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Adaptive Lifelong Safe Learning based Intelligent Tracking Control for
Nonlinear System under Unstructured Environment with Non-stationary
Tasks

Shawon Dey and Hao Xu

Abstract—1In this article, a novel adaptive lifelong safe
learning algorithm has been designed for real-time cost-
effective tracking control in unstructured environments with
non-stationary tasks. Learning sequential non-stationary tasks
while retaining memory of previous tasks in real-time control
is particularly challenging due to the computational complexity
of handling non-stationary tasks. To address this, we develop
a dynamic task selection-based adaptive lifelong learning algo-
rithm for safe optimal tracking control and also incorporate
a control barrier function (CBF) within the cost function.
The learning algorithm includes a novel real-time adaptive
lifelong learning-based actor-critic mechanism to achieve safe
optimal control in unstructured environments. Specifically, a
hybrid offline-online learning framework has been developed,
where the probability distributions of offline-trained weights for
sequential dynamic tasks are utilized in online training to select
the most relevant previous tasks in relation to the current online
task. The developed learning framework also includes a fairness
term to avoid repeatedly selecting specific tasks. The selected
previous tasks are then integrated with a weight consolidation
scheme in the designed critic weight update law to achieve
adaptive lifelong learning. This method balances catastrophic
forgetting with online computational efficiency for optimal safe
control. Eventually, the effectiveness of the developed algorithm
is validated through numerical simulations.

I. INTRODUCTION

In real-world applications, autonomous systems like un-
manned aerial vehicles (UAVs) and unmanned ground ve-
hicles (UGVs) have seen widespread use across various
tasks. These tasks include battlefield target tracking [1],
search and rescue operations [2], fire detection [3], and
transportation. Additionally, these autonomous systems are
increasingly being deployed in environmental monitoring,
disaster response, agricultural automation, and infrastructure
inspection, showcasing their versatility and critical role in
enhancing efficiency and safety in diverse fields. However,
ensuring performance and safety during real-time task execu-
tion, particularly in dynamic and unstructured environments,
is a challenging endeavor. Numerous studies have explored
optimal tracking control in both continuous [4] and discrete
[5] time frameworks to enhance system performance. Ad-
ditionally, significant research has been dedicated to safe
control [6] and safe learning [7], [8] systems. Recently,
a significant number of studies combined the performance
and safety [9], [10], [11] by integrating the control barrier
function (CBF) [12] with the cost function to ensure both
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safety and optimality. However, these existing methods do
not address the challenge of autonomous systems executing
real-time non-stationary sequential tasks while maintaining
performance and safety. A vital capability for executing
various tasks in real-time environments is the ability to learn
new tasks sequentially without forgetting previously acquired
skills. This feature is widely used in humans and animals to
continually acquire and transfer skills [13] throughout their
lifespan due to synaptic consolidation in the brain and is
known as lifelong learning. The lifelong learning [13], [14]
has been extensively researched within the neural network
and machine learning communities. It emphasizes that in-
telligent agents need to learn and remember multiple tasks
in real-world settings where tasks can switch unpredictably
and may not recur frequently. This introduces the problem
of catastrophic forgetting [15] in artificial neural networks,
where knowledge of previous tasks is lost as new tasks are
learned sequentially. To address this issue, [15] introduced an
Elastic Weight Consolidation (EWC) algorithm for artificial
neural networks. The EWC algorithm slows down learning
on certain network weights based on their importance to
previously learned tasks, enabling the network to learn new
tasks sequentially without forgetting older ones. Recently,
this algorithm has been adopted by the control community
for the trajectory-tracking problem [16] to manage sequential
tasks. However, since EWC considers all the weights of
previously learned tasks to compare with the current task and
prevent forgetting, it is challenging to implement in real-time
systems because of its computational complexity, particularly
when the environment is uncertain and contains multiple
non-stationary tasks. To adapt to environmental changes by
executing sequential tasks, an autonomous agent must strike
a balance between optimal and safe decisions and efficiently
remembering previous tasks to handle future tasks that are
similar to past ones.

