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Large-Scale Multi-Agent System Optimization with Fixed Final Density
Constraints: An Imbalanced Mean-Field Game Theory

Shawon Dey and Hao Xu

Abstract— This paper presents a novel distributed optimiza-
tion algorithm for large-scale multi-agent systems (LS-MAS),
particularly with a given fixed final density constraint. Although
the Mean field game (MFG) theory provides a distribution
solution to overcome the “Curse of dimensionality” in LS-MAS,
it significantly sacrifices LS-MAS optimality and also not be
capable of achieving arbitrary fixed final probability density
function (PDF) constraint. To overcome these challenges, a novel
Imbalanced Mean-Field Game (Imb-MFG) theory is developed
along with an adaptive PDF decomposition algorithm and
distributed reinforcement learning. Specifically, an induction-
based PDF parameter estimation is developed to decompose the
final density constraints into multiple imbalanced norm distri-
butions. Then, the Imb-MFG theory is designed by integrating
multi-group MFG with a constrained K-means clustering algo-
rithm. To solve the developed Imb-MFG and further obtain the
distributed optimal solution, a multi-actor-critic-mass (Multi-
ACM) algorithm is designed to learn the solution of multi-
group coupled Hamilton-Jacobi-Bellman (HJB) and Fokker-
Planck-Kolmogorov (FPK) equations simultaneously. Finally,
the convergence of the developed Multi-ACM algorithm is
guaranteed through Lyapunov analysis.

I. INTRODUCTION

In recent years, there has been widespread adoption and
a notable surge of interest in multi-agent systems (MAS)
[1], especially with emphasis on applications such as traffic
management [2], autonomous UAV [3] in military appli-
cations, and so on. With the rapid advancements in game
theory [4] and distributed control [S], there has been an
effective exploration of decision-making and control policies
for MAS, supported by robust mathematical foundations.
However, while extending MAS to LS-MAS, two significant
challenges emerge. First, the data exchange in LS-MAS is
needed but exceedingly difficult to maintain in practice due
to communication intricacies. Second, the issue of the “Curse
of Dimensionality” arises with the exponential expansion
of agent interactions while solving the partial differential
equation (PDE)-based optimal control. Addressing these two
challenges in LS-MAS, the previous studies [6] employed
the Mean-Field Game (MFG) theory [7]. In MFG theory, by
using a locally computed PDF to represent the states of the
massive agents in LS-MAS without engaging in interaction
with other agents, each agent can effectively obtain group in-
formation without introducing extra communication demands
and computational complexities. Although MFG addresses
the challenge from notorious “Curse of Dimensionality” in
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LS-MAS, it is unrealistic and significantly limits the capabil-
ity by assuming all the agents in LS-MAS are homogeneous
and follow a single PDF. In addition, due to the homogeneous
assumption, existing MFG theoretical control [7] has always
led the overall PDF of LS-MAS to Gaussian distribution.
It is very difficult to force the final PDF of LS-MAS to
follow a given distribution different from the Gaussian dis-
tribution which limits the feasibility of existing MFG in the
real world. To tackle these challenges, a novel Imbalanced
Mean-Field Game (Imb-MFG) theory has been developed
by integrating an adaptive PDF decomposition algorithm
along with multi-group MFG [8]. Furthermore, adapting
the distributed reinforcement learning (RL) [9], the optimal
control strategy for LS-MAS with a fixed final density
constraint can be obtained by learning the solution of Imb-
MFG. Specifically, a massive number of agents are deployed,
and none of the distributed agents possesses knowledge of
the fixed final density constraint. Then, an induction-based
PDF decomposition parameter estimation is developed to
estimate the appropriate parameters that can decompose the
fixed final density function into a combination of multiple
imbalanced norm distributions. Next, a constrained K-means
clustering [10] approach is utilized along with estimated
PDF decomposition parameters to divide the LS-MAS into
multiple groups. After that, the initial PDF distributions for
individual groups in LS-MAS are obtained. Then, using
multi-group MFG [8] along with obtained initial and desired
final imbalanced norm distributions for individual groups,
an Imb-MFG is formulated. Within each group, the MFG
will force its PDF to converge to the desired imbalanced
norm distribution. Eventually, the multiple imbalanced norm
distributions of multi-group LS-MAS can be mixed jointly
to satisfy the fixed final PDF constraint. Similar to other
MFG theory [11], finding the optimal solution of Imb-MFG
needs solving multiple coupled forward and backward PDEs,
called the FPK and HJB equation, for decomposed multi-
group LS-MAS. However, solving these PDEs directly is
quite challenging [8]. To tackle this issue, a multi-actor-
critic-mass (Multi-ACM) learning algorithm is developed by
adopting adaptive dynamic programming [12] and reinforce-
ment learning [9] techniques.

