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Abstract—Sea ice extent plays a crucial role in the Arctic
system, and thus the study on causal relationships between sea
ice extent and other climate variables comes to our interest to
better understand the system. To find the causal relationship we
applied various state-of-the-art causal discovery techniques from
the time-independent and time-dependent domains. Then we
employed several causal inference models to quantify the causal
effects of different causal relationships in the Arctic system. The
NSIDC Sea Ice Concentration observation data and the ERA-5
global reanalysis data were used in our study. Our analysis shows
that the GES and VarLiNGAM from causal discovery methods
and the conditional instrumental variable (CIV) causal inference
model perform better on the Arctic Sea Ice time series dataset.

Index Terms—Causal Discovery, Causal Inference, Time Series
Data, Arctic Data Analysis

I. INTRODUCTION

A. Background

The summer sea ice extent in the Arctic area reaches the
minimum value this summer and has been shrinking each
decade since 1979 at a rate of 12.2%, according to NASA
Global Climate Chang It is a warning because Arctic sea
ice plays a vital role in circulating ocean water, regulating
the air temperature, and preventing global warming. Therefore
we would like to conduct a causality study to find what
components in the Arctic climate system give rise to changes
in sea ice extent and corresponding causal effects over time.
This will help us understand relationships between different
components of the Arctic climate system and their collective
effect on the extent of sea ice.

'GLOBAL CLIMATE CHANGE - Vital Signals of the Planet. Arctic Sea
Ice Minimum Extent. https://climate.nasa.gov/vital-signs/arctic-sea-ice/
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Causal discovery is the task of identifying causal rela-
tionships between variables in a complex system, and data-
driven approaches have gradually taken the place of tra-
ditional methods such as randomized controlled trials [1]].
Data-driven causal discovery methods can be roughly divided
into Constraint-Based (CB) and Score-Based (SB) methods.
The former category of algorithms satisfies the conditional
independence test for a given dataset and includes approaches
PC, FCI, RFCI, and CCD algorithms [2]. The latter fit data
into goodness-of-fit tests by conducting a certain score cri-
terion, and one typical model is GES [3[]. On top of these
approaches based on i.i.d. assumption, our study focuses more
on causal discovery for time series data, which aims to learn
interdependencies amongst instances in the sequence of data.
In the past years, researchers proposed machine learning and
deep learning-based causal discovery methods such as Granger
Causality [4], VarLINGAM [5], PCMCI [6], PCMCI+ [7],
TCDF [_8], NAVAR [9], TS-CausalCNN [10]. To be more
specific, we will find causal relationships among variables with
a time delay in impact to infer a causal graph using time-
dependent causal discovery methods, and compare the results
with domain knowledge-based causal graphs [11].

Another principal task is causal inference, which refers to
quantifying the effect of a cause variable on a target variable
based on the causal relationship found through causal discov-
ery. Compared with traditional methods, advanced methods
use neural networks such as RNN and LSTM [12]-[14] to
learn latent representations of complex feature spaces. The
advanced causal inference methods include TARnet [15],
CEVAE [16], Time-Based Regression (TBR) [17], C-ARIMA
[18], TCINet [19] and Counterfactual Recurrent Networks
(CRN) [20]. Here we tend to focus more on time-dependent
causal effects exerted on the “sea ice extent” variable. There



are two challenges in implementing causal inference: (1) how
to define and modify treatment effect for time series and
continuous data; (2) how to decide evaluation metrics for the
sea ice dataset.

We aim to learn the existence and strength of causal
relationships between time series components (atmosphere,
ocean, sea ice sheet) in the Arctic region climate system and
sea ice sheet. The research contributions are as follows. 1)
Data pre-processing: convert the source dataset format and
eliminate missing values and outliers. 2) Infer a causal graph
from variables using causal discovery models. Compare results
from time-dependent and IID methods. 3) Use machine causal
inference techniques to estimate causal effects. 4) Evaluate the
causal discovery and inference results with reasonable metrics.

B. Related Works

Climate models are critical to interpreting climate change.
Causal discovery methods have a huge opportunity to apply
to these models for better understanding. One of the most
prominent computational approaches to interpreting causality
is Granger Causality [21]. It first performs linear regres-
sion of the time series and then applies a statistical test
on the regression coefficient. A good amount of research
is done on structural learning for causal discovery. Chu et
al. [22] applied structural learning in time series data of
remote geospatial indices of ocean temperature to intercept
the relationship between four ocean climate indices. Ebert-
Uphoff et al. [22] discuss a brief introduction to several
causal discovery algorithms using graphical models for climate
science. Nichol et al. analyzed Data-driven causal evaluation of
climate models for the Energy Exascale Earth System (E3SM)
project [23]]. They found differences in causal relationships
between climate models and observed data using the PCMCI
method. Deser et al. [24], Petoukhov and Semenov [25],
Handorf et al. [26] approach to interpret climate models to
investigate atmospheric changes using causal effects forced
by input data. The Causal Effect Networks (CEN) method is
analyzed for graphical models to overcome spurious relations
due to autocorrelation, indirect effects, or common drivers of
midlatitude winter circulation [27]]. This work is extended by
Samarasinghe using Granger Causality and Pearl Causality
[28]]. Granger Causality is used to validate the time sequence
of the causal linkage for human society’s impact on climate
change [[29]]. They also analyze correlation and regression tests
to legitimize the strength and consistency of causal linkages.
Causal Model Evaluation (CME) is introduced to simulate
atmospheric dynamical interactions between climate variables
at remote locations [[30]. Runge et al. used a nonlinear causal
state space reconstruction method to extract the ecologically
plausible causal network of sea surface temperatures [31].

