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Robust Barrier-Certified Safe Learning-based Adaptive Control for
Multi-Agent Systems in Presence of Uncertain Environments

Shawon Dey and Hao Xu

Abstract— This paper develops a decentralized safe learning-
based adaptive control for multi-agent systems operating in
uncertain environments. Due to the fact that the safe set of the
local agent depends on the other agents’ states, the uncertainty
of these external systems leads to an uncertain safe set. As
a result, the safe control design of the local agent system
in a multi-agent setting becomes intractable. To address this
challenge, a neural network (NN) based adaptive observer is
developed to estimate the state of the unknown external agents.
Based on the state estimation of external agents, an adaptive
interplay control barrier function (AI-CBF) is formulated. The
AI-CBF is designed by considering both the local agent’s state
and the NN-based estimated states of external agents. Notably,
the limitation of forward invariance for the approximated safe
set without guaranteeing the same for the actual safe set is
acknowledged in AI-CBF design. The AI-CBF incorporates
the bounds on state estimation errors of external agents to
guarantee the strict safety requirements of the local agent while
learning external agent dynamics. Then, a control framework is
formulated using a quadratic programming (QP) method that
integrates the safety and stability of the system.

I. INTRODUCTION

Ensuring safety stands as a paramount consideration in
real-world control design especially for automated sys-
tems such as unmanned aerial vehicles (UAVs) [1], [2]
and autonomous ground vehicles [3]. With the potential
risks associated with these technologies, it becomes crucial
to emphasize the development of robust safety measures.
Since the safety concept has been introduced to real-time
system design in [4], a significant body of research has
been conducted in the fields of safe control [5] and safe
learning [6], [7] systems. The certification process in safety
relies on the robust positive control invariant safe sets. Two
distinct approaches for state constraint set certification are
the Control Barrier Function (CBF) [8] and the Hamilton-
Jacobi reachability [9] analysis. The CBF-based method [10]
utilizes a CBF that enforces constraints on the behavior
of the system. This CBF approach is successfully adopted
in various applications, such as collision avoidance [11],
safe lane change maneuvers [12], adaptive cruise control
[13], and so on. Most of these existing techniques rely on
precise agent state information to guarantee safety. However,
implementing CBF to ensure the forward invariance of a
safe set becomes challenging when uncertainty exists in
the environment. Specifically, when a local agent shares its
environment with other unknown agents, achieving safety for
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the local agent becomes challenging due to the environment
uncertainty associated with the safe set. A recent study by
Marvi et al. [10] proposed a safe control design for systems
operating in shared environments. They designed a control
strategy to ensure the forward invariance of the intersection
of the actual safe set and the approximated safe set. The
actual safe set is formed by using the external agents’ states.
However, in practice, the external agents’ states cannot be
measured directly and only the system’s input and output
are measurable. Lack of full state information on external
systems, achieving the intersection of the actual and approx-
imated safe set is very difficult and even impossible. This
assumption of the actual safe set may violate the safety of
the local agent when the exact full state information of the
external agents is not available. In this paper, a novel neural
network-based adaptive observer is designed to estimate
external agents’ states and further used for generating safety
sets for local agents. However, the external agents’ systems
are unknown and uncertain. So the known model-based
observer design can not be directly implemented in this
system. This problem has been addressed in [14] which
combined observer design with neural network-based system
identification. This study used a static approximation of the
gradient by assuming the system state to be constant and
remain unchanged over time. However, this presumption
lacks practicality and efficiency in practice. In the real world,
external agents’ states are usually time-varying and the local
agent has no authority over these external agents’ actions,
i.e. control inputs. To address these issues, an online neural
network (NN) based adaptive observer has been designed
to learn the unknown dynamics as well as states of external
agents. A modified objective function for the gradient descent
weight update mechanism is designed while addressing the
limitation of static gradient approximation. Additionally, a
mathematical proof of the stability of the observer-based
identification of the external system is provided. Then, the
existing control barrier function is reformulated using the
local agents’ system state and observed external system
states. Using the reformulated adaptive interplay control
barrier function (AI-CBF), the safety criteria are designed as
a function based on the local agents’ own state and also the
state of the external agents obtained from the observer. As the
actual safe set remains unknown at the initial learning stage,
and the local agent relies solely on the approximated safe
set, an error bound is introduced for the estimated external
agent state. This error bound is then incorporated in the Al-
CBF to avoid the violation of strict safety and ensure the
learning is safe. Later, the estimated external agents’ states
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will converge to actual states along with the convergence of
learning. Moreover, the approximated safe set can gradually
converge toward the actual safe set. The contributions are:

o A decentralized safe learning-based control is devel-
oped for local agents navigating in an unknown multi-
agent shared environment. The developed control design
incorporates both the local agent and observer-based
external agent estimated states. The developed method
ensures robust safety using AI-CBF while learning the
external system.

o A novel multi-NN-based adaptive observer is designed
to estimate the state of the unknown external agents.

