy be the weight associated with vertex (n,n’), with

N+1N+1

Z Z Ut n,i = 1, Vt.

n=1 i=1

€19

The domain of the quadratic term m?, which for ease of expo-
sition is denoted by (;, is spanned as follows:

N+1 N+1

me = Z Z Ut,n,n' Mn, Vt. (32)
n=1n'=1
N+1N+1

Ct = Z Z Ut,n,n' Hn Hn/s Vt. (33)

n=1 n'=1

Using the aforementioned indicator z; ,,, we ensure that weights
Uy, n that correspond to vertices of non-active intervals are
forced to zero as follows:

Ut n,n' S Ttn—1 + Ttpn, M= 27' . '7N7 ’I’L, = 1a .. 'aNa (34)

!
Ut,1,n/ S Tt,1, Ut, N+1,n/ S Tt,N, T = 17 BT} Na (35)
/
Ut n,n' S Tt n'—1 + Ty = 1) ceey Ns n = 2a B '7N7 (36)
Upn,1 S Ty Upp,N+1 < TN, 1= 1,...,N. 37

B. MIQP Problem Summary

Replacing the bilinear term m;0; and the quadratic term m?
by & and (;, respectively, the NLP problem objective function
and constraints are modified as follows.

The objective function term (14b) becomes:

pe = Pi& + Pamy + a2y, VL. (14b)
and similar changes are made in the functional form of .J; in
(14e). We refer to this modified objective as (14').
Constraints (15), (18) and (19) are written as follows:

0r = 01 +yimy + Y2 + 730: + 400 + 5, VE, (38)
aymy + ol — 1 > pl T, Wt (39)

army + ol + 1y < pf+7 Vt. (40)
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TABLE I
BUILDING, HVAC AND TEMPERATURE PREFERENCE DATA

Building
Thermal Resistance of Building Mass, RY
Thermal Resistance of Window, R
Thermal Capacitance of Inside Air, C
Thermal Capacitance of Building Mass, C?

HVAC

2 x 107 K.h/J
3.61 x 10~7 K.h/J
6.91 x 106 J/K
1.94 x 108 J/K

Supply Air Temperature, 6° 17°C
Valve Position, § 0.8
Supply Air Flow Rate, m¢ 1-6 kg/s
Fan parameter, o 0.234 kl/kg
Fan parameter, o 0.0975 (kJ.s)/kg?
Coefficient of Performance of Coil, n 3.07
Preferences
Temperature Set-point, 6¢ 25°C
Low-Occupancy Hours (8pm—8am)
Acceptable Temperature Range, (0; ,0;") (18°C, 28°C)
Discomfort Penalty Factor, €; $0.014/°C2
High-Occupancy Hours (8am—8pm)
Acceptable Temperature Range, (0, , 0t+ ) (23°C, 27°C)
Discomfort Penalty Factor, ¢; $0.090/ °C2
Other
Specific Heat Capacity of Air, ¢ 1 kJ/(kg.K)

Hence, the ISD NLP problem is transformed to an MIQP
problem which is summarized below:

MIQP : minimize (14),

subject to:(16), (17), (20), (23)—(40), 41)
with variables my, 0;, Gf, o;, gf, &, G real, Ty, Ut o, Wenk
non-negative, and x; ., ¥ binary.

V. CASE STUDY

In this section, we present a Case Study, which uses an office
building on a summer day. In Section V-A, we list the input
data. In Section V-B, we present the parameter values in the
closed-form expression of the expected IHCs, J;.

A. Input Data

We consider a medium-sized office building using data from
the DOE commercial reference building library [32]. The data
for the building and HVAC parameters as well as temperature
related preferences is given in Table I. The energy and regulation
reserve prices are obtained from the PJM market [13], and the
ambient temperature and irradiance (used along with occupancy
to calculate heat ();) from the National Solar Radiation Database
(NSRDB) [33] for a summer day (July 19th, 2017) in New
Brunswick, New Jersey; they are shown in Fig. 3. The opti-
mization problems are implemented with YALMIP toolbox in
MATLAB [34] on a laptop Intel i 7 — 6500 U at 2.5 GHz with
16 GB RAM. The NLP and MIQP formulations are solved using
IPOPT 3.12.10 [35], and GUROBI 9.0.1 [36], respectively. For
the MIQP formulation, the number of discretization intervals
usedis N = 10 and K = 4.
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(a) Energy prices \?; regulation
prices A7.