II. PRELIMINARIES

Causal Discovery (CD) is the process of identifying cause
and effect relationships between the variables of a system
under study. CD approaches try to recover the underlying
graph structure of the variables to represent how each variable

interacts with other system variables. If the set of variables of a
system is X, then CD can be expressed as G(V, E) = CD(X)
and will return a causal graph.

Causal Inference (CI) quantifies the effect of a cause
variable on the target variable based on the causal rela-
tionship identified in the CD process. Another way of CI
is to apply a treatment/intervention on the cause variable
and measure the corresponding change in the effect variable
considering all possible covariates. If it is not possible to
get intervened data for any system, we can estimate the
causal inference coefficient for a cause-effect relationship
by considering covariates. Suppose G(V, E) is a generated
causal graph and cause — target is an edge. The causal
effect from cause to target variable can be represented as
ef fect = Cl(target, cause, covariates).

Full Causal Graph visualizes the causal relationship be-
tween variables across different time points showing exact
time lags from cause to effect variable. It gives precise
detailed information about interactions between variables of
any dynamic system. An example of a full causal graph is
given in Figure [I[a).

Summary Causal Graph is a simplified version of the full
causal graph, showing causal links across variables without
any temporal information. A summary causal graph only
provides a high-level representation of the underlying causal
structure. Figure [T[(b) demonstrates an example of a summary
causal graph.
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b) Summary Causal Graph

a) Full Causal Graph

Fig. 1. Example of full and summary causal graphs.

Counterfactual Data of a target variable is generated by
applying a treatment to its cause variable and leaving other
variables unchanged. For a population-based system, the initial
population is divided into two subgroups, treatment is applied
to one group to get the counterfactual data, and the group
without applying treatment gives factual/observation data.

IIT. DATASET

The atmospheric and oceanic variables are collected across
the Arctic Ocean region with daily records from 1979 to
2021. Variables in the dataset: (1) Sea ice extent collected
from Nimbus-7 SSMR and DMSP SSM/I-SSMIS passive
microwave data versiorﬂ (2) Nine other features are col-

2National Snow and Ice Data Center. Sea Ice Concentrations from Nimbus-
7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1.
http://nsidc.org/data/NSIDC-0051, 2021. Accessed: 2021-9-26.



TABLE I
NAME, SOURCE, AND UNIT OF EACH VARIABLE IN THE DATASET.
Variable  Source  Unit
Surface pressure ~ ERAS Pa
Wind velocity (10 meter) ERAS m/s
Specific humidity ~ ERAS kg/kg
Air temperature (2 meter) ERAS K
Shortwave radiation =~ ERAS W/m?
Longwave radiation =~ ERAS W/m?
Rainfall rate  ERAS mm/day
Snowfall rate  ERA5 mm/day
Sea surface temperature ~ ERAS K
Sea ice extent NSIDC  Million km?

lected from ERA-5 global reanalysis produc including wind
velocity at 10-meter, specific humidity, longwave radiation,
shortwave radiation, rainfall rate, snowfall rate, sea surface
temperature, 2 meter air temperature, and sea level pressure
(surface pressure). Table[[|shows the variable names and units.
The original dataset is a sequence of geographical 2-D
data in NetCDF file format and pre-processed before fitting
into different methods. The dimension of data is reduced by
averaging pixel values across the Arctic region down to a
single value for the whole region. In this way, we have one
sequence of daily records for each variable respectively. The
missing value of x; is replaced with an average of x;_; and
x41 for all variables. Then for each month average of daily
values is taken to have a dataset in monthly frequency.

IV. METHODS

This section describes relevant methods of causal discovery,
causal inference, and evaluation criteria.

A. Causal Discovery Methods

Depending on the assumption of data distribution, causal
discovery methods can be grouped into IID and time series-
based CD methods. IID data focused CD methods are pro-
posed for independent and identically distributed datasets, but
we can apply these methods for time series data without
considering temporal features.

