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Abstract—Ocean eddies play a significant role both at the

sea surface and beneath it, contributing to the sustainability of

marine ecosystems and influencing broader oceanic and climatic

behaviors. Investigating ocean eddies is essential for monitoring

changes in the Earth’s oceans and their impact on climate. This

study focuses on benchmarking the performance of state-of-the-

art YOLO (You Only Look Once) models for locating small-scale

(<20km) ocean eddies using satellite remote sensing images. We

leverage AWS SageMaker for this evaluation, utilizing both single

and multi-GPU configurations to explore the feasibility and effi-

ciency of deploying AI applications in cloud-based environments.

This research not only assesses the effectiveness of SageMaker in

handling complex Earth science data but also provides insights

into deployment challenges, resource management for large-scale

data, and the overall user experience. The findings highlight the

strengths and limitations of using SageMaker for remote sensing

applications and suggest potential future research directions. Our

code is open-sourced at https://shorturl.at/hcjmq.

Index Terms—Cloud Services, SageMaker, S3, Ocean Eddy,

Localization, Detection, YOLO, YOLOv5, YOLOv8, YOLOv9.

I. INTRODUCTION

Object localization in satellite imagery, particularly for
detecting ocean eddies, is crucial for Earth observation due to
its impact on understanding marine ecosystems, biodiversity,
and climate dynamics. Accurately identifying and tracking
these swirling vortices in satellite images enables researchers
to monitor sea surface dynamics, including water mass move-
ment, currents, and temperature gradients. Such observations
facilitate insights into nutrient cycling and ecosystem behavior,
essential for marine conservation efforts.

Despite the advances in technology, processing and analyz-
ing large volumes of satellite imagery for ocean eddy detection
poses significant challenges. Solutions that incorporate cloud
computing have emerged to address the limitations of tradi-
tional, localized computational approaches. Cloud platforms
offer scalability, efficiency, and accessibility that are vital
for handling extensive Earth observation data. However, the
deployment of machine learning applications in the cloud
environment is not without its challenges, such as interoper-
ability [1], quality of service [2], and maintaining accuracy [3],
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responsiveness [4–7], and cost-effectiveness [8, 9]. Scalability
for large-scale Machine Learning as a Service (MLaaS) [10]
or infrastructure-as-a code [11] remain as notable issues, com-
pounded by challenges specific to climate change applications
[12, 13].

To address these challenges, our work focuses on deploying
and benchmarking State-of-the-art object detection models for
ocean eddy localization using Amazon SageMaker, a robust
platform offering end-to-end solutions for machine learning
model development and deployment. SageMaker’s capabilities
include integrated development environments (IDEs), built-in
algorithms, support for custom solutions, and efficient data
management through Amazon S3.

In this study, we leverage Amazon SageMaker for deploying
YOLO models in both single-GPU and multi-GPU config-
urations to conduct an extensive benchmarking analysis of
YOLOv5, YOLOv8, and YOLOv9 for ocean eddy detection.
The primary goals of this work are to ensure ease of model
deployment, provide access to data, code, pre-built models,
and libraries within a cloud-based framework, and analyze
their adaptability for real-world applications in oceanography.
Our deployment architecture, depicted in Figure 1, outlines
the processes of data handling, model training, and result
storage within the cloud. Users can construct machine learning
pipelines, upload annotated datasets, and execute training pro-
cesses in SageMaker, with results stored in S3 for efficient data
exchange and scalability. The main experiments conducted in
this work are highlighted as follows.

I) Data Annotation and Model Training: SageMaker’s
Ground Truth tool was employed for data annotation, focusing
on bounding box labeling within images. This tool facilitates
accurate preparation of training data for model development.
Additionally, the platform’s built-in and custom algorithm
support allows for flexible model training tailored to specific
data types and objectives.

II) Ocean Eddy Detection: SageMaker notebooks, akin to
Jupyter notebooks, are employed for coding and data analysis.
These notebooks interface seamlessly with S3 for data loading
and storage. For this work, we deployed YOLO models to
perform object localization on satellite imagery, optimizing
configurations for both single-GPU and multi-GPU setups.

