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Abstract—FPGA-based edge servers are used in many ap-
plications in smart cities, hospitals, retail, etc. Equipped with
heterogeneous FPGA-based accelerator cards, the servers can be
implemented with multiple tasks including efficient video pre-
possessing, machine learning algorithm acceleration, etc. These
servers are required to implement inference during the daytime
while re-training the model during the night to adapt to new
environments, domains, or new users. During the re-training,
conventionally, the incoming data are transmitted to the cloud,
and then the updated machine learning models will be transferred
back to the edge server. Such a process is inefficient and cannot
protect users’ privacy, so it is desirable for the models to be
directly trained on the edge servers. Deploying convolutional
neural network (CNN) training on heterogeneous resource-
constrained FPGAs is challenging since it needs to consider
both the complex data dependency of the training process and
the communication bottleneck among different FPGAs. Previous
multi-accelerator training algorithms select optimal scheduling
strategies for data parallelism, tensor parallelism, and pipeline
parallelism. However, pipeline parallelism cannot deal with batch
normalization (BN) which is an essential CNN operator, while
purely applying data parallelism and tensor parallelism suffers
from resource under-utilization and intensive communication
costs. In this work, we propose MTrain, a novel multi-accelerator
training scheduling strategy that transfers the training process
into a multi-branch workflow, thus independent sub-operations of
different branches are executed on different training accelerators
in parallelism for better utilization and reduced communication
overhead. Experimental results show that we can achieve efficient
CNN training on heterogeneous FPGA-based edge servers with
1.07x-2.21x speedup under 15 GB/s peer-to-peer bandwidth
compared to the state-of-the-art work.

Index Terms—edge server, heterogeneous FPGAs, CNN train-
ing.

I. INTRODUCTION

PGA-BASED edge servers are widely used in many ap-
plications in smart cities [1], [2], hospitals [3], retail [4],
robotics [5], etc. Composed of heterogeneous accelerators, the
servers can be implemented with multiple artificial intelligence
(AI) tasks. For example, the video machine-learning streaming
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server (VMSS) [3], an edge server equipped with Xilinx
Alveo USOLV+U30 FPGAs is proposed to build efficient video
analytics in smart cities. The U30 FPGA card is designed for a
series of video pre-processing tasks like video decoding, frame
buffering, image crop, and scaling, while the USOLV FPGA
is loaded with highly optimized machine learning engines and
serves machine learning plugins for accelerated inference. The
server is required to achieve exchangeability, i.e. implement-
ing inference during the daytime and re-training the CNN
model during the night so that the model can be adapted
to new environments, domains, or new users. Conventionally,
when the environments, tasks, or users change, data needs
to be collected from the edge FPGAs and transmitted to the
cloud. The re-training is implemented in the cloud, and the
updated model is transmitted back from the cloud to the edge.
The whole process is inefficient and cannot protect users’
privacy [6], [7]. Therefore, it is desirable to scale the edge
servers from inference into CNN training tasks so that they
can continuously and locally learn from new data. Currently,
many algorithms [7]-[12] have been proposed to achieve CNN
training on local devices with high accuracy and low edge-to-
cloud communication overhead. However, how to accelerate
the training algorithms on the hardware side given the resource
constraints of the target FPGA edge servers has not been well-
investigated.

Recently, several designs [13]-[15] have been proposed to
achieve efficient CNN training directly on a single FPGA.
Those accelerators are well-developed, i.e. each training oper-
ation can achieve high training throughput on a single device.
Accurate resource and performance models are also estab-
lished to explore design parameters and estimate execution
latency for each operation. To enable efficient CNN training
on heterogeneous FPGA-based edge servers, it is necessary to
develop an effective scheduling strategy to map the training
process on these well-developed accelerators. However, it is
challenging since it needs to consider both the computation
complexity of the training process and the communication
bottleneck among different accelerators. First, unlike inference
which only involves forward propagation (FP), the training
process includes FP, backward propagation (BP), and weight
update (WU) with more types of operations and more complex
data dependencies [15]. Fig. 1 (a) shows the data dependency
within the training process of a CNN composed of a convo-
Iutional (Conv) layer, a batch normalization (BN) layer, and
a fully connected (FC) layer. The circles represent operations,
while the boxes represent tensors including activation (e.g. A1)
in FP (red lines), loss (e.g. Ly) in BP (black lines), weights
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Fig. 1. CNN training involves complex data dependency. (a) The CNN training process. Circles represent operations, and boxes represent tensors. Arrows

represent data dependency. FP is in red, BP is in black, and WU is in yellow. (b) Comparison of the DP/TP sharding algorithm in Alpa [

] and our design

training the TinyYoloV3 network on the VMSS edge server. Both of them are tested on the same FPGA backend. It shows that the DP/TP-based mapping
algorithm leads to sub-optimal training performance compared to our work on resource-limited edge servers.

gradient (e.g. dW7) in WU (yellow lines) and weights (e.g.
W1). Activation and loss are immediate features in the training
process. The activation in FP and loss in BP need to be used
to calculate weights gradient in WU. Unlike cloud servers
with abundant resources to handle such computation com-
plexity, edge servers have restricted computation and memory
resources. Edge server inference can apply quantized data to
reduce the computation overhead on the limited resources
without accuracy reduction [16], [17], while training with
floating-point is preferred in most realistic applications to
guarantee the model accuracy [15], [18]. Therefore, given
the high complexity of the training process, finding the best
distribution of computations on multiple resource-limited ac-
celerators is non-trivial even though every single accelerator
can achieve high throughput and low latency [19]. Second, to
achieve high throughput and balanced execution, the training
process needs to be partitioned and distributed on different
FPGAs, so data needs to be scattered and gathered among
FPGAs. With FP, BP, and WU, CNN training involves higher
communication intensity [19]. Compared to high-performance
cloud environments, edge servers always suffer from lower
peer-to-peer (P2P) communication bandwidth. For example,
the NVLink used in the Amazon EC2 cloud [20] achieves up
to 300 GB/s GPU P2P bandwidth [21]. In edge servers, PCle
is widely equipped for P2P interconnection [3], [4]. We have
tested the PCle bandwidth on the UIUC XACC testbed [22],
and the P2P bandwidth is only 3 GB/s. The higher data transfer
overhead of the training process and the lower P2P bandwidth
of the edge servers lead to the non-trivial communication
bottleneck.

To address these two challenges and achieve efficient CNN
training, many scheduling algorithms [19], [23]-[27] have
been proposed to automatically partition the training process
and allocate different components to different accelerators
so these accelerators can execute in parallel. Existing paral-
lelization techniques are typically categorized as data, tensor,
and pipeline parallelism which can be seen in Fig. 2 [28].
Data parallelism (DP) means that the training data is parti-
tioned in the batch dimension across distributed accelerators.
The model’s weights are replicated and scattered to each
accelerator. In tensor parallelism (TP), the computation of a
Conv operator is partitioned alone by non-batch axes, and
weights are distributed across accelerators. Immediate results
for each layer need to be gathered and added up from all

accelerators. Pipeline parallelism (PP) divides a batch into
micro-batches and places different groups of layers onto
individual accelerators. It pipelines the computation of these
micro-batches. However, PP cannot support CNNs with batch-
wise operations [25]. Purely adopting DP and TP leads to
sub-optimal performance due to accelerator under-utilization
and communication bottlenecks. Fig. 1 (b) shows the through-
put comparisons of training the TinyYoloV3 network on the
VMSS (US0LV+U30) edge server scheduled by Alpa [23]
with DP/TP and by our works. The communication bandwidth
(BW) between USOLV and U30 ranges from 0.125 GB/s to
15 GB/s. The DP and TP techniques achieve sub-optimal
training throughput especially when the server suffers from
low bandwidth. The detailed analysis will be illustrated in
Sec. III-B.