1) CD Methods for IID Data:

a. PC algorithm

PC algorithm [32] is one of the earliest causal discovery
algorithms, which uses the idea that two statistically inde-
pendent variables are not causally linked. The PC algorithm
starts with a complete undirected graph and then identifies the
skeleton using conditional independence tests. If the condi-
tional independence decisions are correct in the large sample
limit, the PC algorithm is guaranteed to converge to the true
Markov Equivalence Class, assuming the Causal Markov and
Faithfulness assumptions and no unmeasured confounders.

b. Greedy Equivalence Search (GES)

GES [33] is a way to navigate a search space such that you

always move in a direction that seems beneficial based on

3European Centre for Medium-Range Weather Forecasts. ERA-5 global
reanalysis product. https://cds.climate.copernicus.eu/cdsapp!/home,2021. Ac-
cessed: 2021-9-25.

local surroundings. It’s like being lost in a forest and trying
to get out by only moving toward open areas. GES starts with
an empty graph and iteratively adds directed edges to improve
a model fitness measure. At each step in the algorithm, the
edge that most improves the fit score is added to the graph.
The resulting model is then mapped to the corresponding
Markov equivalence class, and the procedure continues. When
the score can no longer be improved, the algorithm then asks,
edge by edge, which edge removal, if any, will most improve
the score, until no further edges can be removed. The GES
algorithm depends on the relative strength of associations and
conditional associations of variables. In the large sample limit,
two algorithms converge on the same Markov Equivalence
Class. However, on finite samples, two algorithms may give
different results.

c. Fast Causal Inference (FCI)

The FCI algorithm [34] tolerates and sometimes discovers
unknown confounding variables. FCI constructs a causal graph
starting with a fully connected undirected graph and removes
edges that connect conditionally independent variables. The
FCI algorithm is explained in the figure below. In the figure,
the top subgraph (A) denotes the ground truth graph with a
confounder that works as a common cause of Y and Z. After
applying conditional independence all confounder edges will
be removed. Finally, the bidirectional edge in output graph C
explains that there is at least one unmeasured confounder of
Y and Z.

Fig. 2. FCI algorithm steps to find the existence of latent confounders [34].

2) CD Methods for Time Series Data:
a. PCMCI

PCMCI [6] is a causal discovery method for high-
dimensional time series data featuring linear/non-linear, and
time delayed dependencies. PCMCI is constructed based on
the conditional independence framework, with assumptions
of unconfoundedness, causal Markov condition, faithfulness,
no contemporaneous causal effects, and stationarity. The al-
gorithm deals with the trade-off between high false-positive
rates and low true-positive rates in results using two stages:
PC; condition selection based on the PC-stable algorithm and
the momentary conditional independence (MCI) test. The PC;
stage uses an iterative approach to estimate optimal parents
P(X}) of variable X} such that {X] 1 X \P(X7)|P(X})},
and the second stage test {X! _ 1 XJ|P(X]),P(Xi_ )}
(where 7 is the maximum time delay) to prevent spurious
edges caused by confounders. To combine both stages, three



independence test methods are available including linear par-
tial correlation (ParCorr), GPDC, and CMI. PCMCI method
performs better compared with other earlier algorithms for
large numbers of variables. The limitation of PCMCI is that
state-space methods outperform PCMCI for highly determin-
istic systems.

b. PCMCI+

PCMCI+ [7] improves PCMCI for auto-correlated time
series data by changing the conditional independence check.
The model conditioned out noise in lagged adjacencies to
remove more edges and yield higher recall. There are four
phases in this algorithm: skeleton discovery phase with
lagged conditions, skeleton discovery phase with contem-
poraneous conditions and MCI, collider orientation phase,
and rule orientation phase. The first phase is similar to
PCMCI to estimate the optimal set of lagged parents E{ .
The second phase removes all adjacencies using {X; . L
X/|8, By (X}), By ,(Xi_.}. where 8 = X; \{X;_,}. The
third phase orients contemporaneous links based on unshielded
triples based on MCI tests. The fourth phase orients the re-
maining contemporaneous links. The results show higher recall
and shorter computation time than PCMCI. Implementation
of PCMCI and PCMCI+ are available in TIGRAMITE tool:
https://github.com/jakobrunge/tigramite.

c. TCDF: Temporal Causal Discovery Framework

TCDF [[8] is a deep learning framework to discover causal
relationships between time series and generate a causal graph.
TCDF uses Attention-based Convolutional Neural Networks
combined with a causal validation step. By interpreting the
internal parameters of the convolutional networks, TCDF can
also discover the time delay between a cause and its effect. The
learned temporal causal graphs can include confounders and
instantaneous effects. This broadly applicable framework can
be used to gain novel insights from causal dependencies of a
complex system for reliable predictions, knowledge discovery,
and data-driven decision making.