III) Model Benchmarking: We conducted a comparative
benchmarking of YOLOv5, YOLOv8, and YOLOv9 to evalu-
ate their performance in detecting ocean eddies. Our analysis
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Fig. 1: Pipeline for Localizing Ocean Eddies using various
YOLO models with SageMaker.

includes a comparative study of YOLO metrics such as pre-
cision, recall, and mAP scores, as well as hardware-specific
metrics, including Giga Floating Point Operations per Second
(GFLOPs) and the number of parameters.

This structured approach provides valuable insights into the
application of cloud-based deep learning models for large-
scale Earth observation data, highlighting their potential to
enhance the understanding and monitoring of marine dy-
namics. Challenges encountered during data annotation and
preprocessing are outlined, along with an assessment of the
feasibility of deploying these models for real-world oceano-
graphic applications. The experimental methodology, dataset
preparation, and implementation details are further discussed
in subsequent sections.

The rest of the paper is summarized as follows. We intro-
duce the actual data, the main object of interest, the cloud
platform, and the models to be used in Section II. Data
preprocessing techniques are described in Section III. Section
IV elaborates on the experimental process in detail. In Section
V, we discuss the results and benchmark the models used
in the experiments, followed by discussions in Section VI.
Finally, we conclude this report in Section VII.

II. BACKGROUND

This section provides essential context for understanding the
key elements and terms referenced throughout this study. We
provide background information related to the data, the main
object of study, known as ocean eddies, and the state-of-the-art
model YOLO, which we have explored.

A. SAR Data
Synthetic Aperture Radar (SAR) involves active remote

sensing, where energy emitted by the sensor is reflected
back from the Earth’s surface and recorded. Unlike optical
imagery, interpreting SAR data requires unique methods as it
is influenced by surface properties like structure and moisture.
The spatial resolution depends on the ratio of the sensor
wavelength to the antenna length, with longer antennas gen-
erally producing higher resolution. In this study, SAR data

from the European Space Agency’s Sentinel-1 mission [14]
was utilized, providing high-resolution imagery that aids in
identifying various geophysical phenomena.

B. Ocean Eddies

Oceanic circulation is characterized by turbulent structures,
including eddies, which are circular water currents. Eddies can
range in size from a few kilometers to over 300 kilometers.
Mesoscale eddies (→100-300 km) play a significant role
in horizontal transport of water, heat, and tracers, whereas
smaller-scale eddies (less than 50 km) are crucial for vertical
mixing and interaction with other climate system elements
[15]. Due to spatial limitations of satellite altimetry, small-
scale eddies are challenging to study globally. SAR imagery
provides an opportunity for such analysis by revealing these
eddies at kilometer-level resolution, although the systematic
study is hindered by the absence of labeled images. The
integration of deep learning methods and scalable cloud-
based infrastructure could overcome these barriers, enabling
comprehensive surveys.

C. SageMaker

Amazon SageMaker is a robust cloud service for developing
and deploying machine learning models [16]. It streamlines
workflows by integrating Jupyter notebooks and eliminating
server management. SageMaker supports distributed training,
GPU utilization, and efficient model deployment, making it a
suitable choice for handling large-scale datasets. By leveraging
high-performance GPUs such as NVIDIA A100, SageMaker
accelerates both training and inference, facilitating rapid pro-
totyping and deployment. This flexibility allows researchers
to balance cost-effectiveness and performance, aligning with
concerns about achieving optimal quality within budget con-
straints.

D. YOLO Models

The YOLO (You Only Look Once) series, introduced by
Redmon et al. [17], revolutionized real-time object detection
by predicting bounding boxes and class labels in a single
pass. YOLO models approach object detection as a regres-
sion task, incorporating CNN-based feature extraction and
detection heads for efficient performance. Advancements from
YOLOv5 to YOLOv9 have introduced various enhancements
in backbone architectures, anchor-based and anchor-free meth-
ods, and computational optimizations, improving accuracy and
inference speed [18].

1) YOLOv5: Developed by Ultralytics, YOLOv5 refines
object detection through an anchor-based approach and a
Feature Pyramid Network (FPN) backbone [19]. The FPN is a
multi-scale feature extractor designed to enhance the detection
of objects at different scales by combining high-resolution
features from earlier layers with semantically stronger, lower-
resolution features from later layers in the network [20].
This hierarchical representation improves the model’s ability
to identify both small and large objects within an image.
YOLOv5 also integrates multi-scale feature extraction and



Fig. 2: An example of multiple Eddy containing SAR image
converted using GDAL library.

non-maximum suppression to output bounding boxes with
objectness scores and class probabilities efficiently.

