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Abstract— This paper develops a decentralized safe learning-
based adaptive control for multi-agent systems operating in
uncertain environments. Due to the fact that the safe set of the
local agent depends on the other agents’ states, the uncertainty
of these external systems leads to an uncertain safe set. As
a result, the safe control design of the local agent system
in a multi-agent setting becomes intractable. To address this
challenge, a neural network (NN) based adaptive observer is
developed to estimate the state of the unknown external agents.
Based on the state estimation of external agents, an adaptive
interplay control barrier function (AI-CBF) is formulated. The
AI-CBF is designed by considering both the local agent’s state
and the NN-based estimated states of external agents. Notably,
the limitation of forward invariance for the approximated safe
set without guaranteeing the same for the actual safe set is
acknowledged in AI-CBF design. The AI-CBF incorporates
the bounds on state estimation errors of external agents to
guarantee the strict safety requirements of the local agent while
learning external agent dynamics. Then, a control framework is
formulated using a quadratic programming (QP) method that
integrates the safety and stability of the system.

I. INTRODUCTION

Ensuring safety stands as a paramount consideration in

real-world control design especially for automated sys-

tems such as unmanned aerial vehicles (UAVs) [1], [2]

and autonomous ground vehicles [3]. With the potential

risks associated with these technologies, it becomes crucial

to emphasize the development of robust safety measures.

Since the safety concept has been introduced to real-time

system design in [4], a significant body of research has

been conducted in the fields of safe control [5] and safe

learning [6], [7] systems. The certification process in safety

relies on the robust positive control invariant safe sets. Two

distinct approaches for state constraint set certification are

the Control Barrier Function (CBF) [8] and the Hamilton-

Jacobi reachability [9] analysis. The CBF-based method [10]

utilizes a CBF that enforces constraints on the behavior

of the system. This CBF approach is successfully adopted

in various applications, such as collision avoidance [11],

safe lane change maneuvers [12], adaptive cruise control

[13], and so on. Most of these existing techniques rely on

precise agent state information to guarantee safety. However,

implementing CBF to ensure the forward invariance of a

safe set becomes challenging when uncertainty exists in

the environment. Specifically, when a local agent shares its

environment with other unknown agents, achieving safety for
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the local agent becomes challenging due to the environment

uncertainty associated with the safe set. A recent study by

Marvi et al. [10] proposed a safe control design for systems

operating in shared environments. They designed a control

strategy to ensure the forward invariance of the intersection

of the actual safe set and the approximated safe set. The

actual safe set is formed by using the external agents’ states.

However, in practice, the external agents’ states cannot be

measured directly and only the system’s input and output

are measurable. Lack of full state information on external

systems, achieving the intersection of the actual and approx-

imated safe set is very difficult and even impossible. This

assumption of the actual safe set may violate the safety of

the local agent when the exact full state information of the

external agents is not available. In this paper, a novel neural

network-based adaptive observer is designed to estimate

external agents’ states and further used for generating safety

sets for local agents. However, the external agents’ systems

are unknown and uncertain. So the known model-based

observer design can not be directly implemented in this

system. This problem has been addressed in [14] which

combined observer design with neural network-based system

identification. This study used a static approximation of the

gradient by assuming the system state to be constant and

remain unchanged over time. However, this presumption

lacks practicality and efficiency in practice. In the real world,

external agents’ states are usually time-varying and the local

agent has no authority over these external agents’ actions,

i.e. control inputs. To address these issues, an online neural

network (NN) based adaptive observer has been designed

to learn the unknown dynamics as well as states of external

agents. A modified objective function for the gradient descent

weight update mechanism is designed while addressing the

limitation of static gradient approximation. Additionally, a

mathematical proof of the stability of the observer-based

identification of the external system is provided. Then, the

existing control barrier function is reformulated using the

local agents’ system state and observed external system

states. Using the reformulated adaptive interplay control

barrier function (AI-CBF), the safety criteria are designed as

a function based on the local agents’ own state and also the

state of the external agents obtained from the observer. As the

actual safe set remains unknown at the initial learning stage,

and the local agent relies solely on the approximated safe

set, an error bound is introduced for the estimated external

agent state. This error bound is then incorporated in the AI-

CBF to avoid the violation of strict safety and ensure the

learning is safe. Later, the estimated external agents’ states
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will converge to actual states along with the convergence of

learning. Moreover, the approximated safe set can gradually

converge toward the actual safe set. The contributions are:

• A decentralized safe learning-based control is devel-

oped for local agents navigating in an unknown multi-

agent shared environment. The developed control design

incorporates both the local agent and observer-based

external agent estimated states. The developed method

ensures robust safety using AI-CBF while learning the

external system.

• A novel multi-NN-based adaptive observer is designed

to estimate the state of the unknown external agents.

II. PROBLEM FORMULATION AND BACKGROUND

Consider a nonlinear affine system of local agent A in

multi-agent systems given by the following dynamics

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x(t) ∈ R
n is the state and u(t) ∈ R

m is the

control input of the agent. Also, f : R
n → R

n and

g : Rn → R
n×m are the intrinsic dynamics of the system.

It is assumed that f(0) = 0 and f(x) + g(x)u is bounded

by the Lipschitz constant. The objective of the agent A is to

reach a predefined destination safely by avoiding collision

in a multi-agent environment. The dynamic of an external

agent i is:

żi(t) = fa(zi(t), ui)

yi(t) = Czi(t) (2)

where zi(t) ∈ R
n is the state and yi(t) ∈ R

p is the output

and ui is the control input of the external agent i. Also, fa
is an unknown nonlinear function that captures the effect of

an external agent. It is assumed that the external multi-agent

systems are observable. The dynamic of the external agent:

żi(t) = Azi(t) + F (zi(t), ui)

yi(t) = Czi(t) (3)

with, F (zi(t), ui) = fa(zi(t), ui)−Azi(t) and A represents

Hurwitz matrix. Also, xd represents the desired destination

that the agent is required to achieve. Then the error can be

defined as e = x− xd with the error dynamic given as:

ė = fa(e) + ga(e)u (4)

where fa(e) = f(e+xd) and ga(e) = g(e+xd). The agent’s

safety cannot be solely determined by its own control inputs

and characteristics but also relies on the interplay with other

external systems in an uncertain multi-agent environment.

Thus, to maintain the safety of local agents, it is needed to

consider both local agent’s behavior as well as interaction

with other agents. However, in real-world scenarios, the

states of the external agents are not available while only the

outputs of the external systems are measurable. Moreover,

the dynamics of the external systems are also unknown.

Therefore, the objective of this research is to ensure the

safety and stability of the agent A in a shared multi-agent

environment where the states of the external agents are not

directly measurable and the dynamics of these agents are

unknown. The objectives are:

1) Design a feedback controller for the agent A in a

decentralized manner, which guarantees the trajectory of the

agent stays inside a safe set in the multi-agent environment

while achieving a desired destination xd that satisfies

hi(x(t), zi(t)) g 0 for t g 0 (5)

with hi(x(t), zi(t)) being a continuously differentiable func-

tion. The safe set for the agent A is defined as the intersection

of the sets associated with all other external agents, i.e.,

S = S1 ∩ S2 ... ∩ SN (6)

where N is the total number of external agents in the

environment.

2) Design a multiple NN-based adaptive observer to estimate

the state of all the other external agents to guarantee the

safety of local agent A.

3) Guaranteeing the stability of local agent A and the

observer-based external agent’s state estimation.

Before proceeding, a concise introduction to the control

barrier function (CBF) is provided.

Control Barrier Function (CBF): The safety framework [8]

is characterized by the invariance of a set, known as the

actual safe set. This set, denoted as S , is defined as a super

level set of a smooth function h : X ¢ R
n → R. Then, for a

given dynamical system ẋ = f(x) + g(x)u, the safe set can

be defined as:

S = {x ∈ X ¢ R
n : h(x) g 0},

∂S = {x ∈ X ¢ R
n : h(x) = 0},

Int(S) = {x ∈ X ¢ R
n : h(x) > 0}.