d. VarLINGAM: Vector Auto-regressive Linear Non-
Gaussian Acyclic Model

VarLiNGAM [35] is a Structural Equation Models (SEM)
based method for causal discovery. It combines the basic
LiNGAM model with the classic vector autoregressive models
(VAR). It enables analyzing lagged and contemporaneous
(instantaneous) causal relations of time series data. The effect
time series x(t) is estimated as x(t) = Zkf:o Brz(t—T)+
e(t), where ¢ is the time index, T is the time lag, e is non-
Gaussian external influences, By is matrix modeling effects
with time lag T'. The element b;; at i-th row and j-th column of
Br represents the causal effect of j-th variable on i-th variable
with time delay 7.

e. Dimensional Causality (DC)

It is required to quantify the causal relationship between
different variables of a dynamical system to explain its oper-
ation clearly. Different time series of a dynamical system can
be represented and estimated with the time-lag embedding of
that time series. According to Taken’s theorem [36f, using
dimensions of the time-lagged embedded manifold of any

time series is it possible to estimate the actual dynamics of a
complex system, and the dimension of a dynamical system will
be equivalent to the dimension of that time series in embedded
space. Based on this theorem, the DC method [37] computes
the dimension of cause (Dx) and effect (Dy) variables in
the time-lagged embedding. Joint dimension D ; of cause and
effect is generated by multiplying the two embedded spaces
and measuring the dimension of the resultant manifold. These
dimensions can be used to estimate the direction of causality
and the probability of causal effects between two variables (X
and Y) using the following equations.

X —>Y << Dx <Dy =Dy (D)
X1Y <— Dx + Dy =Dy (2)
XY« Dx=Dy=D; 3)

XYY < max(Dx,Dy) <Dy <Dx+Dy @

B. Causal Inference Methods

1) CI Methods for IID Data:

a. Causal Effect Variational Autoencoder (CEVAE)

The inference of causal relationships between different treat-
ments and outcomes from observational data mainly depends
on measuring the confounders. Confounders have an effect
on treatment and outcome at the same time. For measurable
confounders, we can easily control their impact on treatment
and outcome variables by adjusting these confounders. There
is no established way to manage the effect of a confounder
when it is not observable. This problem can be solved using
observed potential confounders to estimate the unobserved
confounders [38]. These observed potential confounders are
also called proxy variables. For instance, in the graph below,
t represents treatment, y represents result, Z represents unob-
served confounder, and X represents observed proxy. So, by
adjusting values of X we can control the effect of confounder
Z on treatment and outcome.

Fig. 3. Causal graph with a proxy variable X and unobserved confounder Z
(t = treatment and y = outcome) [38].

However, finding the relationship between proxies and un-
observed confounders is not trivial. Using different available
proxies, the CEVAE [38|] proposes a maximum-likelihood-
based method to estimate a latent variable to discover the
relationship between proxies and unobserved confounders, and
the effect of these confounders on treatment and outcome. Us-
ing variational autoencoders (VAEs) based on the optimization
of the variational lower bound likelihood, CEVAE learns the



latent variable causal model to infer the complex non-linear
relationships between X and (Z,t,y) and roughly recovers
p(Z,X,t,y). After learning latent variables, the observed
dataset is factorized by putting conditions on latent variables,
and then the effect of treatment on outcome is measured.
Through experimental results, it was demonstrated the CEVAE
model achieves the best estimates of treatment effect and
outperforms other state-of-the-art models such as BLR, BART,
BNN, and CFRW.
b. Dragonnet

Dragonnet [39] uses a neural network to estimate the
treatment effects using observational data in two steps. In the
first stage, the model is fitted to estimate the propensity score
across each unit according to outcome and covariates. For
the second part, this fitted model is plugged into the down-
stream estimator. Dragonnet [39]] comprised a three-headed
architecture with an end-to-end procedure to estimate the
propensity score with conditional outcomes from covariates
and information on treatment. A deep neural network is used
to learn a representation of X, Z(X)eR and for predicting both
the treatment and outcome from this shared representation.

D Q)

Fig. 4. Architecture of Dragonnet model [39].

The propensity score model &(.) forces the representation
layer to tightly couple to the estimated propensity scores.
Using end-to-end training and high capacity, Dragonnet pre-
vents from tossing away information. The trade-off is the
quality of prediction and achieving a good representation of
the propensity score. However, using a downstream estimator
boosts up ATE estimation that does not use the estimated
propensity scores.

c. T-Learner

Since one potential outcome is unobserved at a time,
therefore supervised models are not applied directly to learn
the effect of treatment. Instead, using machine learning to
model each potential outcome individually and using plug-
in estimators for treatment effects has become a popular
strategy in econometrics, biostatistics, and machine learning.
T-learner [40] method trains two independent models to learn
potential outcomes instead of using a single neural network.
Estimators for both models would be a feed-forward network
with optimized MSE for predicting the observed outcomes.
The joint loss function for a T-learner can be written as
LY;h(X;T)) = MSE(Y;h(X;0)) + MSE(Y;h(X;1)).
After the completion of training, both networks of T-learner
have the same amount of input to predict the potential out-

comes Y(T) and Y(1-T). These predictions are used to estimate
the CATE for each unit,

Ty = (1-2L)(V(T3) = Yi(1 = T +1)
and the average treatment effect as,

N
ATE=1/N>"T,
i=1

—@-()

Fig. 5. In a T-learner, separate feed-forward networks are used to model each
outcome [40].