To achieve efficient CNN training on resource-limited edge
servers, we propose a novel automatic multi-accelerator CNN
training scheduling strategy MTrain. We first transfer the CNN
training process which involves complex data dependency
into a multi-branch workflow, where computation-intensive
operations are divided into independent sub-operations. Sub-
operations without data dependency can be executed on differ-
ent accelerators in parallel, and such a parallelism technique
is called sub-operation parallelism. Second, we function the
training scheduling problem into a multi-branch workflow to
a multi-accelerator mapping problem. The motivation for this
idea will be discussed in Sec. III-C.

Based on the proposed sub-operation parallelism, we only
need to solve two problems: how to convert the training
process into a multi-branch workflow with independent sub-
operations, and how to allocate each sub-operation of the
workflow on different training accelerators for better utiliza-
tion. These two problems need to be jointly co-optimized.
To address these problems, we propose a novel automatic
multi-accelerator CNN training scheduling strategy MTrain.
Our main contributions are as follows.

o We propose MTrain-Converting, a two-stage CNN train-
ing to multi-branch workflow converting approach to
tackle the first problem. It can support BN operations
for commonly used modern CNNs (Feature &3)). The
converting approach will be introduced in Sec. IV.

o We propose MTrain-Mapping, a multi-branch to multi-
accelerator scheduling algorithm (Feature ()) to address
the second problem. The algorithm solves the cross-
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Fig. 2. Common parallelization techniques for training a CNN with two Conv layers. Only the FP pass is shown.

branch data dependency (Feature (2)) and communica-
tion bottleneck considering the off-chip memory budget
during FP/BP/WU (Feature 3)). As shown in Fig 1 (b),
different layers are executed in an asynchronous manner
(Feature (3)), and the scheduling algorithm is shown in
Sec. V

e« We achieve efficient CNN training on heterogeneous
FPGA-based resource constraint edge servers (Feature
©). Compared with the SOTA work, HAP [27], MTrain
achieves 1.07x-2.21x speedup under 15 GB/s P2P band-
width. Detailed experimental results are shown in Sec. V1.

II. RELATED WORKS
A. Training on Local Edge Devices

As explained in Sec. I, it is desirable for edge FPGAs to
continuously and locally learn from new data. Such on-device
learning can directly improve model accuracy and efficiently
adapt to new environments without ruining users’ privacy.
Currently, several algorithms have been proposed to enable
edge devices to achieve domain adaption locally. For example,
federated learning-based on-device learning algorithms [&],
[©], [12] are designed to train from local data that are not
independently and identically distributed. Contrastive learning-
based on-device learning designs [7], [10], [!1] have been
explored to improve CNN models with limited labeled data.
To efficiently implement these complex and fantastic software-
level algorithms on our target edge servers, accelerating the
training process in the hardware-level design is indispensable.

B. FPGA-based CNN Training Accelerators

To implement CNN training on target resource-limited edge
servers with high throughput without modifying the training
algorithms, a powerful training accelerator is required. Nowa-
days, several FPGA-based training accelerators have been
proposed to achieve high throughput and energy efficiency. For
example, DarkFPGA, a batch-level parallelism-based training
accelerator is designed and implemented on the Maxeler
MAXS platform [13]. Venkataramanaiah et. al. present an
FPGA accelerator for CNN training that uses high bandwidth
memory (HBM) for efficient off-chip communication and sup-
ports various training operations such as residual connections,
and stride-2 convolutions for modern CNNs [14]. EF-train,
an efficient FPGA-based on-device CNN training accelerator
has been proposed to achieve end-to-end training on resource-
limited edge devices and supports operations like Conv, FC,
and BN that are commonly used in modern CNNs [15].
These works have established accurate resource models to find
optimal design parameters for a given FPGA and performance

models to estimate the computation and intra-FPGA commu-
nication costs for a given operation.

C. Multi-accelerator Training Scheduling Algorithm

With well-developed single training accelerators and per-
formance models to estimate the latency of arbitrary oper-
ations for a given FPGA, implementing CNN training on
heterogeneous edge servers with high throughput also requires
an efficient and effective scheduling algorithm. Nowadays,
several scheduling algorithms have been proposed with the
combination of DP and TP. Table I compares SOTA multi-
accelerator training algorithms considering the 6 features men-
tioned in Sec. I. AccPar [19] proposes a layer-wise dynamic
partition algorithm to find the optimal partition dimensions in
TP when training on heterogeneous TPUs. FPDeep [24] and
NADA [25] explore PP for training CNNs on homogeneous
FPGA clusters. FPDeep pipelines in a fine-grained manner and
stores immediate data on the FPGA chips to avoid dynamic
random access memory DRAM access, and TP is involved to
further balance the workload. Alpa [23] slices a homogeneous
GPU cluster into a number of device meshes and uses a
dynamic programming algorithm to assign training stages to
meshes so that the stages can be implemented in a pipeline
manner. Inside a mesh, an integer linear programming (ILP)-
based sharding algorithm is developed to find the optimal
DP/TP combination for different operations. DynaPipe [26] is
the most recent PP-based algorithm that proposes a dynamic
micro-batching approach to tackle CNN inputs with variant
sequence lengths. HAP [27], the latest DP/TP-based work,
jointly optimizes the sharding strategy, sharding ratios across
heterogeneous GPUs, and the communication methods for
tensor exchanges. An A*-based search algorithm is proposed
to find the optimal DP/TP scheme, and the best sharding ratio
among various devices is derived by formulating the problem
as a linear programming problem.

Among them, FPDeep, NADA, and DynaPipe are based on
PP. PP can reduce a large amount of Intra-layer communication
costs [28]. However, PP cannot support CNNs with batch-wise
operations like BN since it needs to calculate the means and
variance of a batch of immediate features in FP and BP. The
successive layers of BN cannot start until all micro-batches of
BN are completed. Previous research has shown that BN is not
only important in improving the performance of a CNN but is
essential for being able to train the CNN [29]. Therefore, BN is
indispensable in modern CNNs such as Vgg [30], ResNet [31],
Yolo [32], etc. To support batch-wise operations, only non-PP
techniques can be applied.

Among the rest works, Alpa can only adopt DP/TP, but as
mentioned in Sec. I, the accelerator under-utilization and com-




TABLE I
COMPARISONS WITH SOTA MULTI-ACCELERATOR TRAINING SCHEDULING ALGORITHMS

Features (D Parallelism @ Memory | 3 Cross-branch | @ BN | &) Asynchronous (© Target Platform
AccPar [19] (2020) TP X v v X heterogeneous TPU cloud
FPDeep [24] (2020) TP/PP X X X X homogeneous FPGA cloud

NADA [25] (Unknown) PP v v X X homogeneous FPGA cloud
Alpa [23] (2022) DP/TP/PP v v v X homogeneous GPU cloud
DynaPipe [26] (2024) PP v Unknown X v homogeneous GPU cloud
HAP [27] (2024) DP/TP X v v X heterogeneous GPU cloud
MTrain (Ours) sub-operation parallelism v v v v heterogeneous FPGA edge server

munication bottleneck lead to low training throughput. AccPar
and HAP target resource-abundant TPU/GPU clusters, so the
memory budget is not involved in their algorithms. Besides, the
resource-abundant high-performance clouds applied in AccPar,
Alpa, and HAP have superior P2P bandwidth. To achieve
efficient CNN training on resource-constrained edge servers,
a novel algorithm is necessary to solve the computation
complexity and communication bottleneck. To the best of
our knowledge, we are the first attempt to achieve efficient
CNN training including both batch-wise and non-batch-wise
operations on FPGA-based edge servers with limited resources
and lower P2P bandwidth.