The major contributions are: 1) An Imbalanced Mean-
Field Game (Imb-MFG) theory is developed along with an
induction-based PDF decomposition method to formulate the
distributed optimal control problem for LS-MAS with a fixed
final PDF constraint. 2) A multi-actor-critic-mass (Multi-
ACM) learning algorithm is developed to solve the Imb-MFG
theory and attain a distributed optimal solution for LS-MAS
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with a fixed final density constraint.

II. PROBLEM FORMULATION

Consider an LS-MAS of M agents. Then, the stochastic
homogeneous dynamic system of any agent 4 is defined as:

da(t) = [/ (@(t) + g(e()u(t)dt + odw (1)

with state x(¢) € R™ and control u(t) € R™. The dynamics
function f(x) € R™ and g(x) € R™ ™ are smooth and
known. The term w € R™ is the wiener process represents
environmental noise, and o € R"*™ is the coefficient matrix.
According to classical statistical theory [13], the final PDF
constraint, mg(z;64), in LS-MAS optimization is assumed
to be represented as a linear combination of multiple norm
distributions with different means and variances, i.e.

N
ma(z;0a) = Z wq, ;M (T; 0,5)

j=1

j=1,..,N. (@

where mg j(7,04;) is the norm distribution for j% group,
with a total N groups in LS-MAS and 6,4 ; = {ia,;, Za;}
is a parameter set with mean /14 ; and covariance matrix g ;
of the group j. The collection of all the parameters including
weight for group j is denoted as 6. ; = {wq,j, fta,j, Xa,;}-
Then, the mixture-PDF is parameterized by the weight w,
mean g, and covariance matrix 3. The parameters collection
in mixture-PDF is denoted as 8 = {w, p, 32}. Next, the cost
function for agent .4 in LS-MAS can be formulated as

T(z, m(z; 0)) :E{ /OOO [r(‘”(t)’“(t)H] dt} 3)

®(m(z;0))

where the first term is defined as r(z(t),u(t)) = ||z —
E{ma,;(z,0a;)}|5 + |lull%, captures the state error and
control input’s quadratic norms weighted by @ and R,
which are positive definite matrix. Here, E{mg ;(z,0q )}
represents the expected mean value of the desired PDF for
group j. Then any agent A error term from group j can be
defined as e = x — E{mq,;(x,04,;)} with error dynamic

“4)

where fo(e) = f(e +E{ma;(z,0a;)}) and ga(e) = g(e +
E{mg ;(x,0q,,)}). The second term in the cost function is a
coupling function that is used to achieve the target mixture-
PDF of LS-MAS. The coupling function can be written as:

O(m(x;0)) = [m(x;0) — ma;(z;0a)lF ()

This function quantifies the discrepancy between the real-
time PDF of individual groups, denoted by m;(z;#), and
the desired final PDF constraint, denoted by mg ;(x; 64 ;).
The optimal control formulation: Considering continuous
dynamics of agent A in (1), an admissible control policy
need to be evaluated to minimize the cost function in (3).
Then, according to the optimal control [14] and Bellman’s
optimality principle [8], the Hamiltonian is defined as fol-
lows:

Hiz, 8, J (x,m;(x;0))] = E{@(m]—(x; 0)) + 8, J 7T (2, m;

de = [fa(e) + ga(e)u]dt + odw

870

(2:0))[f(2) + g(a)u] } ©)

Next, the optimal control for each agent can be derived as
u(e) = ~1/2B{ R™'g" (@)0,J (w,mj(w;0)) } (D)

Then the corresponding HJB equation is obtained by substi-
tuting the optimal evaluation function into the Hamiltonian
which is shown in Eq. (16). To obtain the HIB equation, the
PDF m; is required. The PDF function can be obtained by
solving the FPK equation shown in Eq. (17).

