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Abstract— This paper presents a novel distributed optimiza-
tion algorithm for large-scale multi-agent systems (LS-MAS),
particularly with a given fixed final density constraint. Although
the Mean field game (MFG) theory provides a distribution
solution to overcome the “Curse of dimensionality” in LS-MAS,
it significantly sacrifices LS-MAS optimality and also not be
capable of achieving arbitrary fixed final probability density
function (PDF) constraint. To overcome these challenges, a novel
Imbalanced Mean-Field Game (Imb-MFG) theory is developed
along with an adaptive PDF decomposition algorithm and
distributed reinforcement learning. Specifically, an induction-
based PDF parameter estimation is developed to decompose the
final density constraints into multiple imbalanced norm distri-
butions. Then, the Imb-MFG theory is designed by integrating
multi-group MFG with a constrained K-means clustering algo-
rithm. To solve the developed Imb-MFG and further obtain the
distributed optimal solution, a multi-actor-critic-mass (Multi-
ACM) algorithm is designed to learn the solution of multi-
group coupled Hamilton-Jacobi-Bellman (HJB) and Fokker-
Planck-Kolmogorov (FPK) equations simultaneously. Finally,
the convergence of the developed Multi-ACM algorithm is
guaranteed through Lyapunov analysis.

I. INTRODUCTION

In recent years, there has been widespread adoption and

a notable surge of interest in multi-agent systems (MAS)

[1], especially with emphasis on applications such as traffic

management [2], autonomous UAV [3] in military appli-

cations, and so on. With the rapid advancements in game

theory [4] and distributed control [5], there has been an

effective exploration of decision-making and control policies

for MAS, supported by robust mathematical foundations.

However, while extending MAS to LS-MAS, two significant

challenges emerge. First, the data exchange in LS-MAS is

needed but exceedingly difficult to maintain in practice due

to communication intricacies. Second, the issue of the “Curse

of Dimensionality” arises with the exponential expansion

of agent interactions while solving the partial differential

equation (PDE)-based optimal control. Addressing these two

challenges in LS-MAS, the previous studies [6] employed

the Mean-Field Game (MFG) theory [7]. In MFG theory, by

using a locally computed PDF to represent the states of the

massive agents in LS-MAS without engaging in interaction

with other agents, each agent can effectively obtain group in-

formation without introducing extra communication demands

and computational complexities. Although MFG addresses

the challenge from notorious “Curse of Dimensionality” in
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LS-MAS, it is unrealistic and significantly limits the capabil-

ity by assuming all the agents in LS-MAS are homogeneous

and follow a single PDF. In addition, due to the homogeneous

assumption, existing MFG theoretical control [7] has always

led the overall PDF of LS-MAS to Gaussian distribution.

It is very difficult to force the final PDF of LS-MAS to

follow a given distribution different from the Gaussian dis-

tribution which limits the feasibility of existing MFG in the

real world. To tackle these challenges, a novel Imbalanced

Mean-Field Game (Imb-MFG) theory has been developed

by integrating an adaptive PDF decomposition algorithm

along with multi-group MFG [8]. Furthermore, adapting

the distributed reinforcement learning (RL) [9], the optimal

control strategy for LS-MAS with a fixed final density

constraint can be obtained by learning the solution of Imb-

MFG. Specifically, a massive number of agents are deployed,

and none of the distributed agents possesses knowledge of

the fixed final density constraint. Then, an induction-based

PDF decomposition parameter estimation is developed to

estimate the appropriate parameters that can decompose the

fixed final density function into a combination of multiple

imbalanced norm distributions. Next, a constrained K-means

clustering [10] approach is utilized along with estimated

PDF decomposition parameters to divide the LS-MAS into

multiple groups. After that, the initial PDF distributions for

individual groups in LS-MAS are obtained. Then, using

multi-group MFG [8] along with obtained initial and desired

final imbalanced norm distributions for individual groups,

an Imb-MFG is formulated. Within each group, the MFG

will force its PDF to converge to the desired imbalanced

norm distribution. Eventually, the multiple imbalanced norm

distributions of multi-group LS-MAS can be mixed jointly

to satisfy the fixed final PDF constraint. Similar to other

MFG theory [11], finding the optimal solution of Imb-MFG

needs solving multiple coupled forward and backward PDEs,

called the FPK and HJB equation, for decomposed multi-

group LS-MAS. However, solving these PDEs directly is

quite challenging [8]. To tackle this issue, a multi-actor-

critic-mass (Multi-ACM) learning algorithm is developed by

adopting adaptive dynamic programming [12] and reinforce-

ment learning [9] techniques.