2) CI Methods for Time Series Data:

a. Counterfactual recurrent Network (CRN)

CRN [20] causal inference approach is applied to recom-
mend treatment medication and treatment timing for patients
over time. The authors proposed a treatment invariant rep-
resentation (balanced representation) by removing the asso-
ciation between patient history and treatment, thus removing
bias caused by time-dependent confounders. The architecture
of CRN includes an encoder and a decode. The encoder is
an RNN network with LSTM units that predict one-step-
ahead outcomes. The decoder uses balanced representation
from the encoder to estimate counterfactual outcomes for
future time steps. Assume X, is time-variant confounders,
Y; is outcomes given treatment A, 1, V is static features
(e.g. genders), and H is patient history Hy = (X4, Ar—1,V),
then with a maximum time lag 7, the output of CRN is
E(Yi[a(t,t + 7 — D]|(H),).

b. Variable-lag Granger Causality and Transfer Entropy

Granger causality is a fundamental method for generating
causal inferences in time series data. The Granger causality
method strongly assumes that each data point in a target
variable is caused/affected by a series of other data points
with a constant time lag. X granger causes Y, if the historical
data of X predicts the value of ¥ more accurately than the
historical data of Y does on its own. The transfer entropy
method is a nonlinear extension of the Granger causality
method that also takes into account the fixed time delay
assumption. However, the assumption of fixed-lag cause is
not valid for many real-world natural and social phenomena.
For example, multiple initiators derived from time-series data
with different time lags can affect stock markets, brain activity,
environmental issues, etc. Variable-lag Granger causality and
Variable-lag Transfer Entropy [41] method resolved this lim-
itation. Dynamic Time Wrapping (DTW) is incorporated into
Granger causality to measure the variable lag causes of X to
Y.If X and Y be time series and ymax € N be a maximum



time lag, the variable-lag granger causal relation is defied as
ryx () = V()=S0 (@Y (t=i)+b: X (b=i)+¢, X * (=)
and X*(t—i)=X(t—i4+1—A¢_;41), where A; >01is a
time delay that minimizes the relation. X vl-granger causes Y
if the variance of 3, y is less than the variance of both ry and
ry x. Similarly, for non-linear time series data the variable-lag
transfer entropy is defined for two time series X and Y as fol-
lows: Tx—y = HY ()|[Y,")) — HY (#)]v;*), X".), where
H(.|.) is a conditional entropy, k and [ are time lag, Yt(fi =
Y(t—1), ..., Y (t—k),and XV, = X(t—1), ..., X (¢t—1). This
method determines whether X variable-lag causes Y, X fixed-
lag causes Y, or there is no conclusion of causation between X
and Y using variable-lag Granger causality or transfer entropy
given the maximum time lag dmazx.

c. Time Series Deconfounder

Consider a treatment and effect relationship in a time step,
the effect can become a cause over time and create complexity
in future effect estimation. The Time Series Deconfounder [42]]
method uses a recurrent neural network architecture to enable
the estimation of treatment effect leveraging the sequential
assignment of multiple treatments over time in the presence
of hidden confounders. This method creates a factor model
to depict how the causes (treatments) are distributed over
time. The latent variable Z; = g(ﬁt,l) is generated by the
factor model at time ¢, where hy_y = (@1, X¢_ 1, Zt_1)
is the realization of history H; ;. The recurrent part of the
factor model derives the latent variable Z; in a way that
depends on historical data. The outcome model calculates
individual treatment impact over time based on latent vari-
ables, E[Y\(z>:t, At_]_, Xt7 Zt} = E[Y(d>:t)|At_1, Xta Zt]
Gradient descent-based techniques can be used to train the
factor model using treatment assignments from observational
datasets.

f. Conditional Instrumental Variable (CIV)

In a causal graph, some variables are called instrumental
variables (IV) if related to the cause, related to the effect only
through the cause, and independent of the hidden confounders.
Suppose a model Y = BX + g(H,eY) then using IVs it is
possible to estimate coefficient 3 of the model [43[]. However,
observed time series in real dynamical systems show memory
effect, which means the value of the current time also contains
some portion of previous values of that time series. Consider
the full causal graph in Figure[I[a). In Figure[6] target variable
Y is dependent on instrument variable [ through B. This
leads us to introduce another set of conditioning variables
B that make variable I and effect Y independent when we
ignore all edges from X — Y. None of the variables in
the set B are descendants of set (X UY"). Considering this
additional conditioning set B with the instrumental variable [
to measure the causal effect of X to Y is called the conditional
instrumental variable. Using the CIV [43] method we can
measure the value of the effect variable based on the cause and
the coefficient 3. Also, the residual of the estimated effect and
ground truth effect is independent of I and B, Y — X LI|B.