Here, ∂S represents the boundary and Int(S) denotes the

interior of the set S . Now, h can be referred to as a control

barrier function if there exists an extended class Kα function

α such that the given dynamical system satisfies:

sup
u∈U

[Lfh(x) + Lgh(x)u] g −α(h(x)) (7)

for all x ∈ X . where Lf = ∂h
∂x

f(x) and Lg = ∂h
∂x

g(x) are

Lie derivatives of h(x) along f and g, respectively. Then,

the extended Kα function can be defined as follows:

Definition 1: A function [8] α : R → R is a extended class

Kα function that is strictly increasing and α(0) = 0.

Then, the set of control inputs that satisfy (7) and render

S safe:

Kcbf = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) g 0} (8)

III. NEURAL NETWORK BASED ADAPTIVE OBSERVER

WITH ADAPTIVE INTERPLAY CONTROL BARRIER

FUNCTION DESIGN

In this section, an adaptation has been introduced to the

CBF within the context of a shared environment comprising

multiple agents. These agents possess unknown dynamics,

and their states are not accessible for direct online measure-

ment. The barrier function is now formulated as a function
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of both x and zi, where i is the index for the external

agent. Specifically, an NN-based adaptive observer has been

developed to estimate the states of the external agents first.

Then, employing the estimated states of external agents from

the observer, the CBF is reformulated to AI-CBF using both

the state x of agent A and estimated state ẑi of any external

agent i. In this subsection, a multiple NN-based observer is

designed to estimate the states of external agents. Here, NN

are used to identify the unknown dynamics of the external

agents, and observers are used along with NNs to estimate

the states of the external agents. The observer model can be

described as:

˙̂zi(t) = Aẑi(t) + F (ẑi(t), ui) +H(yi(t)− Cẑi(t))

ŷi(t) = Cẑi(t) (9)

where ẑi and ŷi represent the state and output of the observer

for external agent i. The selection of the observer gain H ∈
R

n×p ensures A−HC is a Hurwitz matrix. Please note that

the observability of pair (C,A) depends on the selection of

the matrix A. By selecting A properly, the existence of the

gain H is ensured. According to universal approximation

theory [15], the unknown function of the external agent is

represented as:

F (zi(t), ui) = WT
i φ(zi) + εf (10)

with W ∈ R
l×n is the ideal weight of the NN and l is hidden

layer neuron numbers. The activation function is bounded by

∥φ(zi)∥ f φM and the ideal weight is bounded as ∥W∥ f
WM . Now, the unknown function is approximated as

F̂ (ẑi(t), ui) = ŴT
i φ̂(ẑi) (11)

where Ŵ ∈ R
l×n is the estimated weight. Using the

unknown function estimation, the observer model can be

represented as

˙̂zi(t) = Aẑi(t) + ŴT
i φ̂(ẑi) +H(yi(t)− Cẑi(t))

ŷi(t) = Cẑi(t) (12)

Then, the state and output estimation error of the observer

is defined as z̃i = zi − ẑi and ỹi = yi − ŷi. Next, the state

and output error dynamics is evaluated using Eq. (12) and

(10) as

˙̃zi(t) = żi(t)− ˙̂zi(t)

= (A−HC)z̃i(t) +WT
i φ(zi)− ŴT

i φ̂(ẑi) + εf (13)

And, ỹi(t) = yi(t)− ŷi(t) = Cz̃i(t). Then, the weight esti-

mation error is defined as W̃i = Wi − Ŵi and the activation

function approximation error is φ̃(z̃i) = φ(zi)− φ̂(ẑi). Also,

A−HC = Ao. The Eq. (13) can be rewritten as

˙̃zi(t) = Aoz̃i(t) +WTφ(zi)−WT φ̂(ẑi) +WT φ̂(ẑi)

− ŴT φ̂(ẑi) + εf

= Aoz̃i(t) +WT φ̃(z̃i) + W̃T φ̂(ẑi) + εf (14)

Assumption 1: The external system activation function ap-

proximation error is Lipschitz continuous implies the exis-

tence of the Lipschitz function Lφ, that satisfies ∥φ̃(z̃i)∥ f
Lφ∥z̃i∥.