The major contributions are: 1) An Imbalanced Mean-

Field Game (Imb-MFG) theory is developed along with an

induction-based PDF decomposition method to formulate the

distributed optimal control problem for LS-MAS with a fixed

final PDF constraint. 2) A multi-actor-critic-mass (Multi-

ACM) learning algorithm is developed to solve the Imb-MFG

theory and attain a distributed optimal solution for LS-MAS
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with a fixed final density constraint.

II. PROBLEM FORMULATION

Consider an LS-MAS of M agents. Then, the stochastic

homogeneous dynamic system of any agent A is defined as:

dx(t) = [f(x(t)) + g(x(t))u(t)]dt+ σdω (1)

with state x(t) ∈ R
n and control u(t) ∈ R

m. The dynamics

function f(x) ∈ R
n and g(x) ∈ R

n×m are smooth and

known. The term ω ∈ R
n is the wiener process represents

environmental noise, and σ ∈ R
n×n is the coefficient matrix.

According to classical statistical theory [13], the final PDF

constraint, md(x; θd), in LS-MAS optimization is assumed

to be represented as a linear combination of multiple norm

distributions with different means and variances, i.e.

md(x; θd) =

N
∑

j=1

wd,jmd,j(x; θd,j) j = 1, ..., N. (2)

where md,j(x, θd,j) is the norm distribution for jth group,

with a total N groups in LS-MAS and θd,j = {µd,j ,Σd,j}
is a parameter set with mean µd,j and covariance matrix Σd,j

of the group j. The collection of all the parameters including

weight for group j is denoted as θc,j = {wd,j , µd,j ,Σd,j}.

Then, the mixture-PDF is parameterized by the weight w,

mean µ, and covariance matrix Σ. The parameters collection

in mixture-PDF is denoted as θ = {w,µ,Σ}. Next, the cost

function for agent A in LS-MAS can be formulated as

J(x,m(x; θ)) = E

{

∫ ∞

0

[

r(x(t), u(t))+
Φ(m(x; θ))

]

dt
}

(3)

where the first term is defined as r(x(t), u(t)) = ∥x −
E{md,j(x, θd,j)}∥

2
Q + ∥u∥2R, captures the state error and

control input’s quadratic norms weighted by Q and R,

which are positive definite matrix. Here, E{md,j(x, θd,j)}
represents the expected mean value of the desired PDF for

group j. Then any agent A error term from group j can be

defined as e = x− E{md,j(x, θd,j)} with error dynamic

de = [fa(e) + ga(e)u]dt+ σdω (4)

where fa(e) = f(e+ E{md,j(x, θd,j)}) and ga(e) = g(e+
E{md,j(x, θd,j)}). The second term in the cost function is a

coupling function that is used to achieve the target mixture-

PDF of LS-MAS. The coupling function can be written as:

Φ(m(x; θ)) = ∥mj(x; θ)−md,j(x; θd,j)∥
2
2 (5)

This function quantifies the discrepancy between the real-

time PDF of individual groups, denoted by mj(x; θ), and

the desired final PDF constraint, denoted by md,j(x; θd,j).
The optimal control formulation: Considering continuous

dynamics of agent A in (1), an admissible control policy

need to be evaluated to minimize the cost function in (3).

Then, according to the optimal control [14] and Bellman’s

optimality principle [8], the Hamiltonian is defined as fol-

lows:

H[x, ∂xJ(x,mj(x; θ))] = E

{

Φ(mj(x; θ)) + ∂xJ
T (x,mj

(x; θ))[f(x) + g(x)u]
}

(6)

Next, the optimal control for each agent can be derived as

u(x) = −1/2 E

{

R−1gT (x)∂xJ(x,mj(x; θ))
}

(7)

Then the corresponding HJB equation is obtained by substi-

tuting the optimal evaluation function into the Hamiltonian

which is shown in Eq. (16). To obtain the HJB equation, the

PDF mj is required. The PDF function can be obtained by

solving the FPK equation shown in Eq. (17).