(b) Ambient Temperature, 07 (left axis);
Heat, Q¢ (right axis).

Fig. 3. Energy & regulation prices (PJM), and, ambient temperature & heat
(NSRDB, new brunswick, NJ), for July 19th, 2017.

TABLE 11
NORMALIZED PARAMETER VALUES IN Jy

Occupancy (Hours)

Parameters _
Low (8pm—8am) High (8am—8pm)

m? - 1.518

07 - 0.185
m0y 0.412 0.832

e 0.031 0.175

my 0.036 —1.212
Or—1 —0.221 —0.587
0°_, —0.140 —0.146

0y 0.461 0.548

B. Parameter Values in J;

In this subsection, we derive the functional form of the
expected IHCs, J;, distinguishing between low and high-
occupancy hours. We remind the reader that J; is a second-
degree polynomial in terms of the hourly decision variables,
my, T, and the state variables, 6; 1, 95_1, gt, which captures
the regulation signal tracking error and intra-hour incremental
occupant discomfort costs.

Table II presents normalized J; parameters. The costs calcu-
lated using these parameters compare well to the actual costs
from the pre-processor; R? is high (> 0.90), and normalized
root-mean-square errors are low (< 7%). Note that a second-
degree polynomial is required only for the high-occupancy hours
— see values for m? and 62 in Table II; however, both m; and
0, appear in the bilinear term and in linear terms, which renders
their interpretation not straightforward. Next, we proceed to
some remarks for the parameters in Table II.

First, we observe that the parameters of r; are positive and
their values are larger in high-occupancy hours. Indeed, positive
parameters imply that if an HVAC increased the regulation
reserve capacity, r;, the IHCs would increase, because tracking
the regulation signal would become more difficult, which would
in turn result in higher regulation signal tracking error cost.
Larger values in high-occupancy hours are explained by the fact
that the stricter temperature bounds limit the HVAC’s signal
tracking ability.

Second, we observe that if an HVAC increased the supply
air flow rate, m;, the IHCs would increase in low-occupancy
hours (positive parameters are associated with terms containing
my), but would either increase or decrease in high-occupancy
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(a) Supply Air Flow Rate, m;.

hours (both positive and negative parameters are associated with
terms containing m;). During most of the low-occupancy hours,
the ambient temperature 0 and heat (); are smaller, thus a
higher supply air flow rate would result in intra-hour inside air
temperature that would be lower and further away from the pre-
ferred set-point, which would in turn result in higher intra-hour
incremental occupant discomfort cost. During high-occupancy
hours, however, a higher supply air flow rate would move the
intra-hour inside air temperature either close to or away from the
preferred set-point, depending on the HVAC’s hourly operating
point, which would in turn result in lower or higher, respectively,
intra-hour incremental occupant discomfort cost.

Third, we observe that an increase in the average inside air
temperature 6; would increase the IHCs, with a higher impact
during high-occupancy hours (see the 62 term), implying that a
higher average inside air temperature would considerably reduce
the intra-hour temperature buffer (to the upper bound of the
inside air temperature — notably stricter during high-occupancy
hours) for performing signal tracking, and would hence increase
the IHCs. On the other hand, an increase in the inside air
temperature and the building mass temperature at the start of the
hour, 6;_; and 0?,1, would decrease the IHCs. Collectively, the
parameters associated with the temperature terms also account
for the intra-hour incremental occupant discomfort cost. For
example, if the starting temperatures were higher than the aver-
age inside air temperature, it would be possible to maintain the
intra-hour temperature closer to the preferred set-point, without
compromising signal tracking performance; hence, the actual
discomfort incurred during that hour would be less than the
average discomfort calculated in (14d), which would in turn
result in negative [HCs.

VI. NUMERICAL RESULTS

In this section, we discuss the numerical results for the Case
Study. In Section VI-A, we present a base-case using the NLP
formulation. In Section VI-B, we compare the NLP and MIQP
formulations. In Section VI-D, we analyze the impact of differ-
ent exogenous factors.