0 )

Fig. 6. Example of Conditional Instrumental Variable (CIV) [43].

C. Evaluation Metrics

1) Causal Discovery: We will evaluate causal discovery
results by comparing generated causal graphs and the do-
main knowledge-based causal graph mentioned in [11]. The
following evaluation metrics will be used to compare causal
discovery results.

o True Positive Rate (TPR): is the probability that an actual
positive will test positive. Assuming the threshold ¢ of
probability of an edge p(a;;) ranges from (0, 1), TPR is
defined as TPR, = |M| where S is the
set of ground truth edges (i.e., (4,7) : aj; = 1).

« False positive rate (FPR): is the probability that an actual
negative will test positive. Assuming the threshold ¢ of the
probability of an edge p(a;;) ranges from (0,1), FPR
is defined as FPR; = |w| where S is the
set of ground truth missing edges (i.e., (i, j) : aj; = 0).

o Structural Hamming Distance (SHD) [44]: is the num-
ber of operations required to make two causal graphs
equivalent. The operations include adding, deleting an
undirected edge, and adding, removing, or reversing the
orientation of an edge.

However, since we lack a baseline model or causal diagram
to evaluate our results, we may combine the causal graph
driven by domain knowledge to conclude edges feasible for
causal inference.

2) Causal Inference: The evaluation metrics best describe
the quality of causal inference as follows.

o Precision in Estimation of Heterogeneous Effect (PEHE):
The PEHE method is used to measure the accuracy of the
individual treatment effect (ITE) estimation. It reflects the
ability to capture individual variation in treatment effect
estimation for a population. PEHE = £ ™7 ((y; —
vio) — (§i1 — Gio))?, where y;; = the true outcome for
t = 1, y;o = the true outcome for ¢t = 0, y;; = the
estimated outcome for t = 1, and 3,0 = the estimated
outcome for t = 0.

o Absolute error on the Average Treatment Effect (ATE):
To measure the quality of the treatment effect estima-
tion for the population level we can use the absolute
error in the observed average treatment effect. The for-
mula to compute the ATE absolute error is eqrp =
L3 (5a(1) = 5i(0) — £ 0 (3:(1) — §:(0)) . where
y; represents the true treatment effect and ¢; represents
the estimated treatment effect.



V. RESULTS

A. Causal Discovery Results

a. PC, GES, and FCI

We are analyzing the Arctic time series dataset but these
methods expect IID data. We disregarded the time features
and considered each observation independently distributed to
apply these techniques to the Arctic dataset. Figure [/| shows
the causal graph generated by the PC method. From the causal
graph, we can see that air temperature and rainfall are the
direct causes of sea ice extent, whereas, specific humidity is
the effects of sea ice extent. Another important inference is
between sea surface temperature and sea ice extent where no
unidirectional causal relationship exists.

Shortwave
radiation

Sea surface
- temperature

Fig. 7. Causal graph generated using the PC algorithm.

The causal graph generated using the GES method is shown
in Figure [§] Here sea surface temperature, wind velocity,
shortwave radiation, and air temperature are direct causes of
sea ice extent. However, sea ice extent is a common cause of
surface pressure and longwave radiation.
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Fig. 8. Causal graph generated using the GES algorithm.

Figure [9] represents a causal graph generated by the FCI
algorithm. As seen from the graph, sea surface temperature is
the direct cause of sea ice extent. But there is an unmeasured
confounder between specific humidity and sea ice extent,
rainfall and sea ice extent, air temperature and sea ice extent.

Sea ice
extent

Fig. 9. Causal discovery results from the FCI algorithm.

b. PCMCI, PCMCI+ and VarLiNGAM

The required input hyper-parameters for PCMCI and
PCMCI+ include the maximum time delay T7,,4., verbosity
o to decide the detection power (high values give rise to
high false positives and small values cause high dimension-
ality of the condition set), and independent test methods
cond_ind_test. The following are the values used in
this study: 7. = 90, @« = 1 (no parents are removed),
cond_ind_test = ParCorr. Figure (a) and (b) are
causal graphs inferred by PCMCI and PCMCI+, respectively.
VarLiNGAM also uses 7y,4, = 90 as the maximum time delay,
and it finds 1191 edges in total with causal effects larger than
0. Table |lI] shows the top 15 edges related to sea ice extent
found by VarLiNGAM.

TABLE 11
CAUSAL EDGES RELATED TO SEA ICE EXTENT IDENTIFIED BY THE
VARLINGAM METHOD.