In this section, a modified weight update law has been

designed to guarantee the stability of the NN-based observer.

Now. taking the first derivative of the approximated output

of the external agent:

˙̃yi(t) = C ˙̃zi(t)

= CAo(C
TC)−1CT ỹi + CWT φ̃(z̃i) + CW̃T φ̂(ẑi) + Cεf

(15)

where (CTC)−1CT = C+ is the pseudo-inverse of the

matrix C. The Eq. (15) can be rewritten as

˙̃yi(t)− CAoC
+ỹi = CWT φ̃(z̃i) + CW̃T φ̂(ẑi) + Cεf

(16)

Now, the objective function can be defined as

Ji =
1

2
( ˙̃yi(t)− CAoC

+ỹi)
T ( ˙̃yi(t)− CAoC

+ỹi) (17)

The gradient descent-based update law is defined as follows:

˙̂
Wi = −α( ˙̃yi(t)− CAoC

+ỹi)
T ∂( ˙̃yi(t)− CAoC

+ỹi)

∂Ŵi

= αCφ̂(ẑi)
[

CWT φ̃(z̃i) + CW̃T φ̂(ẑi) + Cεf
]T

(18)

where α is the learning rate of the neural network. The

weight approximation error dynamic can be defined as:

˙̃
Wi = −αCφ̂(ẑi)

[

CWT φ̃(z̃i) + CW̃T φ̂(ẑi) + Cεf
]T

(19)

A. AI-CBF Design for Observer-Based State Estimation of

External Agents

The characterization of the safety framework necessitates

the positive invariance of a safe set. While the local agent is

operating within a shared environment, the safe set is defined

as the intersection of all sets associated with the different

external systems present in the environment. This approach

ensures that the local agent remains within the boundaries

of safety. However, as stated earlier, only the output of the

external agents states are available and the dynamics as well

as full state information of the external agents are unknown.

Since there is no accurate state information available for

the external agents, the actual safe set of agent A is not

available. Therefore, local agent A depends on the estimated

safe set for safe action on the environment. In this regard,

the control barrier function is reformulated to incorporate

the state of agent A and external agents. Besides that, a

state approximation error bound is considered for the worst-

case scenario to ensure strict safety even if the actual safe

set is not available to the local agent. In the initial stages

of the NN-based observer’s training, the estimation error z̃

tends to be relatively large. Consequently, this leads to a

substantial bound on the approximation error, resulting in

a larger unsafe region for the local agent. However, while

the NN-based observer is well-trained, the approximation

error decreases significantly. Consequently, agents have more

flexibility and a larger safe maneuvering space as the unsafe
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region diminishes in size. Now, let the output measurement

error ỹi belong to a sector [16] that can be defined as

γ∥z̃i∥2 f ∥ỹi∥2 f β∥z̃i∥2 (20)

Here, z̃i is the state approximation error of the external agent

i. And γ and β are real numbers that satisfies β g γ. Using

this sector-bounded condition, the upper bound of the state

approximation error can be defined as follows:

∥z̃i∥2 f 1

γ
∥ỹi∥2 =⇒ ∥z̃i∥ f 1√

γ
∥ỹi∥ (21)

Now, for the given dynamical system of agent A in the Eq.

(1) and external agent dynamic in (2), the approximated safe

set associated with external agent i can be defined as

Ŝ = {x ∈ R
n : hi(x, ẑi,

1√
γ
∥ỹi∥) g 0},

∂Ŝ = {x ∈ R
n : hi(x, ẑi,

1√
γ
∥ỹi∥) = 0},

Int(Ŝ) = {x ∈ R
n : hi(x, ẑi,

1√
γ
∥ỹi∥) > 0}.