A. Base-Case

In this subsection, we present the solution of the ISD problem,
using the NLP formulation, for a base-case that refers to the input
data and IHCs parameter values listed in Section V. The decision
and state variable trajectories are shown in Fig. 4. The supply
air flow rate, m, (see Fig. 4(a)), rises above its minimum value
only during the high-occupancy hours, when the high ambient
temperature, 0¢, and heat, Q);, as well as the stricter tempera-
ture bounds, (6, ,0;"), and larger discomfort penalty factor, €;,
necessitate larger cooling. The regulation reserve capacity, 7
(see Fig. 4(b)), which is related to m; through (18) and (19),
also takes non-zero values during high-occupancy hours, when
it is cost-efficient to do so. The inside air temperature, 6, (see
Fig. 4(c)), is lower and stays further away from the set-point,
0,, during most of the low-occupancy hours; it is higher than
the set-point during the high-occupancy (warmer) hours. The
building mass temperature, 67 (see Fig. 4(d)), follows a smoother

(b) Regulation Reserve Capacity, 7.

b
16 20 24

16 20 24 0o 4 8 12
hour

0O 4 8 12
hour

(c) Inside Air Temperature, ;. (d) Building Mass Temperature, 62.

Fig. 4. Decision and state variables in the base-case.
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0.1
0

-0.1
16 20 24 0o 4 8 12
hour

(d) Expected IHCs, (J¢).
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16 20 24

(c) Discomfort Cost.

Fig. 5. Objective function terms in the base-case.

trajectory, due to the large thermal capacitance of the building
mass.

The trajectories for the different objective function terms in
(14) are shown in Fig. 5. The energy cost (see Fig. 5(a)) is
in general much higher during the high-occupancy hours, due
to the higher energy prices and consumption. The regulation
revenue (see Fig. 5(b)) is only earned during the high-occupancy
hours, when the regulation reserve capacity has been sched-
uled. The aggregate discomfort cost (see Fig. 5(c)) during the
high-occupancy hours is higher compared to the low-occupancy
hours, due to the larger penalty factor, €,, even though the aver-
age inside air temperature stays mostly closer to the set-point.
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Fig. 6. Breakdown of J; in the base-case.
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(a) Regulation Signal Tracking. (b) Intra-Hour Temperature.

Fig. 7. Regulation reserve deployment during hour 10.

The expected IHCs (see Fig. 5(d)) takes overall larger values
during the high-occupancy hours, when the average inside air
temperature, 0;, is close to its upper bound and the offered
regulation reserve capacity, 7, is high (see, e.g., hours 10 — 151in
Fig. 4(b) and (c)). When the inside air temperature is decreasing
and is further away from the bounds (see, e.g., hours 9 and 20 in
Fig. 4(c)), the intra-hour temperature stays much closer to the
set-point compared to the average inside air temperature, which
results in intra-hour discomfort cost that is lower than the average
discomfort calculated in (14d), and hence negative IHCs.

The contribution of different terms towards the expected
IHCs, J;, is shown in Fig. 6. The quadratic terms, mf and gf,
add to the cost during the high-occupancy hours, whereas the
cross-term, m,#,, does not appear during the low-occupancy
hours since the air flow rate, m;, is at its minimum value (i.e.,
its normalized value is 0). Likewise, the terms m; and r; only
appear during the high-occupancy hours (when m; is above its
minimum value). Finally, the temperature terms 6;_1, 9?,1, and
0, appear during all hours, with their net contribution being
larger during the high-occupancy hours.

The regulation reserve deployment, which occurs under the
control policy for which the expected IHCs is determined and
incorporated into the ISD problem, is presented in Fig. 7. The de-
ployment is shown for hour 10, where it occurs every 4 seconds
by modulating the fan power consumption to track the reference
regulation signal (Fig. 7(a)). The signal is tracked fairly well
and the corresponding inside air temperature change over the
hour is the same as the anticipated value (Fig. 7(b)), which
is expected due to the symmetric regulation reserve provision
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and energy-neutral regulation signal. Notably, in Fig. 7(b), we
also illustrate two cases where the initial temperature was 0.5°C
lower/higher from the predicted temperature — see offset(+/-).
Interestingly, the controller will mitigate this difference, which
is reduced to 0.05°C at the end of the hour.

B. NLP vs. MIQP

In this subsection, we compare the NLP and MIQP formula-
tions, in terms of accuracy and computational performance.