III. IMBALANCED-MFG THEORY WITH IND-
UCTION-BASED PDF DECOMPOSITION AND MULTI-ACM
LEARNING-BASED NEURAL NETWORK ESTIMATORS

An Imb-MFG theory-based optimal control framework
is designed to collectively achieve the final mixture-PDF
through the efforts of individual agents. Particularly, an
induction-based adaptive PDF decomposition method is de-
signed to decompose the final PDF constraint into a com-
bination of multi-imbalanced norm distributions. Then, the
overall final PDF constraint is achieved by dividing LS-MAS
into multi-groups and ensuring individual groups converge
to imbalanced norm distribution. Specifically, a constrained
k-means clustering algorithm is adopted to decompose the
LS-MAS into multiple groups. Then, an Imb-MFG theory
is developed to formulate the distributed optimal control
problem for individual agents, aiming to achieve the desired
final mixture-PDF. Due to the property of MFG [7], Imb-
MFG can ensure agents within the same group achieve to
desired imbalanced norm distribution.

A. Induction-based adaptive PDF Decomposition

In this section, an induction-based method is developed to
estimate the parameters of the final mixture-PDF function.
The ideal final PDF constraint is as follows

N
ma(z;ba) = de,jmd,j(x;,ud,j, Ydj) (®)

Jj=1
where wg; € R are the ideal weights, pg; € R" are the

mean, and Xg; € R"*™ are the covariance of individual
norm distribution. Next, the equation (8) is rewritten as:

€))

Here, wg € RY is the weight of the ideal mixture-PDF. Now
the final mixture-PDF function can be estimated as follows:

(10)

mg(z;04) = wgmd(ac D, Xq)

1ha(w; 0a) = W3 ma(z; fug, Sq)
The estimation error of the PDF function can be defined as:
(11)

The weights estimation error is wgy wy — Wy.
The PDF function estimation error is md(x;ﬂd,f)d) =
mg(x; g, Xq) — md(x;ﬂd,ﬁ]d). The equation (11) can be
represented as:

T

em = WEma(z; g, Xa) — W ma(z; fra, S4)

em = wama(z; pra, Xa) — wEma(@; fra, a) + w] ma

(@3 fra, Xq) — W3 ma(@; fra, Xa)
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= wy g (z; fra, Xa) + WF mala; fua, Sa) (12)

Assumption I: The PDF function is Lipschitz continuous, im-
plies the existence of L1psch1tz functions L, and Lg, satisfy
the inequality |714(z: fo, Sa)| < Ly fial + L[Sl

Now the squared residual error is defined as FE,,
1/2 el ey, If g — wq, fta — pq and S, — X4, then
em — 0. Then, an induction-based gradient descent method
is designed to update the parameters of the mixture PDF. The
iteration index is denoted as [. In the remaining sections, the
bold notation is omitted to simplify the presentation. The
gradient descent-based parameters update law is defined as

[0

@I = oW 4 ma(s g, Sa)el, (13)
gt = g iy (e, S (4)
E[l+1] Z[l] + agwg}mz(w i, Ed) (15)

where o, o, and o are the mixture PDF weights learning
gains. Also, m#(x;ﬂdi]d) and mg(x;,&d,f)d) are the first
derivative of activation function mg(; fig, 34) with respect
to imbalanced means and covariances, respectively.