D. Mapping Multi-branch Networks with Cross-Branch Data
Dependency on Multiple Accelerators

Currently, DNNs are rapidly evolving from streamlined
single-modality single-task (SMST) to multi-modality multi-
task (MMMT) with large variations for different layers and
complex data dependencies among layers [33]. Such MMMT
models contain multiple branches and involve complex inter-
block connections between multiple backbones of different
sizes. Several works [34], [35] have been proposed to effi-
ciently map such multi-branch network inference on multiple
accelerators. For example, M5 [35] explores flexible accel-
erator configurations and possible resource sharing among
layers and maps MMMT models on homogeneous clusters in
a pipelined manner. For the non-PP-based approach, H2H [34]
proposes an iterative heuristic algorithm to map MMMT mod-
els on heterogeneous off-the-shelf FPGA-based accelerators
with 4 steps including computation prioritized mapping under
zero local DRAM assumption, weight locality optimization,
activation transfer optimization, and data locality-aware re-
mapping. The MMMT-Mapping algorithm enables indepen-
dent layers to asynchronously run on different accelerators
in parallel and achieves efficient model inference with cross-
branch data dependency. Inspired by H2H, it is promising
to apply the MMMT-mapping algorithm to allocate sub-
operations generated by MTrain-Converting on heterogeneous
accelerators, i.e. establish MTrain-Mapping based on MMMT-
mapping. However, compared to MMMT inference, the multi-
branch training workflow is more complicated. First, compared
to inference, the data transfer includes activation in FP, loss in
BP, and weight gradient in WU, which is more complicated.
Second, the memory budget is more limited since training
needs to store immediate activation and loss until the Conv
layer passes WU. Therefore, we establish MTrain-Mapping

on top of H2H and add further optimizations to address these
two problems.

III. MOTIVATION
A. Definition of The CNN Training Scheduling Problem

We have a CNN model with a batch size of B, an edge clus-
ter with NV FPGAs, and M off-the-shelf training accelerator in-
tellectual properties (IPs). The input includes the CNN model
graph Goode1, the FPGAs information {F;} (i = 1,...,N),
and accelerator IP information {IP;} (j = 1,..., M). In the
model graph Gpoder = (V, E), the vertex V represents the
operations of the CNN. Each operation node contains the
following information: layer type (e.g. Conv, BN, etc.) of
the operation, state (e.g. FP, BP, or WU), and parameters
(e.g. number of input channels, number of output channels,
feature map size, and weights kernel size of a Conv operation).
Edge E shows data dependencies between different operations.
The FPGA information contains the number of processing
elements (PEs), on-chip block RAMs (BRAMs) size, off-chip
memory (DRAM) size, on-chip to off-chip communication
bandwidth of each FPGA, and the P2P bandwidth between
different FPGAs. The inter-FPGA communication costs for
two arbitrary FPGAs can be calculated by the output data size
of an operation divided by the P2P bandwidth of these two
FPGA:s.

We adopt the well-developed FPGA accelerators [13], [15]
as our preliminary works. These accelerators incorporate ac-
curate resources and performance models that can be used
to estimate the latency of a given operation. One FPGA is
deployed with one accelerator, and it can select the design
with the maximum single accelerator throughput. When the
jth 1P is deployed on the ith FPGA, given the resource
constraints of Fj, i.e. DSPs and BRAMSs numbers and the on-
chip to off-chip communication bandwidth, the performance
model and resource model of IP; can automatically find
the optimal design parameters and generate the latency, i.e.
computation cost, executing each operation of a CNN. Our
work aims to find the optimized scheduling strategy so that
we can accelerate the CNN training process on a given FPGA-
based edge server with high throughput.

It should be noted that given Gpoger, {Fi}, and {IP;},
Mtrain provides a fixed scheduling scheme. For each training
epoch in the on-device learning scenarios, such a scheme will
be unchanged unless the architecture of the CNN model or the
hardware configuration of the FPGA cluster changes. There-
fore, this work provides a pre-computed optimal solution. This
solution only needs to be generated once. Thus, the search time



of MTrain does not undermine the training performance and
is not included in the overall throughput evaluation.

B. Limitations of DP/TP-based Training Scheduling algo-
rithms

As mentioned in Sec. I, DP/TP suffers from accelerator
under-utilization and communication bottlenecks. First, DP/TP
always leads to idle stages in heterogeneous clusters and thus
causes accelerator under-utilization. Fig. 3 (b) depicts how
DP/TP schedules a 3-layer CNN shown in Fig. 3 (a) to 2
different accelerators: Accl and Acc2. In DP/TP, an operation
is partitioned with a sharding ratio and then distributed to
available accelerators based on the ratio. Circles 1.1 and 1.2
represent two sub-operations partitioned from layer 1 in Fig. 3
(a). 1.1 is mapped to Accl, while 1.2 is mapped to Acc2. The
box G represents that features from 1.1 and 1.2 are gathered
to the host and scattered to 2.1 and 2.2. The yellow boxes
represent the latency of the computation stage Latc oy, While
the red boxes represent the latency of the communication
stage Latcomm. In Conv operations of DP/TP, after all the
accelerators finish the computation stage of the sub-operations,
output features of a layer are gathered to a host device and then
scattered to the accelerators as input features for the next layer.
The BN operation costs little computation time, but data needs
to be re-scattered before 3.1 and 3.2 start. The communication
happens after all accelerators finish the computation stage
of the layer, which means different accelerators execute one
layer synchronously in DP/TP. However, the computation time
for each layer varies among heterogeneous systems, so the
computation time of each layer is the maximum computation
time among the accelerators [27]. Therefore, as shown in
Fig. 3 (b), Accl remains idle after 1.1 is finished until Acc2
completes 1.2, which is under-utilized.
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Fig. 3. Comparison between traditional DP/TP and our sub-operation
parallelism-based technique. (a) A CNN with 3 Conv operations: layer 1,
layer 2, and layer 3. It also has one BN operation. (b) DP/TP-based graph
sharding and workload distribution. The index a.b in the circle represents the
bth sub-operation of the ath layer allocated on the bth accelerator. (c) Our
work transfers the CNN into a multi-branch workflow with independent sub-
operations on different branches and then proposes a multi-branch to multi-
accelerator scheduling algorithm. a.b, the bth sub-operation of the ath layer,
is free to be allocated on both Accl and Acc2. Compared to the DP/TP-
based sharding algorithm, we achieve better accelerator utilization and less
communication overhead.

Second, DP/TP suffers from intensive communication over-
head. As shown in Fig. 3 (b), features from all accelerators
are gathered and scattered after each layer. Such intensive
communication costs lead to inefficient training performance.
To enable efficient training on the edge servers, a novel
scheduling strategy is necessary to address these two problems.