We first consider the base-case, where the NLP and MIQP
objective values are 43.681 and 43.666, respectively; their differ-
ence is about 0.03%. Notably, the MIQP objective value provides
a lower bound (/b) to the NLP objective value. An upper bound
(ub) can be straightforwardly calculated by plugging the MIQP
solution into the NLP objective, where m; is determined using
(15) and r; using (18) and (19). The upper bound is 43.687
(i.e., about 0.013% higher than the NLP objective value). Note
the bounds on the objective values are tight since the gaps
between the bilinear and quadratic terms (m;0; and m?), and
their respective relaxations (&; and ¢; ), are extremely small in the
MIQP formulation. The average gap (expressed as percentage of
the bilinear/quadratic term) between the bilinear term (1m,6,) and
its relaxation (&;) is 0.02%, whereas between the quadratic term
(m?) and its relaxation ((;) is 0.11%. In terms of computational
time, the NLP formulation took an order of magnitude more to
solve (129 seconds) than the MIQP formulation (11 seconds).

We further compare the NLP and MIQP formulations by
perturbing the base-case in terms of the regulation reserve price,
ambient temperature and inside air temperature bounds. The
considered cases are shown in Table III, where: (i) we scale
the regulation reserve price, A}, by a factor that varies from 0.5
to 5 in increments of 0.5; (ii) we decrease/increase the ambient
temperature 6 by a constant value, in steps of 0.5 °Cup to 3 °C,
and (iii) we modify the inside air temperature bounds (; , 6;"),
in steps of 0.25 °C, up to 1 °C. Table III shows that the average
gap (and its standard deviation) between the bilinear/quadratic
terms and their relaxations are small (less that 1%), and the
bounds on the objective values are extremely tight (the largest
difference between the [b and ub is 0.22%).

In terms of computational time, the results in Fig. 8 indicate
that the NLP formulation is highly sensitive to input data and can
take significantly longer to solve. For example, if the regulation
reserve price A" is scaled by 0.5 (case R1) or if the ambient
temperature 0 is decreased/increased by 0.5 °C (cases Al, A2)
across all hours, the solution time for the NLP formulation is
more than 1 h. On the other hand, the MIQP formulation has
a consistent solution time in the order of seconds. Notably,
high computational times associated with the NLP formulation
are undesirable, especially in a market-based setting, since the
HVAC system may be required to solve the ISD problem mul-
tiple times before market clearing [37]. We also note that the
solution time for the deployment controller was about 3 ms,
which is appropriate for the fast few-second deployment of reg-
ulation reserve. The pre-processor solves many 3 ms problems,
however, this time is not critical as it can be done offline to
estimate the parameters of the expected IHCs.
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TABLE III
TIGHTNESS OF OBJECTIVE BOUNDS IN DIFFERENT CASES

Case Parameters Avg. Gap (std) in (%) Diff. (%)
M0y m? ubl;lb
Base AL, 0F, (0;,0?) 0.02 (0.04) 0.11 (0.27) 0.05
Reg. Reserve Price
R1 Al x0.5 0.02 (0.03)  0.15 (0.31) 0.05
R2 x 1.5 0.03 (0.05)  0.33 (0.84) 0.07
R3 x 2.0 0.03 (0.06)  0.24 (0.47) 0.06
R4 x 2.5 0.05 (0.06)  0.26 (0.47) 0.10
R5 x 3.0 0.04 (0.06)  0.27 (0.47) 0.10
R6 x 3.5 0.04 (0.06)  0.27 (0.40) 0.12
R7 x 4.0 0.05 (0.06)  0.19 (0.26) 0.17
R8 x 4.5 0.04 (0.06)  0.21 (0.31) 0.18
R9 x 5.0 0.04 (0.06) 0.21 (0.29) 0.22
Ambient Temperature
Al 0y -0.5 0.03 (0.05)  0.21 (0.38) 0.07
A2 +0.5 0.02 (0.04)  0.11 (0.28) 0.04
A3 -1.0 0.04 (0.07)  0.35 (0.63) 0.11
A4 +1.0 0.03 (0.06)  0.19 (0.40) 0.06
AS -15 0.06 (0.09) 0.47 (0.88) 0.13
A6 +1.5 0.03 (0.05)  0.28 (0.50) 0.08
A7 -2.0 0.07 (0.10)  0.46 (0.77) 0.14
A8 +2.0 0.03 (0.06)  0.38 (0.57) 0.11
A9 -2.5 0.06 (0.08)  0.39 (0.57) 0.13
Al0 +2.5 0.04 (0.06)  0.49 (0.91) 0.12
All -3.0 0.05 (0.07)  0.34 (0.56) 0.13
Al2 +3.0 0.05 (0.07)  0.41 (0.84) 0.11
Temperature Bounds
Bl 0, - 0.25, G;hr 0.25 0.04 (0.07) 0.21 (0.36) 0.08
B2 -0.50, +0.50 0.08 (0.10) 0.34 (0.46) 0.14
B3 -0.75, +0.75 0.10 (0.13)  0.43 (0.56) 0.16
B4 -1.00, +1.00 0.10 (0.14) 0.45 (0.60) 0.16
B5 +0.25, -0.25 0.01 (0.04) 0.11 (0.27) 0.04
B6 +0.50, -0.50 0.01 (0.02) 0.18 (0.31) 0.06
B7 +0.75, -0.75 0.01 (0.01) 0.18 (0.28) 0.06
B8 +1.00, -1.00 0.01 (0.03) 0.15 (0.33) 0.04