To tackle this challenge, a novel adaptive lifelong safe
learning-based real-time optimal tracking control algorithm
has been developed for unstructured environments. In this
context, the goal of the autonomous system is to follow a tra-
jectory and execute multiple non-stationary tasks, which in-
volves avoiding multiple obstacles in dynamic environments.
The optimal control problem is formulated by integrating
the control barrier function (CBF) to embed safety into the
cost function. To solve the optimal safe control problem,
the Hamilton-Jacobi-Bellman (HJB) equation must be ad-
dressed. Reinforcement learning (RL) [17], [18] and adaptive
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dynamic programming (ADP) [19] techniques have been
employed to solve this equation. The proposed algorithm
introduces a hybrid offline-online learning framework, that
includes a novel real-time adaptive lifelong safe learning-
based actor-critic approach, where the critic neural network’s
learning is modified using a dynamic task selection-based
adaptive lifelong learning strategy. Each task is initially
trained offline using the actor-critic neural network approach.
Subsequently, a real-time neural network-based adaptive
lifelong safe learning actor-critic algorithm is proposed.
Due to the dynamically changing environment with non-
stationary tasks, the offline-trained neural network weights
are integrated with a probability distribution function. The
learned distribution functions of the weights from previous
tasks are compared with the current task in real time to
identify tasks that are most similar to the current online task.
Additionally, a fairness term is incorporated into the task
selection algorithm to prevent repeatedly selecting specific
tasks and completely neglecting tasks that are not encoun-
tered in the current environment. These selected tasks are
then incorporated into the objective function of the critic
neural network using elastic weight consolidation (EWC)
term to recall the most relevant previous tasks. This re-
duces computational complexity and facilitates quick, safe
decision-making in optimal tracking control. The primary
contributions of this work are as follows.:

« A novel dynamic task selection-based adaptive lifelong
safe learning algorithm is designed for the real-time safe
optimal tracking control problem in the presence of an
unstructured environment.

« A novel adaptive lifelong safe learning-based critic
neural network is developed, where previous tasks are
selected by balancing relevance and fairness. These
tasks are then incorporated into the critic algorithm’s
objective function using an EWC term to perform non-
stationary sequential tasks in real-time optimal safe
tracking control.

The structure of the paper is as follows: Section II presents
the problem formulation. In Section III, the development
of the adaptive lifelong learning-based actor-critic algorithm
is detailed. The simulation study is covered in Section IV.
Finally, Section V offers the conclusion.

II. PROBLEM FORMULATION

Consider the following differential equation of a nonlinear
affine system of an agent A

&(t) = f(z) + g(x)ult) €]

where z(t) € R™ represent the system state and u(t) €
R™ represents the control input. Moreover, The functions
f:R® - R™ and g : R™ — R™ " represents the intrinsic
dynamics of the system. Next, the external obstacles dynamic
can be represented as follows:

Zq(t) = folzq(t),uq) @)

where the notation ¢ represents the index of the obstacle
and z, denotes the system state of the obstacle g. Please

note that the obstacle in this framework can be a dynamic
or static obstacle. Next, the objective of each agent A is to
track a predefined trajectory while avoiding collision with the
external obstacles in the environment. Now, the cost function
of the agent A is defined as follows:

V(r,u) = /OOO[L(x(t),u(t)) + h(x, z)]dt 3)

where the first term is defined as L(z(t), u(t)) = [le]|§, +
||u||%, captures the state error and control input’s quadratic
normals weighted by @ and R. Here, e(t) = x—x4 represents
the tracking error of the agent. The term x4 represents the
reference trajectory. Then, the tracking error dynamic can be
defined as follows:

de(t) = dx(t) — dxq(t)
= [fr(e) + gr(e)udt

with f,(e) = f(e +za) — (dza/dt) and g.(e) = g(e + z4).
The second term h(z, z) represents a control barrier function.
Here, the CBF has been incorporated into the cost function to
ensure safety with optimality. Please note that, a continuously
differentiable smooth function h(z,z) : X C R" — R is
known as CBF for the safe set S = { C R" : b(z, z) > 0}
if there exists a locally Lipschitz class K functions /31, (2
and (3 such that the following condition is satisfied [9]:

“

~— —

1 1
ENUEE) R AT B
h(I7 Z) < ﬂS(b(xvz)) (6)

Next, Considering continuous dynamics of agent A given
in (1) and the cost function in (3), an admissible control
needs to be evaluated to achieve the optimal cost function
in (3). According to the optimal control [9] and Bellman’s
optimality principle [9], the Hamiltonian is:

H(zx,u) = L(z(t),u(t)) + h(z, 2) + 0 V(x, u)
[f(z) + g(z)u(t)] (7)

with f(z) and g(x) are nonlinear functions and h(z,u)
represents the barrier function. Now, the optimal control the
agent A is evaluated as follows:

u(t) = —% R g7 (2)0,V(x, u) ®)

Next, the corresponding HJB equation can be achieved by
substituting the optimal control into the Hamiltonian defined
in equation (7)

[z)|3) + Az, 2) + OV (2, u) f(z) — 1/4 R~ g" (2)0,
V(z,u)g" (2)0,V(x,u) =0 )

Next, the agent A has been assigned to execute M number
of non-stationary tasks during its maneuvering period. Addi-
tionally, the index ¢ is used to denote the current task, while
j represents the previous task. Now, addressing the optimal
tracking control problem involves tackling the Hamilton-
Jacobi-Bellman (HJB) equation to derive the optimal value
function. Furthermore, the agent needs to efficiently re-
member previous tasks without increasing computational
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complexity, while also solving the HJB equation to ensure
optimal and safe maneuvering in the current task, which
presents significant challenges. To tackle this challenge, An
adaptive lifelong safe learning-based actor-critic algorithm
with sequential dynamic tasks selection mechanism is devel-
oped in the following section.