III. IMBALANCED-MFG THEORY WITH IND-

UCTION-BASED PDF DECOMPOSITION AND MULTI-ACM

LEARNING-BASED NEURAL NETWORK ESTIMATORS

An Imb-MFG theory-based optimal control framework

is designed to collectively achieve the final mixture-PDF

through the efforts of individual agents. Particularly, an

induction-based adaptive PDF decomposition method is de-

signed to decompose the final PDF constraint into a com-

bination of multi-imbalanced norm distributions. Then, the

overall final PDF constraint is achieved by dividing LS-MAS

into multi-groups and ensuring individual groups converge

to imbalanced norm distribution. Specifically, a constrained

k-means clustering algorithm is adopted to decompose the

LS-MAS into multiple groups. Then, an Imb-MFG theory

is developed to formulate the distributed optimal control

problem for individual agents, aiming to achieve the desired

final mixture-PDF. Due to the property of MFG [7], Imb-

MFG can ensure agents within the same group achieve to

desired imbalanced norm distribution.

A. Induction-based adaptive PDF Decomposition

In this section, an induction-based method is developed to

estimate the parameters of the final mixture-PDF function.

The ideal final PDF constraint is as follows

md(x; θd) =
N
∑

j=1

wd,jmd,j(x;µd,j ,Σd,j) (8)

where wd,j ∈ R are the ideal weights, µd,j ∈ R
n are the

mean, and Σd,j ∈ R
n×n are the covariance of individual

norm distribution. Next, the equation (8) is rewritten as:

md(x; θd) = w
T
d md(x : µd,Σd) (9)

Here, wd ∈ R
N is the weight of the ideal mixture-PDF. Now

the final mixture-PDF function can be estimated as follows:

m̂d(x; θ̂d) = ŵ
T
d md(x; µ̂d, Σ̂d) (10)

The estimation error of the PDF function can be defined as:

em = w
T
d md(x;µd,Σd)− ŵ

T
d md(x; µ̂d, Σ̂d) (11)

The weights estimation error is w̃d = wd − ŵd.

The PDF function estimation error is m̃d(x; µ̃d, Σ̃d) =
md(x;µd,Σd) − md(x; µ̂d, Σ̂d). The equation (11) can be

represented as:

em = w
T
d md(x;µd,Σd)−w

T
d md(x; µ̂d, Σ̂d) +w

T
d md

(x; µ̂d, Σ̂d)− ŵ
T
d md(x; µ̂d, Σ̂d)
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= w
T
d m̃d(x; µ̃d, Σ̃d) + w̃

T
d md(x; µ̂d, Σ̂d) (12)

Assumption 1: The PDF function is Lipschitz continuous, im-

plies the existence of Lipschitz functions Lµ and LΣ, satisfy

the inequality ∥m̃d(x; µ̃d, Σ̃d)∥ f Lµ∥µ̃d∥+ LΣ∥Σ̃d∥.

Now the squared residual error is defined as Em =
1/2 eTmem. If ŵd → wd, µ̂d → µd and Σ̂d → Σd, then

em → 0. Then, an induction-based gradient descent method

is designed to update the parameters of the mixture PDF. The

iteration index is denoted as l. In the remaining sections, the

bold notation is omitted to simplify the presentation. The

gradient descent-based parameters update law is defined as

ŵ
[l+1]
d = ŵ

[l]
d + αwmd(x; µ̂d, Σ̂d)e

T
m (13)

µ̂
[l+1]
d = µ̂

[l]
d + αµŵ

[l]
d mµ(x; µ̂d, Σ̂d)e

T
m (14)

Σ̂
[l+1]
d = Σ̂

[l]
d + αΣŵ

[l]
d mΣ(x; µ̂d, Σ̂d)e

T
m (15)

where αw, αµ and αΣ are the mixture PDF weights learning

gains. Also, mµ(x; µ̂d, Σ̂d) and mΣ(x; µ̂d, Σ̂d) are the first

derivative of activation function md(x; µ̂d, Σ̂d) with respect

to imbalanced means and covariances, respectively.

The convergence of the mixture PDF’s parameters estima-

tion is described by the induction-based Lyapunov analysis:

Theorem 1: The update law of the mixture PDF’s parameters

is given by (13)-(15), with positive tuning gains. According

to mathematical induction theory [15], in the base case, the

parameters approximation error w̃
[l]
d , µ̃

[l]
d , and Σ̃

[l]
d at the lth

iteration, are uniformly and ultimately bounded (UUB). The

bounds for these errors are denoted as Bwd
, Bµd

, and BΣd
.

Moving to the induction step at the (l+1)th iteration, if the

UUB statement holds for the base case at the lth iteration,

it must also hold for the next case at the (l+ 1)th iteration.