The function hi(x, ẑi,
1√
γ
∥ỹi∥) represents a smooth function

that incorporates both the variables x and ẑi. Please note that

ẑi is the estimated state information of the external agent i

which is available to the agent A. Besides that, the bounded

error is incorporated to ensure strict safety of the agent A for

the observer-based external agent state estimation. Now, the

safe set for the agent A is derived by taking the intersection

of sets associated with all external agents in the shared

environment. Then, the approximated safe set of the agent

A is defined as:

Ŝ(x, ẑ) = Ŝ1(x, ẑ1) ∩ Ŝ2(x, ẑ2) ... ∩ ŜN (x, ẑN ) (22)

where N is the total number of external systems. The

function hi(x, ẑi,
1√
γ
∥ỹi∥) is the adaptive interplay control

barrier function (AI-CBF). If there exists an extended class

Kα function α : R → R such that for given dynamical

system in (1) and (2), the following conditions hold:

sup
u∈U

[Lfhi(x, ẑi,
1√
γ
∥ỹi∥) + Lghi(x, ẑi,

1√
γ
∥ỹi∥)u+

LFhi(x, ẑi,
1√
γ
∥ỹi∥)] g −αhi(x, ẑi,

1√
γ
∥ỹi∥) (23)

where Lf = ∂hi

∂x
f(x), Lg = ∂hi

∂x
g(x) and LF = ∂hi

∂ẑi
F (x)

are Lie derivatives of hi(x, ẑi,
1√
γ
) along f , g and F ,

respectively. Now, the set of control input that satisfies (23)

can be defined as:

Kcbf = {u ∈ U : Lfhi(x, ẑi,
1√
γ
∥ỹi∥) + Lghi(x, ẑi,

1√
γ

∥ỹi∥)u+ LFhi(x, ẑi,
1√
γ
∥ỹi∥) + αhi(x, ẑi

1√
γ
∥ỹi∥) g 0}

(24)

The safe set is defined here for both agent A and the

external agents’ systems. The establishment of the safe set is

intrinsically tied to the external system, wherein the learning

phase can only yield an approximate safe set. To ensure

safety for the agent A, the AI-CBF is formulated as a

function of both the local agent and external agents and

incorporates the worst-case scenario for the observer-based

state estimation of the external agents. The formulated AI-

CBF ensures the forward invariance of the approximated safe

set Ŝ .

IV. CONTROL FRAMEWORK

A control input needs to be designed to guarantee safety

and maintain the stability of the local system in a multi-agent

environment. This requirement highlights the importance of

integrating a Lyapunov function Ve(x, xd). The Lyapunov

function derivative constraint and AI-CBF constraint are

unified to achieve robust safety and stability performance.

Then, a nominal controller ū for local agent A is given

to guide it to the desired destination. Next, a quadratic

programming (QP) [17] based method has been adopted.

Building upon prior research efforts [8], [10], this QP-based

controller unifies stability and safety constraints within an

optimization framework. By leveraging quadratic program-

ming, the controller facilitates continuous updates of the

control actions.

u(x, ẑi) = argmin
(u,δ)

1

2
∥u− ū∥2 + pδ2

s.t. Lfhi(x, ẑi,
1√
γ
∥ỹi∥) + Lghi(x, ẑi,

1√
γ
∥ỹi∥)u+

LFhi(x, ẑi,
1√
γ
∥ỹi∥) + αhi(x, ẑi,

1√
γ
∥ỹi∥) g 0

V̇e(x, xd) f δ (25)

where δ serves as a relaxation variable to guarantee quadratic

program solvability and p represents a coefficient.