2) YOLOv8: YOLOv8, introduced anchor-free detection,
which streamlines model training and reduces the overall
parameter count. Unlike traditional anchor-based methods
(YOLOv5 and earlier versions) that rely on predefined an-
chor boxes to predict object locations and sizes, the anchor-
free approach allows YOLOv8 to detect objects by directly
predicting key points or centers of objects, along with their
size and class [21]. This shift eliminates the complexity of
anchor box matching and leads to more efficient and flexible
object detection. YOLOv8 also incorporates optimized module
design, including modified kernel sizes and direct feature
attachments in the neck, further enhancing the model’s post-
processing speed and overall performance [22].

3) YOLOv9: YOLOv9 further improves object detection
with the Programmable Gradient Information (PGI) and Gradi-
ent Enhanced Learning Architecture Network (GELAN) archi-
tectures. PGI optimizes the gradient flow through the network,
improving how information is propagated during training. By
enhancing the gradient’s ability to capture and update model
parameters more effectively, PGI prevents issues like gradient
vanishing or explosion, which can slow down or destabilize
training. On the other hand, GELAN focuses on improving the
learning process by enhancing how the model learns complex
patterns through a more efficient gradient enhancement mech-
anism. It supports device-specific block selection, enabling
the architecture to be more adaptable and suited for different
hardware setups. These innovations help reduce information
loss, maintain high detection accuracy, and ensure faster real-
time performance across various environments [23].

III. DATA PREPROCESSING

We preprocessed our data in several steps, including initial
preprocessing, application of Principal Component Analysis
(PCA), and image augmentation. Below, we describe each of
these processes in detail.

A. Image Conversion

The SAR data utilized in this study comprises satellite
images stored as TIFF files, each approximately 40 MB

in size. To enhance visualization and improve image clar-
ity, we employed Quantum Geographic Information
System (QGIS) software [24], which allowed us to convert
the original TIFF images into more manageable form such as
unsigned integers (UInt8) PNG format. This step
was facilitated by Geospatial Data Abstraction
Library (GDAL) [25], a comprehensive library for geospa-
tial data handling that provides seamless support for reading
and converting various geospatial formats. By integrating
GDAL with Python, we efficiently converted all SAR images
into PNG format to ensure compatibility with SageMaker, our
chosen cloud-based machine learning platform. The benefits
of using GDAL include its compatibility with SageMaker’s
interface, particularly in the Ground Truth panel, and its ability
to reduce image size while preserving quality. An example of
a processed image is shown in Figure 2. This preprocessing
approach aligns with techniques outlined in [26].

B. PCA based Image Restoration
To address the prolonged training times caused by the

increased size and complexity of this expanded dataset, we
implemented PCA for image restoration by unwanted feature
reduction. The reconstruction process follows several steps, as
illustrated in Figure 3. PCA is first fitted to the input image
matrix to compute the principal components and their corre-
sponding eigenvalues, followed by calculating the cumulative
variance ratio to understand feature importance. The optimal
number of components (k) is then determined based on the
desired variance retention threshold, after which Incremental
PCA (IPCA) is applied using the selected k components
to project the image data onto a lower-dimensional space.
Finally, inverse transformation reconstructs the image from its
compressed representation, effectively reducing dimensional-
ity while preserving significant features, with reconstruction
quality directly related to retained components. Inspired by
the approach in [26], this process effectively streamlined
computations and reduced processing time.

Fig. 3: Image restoration process using PCA.

C. Augmentation and Annotation
We started with 100 image patches, each containing one

or more ocean eddies. To augment the dataset, we applied
rotations of 90→, 180→, and 270→ to these images, increasing
the total number of images to 400. This augmentation resulted



in a higher number of eddy occurrences across the dataset,
providing more varied examples for training the models and
improving their performance. For annotating images, we used
LabelImg software to generate text files in a format suit-
able for YOLO models [27]. Each text file contains entries
specifying the class label of the object, along with bounding
box coordinates, which are defined by the top-left (x_min,
y_min) and bottom-right (x_max, y_max) corners of
the bounding box. This method enables the efficient labeling
of multiple objects within a single image, facilitating the
training of YOLO-based object detection models. For model
training, we divided the dataset into 75% for training, 20% for
validation, and 5% for testing, ensuring that the augmented
images were evenly distributed across all sets for consistency.