III. ADAPTIVE LIFELONG SAFE LEARNING BASED
ACTOR-CRITIC ALGORITHM

In this part of the study, the agent aims to learn the
optimal value function for the current task while retaining
knowledge of previous tasks similar to the current one,
without increasing computational complexity. Additionally,
the agent must ensure that its strategy remains safe and
optimal. Now, the ideal value function of the critic neural
network for the current task ¢ is defined as:

Vi(z,u) = Wi v(@,u) + ens ()

In this context, W; y represents the neural network weights,
¢iv(z,u) is the activation function for the i-th task, and
ey (x) denotes the reconstruction error. Next, by substitut-
ing the ideal value function (10) into the HIB equation (9),
the effect of the reconstruction error is considered:

(10)

1
H'Z‘”QQ + h(l‘, Z) + a'l:[W;I:VQSi,V(xa U) + EHJB(Z‘)] — Za_L

Wivéiv(@,u) + emp(@)]" + D(2)8: W] i v (2, 1)
+emp(x)] =0
201% + h(z, 2) + W0u¢i v (2, u) f () — 1/4 W],0,
$iv (@, W) D(2)W]y0si v (2, 1) + eppa = 0 (1n
with D(x) = g(x)R~1g” (x) and ey, is defined as follows:
emBa = —1/2W] 0,0y (2, u)D(2) O (x) — 1/4 9,
e (2)D(x)Opensp () + Oz () f () (12)

Next, the approximated value function for the current task ¢
is defined as follows:

Vi(z,u) = WZTVQSZy(Lu) (13)

Now, the HJB equation error is defined as follows by
inserting the estimated value function from the equation (13)
in the HIB equation (9):

ey = Hw||2Q + fl(:v, z) + ngaxsbi,v(w,U)f(ﬂﬂ) —1/4
W0, 610 (2, w) D(@)W Ty 0 1,1 (2, w) 19

Next, the objective function of the neural network training
for the i-th task can be derived as follows:

- 1
Ei(Wiv) = S eqpenn (15)
Then, the normalized weight update law [17] of the neural
network is defined as:

A [FRY T
Wiy = —a;y——a—c¢
(% BV T Uz‘T,vULV HIB

with, 03,y = 005 v (@,u) f(2) — $0:¢iv(x,u)D(x)Du i,y

(x, u)W; v

(16)

Remark 1: Please note that this update law only incorporates
training for the current ¢-th task and does not include the
weights of previous tasks. Using this update law leads
to catastrophic forgetting of previous tasks. To efficiently
deploy optimal safe control for the agent across various non-
stationary tasks, information from previously executed tasks
is required. To address this, we propose a novel dynamic
task selection-based adaptive lifelong learning approach to
prevent the forgetting of previous tasks efficiently.
Dynamic Sequential Tasks Selection Mechanism: Let, the
total number tasks can be selected as M. The goal of
the agent A is to execute these sequential non-stationary
tasks while reducing computation in safe optimal track-
ing control. Next, the actor-critic neural network has been
trained for each of the tasks offline. Since there are
M tasks, each task has its own activation function, and
the set of activation functions can be defined as ¢, =
O1,v,02,v, ..., oar,v. Next, the set of learned weight dis-
tribution functions from offline learning is represented as
pWy) = pr(Wiv), p2(Wa,v), -y ppr(War,v). Using this
information from offline learning, a novel cost function is
defined to select a certain number of tasks that are similar
to the current i-th task from the set of M tasks, as described
below:

Jiset = Wac[E{pi Wi v) iy — E{p;(W;v) i v] +wa

50 movosgmahin 50 o
W) o2 g ) + .. a7

with, MOW) = 1(pi(Wi,v) + pj(W;v)). Also, j defined
the index of the previous task and wge, wq, and w,. are
the weight terms. Moreover, E{p; W;,y)} and E{p;(W; v)}
represent the mean value of the probability distribution of
the weights from task ¢ and j, respectively. The second term
is included in the cost function to measure the statistical
distance between two probability distributions. We use the
well-known KL divergence [20] to measure this distance.
Lastly, the final term is incorporated to ensure fairness in
task selection, preventing the same task from being selected
repeatedly. The function F, is defined as follows:

Sj.i\2
Fe= {(t§f7a)

ji \2
(taskM)

with, M, is a predefined maximum selected tasks threshold
number and S;; total instances of the selection of jth task
before all sequential tasks of current task i. Also, the term
task; and task,, are defined as follows.