C. Sub-operation parallelism-based Training Scheduling al-
gorithm

In this MTrain, we propose to transfer the CNN training pro-
cess into a multi-branch workflow. The original computation-
intensive operation (e.g. Conv and FC) is partitioned into sub-
operations along the batch dimension. These sub-operations
are independent and located on different branches. The arrows
within a branch represent data dependencies of sub-operations.
Sub-operations without data dependency can be executed
on different accelerators in parallel, and such a parallelism
technique is called sub-operation parallelism. Fig. 3 (c) shows
an example of the mapping scheme of the CNN in Fig. 3 (a).
The data flow in a mini-batch training is as follows. Each CNN
layer is divided into batch-wise operation and non-batch-wise
operation. For non-batch-wise operation, each sample inside
a batch is calculated independently. For example, in Conv
or FC, samples 1 and 2 conduct channel-level convolutional
separately without any batch-level dependency. When a batch
of data comes, a non-batch-wise operation can be partitioned
into dependent sub-operations along batch-dimension with a
partition ratio. These sub-operations are free to be scattered to
different accelerators to execute in parallel or execute sequen-
tially. For example, layer 1 is partitioned into sub-operations
1.1 and 1.2 that are deployed to Accl and Acc2, respectively.
The input data for 1.1 is sent to Accl, while the input data for
1.2 is sent to Acc2. Layer 3 is partitioned into sub-operations
3.1 and 3.2, and both of them are deployed to Accl. Immediate
features for layer 3 only pass Accl. Batch-wise operation has
data dependency over a mini-batch. For example, BN needs
to calculate the means and variance of a batch of immediate
features. Such operations will not be scattered to different
accelerators, and one batch-wise operation is a sub-operation.
For example, the BN in Fig. 3 (c) is deployed in Accl,
and data from its predecessors 2.1 and 2.2 are gathered in
Accl. In the proposed sub-operation parallelism, immediate
data do not need to be gathered and scattered after each
sub-operation, and only dependent sub-operations located on
different accelerators require inter-device data communication.
For example, in Fig. 3 (¢), Latcomm only happens when
the output data of 2.2 deployed to Acc2 are needed for BN
located to Accl. We consider the following data dependencies:
immediate activation/loss between two adjacent sub-operations
in FP/BP needs to be transferred, weights in FP are needed in
BP, activation in FP and loss in BP are needed in WU, and
weights gradients are accumulated to update weights. In the
proposed sub-operation parallelism-based scheduling strategy,
the latency for each sub-operation is the sum of Latcom, and
Latcomm- With the latency for each sub-operation and the
mapping scheme shown in Fig. 3 (c), we can calculate the
overall latency and thus generate the training throughput.



Compared to DP/TP, the sub-operation parallelism proposed
in MTrain has three features. First, sub-operations are executed
asynchronously. As shown in Fig. 3 (c), sub-operation 2.1 can
start after its predecessor 1.1 is completed without waiting
for 1.2. Second, MTrain allows a larger design space such
that two independent sub-operations are free to be allocated
on both different accelerators and the same accelerator. The
CNN training scheduling problem is transferred to find the op-
timal sub-operation to the heterogeneous accelerator mapping
scheme. In an optimal mapping scheme, e.g. Fig. 3 (c), Accl
is allowed to be implemented with sub-operations on different
branches, i.e. 3.1 and 3.2 instead of strictly balancing 3.1 and
3.2 on Accl and Acc2 respectively. The asynchronous sub-
operation execution and the larger design space lead to better
utilization compared to DP/TP.

Third, MTrain has lower communication costs than DP/TP.
The latency for one sub-operation includes the computation
latency and the communication latency between the current
sub-operation and its predecessor. We only consider data
transfer between dependent sub-operations located on different
accelerators without gathering features from all accelerators,
so the communication overhead is reduced.

Multi-accelerator CNN training scheduling
Problem 2: how to allocate eachj

Problem 1: how to convert the
training process into the multi-
branch workflow?

sub-operation of the workflow on
different training accelerators for
better utilization?

MTrain-Converting MTrain-Mapping

PE-based Initial Partition =—=s DRAM Budget Aware Mapping

{
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Fig. 4. The overview of MTrain. It includes MTrain-Converting to transfer the
CNN training into a multi-branch workflow with independent sub-operations
on different branches and MTrain-Mapping to allocate sub-operations on ac-
celerators. MTrain-Converting includes 2 steps, and MTrain-Mapping includes
3 steps. The 5 steps form a close loop optimization workflow and work
iteratively until no more beneficial scheduling scheme is acquired.

Based on such observation, to achieve efficient CNN train-
ing on heterogeneous FPGA-based edge servers, we only need
to solve how to convert the training process into the multi-
branch workflow and how to allocate each sub-operation on
different. To address these problems, we propose a novel
automatic multi-accelerator CNN training scheduling strategy
MTrain, and the overview of our work is shown in Fig. 4.

IV. MTRAIN-CONVERTING

In this section, we will introduce how we convert the CNN
training process into a multi-branch workflow. As can be seen
in Fig. 1 (a), the 3-layer CNN has 7 operations, i.e. [1-I7, in
FP/BP/WU. Assume FP is streamlined, while operations in BP
and WU are located in different branches. If the number of
independent operations is less than the number of accelerators,
some accelerators will remain idle. Therefore, we partition
operations into N sub-operations, where N is the number
of accelerators. The computation-intensive operations such as

Conv and FC are non-batch-wise. It means the output features
are accumulated in channel, row, and column dimensions, but
different samples of a batch are independent. Therefore, for
then non-batch-wise operations, we divide them into N parts
along the batch dimension with a partition ratio. Batch-wise
operations like BN are not computation-intensive, so we do
not partition and distribute them across accelerators. These
operations function as cross points when N branches fuse.
An example of a multi-branch workflow converted from the
3-layer CNN of Fig. 1 (a) is illustrated in Fig. 5. There are
12 operations, i.e. I1-l12, after conversion. A;B; in [; and
Aj Bs in I represent two independent tensors partitioned from
A;. We have analyzed all completed data dependencies during
training which are as follows. In FP, a batch-wise operation
like BN starts after data from all branches of its predecessors
are gathered. For example, the outputs A;B; of I; and As Bs
of [, are fused in /3. In BP, the loss is propagated back until the
first layer. Batch-wise operations (e.g. l1g) are also dependent
on previous operations from all branches (e.g. I, and I5). In
WU, gradients are calculated via activations in FP and loss
in BP. For example, /17 is dependent on A;B; and L, Bj.
Besides, weights are updated after gradients of all branches
are calculated and gathered. For example, /11 and l;2 finish
after dW3 B, and dW5 By are gathered to accelerators where
1 and [2 are placed. The above-mentioned process can also
be applied to CNNs with multiple branches such as ResNet.
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Fig. 5. An example of a multi-branch workflow transferred from the training
process. The sub-operations without data dependency can be executed in
parallel on different accelerators. It shows that the DP/TP-based mapping
algorithm leads to sub-optimal training performance compared to our work
on resource-limited edge servers.

An inappropriate partition ratio in the conversion will lead
to under-utilization of the accelerators and thus lead to sub-
optimal mapping results. However, finding an optimal partition
ratio on a N-accelerator cluster when the batch size is B is
an NP-hard problem and is time-consuming. Therefore, we
propose a two-stage CNN training to a multi-branch workflow
converting algorithm, MTrain-Converting, to iteratively search
for a near-optimal solution. As shown in Fig. 4, it involves PE-
based Initial Partition and Duty-cycle-based Re-partition.

A. Definition of The Model Converting Problem

As introduced in Sec. III-A, we have a CNN model with
a batch size of B, an edge cluster with N FPGAs, and M
off-the-shelf training accelerator IPs. As shown in Alg. 1, We
choose the IP with the best overall throughput of the CNN on
the ith FPGA, and the FPGA deployed with the selected IP
becomes an accelerator Acc;. Each accelerator incorporates
a performance model to estimate Latcem, for each sub-
operation. We select a step size as a search parameter to find



Algorithm 1 MTrain-Converting

Require:
Gmodet = (V, E), {F;}, {IP;}, step size;
Ensure:
{Acci}, Groaer = (VT E"), Giyo = {Glace, b Lat;

PE-BASED INITIAL PARTITION ();

1:
2: {Acc;} = Accelerator Selection (G yodet, {Fi}, {IP;});
3: {ratio;} = B* {PE;}/sum({PE;});
4: Gmodvl = Partition ({ratio; }, Gmodel);
5: , Lat = MTrain-Mapping ({Acc; }, G, pger)s
6: DUTY- CYCLE BASED RE-PARTITION()
7. Repeat
8: Estimate and sort duty cycle { Duty; } for each accelerator, and ratio;
is rearranged based on the sorted order;
: w=1;
10: for r in [1, N], and r # w do
11: ratio,.+ = step size;
12: ratio,, — = step size;
13: G117}, qe = Partition ({ratio;}, Gmodel);
14: G1;, ;. Latl = MTrain-Mapping ({ Acci }, G175, ,4e1)
15: end for
16: Find the lowest Lat1 with the r, G17, ;.; and G17,
17: if Latl < Lat do
18: Update G, ,qe15 Giys» {ratio; } and Lat, and go step 8;
19: else
20: w+ = 1, and go step 10;
21: Until no more beneficial mapping result after re-partition

the partition ratio. Our goal is to search for an appropriate
ratio and generate the outputs including deployed accelerators
on FPGAs {Acc;}, the multi-branch workflow graph G,

and {Acc;} to G}, 4., mapping scheme Glys that lead to
the maximum training throughput, i.e. the minimum overall
latency Lat.

model?