II. PROBLEM FORMULATION AND BACKGROUND

Consider a nonlinear affine system of local agent A in
multi-agent systems given by the following dynamics

#(t) = f(2(t)) + g(a(t))u(t) (D

where x(t) € R™ is the state and u(t) € R™ is the
control input of the agent. Also, f : R® — R" and
g : R™ — R™ " are the intrinsic dynamics of the system.
It is assumed that f(0) = 0 and f(x) 4 g(z)u is bounded
by the Lipschitz constant. The objective of the agent A is to
reach a predefined destination safely by avoiding collision
in a multi-agent environment. The dynamic of an external
agent ¢ is:

Zl(t) = fa(zi(t)aui)
yi(t) = Cz(1) )

where z;(t) € R™ is the state and y;(t) € RP is the output
and u; is the control input of the external agent i. Also, f,
is an unknown nonlinear function that captures the effect of
an external agent. It is assumed that the external multi-agent
systems are observable. The dynamic of the external agent:

vi(t) = Cz(1) 3)

with, F(z;(t),u;) = fo(2i(t),u;) — Az;(t) and A represents
Hurwitz matrix. Also, x4 represents the desired destination
that the agent is required to achieve. Then the error can be
defined as e = x — x4 with the error dynamic given as:

é= fa(e> + ga(e)u 4)

where f,(e) = f(e+xq) and g, (e) = g(e+x4). The agent’s
safety cannot be solely determined by its own control inputs
and characteristics but also relies on the interplay with other
external systems in an uncertain multi-agent environment.
Thus, to maintain the safety of local agents, it is needed to
consider both local agent’s behavior as well as interaction
with other agents. However, in real-world scenarios, the
states of the external agents are not available while only the
outputs of the external systems are measurable. Moreover,
the dynamics of the external systems are also unknown.
Therefore, the objective of this research is to ensure the
safety and stability of the agent A in a shared multi-agent
environment where the states of the external agents are not

directly measurable and the dynamics of these agents are
unknown. The objectives are:

1) Design a feedback controller for the agent A in a
decentralized manner, which guarantees the trajectory of the
agent stays inside a safe set in the multi-agent environment
while achieving a desired destination x4 that satisfies

hi(x(t),zi(t)) > 0 for ¢ > 0 (5)

with h;(z(t), z;(t)) being a continuously differentiable func-
tion. The safe set for the agent A is defined as the intersection
of the sets associated with all other external agents, i.e.,

S=5nNn8 ... NSN (6)

where N is the total number of external agents in the
environment.
2) Design a multiple NN-based adaptive observer to estimate
the state of all the other external agents to guarantee the
safety of local agent A.
3) Guaranteeing the stability of local agent A and the
observer-based external agent’s state estimation.

Before proceeding, a concise introduction to the control
barrier function (CBF) is provided.
Control Barrier Function (CBF): The safety framework [8]
is characterized by the invariance of a set, known as the
actual safe set. This set, denoted as S, is defined as a super
level set of a smooth function h : X C R™ — R. Then, for a
given dynamical system & = f(x) + g(z)u, the safe set can
be defined as:

S={xe X CR":h(z) >0},
0S8 ={x € X CR": h(z) = 0},

Int(S) = {x € X CR" : h(x) > 0}.

Here, OS represents the boundary and Int(S) denotes the
interior of the set S. Now, h can be referred to as a control
barrier function if there exists an extended class K, function
« such that the given dynamical system satisfies:

igg[th(x) + Lyh(z)u] > —a(h(x)) (7)

for all z € X. where Ly = %f(x) and L, = %g(m) are
Lie derivatives of h(x) along f and g, respectively. Then,
the extended /C, function can be defined as follows:
Definition 1: A function [8] o : R — R is a extended class
K. function that is strictly increasing and «(0) = 0.