Proof: Consider the Lyapunov candidate function as follows:

∆Lwd
= w̃T [l+1]

d w̃
[l+1]
d − w̃T [l]

d w̃
[l]
d

= [w̃
[l]
d − αwmd(x; µ̂d, Σ̂d)e

T
m]T [w̃

[l]
d − αwmd(x; µ̂d, Σ̂d)e

T
m]

− w̃T [l]

d w̃
[l]
d (18)

Now substituting equation (12) and considering assumption

1 of Lipschitz function, the equation (18) is rewritten as:

∆Lwd
f −2αww̃

T [l]

d mwd
{wd[Lµ∥µ̃

[l−1]
d ∥+ LΣ∥Σ̃

[l−1]
d ∥]

+ w̃T [l]

d mwd
}+ α2

w∥mwd
∥2{wd[Lµ∥µ̃

[l−1]
d ∥+ LΣ∥Σ̃

[l−1]
d

∥] + w̃T [l]

d mwd
}2 (19)

where mwd
= md(x; µ̂d, Σ̂d). While iterative updating the

parameters, certain dependencies are employed. Specifically,

during the weight updates, the mean and covariance approx-

imation errors from the previous iteration are utilized. In the

subsequent mean update, both the current iteration’s weight

update and the previous iteration’s covariance are taken into

account. Lastly, during the covariance update, the current

iteration’s weight and mean approximations are utilized,

given that these parameters have already been updated in the

current iteration. Now, the Eq. (19) is rewritten as follows

∆Lwd
f −2αww̃

T [l]

d wdmwd
Lµ∥µ̃

[l−1]
d ∥ − 2αww̃

T [l]

d wd

mwd
LΣ∥Σ̃

[l−1]
d ∥ − 2αw∥mwd

∥2∥w̃
[l]
d ∥2 + 4α2

w∥mwd
∥2wd

L2
µ∥µ̃

[l−1]
d ∥2 + 4α2

w∥mwd
∥2∥wd∥

2L2
Σ∥Σ̃

[l−1]
d ∥2 + 2α2

w

∥mwd
∥4∥w̃

[l]
d ∥2

f −[2αw∥mwd
∥2 − 2α2

w∥mwd
∥2∥wd∥

2 − 2α2
w∥mwd

∥4]

∥w̃
[l]
d ∥2 +Φw

con(µ̃
[l−1]
d , Σ̃

[l−1]
d ) (20)

where,

Φw
con(µ̃

[l−1]
d , Σ̃

[l−1]
d ) = [L2

µ + 4α2
w∥mwd

∥2∥wd∥
2L2

µ]

∥µ̃
[l−1]
d ∥2 + [L2

Σ + 4α2
w∥mwd

∥2∥wd∥
2L2

Σ]∥Σ̃
[l−1]
d ∥2 (21)

Then ∆Lwd
is less than zero outside a compact set if:

∥w̃
[l]
d ∥ >

√

√

√

√

√

√

Φw
con(µ̃

[l−1]
d , Σ̃

[l−1]
d )

αw

[

2∥mwd
∥2 − 2αw

∥mwd
∥2∥wd∥

2 − 2αw∥mwd
∥4

] ≡ Bwd

(22)

Next, Consider a Lyapunov candidate function as follows:

∆Lµd
= µ̃T [l+1]

d µ̃
[l+1]
d − µ̃T [l]

d µ̃
[l]
d (23)

Substituting parameters estimation error dynamics and subse-

quently utilizing equation (12) to replace em, the expression

represented by equation (23) can be reformulated as:

∆Lµd
f −2αµµ̃

T [l]

d ∥ŵ
[l]
d ∥Lmµ̂

{wd[Lµ∥µ̃
[l]
d ∥+ LΣ∥Σ̃

[l−1]
d ∥]

+ w̃T [l]

d mwd
}+ α2

µ∥ŵ
[l]
d ∥2L2

mµ̂
{wd[Lµ∥µ̃

[l]
d ∥+ LΣ∥Σ̃

[l−1]
d ∥]

+ w̃T [l]

d mwd
}2

f −[2αµ∥ŵ
[l]
d ∥Lmµ̂

wdLµ − α2
µ∥ŵ

[l]
d ∥2L2

mµ̂
− 4α2

µ∥ŵ
[l]
d ∥2

L2
mµ̂

∥wd∥
2L2

µ]∥µ̃
[l]
d ∥2 +Φµ

con(w̃
[l]
d ,Σ

[l−1]
d ) (24)

where,

Φµ
con(w̃

[l]
d ,Σ

[l−1]
d ) = [L2

Σ∥wd∥
2 + 4α2

µ∥ŵ
[l]
d ∥2L2

mµ̂
∥wd∥

2L2
Σ]