Fig. 8.
lations.

Computational time in different cases for the NLP and MIQP formu-

C. Comparison With Existing Approaches

In this subsection, we compare our ISD problem to existing
approaches that consider hard constraints, and worst-case-based
approaches [9], [10] and [15], which, essentially, consider a
worst case deployment of regulation reserve (in either direction)
and hard temperature limits, without allowing the HVAC to
overbid. A comparison for the Base Case with our approach is
shown in Fig. 9. Evidently, [15] leads to conservative estimates
for the regulation reserve capacity (Fig. 9(a)), although the
differences in the supply air flow rates are small (Fig. 9(b)).

kW kg/s
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(a) Regulation Reserve Capacity, 7¢. (b) Supply Air Flow Rate, mg.

Fig. 9. Decision variables for the ISD and worst-case (WC) problems in the
base-case.
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Fig. 10.  PJM RegD signal over 15-minute intervals for july, 2019.

The conservativeness can potentially be overcome by offering
more capacity than allowed by the HVAC’s capability, based
on regulation signal statistics. [9] and [10] observe the average
change in the signal over 15 minutes to be within 10% and
25% of the capacity, and thus overbid the HVAC capability.
However, these numbers were observed using the PIM RegD
signal characteristics from 2012 — 2013, which no longer hold.
PJM has made significant changes since then. Based on recent
data, the potential for overbidding is drastically reduced, and
the regulation reserve capacity offers should be much more in
line with the HVAC capability. Fig. 10 illustrates the average
change over 15-minute intervals for the PJM RegD signal in July
2019 (Fig. 10(a)), and the cumulative distribution of the signal’s
energy content over 15 minute intervals (Fig. 10). Fig. 10(b)
also illustrates the comparison with the data provided [10].
Indicatively, in 2013, the average change requested by RegD
over 15 minutes was less than 25% of the regulation capacity
with 97.5% probability, whereas in 2019, it was less than 88%
of the regulation capacity with the same probability. Notably,
88% was the worst case in [10], which was deemed to be
too conservative. Hence, the characteristics of the signal have
changed, which do not favor the application of approaches such
as [9] and [10] that would still lead to conservative regulation
reserve provision.

D. Sensitivity Analysis

In this subsection, we perform sensitivity analysis w.rt. the
regulation reserve capacity prices, the ambient temperature, and
the inside air temperature bounds.
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1) Regulation Reserve Prices: Fig. 11 compares the base-
case with case R9, in which the regulation reserve prices are 5
times higher. Unsurprisingly, case R9 offers, in general, a higher
amount of regulation reserve capacity r; (see Fig. 11(a)). Case
R9 also exhibits an increase in the supply air flow rate, m, (see
Fig. 11(b), which follows a pattern that is similar to Fig. 11(a)).
Indeed, m; and r, are related by (18) and (19), and the capability
for offering r; is maximized when the fan energy consumption,
p{ , expressed as a;my + aem?, equals the mid-point (pf~ +
p/™) /2. For example, see Fig. 11(c), hours 11,13, 22, and 24,
during which p{ is at the mid-point and the HVAC provides the
maximum amount of ; (see Fig. 11(a)). Notably, in the base-
case, pf is lower than the mid-point (see Fig. 11(c)), and hence,
an increase of m; (up to the mid-point) in case R9 enables the
provision of higher r;. Evidently, the increase of m, translates
to more cooling and, in general, a lower inside air temperature
0 (see Fig. 11(d)). Hour 20 (the last high-occupancy hour of the
day) is an interesting hour, since 6; drops to its lower bound, 6, .
Taking a closer look, we note that hour 20 has a similar (high)
regulation reserve price to hour 13 (see Fig. 11(a)), however, the
amount of offered r; is much lower in hour 20 compared to hour
13. The reason is that if m; were to increase more in hour 20
(which would enable higher ), #; would drop below its lower
bound (which is not allowed).