Then, the set of control inputs that satisfy (7) and render
S safe:

Kot ={ueU: Lih(z)+ Lgh(z)u+ a(h(z)) > 0} (8)

III. NEURAL NETWORK BASED ADAPTIVE OBSERVER
WITH ADAPTIVE INTERPLAY CONTROL BARRIER
FUNCTION DESIGN

In this section, an adaptation has been introduced to the
CBF within the context of a shared environment comprising
multiple agents. These agents possess unknown dynamics,
and their states are not accessible for direct online measure-
ment. The barrier function is now formulated as a function

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 25,2025 at 18:22:54 UTC from IEEE Xplore. Restrictions apply.



of both x and z;, where 7 is the index for the external
agent. Specifically, an NN-based adaptive observer has been
developed to estimate the states of the external agents first.
Then, employing the estimated states of external agents from
the observer, the CBF is reformulated to AI-CBF using both
the state = of agent .4 and estimated state 2; of any external
agent ¢. In this subsection, a multiple NN-based observer is
designed to estimate the states of external agents. Here, NN
are used to identify the unknown dynamics of the external
agents, and observers are used along with NNs to estimate
the states of the external agents. The observer model can be
described as:

Zi(t) = A% (1) + F(2(t), wi) + H(yi(t) — CZi(t))

7:(t) = Cz;(¢) 9)
where Z; and ¢j; represent the state and output of the observer
for external agent 7. The selection of the observer gain H €
R™*P ensures A — HC' is a Hurwitz matrix. Please note that
the observability of pair (C, A) depends on the selection of
the matrix A. By selecting A properly, the existence of the
gain H is ensured. According to universal approximation
theory [15], the unknown function of the external agent is
represented as:

F(zi(t),u;) = W d(z) + 5 (10)

with W € R!*™ is the ideal weight of the NN and [ is hidden
layer neuron numbers. The activation function is bounded by
l¢(z:)]] < ¢ar and the ideal weight is bounded as ||| <
Whs. Now, the unknown function is approximated as

F(2(t),u;) = WEo(%) (11)

where W € R™™ is the estimated weight. Using the
unknown function estimation, the observer model can be
represented as

Zi(t) = Azi(t) + W (Z) + H(ys(t) — C4(t))
7i(t) = Cz;(t)
Then, the state and output estimation error of the observer
is defined as Z; = z; — 2; and y; = y; — ;. Next, the state
and output error dynamics is evaluated using Eq. (12) and
(10) as
él(t) = Z(t) — zl(t)
= (A—HO)%(t) + WEp(z:) — WE(Z) +e5  (13)
And, ;(t) = yi(t) — 9:(t) = CZ;(t). Then, the weight esti-
mation error is defined as W :~Wi — W, and thg activation
function approximation error is ¢(Z;) = ¢(z;) — ¢(Z;). Also,
A— HC = A,. The Eq. (13) can be rewritten as
Zi(t) = Aozi(t) + Who(zi) — WT(5) + WTd(%)
—WTh(%) + ey
= A () + WT(Z) + WTH(2) +¢5
Assumption I: The external system activation function ap-
proximation error is Lipschitz continuous implies the exis-

tence of the Lipschitz function Ly, that satisfies ||¢()] <
Lo ||zl

12)

(14)

In this section, a modified weight update law has been
designed to guarantee the stability of the NN-based observer.
Now. taking the first derivative of the approximated output
of the external agent:

7i(t) = Czi(t)
= CA(CTO) O g + CWT§(%) + CWTG(5) + Cey
(15)

where (CTC)~'CT = C7 is the pseudo-inverse of the
matrix C. The Eq. (15) can be rewritten as

Gi(t) — CACT g = CWTo(%) + OWTh(2) + Cey

(16)
Now, the objective function can be defined as
1, . - - -
i = 5i) = CACTG)T (Wilt) — CAC ) (A7)

The gradient descent-based update law is defined as follows:
O(yi(t) — CACTgi)
oW,

— aCH(5) [CWTd(z) + CWT (%) + Cef]”

Wi = —a(Gi(t) - CACHj)T
(18)

where « is the learning rate of the neural network. The
weight approximation error dynamic can be defined as:

W; = —aCh(2) [CWTd(Z) + CWTh(%) + Cey]”

19)