∥Σ̃[l−1]∥2 + [m2
wd

+ 2α2
µ∥ŵ

[l]
d ∥2L2

mµ̂
m2

wd
]∥w̃

[l]
d ∥2 (25)

Then ∆Lµd
is less than zero outside a compact set if:

∥µ̃
[l]
d ∥ >

√

√

√

√

√

√

√

Φµ
con(w̃

[l]
d ,Σ

[l−1]
d )

αµ

[

2∥ŵ
[l]
d ∥Lmµ̂

wdLµ − αµ∥ŵ
[l]
d ∥2

L2
mµ̂

− 4αµ∥ŵ
[l]
d ∥2L2

mµ̂
∥wd∥

2L2
µ

] ≡ Bwµ

(26)

Finally, Consider a Lyapunov candidate function as follows:

∆LΣd
= Σ̃T [l+1]

d Σ̃
[l+1]
d − Σ̃T [l]

d Σ̃
[l]
d (27)

Now the equation (27) is reformulated as:

∆LΣd
f −[2αΣŵ

T [l]

d wdLmΣ̂
LΣ − 2α2

Σ∥ŵ
[l]
d ∥2L2

mΣ̂
− 4α2

Σ

∥w̃
[l]
d ∥2L2

mΣ̂
∥wd∥

2L2
Σ]∥Σ̃

[l]
d ∥2 +ΦΣ

con(w̃
[l]
d , µ̃

[l]
d ) (28)

with,

ΦΣ
con(w̃

[l]
d , µ̃

[l]
d ) = [L2

µ∥wd∥
2 + 4α2

Σ∥w̃
[l]
d ∥2L2

mΣ̂
∥wd∥

2L2
µ]

∥µ̃
[l]
d ∥2 + [m2

wd
+ 2α2

Σ∥w̃
[l]
d ∥2L2

mΣ̂
m2

wd
]∥w̃

[l]
d ∥2 (29)
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HJB : E{Φ(x,mj(x; θ))} = E{−∂tJ(x,mj(x; θ))− 0.5σ2∆J(x,mj(x; θ)) +H[x, ∂xJ(x,mj(x; θ))]} (16)

FPK : E{∂tmj(x; θ)− 0.5σ2∆mj(x; θ)− div(mjDpH[x, ∂xJ(x,mj(x; θ))])} = 0 (17)

Then ∆LΣd
is less than zero outside a compact set if:

∥Σ̃
[l]
d ∥ >

√

√

√

√

√

√

√

ΦΣ
con(w̃

[l]
d , µ

[l]
d )

αΣ

[

2∥ŵ
[l]
d ∥wdLmΣ̂

LΣ − 2αΣ∥ŵ
[l]
d ∥2

L2
mΣ̂

− 4αΣ∥w̃
[l]
d ∥2L2

mΣ̂
∥wd∥

2L2
Σ

] ≡ BwΣ

(30)

Note that, Lmµ̂
and LmΣ̂

are the Lipschitz constants of the

functions mµ(x; µ̂d, Σ̂d) and mΣ(x; µ̂d, Σ̂d), respectively.

Following a similar approach as the previous method, we

can deduce the subsequent condition for the next iteration:

∥w̃
[l+1]
d ∥ >

√

√

√

√

√

√

Φw
con(µ̃

[l]
d , Σ̃

[l]
d )

αw

[

2∥mwd
∥2 − 2αw

∥mwd
∥2∥wd∥

2 − 2αw∥mwd
∥4

] (31)

with, Φw
con(µ̃

[l]
d , Σ̃

[l]
d ) < Φw

con(µ̃
[l−1]
d , Σ̃

[l−1]
d ), ∥µ̃

[l]
d ∥ <

∥µ̃
[l−1]
d ∥ and ∥Σ̃

[l]
d ∥ < ∥Σ̃

[l−1]
d ∥. Similarly,

∥µ̃
[l+1]
d ∥ >

√

√

√

√

√

√

√

Φµ
con(w̃

[l+1]
d ,Σ

[l]
d )