B. PE-based Initial Partition

In the first stage of Alg. 1, we first select accelerator IPs
that have the maximum throughput and deploy them on the
FPGAs (step 2). Then, we generate an initial ratio based on
the number of PEs in each FPGA (step 3), convert G, o4e; tO
G 401 (step 4), and obtain the initial mapping results (step 5).

In step 2, for each FPGA Fj, we deploy each IP IP; on
it and test the CNN training throughput via the performance
model of IP; under the resource constraint of F;. We do
not consider DRAM costs in this step. The IP with the best
throughput is deployed to F; and becomes Acc;. In step 3,
the list of the ratio values {ratio;} is a series of non-negative
integers that sum up to B, and the length of the list is the
number of accelerators N. The maximum throughput is always
achieved when the workload is well-balanced and the number
of PEs, i.e. DSPs, can approximate the maximal computation
performance of the accelerator. Therefore, we initialize the ra-
tio for the list elements as the ratio for the number of DSPs for
each accelerator. In step 4, the batch-wise operations in G, 04e;
are partitioned into N parts, where the i¢th part becomes an
individual sub-operation with the batch size of ratio;. Non-
batch-wise operations remain unchanged. An example of the
converted workflow graph G, .., = (V*, E*) is illustrated in
Fig. 1 (b). In step 5, we apply the MTrain-Mapping algorithm
in Sec V to map G}, ,.; on {Acc;}. It generates the initial
G?%, . and the CNN training latency Lat.

sYs

C. Duty-cycle-based Re-partition

Although the PE-based partition balances the operation
workload based on computation resources for each accelerator,

the actual layer performance is not proportional to the number
of PEs. Besides, the complex inter-layer communication makes
G,s unbalanced. Therefore, some accelerators remain idle
under such a partition ratio. Fig. 6 (a) shows such a case.
When the original ratio is [4 : 2]. Allocating I to Acco (the
grey box) costs more time than allocating I, to Accy after [;.
Therefore, the optimal mapping scheme searched by MTrain-
Mapping is to allocate [1-I3 on Acc; which is shown in the
pink boxes. If we reduce By by a step size 1, Accy is capable
of completing [, before /; finishes. As can be seen in Fig. 6
(b), the workload is well-balanced after re-partitioning the ratio
into [5 : 1], and the overall latency is decreased.

Conv BN Conv BN
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Fig. 6. An example of Duty-cycle-based Re-partition. Acc; contains double
PEs compared to Acca and has a better performance. (a) The workload is
not well-balanced under the initial ratio [4 : 2], and Acco remains idle for
the Conv and BN operations. (b) The workload is balanced after re-partition
with a new ratio [5 : 1], and the overall latency is reduced.

Therefore, in the second stage, we re-partition by reducing
the ratio value that corresponds to the most idle accelerator,
i.e. the accelerator with the least duty cycle. It should be
noted that every time the partition ratio is changed, we conduct
MTrain-Mapping for a new mapping scheme and duty cycle.
The proposed Duty-cycle-based Re-partition function is shown
in steps 6-21. In step 8, we estimate the duty cycle from G,
and sort it which is shown as {Duty;}. From steps 9-20, we
first reduce the ratio value ratio,, starting from the element
that corresponds to the least duty cycle, i.e. w = 1. Second,
for each of the rest elements r, we try to add ratio, with
a step size and reduce the same value for ratio,,. Third, we
re-map the converted graph G1} .., which is the workflow
converted from the updated partition ratio, and select the
partition ratio with the lowest latency Latl. If the latency is
reduced, we update the partition ratio, converted workflow,
and the mapping scheme. If not, we will reduce the ratio
value from the one corresponding to the second least-duty-
cycle accelerator (step 20). The algorithm stops until no ratio
value can be modified for better results.

V. MTRAIN-MAPPING

After a multi-branch workflow is generated with a given
partition ratio, a mapping algorithm is needed to allocate each
operation on different accelerators. As mentioned in Sec. II-D,
MTrain-Mapping is inspired by the MMMT mapping algo-
rithm H2H to address the problem but adds more optimizations
to solve the non-trivial data transfer in FP/BP/WU and the
DRAM budget problems. As illustrated in Fig. 4, MTrain-
Mapping is composed of 3 procedures: DRAM Budget Aware
Mapping, Balance Aware Re-mapping, and Data Locality
Aware Re-mapping.



A. Definition of The Model Mapping Problem

Same with H2H, the converted model has complicated
dependencies, especially for cross-talk connections. As shown
in Alg. 2, the inputs for our algorithm are G, ., and {Acc;},

mode
where the outputs are G, and Lat. In the mapping scheme
Giys = {G.., }» each sub-graph G . is a computation

graph representing the layers’ execution scheduling on the
ith FPGA accelerator Acc;. Each sub-graph is empty without
any mapping at the beginning. After mapping, G, contains
nodes located in Acc; from G, ., in their execution order.

An example of G, after mapping is shown in Fig. 3 (c).

Algorithm 2 MTrain-Mapping

Require:
Grodel:

Ensure:
Gy = (G, ). Lat:

sys

{Acei }s

1: DRAM BUDGET AWARE MAPPING()
2: for n in G, ;> and n does not have predecessors do
3: Enumerate all possible mappings for {Acc; };
4: Check the local DRAM budget for each mapping candidate;
5: Calculate ALat;
6: Choose the mapping with minimum A Lat;
7 end for
8: Update Lat, DRAM budget, and G, _;
9: Remove the mapped nodes in G, .}
10: BALANCE AWARE RE-MAPPING()
11: Generate the well-balanced mapping scheme GSByS;
12: Repeat
13: for n in G}, ;. and n is mapped on different accelerators in G,
and nys do
14: Attempt to re-map n to the accelerator on GSBy o
15: Calculate Lat after re-mapping;
16: Accept the re-mapping if its latency is less than Lat;
17: Update G, and Lat;
18: end for
19: Until no more beneficial re-mapping sub-operations
20: DATA LOCALITY AWARE RE-MAPPING()
21: Repeat
22: for n in G, ., do
23: Attempt to re-map n to its predecessor’s or successor’s accelerator;
24: Calculate Lat after re-mapping;
25: Accept the re-mapping if its latency is less than Lat;
26: Update G, ; and Lat;
27: end for
28: Until no more beneficial re-mapping sub-operations
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Fig. 7. An example of Balance Aware Re-mapping. (a) An example of
G:‘m del with 4 sub-operations. 1 and /3 have data dependency, and l2 and

l4 have data dependency. [ and [ are partitioned from the same CNN layer,
while I3 and l4 are from the same CNN layer. (b) The mapping scheme after
DRAM Budget Aware Mapping. Acci has better performance than Acca. All
sub-operations are mapped to Accy (pink parts), so Accg remains idle. (c)
The well-balanced mapping scheme. {1 and I3 are located on Acc; and Acca
respectively. Acca is better utilized, but the overall latency is long. (d) The
mapping scheme after Balance Aware Re-mapping. After re-mapping, lo in
(b) is moved to the grey part, and the optimal latency is achieved.