A. AI-CBF Design for Observer-Based State Estimation of
External Agents

The characterization of the safety framework necessitates
the positive invariance of a safe set. While the local agent is
operating within a shared environment, the safe set is defined
as the intersection of all sets associated with the different
external systems present in the environment. This approach
ensures that the local agent remains within the boundaries
of safety. However, as stated earlier, only the output of the
external agents states are available and the dynamics as well
as full state information of the external agents are unknown.
Since there is no accurate state information available for
the external agents, the actual safe set of agent A is not
available. Therefore, local agent A depends on the estimated
safe set for safe action on the environment. In this regard,
the control barrier function is reformulated to incorporate
the state of agent A and external agents. Besides that, a
state approximation error bound is considered for the worst-
case scenario to ensure strict safety even if the actual safe
set is not available to the local agent. In the initial stages
of the NN-based observer’s training, the estimation error 2
tends to be relatively large. Consequently, this leads to a
substantial bound on the approximation error, resulting in
a larger unsafe region for the local agent. However, while
the NN-based observer is well-trained, the approximation
error decreases significantly. Consequently, agents have more
flexibility and a larger safe maneuvering space as the unsafe
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region diminishes in size. Now, let the output measurement
error ¢; belong to a sector [16] that can be defined as

YEN? < N1l < Blz?

Here, Zz; is the state approximation error of the external agent
7. And 7y and (3 are real numbers that satisfies 5 > ~. Using
this sector-bounded condition, the upper bound of the state
approximation error can be defined as follows:

(20)

1207 < =gl

gl = < =gl ey
— Y Zill = —=1l¥i

v V4l

Now, for the given dynamical system of agent .4 in the Eq.
(1) and external agent dynamic in (2), the approximated safe

set associated with external agent ¢ can be defined as

R 1
S={x eR": hi(x, 2;, —||5;||) > 0},
{ ( ﬁHy ) >0}
R 1
oS = xeR”:hix,éi,— Ui :0,
{ ( WH?J ) =0}
A 1
Int(S) = {z € R™ : hi(z, 2, —||%:]|) > 0}.
\/>

The function h;(z, Z;, —= ||yz|| represents a smooth function
that incorporates both t e variables x and Z;. Please note that
Z; is the estimated state information of the external agent ¢
which is available to the agent A. Besides that, the bounded
error is incorporated to ensure strict safety of the agent A for
the observer-based external agent state estimation. Now, the
safe set for the agent A is derived by taking the intersection
of sets associated with all external agents in the shared
environment. Then, the approximated safe set of the agent
A is defined as:

S(x,é) = 31(56‘,21) QSQ(JZ,22) ﬂS’N(x,éN) (22)

where N is the total number of external systems. The
function h,(z, 2;, %Hgl”) is the adaptive interplay control
barrier function (AI-CBF). If there exists an extended class
Ko function o : R — R such that for given dynamical
system in (1) and (2), the following conditions hold:

1 1
sup L hz .T,éi, - = gi +L hi 1',7:'1‘7 - = gz u-+
suplL e, 5= 1)+ Lyl =)
1 1
Lrhi(x, 2, —||5:]])] > —ahi(z, 2, —=|7l) (23)
val VY

where Ly = %}; (), Ly = %’i g(z) and Lp = 8h’F( )
are Lie derivatives of hi(m,éz,%) along f, g and F,
respectively. Now, the set of control input that satisfies (23)
can be defined as:

1
L) + i, 2 =
\ﬁ” 1) + Lghi( N
1

yill) + ah yill) =
\ﬁ” 1) H )

Keor = {U clu: thi(JT,éi,

1il)u + Lrhi(z, 2, 2

0}
(24)

The safe set is defined here for both agent A and the
external agents’ systems. The establishment of the safe set is
intrinsically tied to the external system, wherein the learning

phase can only yield an approximate safe set. To ensure
safety for the agent A, the AI-CBF is formulated as a
function of both the local agent and external agents and
incorporates the worst-case scenario for the observer-based
state estimation of the external agents. The formulated Al-
CBF ensures the forward invariance of the approximated safe
set S.