αµ

[

2∥ŵ
[l+1]
d ∥Lmµ̂

wdLµ − αµ∥ŵ
[l+1]
d ∥2

L2
mµ̂

− 4αµ∥ŵ
[l+1]
d ∥2L2

mµ̂
∥wd∥

2L2
µ

]

(32)

with, Φµ
con(w̃

[l+1]
d , Σ̃

[l]
d ) < Φµ

con(w̃
[l]
d , Σ̃

[l−1]
d ), ∥Σ̃

[l]
d ∥ <

∥Σ̃
[l−1]
d ∥ and ∥w̃

[l+1]
d < ∥w̃

[l]
d ∥∥. And,

∥Σ̃
[l+1]
d ∥ >

√

√

√

√

√

√

√

ΦΣ
con(w̃

[l+1]
d , µ

[l+1]
d )

αΣ

[

2∥ŵ
[l+1]
d ∥wdLmΣ̂

LΣ − 2αΣ∥ŵ
[l+1]
d ∥2

L2
mΣ̂

− 4αΣ∥w̃
[l+1]
d ∥2L2

mΣ̂
∥wd∥

2L2
Σ

]

(33)

with, ΦΣ
con(w̃

[l+1]
d , µ

[l+1]
d ) < ΦΣ

con(w̃
[l]
d , µ

[l]
d ), ∥µ̃

[l+1]
d ∥ <

∥µ̃
[l]
d ∥ and ∥Σ̃

[l+1]
d ∥ < ∥Σ̃

[l]
d ∥. Given the mathematical

induction-based method, the base case establishes that the

parameter approximation errors are bounded. The induction

step then states that if the base case holds, the boundedness

of the errors carries over to subsequent iterations. Now, the

weight set of the final desired PDF functions is defined as

ŵd = {ŵd,1, ŵd,2, ...ŵd,N}. Then, an iterative constrained

K-means clustering algorithm [10] is employed to break

down the LS-MAS system into N groups. The constraints

are determined by the estimated weights, ensuring that each

group contains at least the minimum required number of

agents to achieve the desired final mixture-PDF. Here, the

cluster number is defined as K = N . Also, j is the cluster

index with j = 1, 2, ...,K. The minimum number of agents

in cluster j can be defined as pj = (
ŵd,j∑

K
j=1 ŵd,j

)M , with
∑K

j=1 pj f M . The iterative constrained K-means algorithm

[10] with the redefined constraint on agent number pj is

provided as follows.

�� �ÿ ��,� + Ā ��,� þ�,� �ý+ ����,�
� �ÿ ��,� + Ā ��,� þ�,� �ý+ ����,�þ�,� þ�,�

��,���
��,���

Fig. 1: Imb-MFG theory based LS-MAS adaptive PDF

decomposition and Multi-ACM learning

Iterative Constrained K-Means Algorithm: Given the initial

cluster center at iteration t that is C1,t, C2,t, ..., CK,t, then

the cluster assignment and update step are as follows:

(1) Cluster Assignment: For ith agent with state xi, assign

the point xi to any cluster j by minimizing the following

function while ensuring center Cj,t is nearest to the position

xi and the selection variable qi,j g pj .

min
C,T

M
∑

i=1

K
∑

j=1

qi,j(
1

2
∥xi − Cj,t∥

2
2) (34)

s.t.

M
∑

i=1

qi,j g pj ,

K
∑

j=1

qi,j = 1, qi,j g 0

(2) Cluster Update: Update Cj,t+1 as

Cj,t+1 =







∑M
i=1 qti,jxi

∑
M
i=1 qt

i,j

if
∑M

i=1 q
t
i,j > 0

Cj,t otherwise
(35)

The algorithm will be terminated if the condition Cj,t+1 =
Cj,t is satisfied.

B. Multi-ACM Based Neural Network Estimator

In this section, the Multi-ACM algorithm is developed.