IV. EXPERIMENTAL SETUP FOR SAGEMAKER

This section details the process of preparing SageMaker for
deploying various YOLO models in the cloud environment to
benchmark performance on ocean eddy data.

A. Preliminary Steps

Deploying models in SageMaker involves several key steps.
First, users must create or select an existing IAM (Identity and
Access Management) role to grant the necessary permissions
for instance creation and script execution. Next, users choose
an instance with the desired operating system and environ-
ment settings (e.g., deep learning) and allocate appropriate
resources, such as memory and processing power (GPU/CPU).
An S3 bucket is designated for storing files and model outputs.

B. Data Preparation

SageMaker’s Ground Truth tool offers flexible image la-
beling capabilities, including bounding box annotations for
images stored in our S3 bucket. It supports both single
and multi-class labeling and allows users to enlist additional
workers for annotation tasks. The labeled data, along with a
manifest file containing bounding box coordinates and image
paths, is stored in the S3 bucket, enabling seamless integration
into the training pipeline.

C. Model Deployment

SageMaker’s Jupyter notebooks are utilized for code devel-
opment, debugging, and deployment, offering seamless access
to files stored in S3. This functionality simplifies data handling
and ensures that outputs are stored as specified. Although this
study did not explore SageMaker’s automatic algorithm se-
lection feature, GPU-based Jupyter notebooks were manually
created for the efficient training of various YOLO models.

D. SageMaker Instance Specification

SageMaker supports a range of instance types tailored
for various machine learning workloads. For this project,
we utilized the ml.p3.2xlarge and ml.p3.8xlarge
instances to support both single-GPU and multi-GPU tasks
[28]. The ml.p3.2xlarge instance, featuring one NVIDIA

Tesla V100 GPU, 8 vCPUs, and 61 GB of memory, pro-
vided an optimal balance of computational power for smaller-
scale deep learning tasks and development. In contrast, the
ml.p3.8xlarge instance, equipped with 4 GPUs, 32 vC-
PUs, and 244 GB of memory, was selected for training more
complex models that required higher computational capacity.
For instance, the Yv9_g-c_2 model, with its greater number
of layers, parameters, and intricate architecture, was trained
using two GPUs to maximize training efficiency. All other
models were trained using the ml.p3.2xlarge instance.
This strategic use of instances significantly expedited training
and improved the performance of image recognition and
natural language processing tasks compared to CPU-based
alternatives.

V. EXPERIMENTAL RESULTS

In this section, we present our results in various tables.
In Table I, we use shortened forms of model names to
describe their respective details. In Table II, we provide a
comprehensive overview of various performance metrics and
hardware specifications for the YOLO models. We include
details such as the number of epochs, the time taken for each
epoch to train the model. Additionally, we present information
about the number of GPUs utilized during training (which
impacts training time), and GFLOPs, offering insights into
the computational capacity. Furthermore, we list parameters
representing the model’s trainable weights and biases, which
are essential components influencing its performance and
behavior. Finally, a comparison of model performances are
presented in Table III, highlighting precision, recall, and mAP
scores.

TABLE I: Specifications of the Models

Models Full Forms Description

Yv5s YOLO version 5 Small edition
Yv5m YOLO version 5 Medium edition
Yv8s YOLO version 8 Small edition
Yv8m YOLO version 8 Medium edition

Yv9_g-c YOLO version 9 Generalized Efficient Layer
Aggregation Network (GELAN) [23]

A. Hardware Specific Model Performances
The hardware performance evaluation of YOLO models

in Table II highlights key metrics, including the number
of epochs, training time per epoch, number of GPUs used,
GFLOPS, and parameter count. GFLOPS is a measure of
computational complexity, representing the number of billions
of operations a model can perform per second. From the table,
we observe that smaller versions of YOLO models (e.g., Yv5s)
have lower GFLOPS and parameter counts, resulting in shorter
training times per epoch and requiring fewer computational
resources. The training time per epoch for Yv5s is minimal,
aligning with its lightweight design and lower parameter count.
Conversely, medium models like Yv8m show an increase in
both GFLOPS and parameter count, contributing to a moderate
training duration while still being feasible to train on a single
GPU.