B. DRAM Budget Aware Mapping

In this procedure, we initially map G}, ;. to {Acc;}
with the following steps. First, we find unmapped nodes
without predecessors and enumerate all the combinations of
mapping these nodes on {Acc;} (steps 2-3). For example, in
Fig. 3 (a), start with sub-operations 1.1 and 1.2, the mapping
combinations include {1.1 to Accl, 1.2 to Accl}, {1.1 to
Accl, 1.2 to Acc2}, {1.1 to Acc2, 1.2 to Accl}, and {1.1
to Acc2, 1.2 to Acc2}. Second, we check if the current
DRAM budget is possible to accommodate the data for the
rest training sub-operations for all the mapping candidates
and only calculate the latency increase ALat for the mapping
candidate that satisfies the DRAM budget (steps 4-5). ALat is
the sum of the computation cost calculated by the performance
model of {Acc;} and the data communication costs between
two dependent sub-operations that are located on different
accelerators. For example, when both 1.1 and 1.2 are allocated
to Acc2, the DRAM budget in Acc2 cannot hold weights
and immediate features for the sub-operations. Thus, we only
calculate A Lat under the other three mapping schemes. Third,
the mapping candidate that results in the minimum ALat is
selected (step 6). Shown in Fig. 3 (c), the mapping scheme
{1.1 to Accl, 1.2 to Acc2} leads to the minimum A Lat.
Finally, we remove the mapped nodes from G, .., (.e.
remove 1.1 and 1.2 from unmapped nodes and start with 2.1
and 2.2) and also update the DRAM budget of Accl and Acc2
(steps 8-9).

As mentioned in Sec. II-D, training has more intricate
data dependency and memory budget compared to MMMT
inference. Therefore, we have the following improvements
on top of H2H. Firstly, H2H is for inference which only
transfers activations in FP, but training needs to consider
different data transmission situations in FP/BP/WU. Therefore,
we analyze the communication costs which are as follows.
In FP, if two dependent layers (e.g. [y and I3 in Fig. 1
(b) are located on different accelerators, only the immediate
activation (i.e. the output features of [;) of the predecessor
needs to be transmitted to the successor’s layer. Therefore,
the communication cost is the size of A;B; divided by the
bandwidth between two accelerators. In BP, we take lg as an
example. It not only receives output features LyB; from [y
but also receives weights from l,. Thus, the communication
costs include the immediate features from its predecessors that
are located on different accelerators and the weights from its
FP counterpart. In WU, e.g. l11, it receives output features
Ly By from [y and input features A; By from [; to calculate
weights gradients dWs B;. Then, the gradients are scattered to
all accelerators and accumulated to update the weights for FP
in the next mini-batch training or for inference.

The second difference lies in the different DRAM costs
between inference and training. In MMMT inference, the
memory costs for an operation come from two aspects: weights
and immediate activation. Weights are stored in DRAM where
the accelerator is located for the whole inference process,
while immediate activation can be eliminated when the suc-
cessor operation finishes. However, in training, apart from
weights, immediate activation and loss also need to be saved



until weight gradients are calculated. Therefore, during the
mapping, we check the DRAM budget and only select the
mapping candidates that satisfy the DRAM budget in step 4
and update the budget in step 8, which we call DRAM budget
aware. In step 8, activation/loss is accumulated in local DRAM
in FP/BP. If a WU operation is finished, we release the memory
that stores its activation in FP and loss in BP. For example, we
release the memory for L, By and Ay By after 1 is completed.

C. Balance Aware Re-mapping

After we get the initial G, and Lat via DRAM Budget
Aware Mapping, we balance the workload among accelerators
to further improve the training performance. The pink boxes
in Fig. 7 (b) represent an example of mapping a model in
Fig. 7 (a) with DRAM Budget Aware Mapping. The powerful
accelerator Acc; processes 4 sub-operations, while the low-
end accelerator Acco remains idle. Fig. 7 (c) assigns these
sub-operations on the accelerators in a well-balanced manner,
but the overall latency is longer due to the low performance
of Accy. Therefore, we propose a Balance Aware Re-mapping
approach combining the advantages of both Fig. 7 (b) and
Fig. 7 (c). This optimization is innovative compared to H2H.
First, as illustrated in Alg. 2, steps 11-13, in the mapping
scheme in Fig. 7 (b), start from unbalanced sub-operations
without predecessors, we check if they are located on the
balanced accelerators like Fig. 7 (c). Second, if such a sub-
operation is founded, we try to move it to its balanced acceler-
ator and update G, and Lat (steps 14-15). For example, in
Fig. 7 (b), we move [5 from Accy to Acce which is represented
in the grey box. Third, if the overall latency is shortened,
we accept this balanced scheme and update G%,, and Lat
(steps 16-17). Finally, we move to the next unbalanced sub-
operation. The Balance Aware Re-mapping stops when all the
sub-operations are checked (step 19). The mapping scheme
after Balance Aware Re-mapping is shown in Fig. 7 (d).

D. Data Locality Aware Re-mapping

This section further reduces the overall latency by re-
allocating a sub-operation from its source accelerator to a
new destination accelerator, on which its predecessors and/or
successors are mapped. Such an approach can reduce feature
transmission latency [34].

First, for each node in G}, ., if its predecessor or suc-
cessor is not on the same accelerator that the node is located,
we attempt to re-map the node to its predecessor’s/successor’s
accelerator (steps 22-23). Compared to H2H, the predecessors
and successors are more complicated in FP/BP/WU. In this
work, we consider all the data transfer relationships mentioned
in Sec. V-B. Second, for each re-mapping attempt, we calculate
the overall latency after re-mapping (step 24). Third, if the
overall model latency is shortened, we accept the current re-
mapping attempt (steps 25-26). If no more layers can be re-
mapped with reduced training latency, the Data Locality Aware
Re-mapping stops (step 28).

As introduced in Sec. II-B, current FPGA-based training
accelerators are only designed for CNN operations, while

operations like attention or transformer have not been ex-
plored. Besides, as introduced in Sec. I, our goal aims to
scale FPGA-based edge servers to on-device training tasks.
Those servers, such as VMSS, are currently targeting CNNs
for video processing tasks. Although our work currently targets
CNN models, it can also be extended to other modern models
as long as correspondent operations are supported by new
training accelerators. For example, if FPGA-based training
accelerators for attention or transformers are invented with
accurate profiling models, same as CNNs, these operations are
first categorized as batch-wise operations or non-batch-wise
operations. In MTrain-Converting, we partition non-batch-
wise operations just like Conv operations. For batch-wise
operations, the same as BN, data from its predecessor layers
are fused from all devices. The converted graph is exactly the
same as G, .., in MTrain-Mapping, so Alg. 2 can also be
applied. The only differences are as follows. First, in step 3,
attention operations can only mapped to attention accelerator
candidates, while Conv operations can only be mapped to
Conv accelerators. Second, in step 14, we re-map when n
has the same operation type as the target accelerator. Last,
in step 23, re-mapping is only considered when n has the
same operation type as its predecessor or successor. Same with
transformer or attention mechanisms, mixed-domain models
can also be supported as long as training accelerators for all
domain models are well developed.

VI. EXPERIMENTS

In this section, we first analyze and show the effectiveness of
re-mapping and re-partition in MTrain. Secondly, we present
the overall effectiveness of MTrain by comparing it with SOTA
training algorithms. Thirdly, we present a series of ablation
studies to validate that MTrain-Converting can efficiently
achieve near-optimal solutions in an acceptable time. Finally,
we analyze the throughput and complexity when edge servers
are scaled to larger edge clusters. All these experiments use
throughput to evaluate the training performance. It should be
noted that using throughput as the metric is equal to using
energy efficiency in the following experiments. Given a CNN
model, for each FPGA in the cluster, we first select accelerator
IPs that have the maximum throughput and deploy them on the
device. Then, we apply different mapping algorithms including
the proposed MTrain and SOTA baselines for optimal through-
put. In these FPGA-based training accelerator designs [13],
[15], once the accelerator IP is implemented on the FPGA
with bitstream generation, the estimated power consumption
is fixed. Therefore, in each experiment, all counterparts share
the same power consumption. Energy efficiency is throughput
divided by power consumption. Divided by the same ratio, the
trend of energy efficiency is the same as throughput.