The convergence of the mixture PDF’s parameters estima-
tion is described by the induction-based Lyapunov analysis:
Theorem 1: The update law of the mixture PDF’s parameters
is given by (13)-(15), with positive tuning gains. According
to mathematical induction theory [15], in the base case, the
parameters approximation error w([il] [Lg], and E&] at the Ith
iteration, are uniformly and ultimately bounded (UUB). The
bounds for these errors are denoted as B,,,, B,,,, and By,.
Moving to the induction step at the (I + 1)th iteration, if the
UUB statement holds for the base case at the [th iteration,
it must also hold for the next case at the (I + 1)th iteration.
Proof: Consider the Lyapunov candidate function as follows:

ALwd = ~g[l+1]w¢[j+1] - w?;mwg]
= [@g] — ayma(@; fig, Sa)el]T[BY) — awma(@; fua, Sa)el]
— T !l (18)

Now substituting equation (12) and considering assumption
1 of Lipschitz function, the equation (18) is rewritten as:

_ll e o
Al < =200 0] M L0l Lyl 1]||+L2||2[l ”m

]+ @

where my,, = mq(x; fid, id). While iterative updating the
parameters, certain dependencies are employed. Specifically,
during the weight updates, the mean and covariance approx-
imation errors from the previous iteration are utilized. In the
subsequent mean update, both the current iteration’s weight
update and the previous iteration’s covariance are taken into
account. Lastly, during the covariance update, the current
iteration’s weight and mean approximations are utilized,
given that these parameters have already been updated in the
current iteration. Now, the Eq. (19) is rewritten as follows

mwd} + aiy [[maw, | {wal Lyl g™~

mwd}2 (19)

Tl

7l —1
ALy, < 2awwd wdmdeuHu ]||—20zwwd Wy

871

Mg L | E5 | = 20 [[ma, 2|05 |12 + 402 [[ma,,|Pwa

1 [— 1
L2 Al )12 + 402 |mu, |2 lwal PLE S )2 + 202
[l]||2

[

< — (200 [l I* = 200, 1700, | [wal|* — 207, 20, ]

@2 + o, (al— 1, =i-Y) (20)
where,

w -1 -1
ow (A 20 = (22 + 402 |Jmy, | [lwa| 2 L]

-1 S[l—1
1AL+ (L2 + 402 m, | lwa 2LE] IS 1)1 @D

Then AL,, is less than zero outside a compact set if:

w (-1 li=1]
~[1] q)con( Ed ) -
> = By
de H 2||mw H 2aw d
Ly P llwall* = 200 [maw, ||

(22)

Next, Consider a Lyapunov candidate function as follows:

_pl+1] ]y _l -1

ALy, =iy g™ =g il (23)

Substituting parameters estimation error dynamics and subse-
quently utilizing equation (12) to replace e,,, the expression
represented by equation (23) can be reformulated as:

ALy, < =20, 5 @ Ly {wal LAY+ L | S5
+ @3, } + 03[0 2L2,, {wal L@ | + LS5
+ @g[l]mwd}Q
< — Lol o | Ly waLy — a2 @212, — 402 0]
mﬁnwdn%nu“ln?+<I>5m,< oy, Y) (24)
where,
ot (Y, 25 = [LE lwal|? + 402 *”HQLZ wql*LE]
ISE=)2 + [m2, + 202|622, m?2, ]||0f] H2 (25)
Then AL, is less than zero outside a compact set if:
I > Af&"(@g]’zw) T = Bu
2|0 || L waLy — vl 0712
L2, — oy [|0F L2, wal*L2
(26)
Finally, Consider a Lyapunov candidate function as follows:
ALy, = STl _ sl 27
Now the equation (27) is reformulated as:
ALz, < ~[2050] " waLumg Ly, — 2030212, — 403
o222, wa L3S + @2, @Y, AD) (28)
with,
O (Y, 1) = [L2]wal® + 403 |62 L2,  lwal L)
012 + o, + 203Gl EE o2 S 9
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HIB : E{®(x,m;(z;0))} = E{-0,J(z, m;(x;0)) —
FPK : E{0ym;(z;0) — 0.502 Am(x;0) —

0.502AJ (z,m;(x;0)) + Hlz, 0. J (x, m;(x;0))]} (16)

div(m;DpHx, 0, J(x, m;(z;0))])} =0 (17)

Then ALy, is less than zero outside a compact set if:

~[l l
U Vi 1) =5
= Bu,
2| JwaLuns L ~ 20z} |2
2 2 2712
L2, — dos||iy |2 L2, [lwa| L3
(30)

Note that, L,,, and ng are the Lipschitz constants of the
functions mu(x;ﬂd,id) and mz(x;,ad,id), respectively.
Following a similar approach as the previous method, we
can deduce the subsequent condition for the next iteration:

w (Al
||w[l+1]|| > (I)con(ud vzd )
¢ 2Hmwd”2 — 20 ]

(31)
Qo [ 2 2_9 4
My |12 [wall* — 20 M, ||

w (Sl <

with, @Con(p&],zm) < oY
1781 and (0] < £ Simitarty,

@él,on( ~[14+1] E[l])

1)
l 1 [+1
|2 1] ||Lm,»[gig u — | ”ﬂ
2 - 2 212
L2, — 4oyl 2L, (wal?L?
(32)
with, @k, (@l Sl < ol (@l S sl <

IS5 and @l < @l))]]. And,

0 (I)g‘;m( [l+1] [l+1])
=)

2| *’*”||de Ly, — 2050l )2

L2, — o0y T 2L2, [lwa]?LE
(33)
l l l l l
with, o2, (@l Wy < e, (@l ulh, k)

H/Jd | and ||Z[l+1]|| < ||Z£1]H. Given the mathematical
induction-based method, the base case establishes that the
parameter approximation errors are bounded. The induction
step then states that if the base case holds, the boundedness
of the errors carries over to subsequent iterations. Now, the
weight set of the final desired PDF functions is defined as
Wy = {Wq,1,W4,2,..-Wa,n}. Then, an iterative constrained
K-means clustering algorithm [10] is employed to break
down the LS-MAS system into /N groups. The constraints
are determined by the estimated weights, ensuring that each
group contains at least the minimum required number of
agents to achieve the desired final mixture-PDF. Here, the
cluster number is defined as K = N. Also, j is the cluster
index with j = 1,2, ..., K. The minimum number of agents

in cluster j can be defined as p; = (=7=i—)M, with

j=1Wd,j
Zj{zl p; < M. The iterative constrained K-means algorithm

[10] with the redefined constraint on agent number p; is
provided as follows.

Induction-based PDF Parameter

| Large Scale Multi Agent System |
Estimation

!

LS-MAS Decomposition Constrained K-means
Clustering

[ 1 1

......................

Agent i (Group 1) | ~[ Agent i (Group N)
Control Controk
[f(xi1) + g(xi1)uia]dt [ Natiq 012.;: | [f(xin) + 9(xin)ugn]de
[ +odw;; . z +odw;y ]
(| HJB ]“ --------- L _______ HJB li,N
Ll FPKmy; el b FPKmy [

Fig. 1: Imb-MFG theory based LS-MAS adaptive PDF
decomposition and Multi-ACM learning

Iterative Constrained K-Means Algorithm: Given the initial
cluster center at iteration t that is C4,Cay, ..., Ck ¢, then
the cluster assignment and update step are as follows:

(1) Cluster Assignment: For it agent with state x;, assign
the point x; to any cluster 7 by minimizing the following
function while ensuring center C; ; is nearest to the position
x; and the selection variable ¢; ; > p;.

M K
min > > ais(3 L — Cel?) (34)
=1 j=1
K
Z%‘,j > pjaZQi,j =1,4;20
i=1 =1
(2) Cluster Update: Update C'j ;41 as
Z{\i1 quh . M ¢
Zisibig®io e M r
Ciat1 = =10 i (33)
Cit otherwise

The algorithm will be terminated if the condition Cj 41 =
C,¢ is satisfied.