To achieve the final goal, each agent maintains three neural

networks (NN), i.e. the actor NN approximates the optimal

control policy, the critic NN approximates the optimal eval-

uation function and the mass NN estimates the density of

the entire population. The optimal cost, control, and mass

function can be represented as:

Critic: J(x,mj) = E{WT
J φJ(x,mj) + εHJB}

Actor: u(x,mj) = E{WT
u φu(x,mj) + εu}

Mass: mj(x, t) = E{WT
mj

φmj
(x, J, t) + εFPK}

(36)
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where, WJ , Wu, and Wmj
are the critic, actor, and mass neu-

ral network weights of agent A in group j, respectively. The

activation functions are φJ , φu, and φmj
. The reconstruction

errors of the critic, actor, and mass NN are represented as

εHJB, εu and εFPK, respectively. Next, the approximation of

the optimal cost, control, and mass distribution function are:

Critic: Ĵ(x, m̂i) = E{ŴT
J φ̂J(x, m̂j)}

Actor: û(x, m̂j) = E{ŴT
u φ̂u(x, m̂j)}

Mass: m̂j(x, t) = E{ŴT
mj

φ̂mj
(x, Ĵ , t)}

(37)

By substituting equations (37) into the HJB, FPK, and

optimal control equations (16), (17) and (7), the residuals

errors can be used to tune the critic, actor, and mass NNs:

E
{

eHJB

}

= E

{

[

Φ(x, m̃j)− W̃T
J Ψ̂J(x, m̂j)

−WT
J Ψ̃J(x, m̃j)− εHJB

]

}

(38)

E
{

eFPK

}

= E

{

[

−W̃T
mj

Ψ̂mj
(x, Ĵ , t)−WT

mj

Ψ̃mj
(x, J̃ , t)− εFPK

]

}

(39)

Similarly, actor residual error is obtained as follows

E
{

eu

}

= E

{

[

−W̃T
u φ̂u(x, m̂j)−WT

u φ̃u(x, m̃j)

− 1
2R

−1gT (x)∂xJ̃(x, m̃j)− εu

]

}

(40)

where, W̃J = WJ − ŴJ , W̃u = Wu − Ŵu and W̃mj
=

Wmj
−Ŵmj

. Next, applying the gradient descent algorithm,

the critic, mass, and actor update law is as follows:

E{
˙̂
WJ} = E{−αJ

ΨJ(x, m̂j)e
T
HJB

1 + ∥ΨJ(x, m̂j)∥2
} (41)

E{
˙̂
Wmj

} = E{−αmj

Ψmj
(x, Ĵ , t)eTFPK

1 + ∥Ψmj
(x, Ĵ , t)∥2

} (42)

E{
˙̂
Wu} = E{−αu

φu(x, m̂j)e
T
u

1 + ∥φu(x, m̂j)∥2
} (43)

where αJ , αmj
and αu are the learning rates.

Lemma 1: There exists optimal control policy u for the

stochastic system dynamic equation given in (4)

E{eT [fa(e(t)) + ga(e(t))u(t) +
σdω

dt
]} f −γE{∥e∥2}

(44)

Theorem 2: The critic, mass, and actor NNs’ weights are

updated by (41)-(43), with the learning rates αJ , αmj
and αu

are positive. Then, E{W̃J}, E{W̃mj
}, E{W̃u} and E{e} are

all UUB. Moreover, E{W̃J}, E{W̃mj
}, E{W̃u} and E{e}

are asymptotically stable with zero reconstruction error [8].

Proof: Omitted due to page limitation.

IV. SIMULATION RESULTS

In this section, the LS-UAV system is employed to show

the efficiency of the Imb-MFG theory and multi-ACM algo-

rithm. Initially, the system has been populated with a total

of 1200 UAVs. The primary goal for each agent within this

system is to collaboratively attain a final mixture distribution

constraint. This kind of shape formation in the context of

LS-MAS can prove to be crucial, especially in battlefield

(a) t = 0s (b) t = 20s

(c) t = 45s (d) t = 60s

Fig. 2: Large-scale UAVs positions over a period of time (a)

t = 0s (b) t = 20s (C) t = 45s (d) t = 60s Different colors

represent different groups.

scenarios, as it enables efficient capture of evaded UAVs. Let

the initial states of the agents be generated using the normal

distribution: N (µ = [4.5 7],Σ =

[

1 0.9
0.9 3

]

). Also, the

dynamic of each agent:

f(x) =

[

−x1 +
1
2x

2
2

−0.4x2
2

]

, g(x) =

[

1
2

]

with x =
[

x1 x2

]T
is the state. Here, each agent doesn’t

possess knowledge of the desired mixture distribution before

embarking on the mission. Here, the final distribution is

a Gaussian mixture-PDF defined in (2) as md(x; θd) =
∑N

j=1 wd,jmd,j(x; θd,j). Here N is the number of Gaussian

components and md,j(x; θd,j) = 1

(2π)
n
2 |Σd,j |

1
2

exp(− 1
2 (x −

µd,j)
TΣ−1

d,j(x− µd,j)). The tuning gain is defined as αw =

1 × 10−3, αµ = 1.7 × ×10−4 and αΣ = 1 × 10−4.