TABLE II: Hardware Specific Performance Evaluation of
YOLO Models

Model Epochs Time/epoch GPUs GFLOPS Params.

Yv5s 146 0.00269 1 15.8 7,015,519
Yv5m 156 0.00293 1 47.9 20,856,975
Yv8s 158 0.00087 1 28.4 11,126,358
Yv8m 180 0.00151 1 79.1 25,857,478
Yv9_g-c_1 267 0.00470 1 102.5 25,412,502
Yv9_g-c_2 209 0.00353 2 102.5 25,412,502

Larger models such as YOLOv9, which have the highest
GFLOPS and parameter counts, demonstrate the need for
significant computational power. The training time per epoch
is longer, especially when using a single GPU. However,
training on multiple GPUs (e.g., Yv9_g-c_2 trained on 2
GPUs) helps to reduce the training time per epoch, show-
casing the scalability of the architecture. Models with higher
GFLOPS, such as Yv9_g-c_1 and Yv9_g-c_2, indicate
greater computational demand due to more complex structures,
which can enhance detection accuracy but require robust hard-
ware and longer training durations. In contrast, models with
lower GFLOPS, like Yv5s, are more computationally efficient,
allowing faster training with potentially reduced accuracy.

B. Overall Models Performance
In Table III, we report the model performances, highlighting

Precision, Recall, mAP50, and mAP50-95. Precision indicates
the proportion of correctly identified positive cases among
all cases flagged as positive, reflecting the model’s ability
to avoid false positives. Recall measures the proportion of
correctly identified positive cases out of all actual positives,
demonstrating the model’s effectiveness in detecting relevant
instances. The Mean Average Precision at a 50% Intersec-
tion over Union (IoU) threshold (mAP50) calculates average
precision across classes, while mAP50-95 provides a more
comprehensive assessment by evaluating performance across
IoU thresholds from 50% to 95%.

TABLE III: Performance Evaluation of YOLO Models

Model Precision Recall mAP50 mAP50-95

Yv5s 50.3 55.6 51.4 20.4
Yv5m 45.8 53.2 48.8 20.9

Yv8s 39.3 40.4 48.9 20.8
Yv8m 47.1 47.8 52.2 19.5
Yv9_g-c_1 37.5 57.1 47.8 18.6
Yv9_g-c_2 52.6 47.8 45.8 16.3

The results show that the Yv9_g-c_2 model (with 2 GPUs)
achieved the highest precision score of 52.6%, followed
closely by Yv5s at 50.3%. Yv5m, Yv8m, and Yv9_g-c_1 (with
single GPU each) also performed well, with precision scores
between 45.8% and 47.1%. Yv8s had the lowest precision
score at 39.3%. For recall, Yv5s led with a score of 55.6%,
while Yv9_g-c_1 (with a single GPU) demonstrated a score of
57.1%. The remaining models exhibited recall scores ranging
from 40.4% to 47.8%. Yv8m achieved the highest mAP50
score of 52.2%, closely followed by Yv5s with 51.4%. Yv5m,
Yv8s, and Yv9_g-c_1 also performed well with mAP50 scores

ranging from 45.8% to 48.9%. Yv9_g-c_2 exhibited the lowest
mAP50 score of 45.8%. The experiment shows, the highest
mAP50-95 score of 20.4%, indicating its effectiveness across
a range of IoU thresholds. Yv8m and Yv8s also performed
well with mAP50-95 scores of 19.5% and 20.8%, respectively.
However, Yv9_g-c_2 exhibited the lowest mAP50-95 score of
16.3%.

(a) Yv5s (b) Yv5m

(c) Yv8s (d) Yv8m

(e) Yv9_g-c_1 (f) Yv9_g-c_2

Fig. 4: Localization of Ocean Eddies: A Comparative Analysis
of Various Models Applied to an Image.

C. Comparison of Localization of Objects

In addition to evaluating the models’ performance, we
conducted a comparison of their localization capabilities, as
depicted in Figures 4 and 5. Each sub-figure in both plots
represents the localization performance of different YOLO
subcategories within each model. However, YOLOv9 follows
a different naming convention. During the experiments, we
were limited to using only the YOLOv9_g-c, as it was the



(a) Yv5s (b) Yv5m

(c) Yv8s (d) Yv8m

(e) Yv9_g-c_1 (f) Yv9_g-c_2

Fig. 5: Localization of Ocean Eddies: Comparative Evaluation
Across Multiple Models Using Additional Image.

only version available at the time of the experiments were
conducted.