2) Ambient Temperature: Fig. 12 compares the base-case
with case Al2, in which the ambient temperature, 6, is in-
creased by 3 °C. Evidently, a warmer day would require more
cooling, i.e., a higher supply air flow rate, m; (see Fig. 12(b)),
which in turn enables the provision of more regulation reserve
capacity, 7; (see Fig. 12(a)). The fan power consumption, p{ ,
increases due to the higher m, (see Fig. 12(c)), however, since
the energy prices dominate the regulation reserve prices, p{
increases only to the extent required to keep the inside air
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Fig. 12.  Impact of ambient temperature, 6.

temperature 0; (which is in general elevated compared to the
base-case) within the bounds during the high occupancy hours
(see Fig. 12(d)).

3) Temperature Bounds: Stricter temperature bounds,
(6;,0;7), require an increase in the supply air flow rate,
my, to satisfy thermal discomfort preferences during the
high-occupancy hours when the inside air temperature, 6;, is
close to the upper bound. Because the HVAC fan operation is
in the lower half of its energy consumption, higher m; due to
stricter bounds also leads to higher regulation reserve capacity,
r¢. For example, case B8, which has stricter bounds by 1 °C,
ie., (0, +1,0 — 1), results in the provision of about 21%
more regulation reserve capacity compared to the base-case.

E. Additional Results

In this subsection, we provide additional numerical results for
seven summer days from 2017, which span different values for
ambient temperature, irradiance, energy and regulation reserve
prices, as shown in Fig. 13.

We estimated the normalized J; parameter, and calculated
the costs which compared well to the actual costs from the
pre-processor; average R? about 0.90, and normalized root-
mean-square errors about 7%. Computational times for the
MIQP formulation ranged from 2.2 to 5.0 seconds, indicating a
robust performation of the proposed relaxation. The bounds of
the relaxation were also tight with the difference between the
upper and lower bounds ranging between 0.06% and 0.15%.

The energy consumption and offered regulation reserve ca-
pacity are presented in Fig. 14. We make a few interesting obser-
vations that illustrate the various factors at play in determining
the regulation reserve capacity. For example, July 21st and
August 1st are similar days in terms of the cooling requirements
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(similar ambient temperatures and heat). However, lower energy
prices and relatively higher regulation prices in August Ist result
in the HVAC offering significantly more regulation capacity
(aggregate 7.3 kW over the entire day compared with 3.5 kW
in July 21st). Interestingly, in July 21st, the HVAC is unable to
profit from the spike in regulation prices during hour 21 because
it is already operating at its minimum fan power consumption.
On the other hand, July 3 rd has moderate cooling requirements
and relatively smaller energy prices, and hence, it is able to offer
the highest regulation capacity observed in single hour during
hour 13 profiting from the spike in the regulation reserve price.

VII. CONCLUSION

In this paper, we considered an integrated scheduling and
deployment problem for optimizing the hourly energy consump-
tion and regulation reserve capacity of an HVAC system in a day-
ahead market. Our proposal internalized the intra-hour trade-off

between regulation signal tracking error and incremental occu-
pant discomfort into the hourly decision-making, by using a pre-
processor estimated closed-form representation of the expected
intra-hour cost. Computationally efficient piecewise convex re-
laxations for the complicating non-convex terms in the original
NLP problem were also presented, which resulted in an MIQP
problem formulation that provided tight bounds for the original
NLP problem’s objective. We demonstrated the efficacy of our
approach, and its relevance pertaining to existing approaches.
Next, we plan to present an optimal stochastic formulation for the
pre-processor, which will provide detailed characterization of
the expected intra-hour cost and optimal intra-hour deployment
control policy. Another direction of work will be to quantify the
energy consumption and regulation performance of an aggre-
gation of buildings with integrated scheduling and deployment
capability (homogeneous/heterogeneous preferences), and to
assess the system level impact under wholesale and retail market
prices.
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