Then, the PDF function estimation error threshold is given

as δem = 1 × 10−5. A total of 305 iterations have been

performed. Then, the estimated parameters of the desired

mixture-PDF are obtained. The weights of the mixture are

ŵd,1 = 0.495, ŵd,2 = 0.3025, ŵd,3 = 0.2025, with the

cluster number N = 3. Also, the mean and covariance of the

mixture PDF are estimated as µ̂1 =
[

13.4256 9.5846
]T

,

µ̂2 =
[

15.9451 10.8812
]T

, µ̂3 =
[

14.0557 12.4397
]T

,

Σ̂1 =

[

1.1956 0.334
0.334 0.7661

]

, Σ̂2 =

[

0.7845 0.1826
0.1826 1.3426

]

and

Σ̂3 =

[

0.9882 0.2105
0.2105 1.2259

]

. Then a constrained K-means

clustering algorithm is employed to decompose the LS-MAS.

To determine the minimum number of agents for 3 clusters,

we utilize the estimated weight parameters, resulting in mini-
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(a) PDF t = 0s (b) Groups PDF t = 20s (c) PDF, t = 45s (d) PDF, t = 60s

Fig. 3: PDF decomposition of large-scale UAVs in 3-D view. (a) The initial PDF distribution at t = 0s. (b) The decomposed

PDFs (c) The mixture PDF at time t = 45s. (d) The final mixture-PDF of UAVs at time t = 60s.

mum numbers of agents as follows: p1 = 596, p2 = 363, and

p3 = 241. Next, we assign agents to clusters using equations

(34) and (35). The initial distributions for the decomposed

groups, which are provided to their respective group of

agents, are as follows: Group 1: N (µ = [2 6.2],Σ =
[

1 0.1
0.1 1

]

), Group 2: N (µ = [7.8 6],Σ =

[

1 0.1
0.1 1

]

),

Group 3: N (µ = [6 12.5],Σ =

[

1 0.1
0.1 1

]

). The learning

rates of the Multi-ACM NNs are selected as αJ = 2×10−5,

αu = 2 × 10−4, αmj
= 2 × 10−3. Also, the thresholds

of the HJB, FPK and actor residual error are selected as

δHJB = 1×10−5, δFPK = 1×10−3 and δu = 1×10−2. Figure

2 shows the positions of UAVs evolving over time. The initial

position of the 1200 UAVs is depicted in figure 2(a). Then,

the position of UAVs is demonstrated after the decomposition

in figure 2(b). Figure 2(c) shows the position of the UAVs

Fig. 4: Final PDF estimation error

at time t = 45s. Finally, at the end of the simulation at

t = 60s, the UAVs in each group successfully reach a

position that satisfies the ε-Nash equilibrium by solving the

HJB and FPK equations. This allows them to achieve the

intended final arbitrary PDF. Also, we have plotted the PDF

of agents at various time intervals in Figure 3. In Figure

3(a), the initial PDF is presented. The resulting PDFs of

the decomposed groups are displayed in Figure 3(b). Then

figure 3(c) shows the PDF of all UAVs at time t = 45s. The

LS-UAVs achieve the desired final mixture-PDF constraint

with time progress. The final PDF of the UAVs is shown in

3(d). Now, the final mixture PDF percentage estimation error

is shown in figure 4. The error is calculated using equation,

Error1 = md(x;θd)−m̂d(x;θd)
md(x;θd)

×100. From this figure, it is clear

that the error of the PDF function approximation converges

to zero after a certain time period.

V. CONCLUSION

This study presented a novel distributed optimization

algorithm for LS-MAS with a fixed final PDF constraint

in uncertain environments. This algorithm incorporated an

MFG theory to address the computational and communica-

tion complexities associated with LS-MAS. It also tackles

the limitations of MFG theory, which sacrifices optimality

and struggles to achieve an arbitrary final PDF constraint.

The developed algorithm includes a novel Imb-MFG theory

along with PDF decomposition and distributed reinforcement

learning. Particularly, an induction-based PDF parameter

estimation is designed and a constrained K-means clustering

algorithm is applied to decompose the LS-MAS into multiple

groups, aiming to achieve the desired final arbitrary PDF

constraint. Moreover, a Multi-ACM learning algorithm is de-

signed to solve the Imb-MFG and find the optimal solution.
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