In Figure 4, we observe that all models are capable of
detecting most of the eddies within the images, albeit with
varying confidence scores across different edition (in Table I)
for each model. For instance, Sub-figures 4a and 4b pertain
to YOLOv5, where the medium version detects more eddies
compared to the smaller version and also captures a "non-
eddy" that was missed by the smaller version. Similarly, for
YOLOv8 smaller and medium versions, a similar pattern is
observed, albeit without the detection of the "non-eddy" in
the smaller version. Conversely, YOLOv9 (both Yv9_g-c_1
and Yv9_g-c_2) detected all cases with higher confidence
scores.

Furthermore, we conducted a comparison of all models in
Figure 5, where we observed that the medium category of

(a) (b)

(c) (d)

Fig. 6: Spotlighting Ocean Eddies: Exclusive Detection via
YOLOv9 Model only.

both YOLOv5 (sub-figure 5b) and YOLOv8 (sub-figure 5d)
performed better compared to the small category. Compar-
ing with YOLOv9 (both Yv9_g-c_1 and Yv9_g-c_2), it
outperformed all models in terms of detection and increased
confidence scores.

Finally, we compared another set of images as depicted
in Figure 6. In this figure, all detections were made using
YOLOv9 (both Yv9_g-c_1 and Yv9_g-c_2) exclusively,
as both YOLOv5 and YOLOv8 failed to detect any of the
eddies within those images. This clearly demonstrates the
success of YOLOv9 in this scenario. These images have a
slightly complex structure, yet YOLOv9 was able to locate
them almost accurately.

The comparison study highlights the strengths and weak-
nesses of each model across various performance metrics and
hardware specifications. YOLOv5s and YOLOv8m stand out
for their competitive precision, recall, and mAP50, along with
efficient training times. However, the optimal model choice de-
pends on task-specific requirements and constraints. Notably,
YOLOv9 outperformed YOLOv5 and YOLOv8 in localizing
ocean eddies (Figure 6), even under challenging conditions.
Despite this, YOLOv5 achieved the highest precision and
recall. This experiment used a smaller dataset with larger
individual file sizes, and a larger dataset would provide a more
comprehensive performance assessment.



TABLE IV: SageMaker in a Nutshell

Feature Description

Usability

• Need to configure and install libraries prior to use.
• CPU or GPU access to notebooks.
• Both the notebook and scripts are executable.
• Notebook instances require turning on and off for usage.
• Documents need to be saved before turning off.
• SageMaker does not have enough memory to store files except for smaller datasets; S3 bucket is used to

store large datasets.

Machine Learning as a Service

• SageMaker is designed for seamless MLaaS experience with ground truth, data labeling, clustering, algorithm
and model selection options. However, the whole pipeline deployment is cumbersome by selecting available
models.

• External API call is allowed through SageMaker, enabling the use of MLaaS.
• Notebooks running in an idle state have a price too.

Performance

• SageMaker provides a fully configured environment and computing power with a combination of either
GPU or CPU, faster read-write capability of the SSD storage.

• Integration of Lambda services, RESTful API call, and SageMaker is a great combination for ML service
deployment.

Cloud-based Services for Earth
Observation Research

• Data accessibility, labeling, training, and storing using SageMaker is a good fit to deploy ML models, which
we presented through the Ocean Eddy project.

• For continuous data and result integration, model deployment and sharing between collaborators is
convenient.

• SageMaker models are not shareable directly; however, they can be accessed with permitted users in a group
or with secret and public key access.

• RESTful API integration is allowed in SageMaker to execute notebooks and access files in S3.

VI. DISCUSSIONS

This section focuses into the challenges we faced when
deploying models using SageMaker and outlines potential di-
rections for future work. One of the primary goals of this study
was to evaluate the ease and flexibility of using SageMaker
for Earth science research. We aimed to explore its built-
in features comprehensively and assess its user-friendliness.
Given the unique challenges associated with satellite data,
including large file sizes and varying formats, it is crucial for
a platform to offer robust support tailored to these needs. In
the following subsections, we detail some of our key findings
regarding SageMaker’s shortcomings. We also propose future
research avenues for Earth science projects that would benefit
from enhanced capabilities and support provided by cloud
platforms, ensuring they meet the demands of complex data
processing and analysis.