A. Experimental Setup

Heterogeneous FPGA-based Edge Clusters. Table II sum-
marizes 3 heterogeneous edge clusters that are used in FPGA-
based inference works. VMSS is composed of Xilinx USOLV
and U30 equipped with PCle [3]. BLAST-R employs high-end
(XCZU9EG), mid-end (XC7Z045), and low-end (XC7Z015)
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Fig. 8. The throughput comparisons for different optimization steps under different P2P communication bandwidth configurations. The X-axis represents the
following steps: step 1 is after PE-based Initial Partition and DRAM Budget Aware Mapping with the initial ratio, step 2 is after Balance Aware Re-mapping
with the initial partition ratio, step 3 is after Data Locality Aware Re-mapping with the initial ratio, and step 4 is after Duty-cycle-based Re-partition and
MTrain-Mapping with the final ratio. (a) Comparisons for Cluster 1. (b) Comparisons for Cluster 2. (c) Comparisons for Cluster 3. The re-mapping and

re-partition can effectively improve the training throughput for the clusters.

Xilinx FPGAs, and the FPGAs are connected with high-speed
serial (HSS) [5]. In [36], VCU128, ZCU102, and ZCU104 are
connected to a high-speed switch for communication through
Ethernet ports. To show the training performance on various
P2P communication bandwidths, we test MTrain on these
clusters with bandwidth ranging from 0.125 GB/s to 15 GB/s.
The training batch size for Cluster 1 and Cluster 3 is 64, while
that for Cluster 2 is 16 due to the DRAM size constraint.

TABLE I
HETEROGENEOUS EDGE CLUSTERS

Name Used in Configuration
Cluster 1 VMSS [3] US5S0LV+U30
Cluster 2 | BLAST-R [5] | XCZU9EG+XC7Z045+XC7Z015
Cluster 3 [36] VCU128+ZCU102+ZCU104

Training Accelerator IPs. We survey SOTA FPGA-based

training accelerators and select DarkFPGA [13] and EF-
train [15] which have established complete performance and
resource models in FP/BP/WU with end-to-end implementa-
tion validation. We replicate the models based on the original
papers. Both accelerators adopt 32-bit floating-point.
Modern CNNs. We use AlexNet [37], Vgg-16 [30], ResNet-
18 [31], TinyYoloV3 [32], and ResNet-56 [38] to evaluate
the effectiveness of MTrain. Vgg-16, ResNet-18, TinyYoloV3,
and ResNet-56 include BN operations (Feature @), while
ResNet-18, TinyYoloV3, and ResNet-56 have cross-branch
data dependency (Feature ).

Baselines.

o To show the effectiveness of re-mapping and re-partition
optimizations in Sec. VI-B, we compare the throughput
after the following steps: Step 1 represents the train-
ing throughput when MTrain-Converting provides PE-



based Initial Partition and MTrain-Mapping conducts
DRAM Budget Aware Mapping. Step 2 represents the
throughput after Balance Aware Re-mapping with the
initial partition ratio. Step 3 represents throughput after
Data Locality Aware Re-mapping under the same initial
ratio. Step 4 represents the final throughput, i.e. MTrain-
Mapping conducts DRAM Budget Aware Mapping, Bal-
ance Aware Re-mapping, and Data Locality Aware Re-
mapping with the final partition ratio after Duty-cycle-
based Re-partition.

o Current multi-accelerator training optimization methods
are more focused on cloud-level servers like GPUs while
training on edge clusters has not been well investi-
gated. To show the overall effectiveness of MTrain in
edge clusters, in Sec. VI-C, we compare it with two
SOTA multiple accelerator training algorithms: the ILP-
based sharding algorithm in Alpa and the optimization
algorithm in HAP that jointly finds the best sharding
scheme and the sharding ratio. Alpa and HAP achieve
high throughput in high-performance computing cloud
with abundant GPU nodes and high P2P bandwidth.
Alpa targets a homogeneous Amazon EC2 cluster of 8
p3.16xlarge instances with 64 GPUs, while HAP targets
a public heterogeneous cloud with 64 GPUs in total.
We apply the scheduling algorithms of Alpa and HAP
on our resource-constrained edge servers and compare
the training performance with MTrain. We also compare
MTrain with single FPGA training accelerators EF-Train
and DarkFPGA targeting on edge devices.

o To show the efficiency and effectiveness of MTrain-
Converting in Sec. VI-D, we compare the resultant
throughput and search time with the optimal solution
generated by depth-first search (DFS).

B. Effectiveness of Re-mapping and Re-partition

The training throughput of the three clusters listed in
Table IT under different P2P bandwidths is illustrated in Fig. 8.
The X-axis represents different optimization steps in MTrain.

From Fig. 8, we can have the following observations.
Firstly, it can be seen that the proposed re-mapping and re-
partition techniques work jointly and effectively improve the
training throughput. For example, in Fig. 8 (a), when the
P2P bandwidth is 0.125 GB/s, the throughput after step 4
increases by 37% compared to the throughput in step 1 for
AlexNet. Secondly, different P2P bandwidth configurations
have a significant impact on the overall training throughput.
For example, for AlexNet, the final throughput increases by
28% in Cluster 1 when the bandwidth ranges from 0.125 GB/s
to 15 GB/s. Thirdly, the overall throughputs of ResNet-18 and
TinyyoloV3 are lower than that of AlexNet and Vgg-16. For
example, in Cluster 1, the maximum throughput for ResNet-
18 is 580 GFLOPS, the maximum throughput for Tiny YoloV3
is 583 GFLOPS, the maximum throughput for AlexNet is 699
GFLOPS, and the maximum throughput for Vgg-16 is 798
GFLOPS. The performance in Clusters 2 and 3 has the same
trends. For example, in Cluster 2, the throughput for Vgg-16
is 128 GFLOPS under 0.5 GB/s BW, while the throughput of

ResNet-18 is 83 GB/s BW, and the throughput for TinyYoloV3
is 95 GB/s. In Cluster 3, the throughput for Vgg-16 is 921
GFLOPS under 0.5 GB/s BW, while the throughput of ResNet-
18 is 691 GFLOPS, and that for TinyYoloV3 is 774 GFLOPS.
This is because the operations in the former models are less
computationally intensive compared to the latter ones. For
example, layers in ResNet-18 have fewer filters and lower
complexity than Vgg-16 [31], and each training accelerator
benefits computation-intensive operations since the communi-
cation costs can be covered by the computation costs. Besides,
the cross-data dependency in ResNet-18 or Tiny YoloV3 causes
more inter-FPGA communication overhead. The only violation
is that in Cluster 3, the throughput of TinyYoloV3 is 591
GFLOPS under 0.125 GB/s BW which is slightly higher than
575 GFLOPS of Vgg-16. It is because Re-partition under low
BW like 0.125 GB/s aims to avoid communication overhead by
centralizing workloads on one device rather than distributing
them to all devices. In Cluster 3, Re-partition works more
effectively for TinyYoloV3 than Vgg-16.

Currently, we provide pre-computed mapping solutions for
static communication bandwidth. If bandwidth varies, we just
use the average bandwidth based on its device-to-device com-
munication approach. It should be noted that our algorithm can
also be extended to support dynamic changing communication
under the following two situations. First, suppose we still
generate a pre-computed mapping solution before training.
In that case, we will measure bandwidth variations of the
cluster during the previous training epochs and then divide the
variations into different ranges. When the bandwidth fluctuates
under a given range, we use the MTrain mapping result under
the average value of such range. Second, if a run-time mapping
is required in the training system, at time ¢y, we can apply the
mapping result of average bandwidths during [tg — T, o],
where T is a hyper-parameter determined by the search time
of MTrain and bandwidth fluctuation frequency.