Cause Lag  Effect Effect Coefficient
Snowfall 0 Sea ice extent 28120
Snowfall 3 Sea ice extent 15068
Snowfall 9 Sea ice extent 13920
Snowfall 17 Sea ice extent 12305
Snowfall 2 Sea ice extent 9736
Snowfall 80 Sea ice extent 8825
Snowfall 84 Sea ice extent 7426
Snowfall 45 Sea ice extent 7422
Snowfall 70 Sea ice extent 6314
Snowfall 74 Sea ice extent 5951
Rainfall 56 Sea ice extent 5541
Snowfall 26 Sea ice extent 5439
Snowfall 68 Sea ice extent 4897
Rainfall 52 Sea ice extent 4765
Snowfall 64 Sea ice extent 4762

Since we are interested in the change of sea ice extent,
we look into the relationship between sea ice extent and
other variables. From the causal graphs, if we only inspect
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Fig. 10. The causal graph inferred from (a) PCMCI and (b) PCMCI+.

the direct cause-effect edge type, we can see that for sea
ice extent, PCMCI shows sea ice extent with time delay
1 has the strongest causal effect on itself, and rainfall (lag
0), snowfall (lag 0), wind velocity (lag 1), surface pressure
(lag 2), sea surface temperature (sst) (lag 0) are the second
strongest causes. PCMCI+ shows that sea ice extent (lag 1)
has the strongest causal effect on itself, and sst (lag 0) has the
second strongest effect; meanwhile, sea ice extent (lag 0) can
be a cause of shortwave radiation (SW_down). VarLINGAM,
interestingly, shows that snowfall (lag 0) has the strongest
causal effect on sea ice extent, and rainfall (lag 56) is the
second. According to a summary of the findings from these
techniques, the strongest causes of sea ice extent are sst (lag
0) and snowfall (lag 0).

Longwave
radiation

Sea ice
extent

Fig. 11. The causal graph from physical knowledge [11].

c. Evaluation of Causal Graphs

The causal discovery approaches are evaluated by TPR,
FPR, and precision which are introduced in Section Ta-
ble ] shows the evaluation scores. Since we are interested in
causal relationships between sea ice extent and other variables,
we only look into edges related to sea ice extent, where sea
ice extent is either the cause or the effect. Also, since there are
only six variables are used in [11], the causal discovery results
are evaluated based on variables including {longwave radi-
ation, shortwave radiation, wind velocity, surface pressure,
specific humidity, sea ice extent}. The physical knowledge-
based causal graph is shown as Figure [TI] From the table,
we can see that, GES generates the best performance among
IID methods with the highest precision and lowest FPR; while
among time-dependent methods, VarLinGAM performs better

than other methods considering the precision score.

TABLE I
EVALUATION ON CAUSAL DISCOVERY RESULTS BY PRECISION, TPR, AND
FPR.
IID methods Time-Dependent methods
PC  GES FCI | VarLiNGAM PCMCI PCMCI+
Precision  0.67 1.00  0.80 0.75 0.55 0.67
TPR 022 033 0.36 0.67 0.67 0.22
FPR 020 0.00 033 0.40 1.00 0.20

From these generated causal graphs, we identified the edges
to analyze causal inference. Table and Table [V show
the two most possible causes of sea ice extent found by
IID and time-dependent methods, respectively. We used the
dimensional causality (DC) method to validate the causal
edges between the sst — sea_ice_extent and snow fall —
sea_ice_extent. To compute the result of the DC method
for the sst — sea_ice_extent we used embedded dimension
9 and 7 (time delay) 1. For snowfall — sea_ice_extent,
the value of the embedded dimension is 9 and the 7 is O.
Figure [12] shows that the DC method generated the perfect
probability for the causal edge from sst to sea_ice_extent,
but the probability assigned for the causal edge from snow fall
to sea_ice_extent is not aligned with causal knowledge.
Moreover, the DC method generated a bidirectional causal
link between the snowfall and the sea_ice_extent with a
higher probability. In the next section, we will analyze causal
inference comparing the strength of causal effects for identified
causes to sea ice extent.

TABLE IV
CAUSAL EDGES FOUND BY IID METHODS PC, GES, AND FCI.
Cause Covariates Effect
Sea surface Specific humidity, Sea ice extent
temperature Air temperature

Air temperature

Sea surface temperature,
Specific humidity

Sea ice extent

B. Causal Inference Results

a. Time-Independent Causal Inference

For

time-independent

causal

inference,

wWE€ us€ an

adjustment-based causal inference to estimate the effects of



TABLE V
CAUSAL EDGES IDENTIFIED BY TIME-DEPENDENT METHODS PCMCI,
PCMCI+, AND VARLINGAM.