Lemma 1: There exists a control policy u for the dynamic

equation given in (4) to guarantee the systems stability.

eT
{

fa(e(t)) + ga(e(t))u
}

f −γ∥e∥2 (26)

Theorem 1: The NN weight is updated by the equation

(18) and the learning rate α is a positive constant. Then,

NN weight approximation error W̃ , external agent state

estimation error z̃i, and the local agent A regulation error e

are all ultimately uniformly bounded (UUB). Moreover, W̃ ,

z̃i, and e are asymptotically stable when the reconstruction

error [18] and relaxation variable δ is zero.

Proof: Consider the Lyapunov candidate function

Vsys = Ve + Vs (27)

with Ve =
1
2 tr{eT (t)e(t)} and Vs =

1
2 z̃

T
i P z̃i+

1
2 tr{W̃T

i W̃i}.

Also, settling the relaxation variable δ to be equal to zero,

the Eq. (27) can be written as:

Vsys =
1

2
tr{eT (t)e(t)}+ 1

2
z̃Ti P z̃i +

1

2
tr{W̃T

i W̃i} (28)

Taking the first derivative of Eq (27)

V̇sys = tr{eT (t)ė(t)}+ 1

2
˙̃zTi P z̃i +

1

2
z̃Ti P

˙̃zi + tr{W̃T
i

˙̃
Wi}
(29)
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Substituting Lemma 1 and Eq. (29) is as:

V̇sys f −1

2
γ∥e∥2 + 2

γ
g2l L

2
u∥z̃i∥2 −

[1

2
λmin(Q)− ∥P∥

WMLφ − 1

2α2
∥P∥2 − 1

2
∥p∥2 − 1

2
W 2

ML2
φ

]

∥z̃i∥2 −
[

α

∥C∥2∥φM∥2 − α2∥C∥4φ2
M − 1

2
α2φ2

M

]

∥W̃i∥2 + ∥εf∥2

(30)

with gl being the Lipschitz constant of the function ga. Also,

there exists a Lipschitz constant Lu that satisfy the inequality

∥ũ(x, z̃i)∥ f Lu∥z̃i∥. Now, the Eq. (30) can be rewritten as:

V̇sys f −1

2
γ∥e∥2 − κi,zc∥z̃i∥2 − κi,Wc∥W̃i∥2 + ∥εf∥2

(31)

with,

κi,zc =
1

2
λmin(Q)− 2

γ
g2l L

2
u − ∥P∥WMLφ − 1

2α2
∥P∥2

− 1

2
∥p∥2 − 1

2
W 2

ML2
φ

κi,Wc = α∥C∥2∥φM∥2 − α2∥C∥4φ2
M − 1

2
α2φ2

M∥εf∥2

Now the first derivative of the Lyapunov function V̇sys is

less than zero outside a compact set if

∥e∥ >

√

2

γ
∥εf∥2 ; ∥z̃∥ >

√

1

κi,zc

∥εf∥2

∥W̃i∥ >

√

1

κi,Wc

∥εf∥2

This completes the proof.

V. SIMULATION RESULT

In this section, we implement the developed algorithm into

a multi-agent system to illustrate the secure maneuvering

of a UAV within a shared airspace environment, alongside

other external UAVs. There are a total of two external UAVs

in the system. Let the initial state of the local UAV be

selected as x = [9 3 0 0]T with its position and

velocity. The predefined destination point of the UAV is

x = [12.2 9 0 0]T . Moreover, the initial state of the

UAV-1 and UAV-2 is selected as z1 = [10.2 4 0 0]T and

z2 = [8.5 6 0 0]T . The intrinsic dynamic function of the

local UAV is defined as:

f(x) =









−x1 +
1
2x

2
2

−0.4x2
2

x2[cos(2x1 + 1)2 − 1]− x1

x4[cos(2x3 + 1)2 − 1]− x3









g(x) =
[

0 0 cos(2x1 + 1) cos(2x3 + 1)
]T

Moreover, the dynamic of the UAV-1 and UAV-2 is chosen as

[19]. For the design of an NN-based observer, it is essential

that the square matrix A be a Hurwitz matrix. The selection

of matrices A ensures that both A and A−HC have eigen-

values with strictly negative real parts, making them Hurwitz

matrices. The activation function of each NN is selected as

(a) t = 0s (b) t = 3s

(c) t = 7s (d) t = 10s

Fig. 1: The trajectory of all UAVs in the environment. The

red curve represents local UAV. Also, blue and green curves

are the trajectories of external UAVs in the environment.