C. Comparison with SOTA Works

In this section, we compare the training throughput of our
proposed MTrain with Alpa and HAP to test the overall
effectiveness of our work. As explained in Sec. III, the
training scheduling algorithm provides a pre-computed optimal
solution. Therefore, the search time of SOTA and our work
is excluded from the throughput evaluation. The results for
Cluster 1, Cluster 2, and Cluster 3 are shown in Fig. 9, 10,
and 11, respectively. The X-axis represents different P2P
bandwidths. The proposed MTrain effectively solves the com-
putation complexity and communication bottlenecks compared
to SOTA works.

Although Alpa and HAP achieve high throughput in cloud
servers, they cannot work well in resource-constrained edge
servers. As shown in Figs. 9-11, MTrain outperforms Alpa
and HAP for all three clusters. Compared with the most
recent work, HAP, MTrain achieves 1.07x-2.21x speedup
under 15 GB/s P2P bandwidth. Alpa and HAP achieve worse
performance when the P2P bandwidth is lower. This is because
Alpa and HAP distribute each training operation on all devices
without considering the communication overhead. When the



12

s Qurs s Alpa e HAP EF-train =——DarkFPGA
& 700

800

£ 600 I o 600 600
= 500 600 i. I 500 I 500
& 400 400 n B 400 400
2 300 400 300 300 300
2200 I 200 II 200 200 200
0 100 100 I 100 100
E 0 0 L] 0 - I o o mE
= 0.125 0125 05 3 15 0.125 0.5 3 15 0.125 0.5 3 15 0.125 05

BW (GB/s) BW (GB/s) BW (GB/s) BW (GB/s) BW (GB/s)

AlexNet Vgg-16 ResNet-18 TinyYoloV3 ResNet-56
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P2P bandwidth is low, accelerating the training process on TABLE III
more accelerators cannot compensate for the communication THE MODEL CONVERTING PERFORMANCE AND SEARCH TIME
COMPARISON

bottleneck. To further show the impact of the communication
bottleneck, we also apply a single mapping strategy, i.e. only DFS (Optimal)
scheduling the training process on the most resource-abundant (ours)

. Thp. Thp.
FPGA of a given cluster. Model Cluster (GFLSPS) ST (s) (GFLSPS) ST (s)

MTrain-Converting

The blue and yellow lines in Figs. 9-11 show the training AlexNet 1 683 27.55 (3.63%) 683 (Ix) | 7.58
throughput scheduling on single accelerator DarkFPGA [13] 2 138 220.57 (15.62x) |131 (0.95x)| 14.12
d EF-train [15]. The accelerators are deployed on only one Vegg-16 ! 706 1099.64 (4.10x) | 706 (L) | 2681
an - h ploy y &8 2 157 | 107938 (15.07x) |151 (0.96x)| 71.64
FPGA of the cluster, respectively. Compared to Alpa and HAP, ResNet18 I 527 905.93 (4.16x) 527 (1x) | 217.52
when the P2P bandwidth is lower, training on a single device is 2 108 |129009.68 (24.81x)[ 105 (0.97x)]5200.76
1 541 716.32 (4.07x) 541 (I1x) | 176.05
2

optimal rather than distributing the workload to every FPGA. |TinyYoloV3
When the bandwidth increases to 15 GB/s, distributing the
computation workload on more accelerators can compensate
for the communication bottleneck.

MTrain is capable of balancing the trade-off between dis-
tributing the computation workload on multiple accelerators
and avoiding communication bottlenecks. As shown in Figs. 9-
11, when the bandwidth is lower, MTrain tends to generate
a scheduling scheme similar to the single mapping strategy.
When the bandwidth is higher, MTrain distributes training 10 find the optimal solution, we first use DFS to enumer-
operations on multiple FPGAs. The better accelerator utiliza- ate all possible partition ratios. Then, we conduct MTrain-
tion and reduced communication costs introduced in Sec. I1I-C  Mapping for each ratio and find the best ratio that leads to the

enable MTrain to outperform Alpa and HAP. maximal throughput after mapping. For Cluster 1 with B = 64
and N = 2, there are 33 feasible ratios. For Cluster 2 with

. ) ) B =16 and N = 3, there are 33 possible ratios. For Cluster

D. The Effectiveness and Efficiency of MTrain-Converting 3 with B = 64 and N = 3, there are 385 possible ratios.
As mentioned in Sec. IV, it is time-consuming to find an When the number of accelerators increases, the search time
optimal partition ratio on an N-accelerator cluster when the for MTrain-Mapping also increases. For example, mapping
batch size is B, so we propose MTrain-Converting to search ResNet-18 on Cluster 1 under the initial PE-based partition

114 35559.63 (24.55x) | 111 (0.97x) | 1448.61

for a near-optimal solution. In this section, we validate the ef-
fectiveness and efficiency of MTrain-Converting by comparing
the resultant throughput and search time with the optimal so-
lution. These results show that MTrain-Converting can achieve
near-optimal solutions with significantly less search time.



ratio costs only 3.07s. Mapping ResNet-18 on Clusters 2 and
3 takes up 5071s and 4994s, respectively. Therefore, finding
an optimal solution for Cluster 3 is estimated to cost around
22 days, which is time-consuming and inefficient in practical
applications. Therefore, we compare MTrain-Converting with
the optimal solution for Cluster 1 and Cluster 2.

Table III compares the throughput and search time under
3 GB/s p2p bandwidth. Our proposed MTrain-Converting can
achieve near-optimal performance for all the scenarios, while
searching for an optimal partition ratio demands a great mass
of time. For example, MTrain-Converting schedules ResNet-
18 on Cluster 2 and achieves 105.07 GFLOPS throughput,
which is 97% compared to the optimal solution. However,
MTrain-Converting costs only 1.44h to find the near-optimal

Throughput
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Fig. 12. Scalability of MTrain when the number of FPGAs increases from 2
to 8. (a) Throughput under different P2P BW. (b) Search time of MTrain.

E. Scalability Analysis

Above mentioned experiments have shown the efficiency
and effectiveness of MTrain in practical edge servers. It is also
promising to scale on-device training to larger edge clusters
in the future. In this section, we use the VMSS configuration
and scale the nodes from 2 FPGAs (i.e. one pair of U50
and U30) to 8 FPGAs (i.e. 4 pairs of U50 and U30). It
should be noted that current edge-level clusters mainly use
less than 4 FPGAs, so clusters with 8 nodes are large enough.
The overall throughput is shown in Fig. 12 (a). It can be
shown that when the P2P bandwidths are low, e.g. under
0.5 GBY/s, increasing FPGA nodes cannot improve the overall
performance. This is because the communication bottleneck
under such bandwidths plays a more important role. Rather
than distributing the workload to more devices, centralizing
the whole training process is the best choice. Under higher
bandwidth, e.g. 15 GB/s, the throughput significantly improves
when the FPGAs increase.

We also analyze the complexity using the overall search
time of MTrain. Fig. 12 (b) illustrates the search time under
3 GB/s P2P bandwidth. When the FPGAs increase to 8, the
overall search time is around 2.83h, which is acceptable in the
on-device learning scenarios described in Sec. III-A.

VII. CONCLUSION

This work proposes MTrain to enable efficient CNN training
on heterogeneous FPGA-based edge servers. It transfers the
training process into a multi-branch workflow with inde-
pendent sub-operations on different branches and allocates

each sub-operation on different training accelerators for better
utilization and reduced communication overhead. It achieves
high training throughput on resource-constrained edge servers
compared with SOTA multi-accelerator training works.
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