B. Multi-ACM Based Neural Network Estimator

In this section, the Multi-ACM algorithm is developed.
To achieve the final goal, each agent maintains three neural
networks (NN), i.e. the actor NN approximates the optimal
control policy, the critic NN approximates the optimal eval-
uation function and the mass NN estimates the density of
the entire population. The optimal cost, control, and mass
function can be represented as:

Critic: J (v, m;) = E{W7 ¢s(x,m;) + emmp }
= E{ng)u(xa mj) + 5u}
= E{W£J Gm,; (2, J,t) + erpr }

Actor: u(xz, m;) (36)

Mass: m;(x,t)

872
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where, W;, W,,, and ij are the critic, actor, and mass neu-
ral network weights of agent A in group j, respectively. The
activation functions are ¢z, ¢,,, and d)mj. The reconstruction
errors of the critic, actor, and mass NN are represented as
€uB, €y and eppk, respectively. Next, the approximation of
the optimal cost, control, and mass distribution function are:

Critic: j(at, m;) = E{WL}F(ZBJ(JC’ 1)}
Actor: 4(x,m;) = E{Wg(lgu(:ﬂva)}
Mass: m;(z,t) = E{Wﬁi] <ZA5m_,» (z, J, t)}

By substituting equations (37) into the HJB, FPK, and
optimal control equations (16), (17) and (7), the residuals
errors can be used to tune the critic, actor, and mass NNs:

Efemn} = E{ [M’ ) = Wi iy )} )
W \Ilm] (x J,t) —

—W}@J(x, mj) — EHIB
Eferrx} = E{ JINED
{ } (.T J t) — EFPK ‘|
Similarly, actor residual error is obtained as follows

Wi bu(w, 1)) — Wy (@ m»)}
Efey —E{{ ot Tt e T 4)
{ } —%R 1gT(x)8wJ(x,mj) — &
where, WJ =Wy — WJ, Wu =W, — Wu and Wm]. =
Win; — Wi, . Next, applying the gradient descent algorithm,
the critic, mass, and actor update law is as follows:

(37

T mr W (x, 75) efyp
W =BT oy P
2 Uy, (. ], ey
E{W,, } = E{—a,), ; 42
W} = B0, 70 g waop @
N bu(@,10))eq
MW = e @

where o, apy, and o, are the learning rates.
Lemma 1: There exists optimal control policy w for the
stochastic system dynamic equation given in (4)

E{e” [fa(e(t)) + ga(e())u(t) + } < —E{llel*}

(44
Theorem 2: The critic, mass, and actor NNs’ weights are
updated by (41)-(43), with the learmng rates oy, Quy,; and oy,
are positive. Then, E{W;} E{W Y E{W, } and ]E{e} are
all UUB. Moreover, E{WV,}, IE{W 1 E{W,} and E{e}
are asymptotically stable with zero reconstructlon error [8].
Proof: Omitted due to page limitation.

odw]

IV. SIMULATION RESULTS

In this section, the LS-UAV system is employed to show
the efficiency of the Imb-MFG theory and multi-ACM algo-
rithm. Initially, the system has been populated with a total
of 1200 UAVs. The primary goal for each agent within this
system is to collaboratively attain a final mixture distribution
constraint. This kind of shape formation in the context of
LS-MAS can prove to be crucial, especially in battlefield

873

Y-axis

L 6
3 4 s 6 7 8 9 10 M 12 13 9 10 1 12 13 14 15 16 17 18 19
xis X-axi

(c) t = 45s (d) t = 60s

Fig. 2: Large-scale UAVs positions over a period of time (a)

t =0s (b) t = 20s (C) t = 45s (d) t = 60s Different colors
represent different groups.

scenarios, as it enables efficient capture of evaded UAVs. Let
the initial states of the agents be generated using the normal

distribution: N'(p = [4.5 7],¥ = 019 059]). Also, the
dynamic of each agent:

—3’31—‘1-%33% |1
0402 |0 9@ =1y

with x = [xl mg]T is the state. Here, each agent doesn’t
possess knowledge of the desired mixture distribution before
embarking on the mission. Here, the final distribution is
a Gaussian mixture-PDF defined in (2) as mg(x;04) =
Z;V 1 Wa,;md,;(x;04 ;). Here N is the number of Gaussian

o) = |

components and mg ;(x;04;) = WCXP( ;(w -
Md,j)TZ;}(UC — pa,;)). The tuning gain is defined as o, =