IV. CONTROL FRAMEWORK

A control input needs to be designed to guarantee safety
and maintain the stability of the local system in a multi-agent
environment. This requirement highlights the importance of
integrating a Lyapunov function V.(x,x4). The Lyapunov
function derivative constraint and AI-CBF constraint are
unified to achieve robust safety and stability performance.
Then, a nominal controller @ for local agent A is given
to guide it to the desired destination. Next, a quadratic
programming (QP) [17] based method has been adopted.
Building upon prior research efforts [8], [10], this QP-based
controller unifies stability and safety constraints within an
optimization framework. By leveraging quadratic program-
ming, the controller facilitates continuous updates of the
control actions.

u(zx, 2;) = argmin

1
Sl =l + ps?
(u,6)

1 1

—|will) + Lghi(x, 2, —=||7: ] ) u+
\ﬁ” ill) + Lghi( \ﬁ” 1)

1 1

—|w:ll) + ahi(z, 25, —||3:]]) = 0
WH ) ( \ﬁ” )

(25)

S.t. thi(:Z?, Zi,
LFhl(fE, éiv

Vo(z,2q) <0

where J serves as a relaxation variable to guarantee quadratic
program solvability and p represents a coefficient.

Lemma 1: There exists a control policy u for the dynamic
equation given in (4) to guarantee the systems stability.

e"{ falel®)) + gale(®))u} < —le]?

Theorem 1: The NN weight is updated by the equation
(18) and the learning rate « is a positive constant. Then,
NN weight approximation error W, external agent state
estimation error Z;, and the local agent A regulation error ¢
are all ultimately uniformly bounded (UUB). Moreover, W,
Zi, and e are asymptotically stable when the reconstruction
error [18] and relaxation variable ¢ is zero.

Proof: Consider the Lyapunov candidate function

Veys = Ve + Vs 27)

with V. = Lte{e” (t)e(t)} and Vs = 327 Pz + Lee{ W W, }.
Also, settling the relaxation variable § to be equal to zero,
the Eq. (27) can be written as:

1
itr{eT(t)e(t)} +
Taking the first derivative of Eq (27)

Vays = tr{eT (£)é(t)} +

(26)

1 1o
Veys = 55? P2i+§tr{WiTWZ—} (28)

1. 1 e
55} PZi+ 2Pz + a{WEW;
(29)
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Substituting Lemma 1 and Eq. (29) is as:

. 1 2 . 1
Vays < —§v||e||2 + ;sﬁLi‘illzill2 - [gkmm(Q) — 1P

1 R STRTC S G g P
Witk = 55 IPI? = 5 lbl* = SWE L] 17 - [a
1 ~
IC1Z a1 = @IC1"G3s — 53, ] IWill* + lles |
(30)
with g; being the Lipschitz constant of the function g,. Also,
there exists a Lipschitz constant L,, that satisfy the inequality
||, Z;)|| < Lyl|Zi||- Now, the Eq. (30) can be rewritten as:
: 1 . -
Vays < =57llell® = mizell 5ll* = miwelWill* + [le |
(€2))
with,

1 2 1
iAmin(Q) - gg?Li - ||P||WML¢ - EHID”2

Ri,ze =
1 1
- §||p\|2 - §WJ%JL§>

1
Kiwe = al|ClIP[learll = o*[[CII* 63 — Sa?dhlles]®

Now the first derivative of the Lyapunov function Vsys is
less than zero outside a compact set if

2 1
el >/=lesll? 5 2] > ik
el ‘/7” AP A ”m,zc” 7l
~ 1 5
[Will > 4 | ——llegl
Ri,We

This completes the proof.

V. SIMULATION RESULT

In this section, we implement the developed algorithm into
a multi-agent system to illustrate the secure maneuvering
of a UAV within a shared airspace environment, alongside
other external UAVs. There are a total of two external UAVs
in the system. Let the initial state of the local UAV be
selected as = [9 3 0 0]7 with its position and
velocity. The predefined destination point of the UAV is
x = [122 9 0 0]7. Moreover, the initial state of the
UAV-1 and UAV-2 is selected as z; = [10.2 4 0 0]7 and
2o = [8.5 6 0 0]T. The intrinsic dynamic function of the
local UAV is defined as:

-1+ %x%
—0.423

ralcos(2z1 +1)2 — 1] — a4
r4lcos(2z3 +1)% — 1] — 23

gz)=1[0 0 cos(2x1 +1) cos(2x3+ 1)]T

Moreover, the dynamic of the UAV-1 and UAV-2 is chosen as
[19]. For the design of an NN-based observer, it is essential
that the square matrix A be a Hurwitz matrix. The selection
of matrices A ensures that both A and A — HC have eigen-
values with strictly negative real parts, making them Hurwitz
matrices. The activation function of each NN is selected as

fz) =

10 10
8 8
5 5 \
g © 3 6
o o
> >
4 * 4
2 2
8 10 12 14 8 10 12 14
X Position X Position
(@) t=0s (b) t =3s
10 10
8 8 ()
c c
) /\ S \/\
? 6 3 6
o o
o o
> >
4 4
2 2
8 10 12 14 8 10 12 14
X Position X Position
©t="7s (d) t=10s