A. Limitations

Despite its notable features, Amazon SageMaker presented
several significant shortcomings during our experimentation as
follows.

I) Labeling Limitations. A major limitation arose from the
restriction on the number of images that can be labeled in
a single task, capped at ten images at most. This constraint
poses a considerable obstacle when training models with larger
datasets.

II) Worker Assignment Challenges. The mandatory assign-
ment of workers for labeling tasks posed another challenge.
Without an assigned worker, the labeling process cannot
proceed. Moreover, simultaneous labeling by multiple work-
ers is not supported, leading to failed processes if multiple
workers attempt to label images concurrently. This limitation
significantly hampers efficiency, as the functionality fails to
fulfill its intended purpose.

III) Model Selection Issues. Despite documentation indi-
cating that users can select pre-configured models for training,
we encountered challenges in implementing this feature, even
with the paid version of SageMaker. As a result, we opted to
deploy our own YOLO models to complete the tasks.

IV) Image Format Issues. SageMaker encountered diffi-
culty in displaying Ocean eddy images converted from GEO-
TIFF to PNG using OpenCV or Matplotlib. This obstacle
was successfully overcome by utilizing the GDAL library.
Nevertheless, this solution also imposes constraints on the
accessibility and usability of SageMaker in broader contexts.

B. Potential Future Research Opportunities

In the realm of eddy detection, we see several avenues for
further research specific to enhancing the detection eddies in
satellite imagery as follows.

I) Evaluating Eddy Diameter. Exploring the diameter of
eddies would enhance our ability to measure them accurately.
This investigation could shed light on whether eddies undergo
changes in size or shape due to climate variations, providing
valuable insights into environmental dynamics.

II) Precise Eddy Center Localization. Refining techniques
to pinpoint the center of eddies would enable comprehensive
eddy detection, even in cases where parts of the eddies are
obscured in images. Accurately locating the center facilitates
more precise diameter measurements.

III) Multiple Satellite Co-registration. Ocean eddies can
often be identified from different satellite measurements, such
as level-2 sea surface temperature from VIIRS at 750 m
grid posting. The recently-launched Surface Water and Ocean
Topography mission also provide a great opportunity to study
these small-scale eddies. When the two satellites scan the
same eddy simultaneously, one often can improve the eddy
identification as well as deriving higher-order quantities that



is related to climate processes, such as upper ocean heat uptake
and carbon uptake.

IV) Model Validation with Diverse Earth Science Data.

Our experiment utilized a limited dataset. To thoroughly
assess model efficacy, it’s imperative to test them with diverse
categories of earth science data. Such comprehensive testing
not only reveals the true performance of the models but also
maximizes the potential of cloud computing through parallel
architecture and additional GPUs.

V) Enhancing SageMaker Usability. Despite its intended
purpose to facilitate data enthusiasts, our experiments uncov-
ered significant limitations in SageMaker. Addressing these
limitations by the platform provider could unlock more op-
portunities for data enthusiasts in the future.

We further highlight the key aspects of SageMaker in
Table IV in terms of deploying AI models. Overall, it is an
essential tool that provides state-of-the-art features for the re-
search community. It is expected that SageMaker will continue
to enhance its capabilities by expanding the availability of
libraries and incorporating features for easy accessibility, such
as data conversion, data splitting, and streamlined access to
models.

VII. CONCLUSIONS

Our study leveraged Amazon SageMaker, a cloud-based
service, for Ocean Eddy localization, which has potential ap-
plications in Earth observation. We employed various versions
of the YOLO model, including versions 5, 8, and 9, to localize
Ocean Eddies. The results of our experiments fulfilled the
objective of this work, which was to measure and compare the
performance of different YOLO models on the cloud platform.

However, our experience revealed significant challenges as-
sociated with deploying models using SageMaker, particularly
when utilizing the ground truth feature for AI-based model
deployment. These challenges highlight the need for further
refinement and improvement in the SageMaker platform to
streamline the deployment process, especially when handling
big data problems in such cloud environments.

Looking ahead, we are eager to address the potential re-
search opportunities identified during our study. This includes
exploring methodologies to enhance the efficiency and us-
ability of SageMaker for deploying AI models, as well as
investigating new avenues for object localization and detection
in future Earth science projects.
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