a hyperbolic tangent function, i.e. tanh(.). Also, the learning

rate α of the NN is selected as 1× 10−4. Next, the AI-CBF

is defined as hi(x, zi) = ∥x− zi∥2Q − 1√
γ
∥ỹi∥− rmin. Please

note that the second term 1√
γ
∥ỹi∥ is used to incorporate the

estimation error bound of the external agents into the CBF

design with γ = 1.5. Here, rmin = 0.2 represents the radius

of a closed circle. The relaxation factor coefficient is selected

as p = 0.5. The differential equations are solved using

MATLAB ode45 and QP is solved using MATLAB quadprog

function. In Figure 1, we illustrate the safe maneuvering of

the local agent in a shared environment. We have plotted

(a) State estimation of external
UAVs

(b) Same final destination for
local UAV and UAV-2.

Fig. 2: This figure illustrates both the estimated and actual

positions of external agents, as well as a scenario demon-

strating how the local UAV ensures strict safety.

the trajectories of the UAVs in Figure 1 at various time

points. It’s important to note that the points at which the red

curve (local UAV) intersects with the blue and green curves

(external UAVs) do not represent simultaneous collisions

but occur at different times. In Figure 2(a), we present the

state estimation of external agents using the developed neural

network (NN) adaptive observer. The true positions of UAV-
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1 and UAV-2 are represented by the blue and green curves,

while the estimated positions are shown in orange and brown.

Figure 2(a) effectively illustrates that as time progresses

and the neural network observer is well-trained, the state

estimation error decreases and approaches zero. In Figure

2(b), a scenario is presented to illustrate how the local UAV

ensures strict safety. To prioritize safety, the local UAV places

a strong emphasis on collision avoidance with UAV-2, even

at the expense of reaching its desired destination. Figure 2(b)

visually depicts the local UAV altering its course at the last

moment to maintain a safe distance from UAV-2.

Fig. 3: AI-CBF for UAV-1 and UAV-2.

The adaptive interplay control barrier function (AI-CBF)

for UAV-1 and UAV-2 is shown in Figure 3. In this figure,

both barrier functions remain positive indicating that the lo-

cal UAV always ensures safety. Initially, after the deployment

of UAVs, the local UAV approaches UAV-1, causing its states

to approach the boundary of the safe set. At that period of

time, the value of the function is close to zero. Subsequently,

the AI-CBF h1 increases as the primary UAV moves away

from UAV-1. Similarly, the AI-CBF h2 experiences two

decreases at different time points when UAV-2 comes closer

to the local UAV on two occasions.

VI. CONCLUSION

This paper has developed a novel approach for safe control

for local agents in a challenging multi-agent environment

where the dynamics of external agents are both uncertain and

uncontrollable, and accurate state information is unavailable.

The developed method utilizes multiple neural network-

based adaptive observers to estimate the states of these

external agents. Through the integration of state information

from both the external and local agents, an adaptive interplay

control barrier function (AI-CBF) has been designed to

ensure the local agent’s safety. Notably, the AI-CBF guar-

antees the strict safety of the local agent by maintaining the

forward invariance of an approximated safe set. Importantly,

this algorithm has been proven to ensure system safety

without the need for precise knowledge of the actual safe

set. This AI-CBF along with the Lyapunov function is

used for safe control development, which guides the local

agent to a predefined destination point while guaranteeing

safety and stability. The stability of the neural network-based

observer design and the overall system stability have been

demonstrated through Lyapunov stability analyses. Finally,

numerical simulations have been provided to demonstrate the

effectiveness of the developed algorithm.
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