Fig. 1: The trajectory of all UAVs in the environment. The
red curve represents local UAV. Also, blue and green curves
are the trajectories of external UAVs in the environment.

a hyperbolic tangent function, i.e. tanh(.). Also, the learning
rate o of the NN is selected as 1 x 10~%. Next, the AI-CBF
is defined as h;(z, z;) = ||z — ZZ”Z? — \%HZLH — T'min- Please
note that the second term % ||7;|| is used to incorporate the
estimation error bound of the external agents into the CBF
design with v = 1.5. Here, rpi, = 0.2 represents the radius
of a closed circle. The relaxation factor coefficient is selected
as p = 0.5. The differential equations are solved using
MATLAB ode45 and QP is solved using MATLAB quadprog
function. In Figure 1, we illustrate the safe maneuvering of
the local agent in a shared environment. We have plotted

1

[~ Estimated Position|

j=——True Position 4

= Estimated Position|
True Position

Y Position
» o 2 ~ © ©
1
4
Y Position
>

w

©

10 12 14 8 9 10 11 12 13 14
X Position X Position

(a) State estimation of external (b) Same final destination for
UAVs local UAV and UAV-2.

Fig. 2: This figure illustrates both the estimated and actual
positions of external agents, as well as a scenario demon-
strating how the local UAV ensures strict safety.

the trajectories of the UAVs in Figure 1 at various time
points. It’s important to note that the points at which the red
curve (local UAV) intersects with the blue and green curves
(external UAVs) do not represent simultaneous collisions
but occur at different times. In Figure 2(a), we present the
state estimation of external agents using the developed neural
network (NN) adaptive observer. The true positions of UAV-
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1 and UAV-2 are represented by the blue and green curves,
while the estimated positions are shown in orange and brown.
Figure 2(a) effectively illustrates that as time progresses
and the neural network observer is well-trained, the state
estimation error decreases and approaches zero. In Figure
2(b), a scenario is presented to illustrate how the local UAV
ensures strict safety. To prioritize safety, the local UAV places
a strong emphasis on collision avoidance with UAV-2, even
at the expense of reaching its desired destination. Figure 2(b)
visually depicts the local UAV altering its course at the last
moment to maintain a safe distance from UAV-2.

N
o

Function h1
>

o

-
o
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-
-
-
-
-
-
-
-

Function h2
3]

o
3
3
3
3
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=}
-
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~
©
©

10
Time

Fig. 3: AI-CBF for UAV-1 and UAV-2.

The adaptive interplay control barrier function (AI-CBF)
for UAV-1 and UAV-2 is shown in Figure 3. In this figure,
both barrier functions remain positive indicating that the lo-
cal UAV always ensures safety. Initially, after the deployment
of UAVs, the local UAV approaches UAV-1, causing its states
to approach the boundary of the safe set. At that period of
time, the value of the function is close to zero. Subsequently,
the AI-CBF h; increases as the primary UAV moves away
from UAV-1. Similarly, the AI-CBF hy experiences two
decreases at different time points when UAV-2 comes closer
to the local UAV on two occasions.

VI. CONCLUSION

This paper has developed a novel approach for safe control
for local agents in a challenging multi-agent environment
where the dynamics of external agents are both uncertain and
uncontrollable, and accurate state information is unavailable.
The developed method utilizes multiple neural network-
based adaptive observers to estimate the states of these
external agents. Through the integration of state information
from both the external and local agents, an adaptive interplay
control barrier function (AI-CBF) has been designed to
ensure the local agent’s safety. Notably, the AI-CBF guar-
antees the strict safety of the local agent by maintaining the
forward invariance of an approximated safe set. Importantly,
this algorithm has been proven to ensure system safety
without the need for precise knowledge of the actual safe
set. This AI-CBF along with the Lyapunov function is
used for safe control development, which guides the local
agent to a predefined destination point while guaranteeing

safety and stability. The stability of the neural network-based
observer design and the overall system stability have been
demonstrated through Lyapunov stability analyses. Finally,
numerical simulations have been provided to demonstrate the
effectiveness of the developed algorithm.
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