Cause Time lag  Covariates Effect

Sea surface 0 Specific humidity, Sea ice extent
temperature Surface pressure

Snowfall 0 Rainfall, Sea ice extent

Longwave radiation

X>Y  K<mY X<y Xeo¥ X1y X->Y  KemY  X<Y XeeY XY

(a) sst — sea_ice_extent (b) snowfall — sea_ice_extent

Fig. 12. Validation of causal links using dimensional causality (DC) method.

sea surface temperature and air temperature with adjusted
variables shown in Table [[V] and a linear regression model is
used to predict sea ice extent. The causal effect of sea surface
temperature on sea ice extent is 72335, and the causal effect
of air temperature on sea ice extent is 65486, which shows
that the causal effect of sea surface temperature is stronger
than air temperature.

b. Time-Dependent Causal Inference

We concluded from causal discovery results that sea ice
extent is influenced by sea surface temperature (sst) and
snowfall values. To measure the strength of the causal effect
of these two causal variables on sea ice extent, we applied
various state-of-the-art causal inference methods, including
conditional instrumental variable, variable-lag granger causal-
ity, etc. To estimate the causal effect of sea surface tem-
perature on sea ice extent using the conditional instrumental
variable (CIV) method, CIBgst—ssea_ice_extent(I|B), we have
considered I = {specific_humidity, sur face_pressure}
and B = {rainfall} and the 3 coefficient estimated
by this method is 72616.73. The causal effect of snow-
fall to sea ice extent CIBgnowfali—sea_ice extent(I|B) 1is
measured using I = {rainfall,longwave_radiation} and
B = {surface_pressure, shortwave_radiation} and the
estimated [ coefficient is 13857571.99. Using these 3 coef-
ficients and the value of the cause variable we can estimate
the value of sea ice extent for any given instance of the time
series with some fraction of error.

The results generated by the Variable-lag Granger causality
and Transfer Entropy method are depicted in Table Here
all three methods have similar results for the causal edge
sst — sea_ice_extent and using the method of BIC score
calculation we can estimate the values of sea_ice_extent,
using the value of sst. On the other hand, the Granger causality
method failed to quantify the causal effect from snow fall to
sea_ice_extent, but both the VL-Granger causality and VL-

Transfer Entropy methods detected the causal effect success-
fully.

TABLE VI
CAUSAL EFFECT FOUND BY VARIABLE-LAG (VL) GRANGER CAUSALITY
AND TRANSFER ENTROPY METHOD.

Methods sst — sea_ice_extent snow fall — sea_ice_extent
Granger X causes Y?=1 X causes Y?=0

(BICDiffRatio = 0.529) (BICDiffRatio = 0.319)
VL-Granger X causes Y?7=1 X causes Y?=1

(BICDiffRatio = 0.529)
X causes Y?=1
(TEratio = 10.036)

(BICDiffRatio = 0.812)
X causes Y?=1
(TEratio = 2.003)

VL-Transfer
Entropy

VI. DISCUSSION AND CHALLENGES

There is a common scenario for most of the real-world
dynamical systems that we can monitor the system using
different sensors and collect data from the system, but there
is no structural equation to express this data. Also, it is not
possible to turn off any physical force/part of the system and
measure other parameters without the influence of that partic-
ular intervened component. Therefore, there is no mechanism
to generate factual and counterfactual data from a dynamic
system. The Arctic Sea Ice is a real-world dynamic system, so
we have tried to analyze the causal effect between the various
components of the system using a diverse set of causality
methods. Some of these methods, such as Dragonnet, CEVAE,
T-learners, and Time Series Deconfounder, require factual and
counterfactual data for treatment variables in order to measure
the causal effect of these variables on target variables. We did
not apply these methods to our dataset due to the limitations of
the counterfactual data. We are currently investigating possible
strategies for generating counterfactual data for all treatment
variables in the Arctic Sea Ice system.

VII. CONCLUSIONS

The causal discovery and causal inference methods are
applied to the Arctic Sea Ice dataset to find the causes of
sea ice extent and estimate the causal strength. The results of
causal discovery methods show differences in inferred causes,
and at the same time show the challenge of time-varying causal
discovery. Though different causal discovery models generated
different causal directions, the GES method works better
for our dataset from applied IID methods and on the other
hand, the VarLINGAM method from time-dependent category
generated a better temporal causal graph. From the results
of causal inference models, we found that the conditional
instrumental variable (CIV) method provided an estimate of
the causal effect coefficient 5 between cause and effect in
the dataset. In addition, the Variable-lag Granger causality
method can determine the causal inference strength that is not
determined by the regular Granger method. The limitations
of this study are: (1) For causal inference, we need to find
a more data-driven approach to decide the covariates, such
as propensity score. (2) We need to find suitable evaluation
metrics to compare results generated from causal inference
methods.



For future work, besides solving the above limitations and
problems, we plan to study the methods that we did not
successfully use, such as deep learning-based causal inference
methods. Also, we consider how the conclusions can help
machine learning or deep learning-based study on the Arctic
Sea Ice.
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