1 x107% a, = 1.7 x x107* and ay = 1 x 107
Then, the PDF function estimation error threshold is given
as 8., = 1 x 107°. A total of 305 iterations have been
performed. Then, the estimated parameters of the desired
mixture-PDF are obtained. The weights of the mixture are
Wg1 = 0.495, weo = 0.3025, wg3 = 0.2025, with the
cluster number N = 3. Also, the mean and covariance of the
mixture PDF are estimated as i, = [13.4256 9.5846]T,

fio = [15.9451 10.8812]", fig = [14.0557 12.4397]"
11956 0.3347] « _ [0.7845 0.1826] ind

1= 10334 0.7661] 2 0.1826 1.3426

: 0.9882 0.2105 .
¥ = 0.2105 1.2259|" Then a constrained K-means

clustering algorithm is employed to decompose the LS-MAS.
To determine the minimum number of agents for 3 clusters,
we utilize the estimated weight parameters, resulting in mini-
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Fig. 3: PDF decomposition of large-scale UAVs in 3-D view. (a) The initial PDF distribution at ¢ = 0s. (b) The decomposed
PDFs (¢) The mixture PDF at time ¢ = 45s. (d) The final mixture-PDF of UAVs at time ¢ = 60s.

mum numbers of agents as follows: p; = 596, ps = 363, and
p3 = 241. Next, we assign agents to clusters using equations
(34) and (35). The initial distributions for the decomposed
groups, which are provided to their respective group of
agents, are as follows: Group 1: N(p = [2 6.2],X =

[1 0'1}), Group 2: N'(u = [7.8 6],5 = [1 0'1}),

0.1 1 0.1 1
1 01 .
Group 3: N (= [6 12.5],% = 01l 1 ). The learning

rates of the Multi-ACM NN are selected as oy = 2 x 1075,
ay = 2x 1074, oy, = 2 x 1073, Also, the thresholds
of the HJB, FPK and actor residual error are selected as
omp = 1 x 1075, Oppk = 1 X 10~3 and 0y =1x 1072, Figure
2 shows the positions of UAVs evolving over time. The initial
position of the 1200 UAVs is depicted in figure 2(a). Then,
the position of UAVs is demonstrated after the decomposition
in figure 2(b). Figure 2(c) shows the position of the UAVs

10
Time t(Sec)

15 20

Fig. 4: Final PDF estimation error

at time ¢t = 45s. Finally, at the end of the simulation at
t 60s, the UAVs in each group successfully reach a
position that satisfies the e-Nash equilibrium by solving the
HJB and FPK equations. This allows them to achieve the
intended final arbitrary PDF. Also, we have plotted the PDF
of agents at various time intervals in Figure 3. In Figure
3(a), the initial PDF is presented. The resulting PDFs of
the decomposed groups are displayed in Figure 3(b). Then
figure 3(c) shows the PDF of all UAVs at time ¢ = 45s. The
LS-UAVs achieve the desired final mixture-PDF constraint
with time progress. The final PDF of the UAVs is shown in
3(d). Now, the final mixture PDF percentage estimation error
is shown in figure 4. The error is calculated using equation,
Error; = %W % 100. From this figure, it is clear
that the error of the

d
e PDF function approximation converges
to zero after a certain time period.

V. CONCLUSION

This study presented a novel distributed optimization
algorithm for LS-MAS with a fixed final PDF constraint
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in uncertain environments. This algorithm incorporated an
MFG theory to address the computational and communica-
tion complexities associated with LS-MAS. It also tackles
the limitations of MFG theory, which sacrifices optimality
and struggles to achieve an arbitrary final PDF constraint.
The developed algorithm includes a novel Imb-MFG theory
along with PDF decomposition and distributed reinforcement
learning. Particularly, an induction-based PDF parameter
estimation is designed and a constrained K-means clustering
algorithm is applied to decompose the LS-MAS into multiple
groups, aiming to achieve the desired final arbitrary PDF
constraint. Moreover, a Multi-ACM learning algorithm is de-
signed to solve the Imb-MFG and find the optimal solution.
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