if Mg >4

18
if 7;>M§el ( )

task, = (i — 1)+ (1 — 2) + ... + (1 — 9)
=i —(142+...+1) (19)
taskpr = M2 — (1 4+ 2+ ... + Mya)) + (i — 1 — M) Mol
= iMg — (14+2+ ...+ 2M) (20)

Next, a set g is chosen, defining the selected previous tasks
based on the minimum values of the cost function presented
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in equation (17). Next, the new critic NN cost function for
adaptive lifelong learning is defined as follows:

~ 1 ~ ~
Eri=EWViv)+ 3 3 5 M inlWivy = Wiv|?
J€Hs P

2D
The second term in this new objective function represents
the adaptive EWC cost function. Here, A\ indicates the
importance of the previous task, p represents the parameters
of the corresponding weight vectors, and F denotes the
Fisher information matrix [15]. Next, the adaptive lifelong
learning-based critic weight update is defined as follows:

2 g5,V T
Wrav = R T . Tl o €I — 4,V E E AFjp
i,V i,V JE€EMsel P

Wiy = Wiyl (22)

Next, the ideal function for the actor neural network during
the time of 7th task execution is defined as follows:

ui(z) = Wy diu() + eu()

Here, W; ,, is the actor neural network weight, ¢; ,,(z) is the
activation function of the actor NN, and ¢, (x) represents the
reconstruction error. Now, by substituting the ideal function
into the optimal control equation defined in (8), we obtain
the following equation

(23)

1
W 61a(2) + 2u(w) + 5 R ()W, D0 () = 0
(24)
The estimation of the control input is defined as follows:
i(z) = Wi, diu(z) (25)

The residual error of the actor neural network is now
evaluated by inserting the estimated control into the equation

®)
ei,1L = WZMQZ)7,U($) + % R_lgT(x)WZuaTq§1,1L($) (26)

The residual error including the reconstruction error is now
achieved by combining equations (24) and (26)
N ~ 1
€y = —WzTuéw(x) — WlTungm(x) ~3 R_lgT(m)
V(1) — ey (x) (27)

Now, the normalized weight update law of the actor neural
network is defined as follows:

Wi = —aiu— 2T,
1 + ¢i_’u¢i,u

IV. SIMULATION RESULTS

(28)

In this section of the simulation study, we implement
an adaptive lifelong learning-based safe tracking control
algorithm for a local autonomous unmanned vehicle (UAV).
This UAV operates in an environment with both static and
dynamic obstacles, including other UAVs. The objective of
the local UAV is to follow a reference trajectory while com-
pleting sequential tasks, ensuring safe navigation by avoiding
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Fig. 1: The trajectory tracking of the unmanned autonomous
vehicle (UAV) in the presence of dynamic and static obsta-
cles. The red dashed line depicts the path of the reference
trajectory. The orange curve represents the local UAV trajec-
tory. Also, the magenta and green curves depict the UAV-1
and UAV-2 trajectories, respectively. The circle shapes with
different colors represent the UAVs. The static obstacle is
represented with a grey-colored rectangular shape. (a) the
initial states of the UAVs and obstacles at time ¢ = 0s. (b)
(c) the UAVs state at time ¢ = 7s and ¢t = 14s. (d) The final
states of the UAVs at time ¢ = 20s.

collisions with dynamic UAVs and stationary obstacles like
buildings. The initial state of the local UAV is chosen as
T = [xl CEQ]T = [6.5 3}T. Moreover, the initial states
of the dynamic external UAV-1 and UAV-2 are selected as
z1 = [10 3]T and z9 = [16 13.5]T, respectively. Also, a
rectangular static obstacle is positioned along the path of the
reference trajector% The center of the obstacle is selected as
z3 = [11.5 9.5] with width= 1.5m and height= 2.5m.
Next, the local UAV intrinsic dynamic is defined as:

fz) = {_”fo;jgxg} : gla) = [1(.)2}

Here, ©x = [xl :Eg]T. Also, the dynamic functions of the
external UAVs are selected as follows:

(29

B 2171 — 05t
folz1) = {2271 + 3sin(0.3t) + 0.0Bt} G0
and,
_ 21,2 — 0.6t
folz2) = |:2272 — 1.5sin(0.4¢t) + 0.15t:| (3D

with, z; = [21_,1 ZQJ]T and z9 = [21,2 zm]T

Now, an actor-critic neural network is trained offline for 10
sequential tasks, with 7 tasks focusing on avoiding dynamic
UAVs and 3 tasks dedicated to avoiding static obstacles. The
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Fig. 2: Tracking error of the local unmanned aerial vehicle
(UAV).

learning rate of the critic NN for each task is selected as
ay = 1 x107% and the error threshold is selected as dpp =
1 x 1078, Additionally, for the actor neural network, the
learning rates and error thresholds are set to a,, = 1 x 107
and §, = 1 x 1077, respectively. Subsequently, the learned
weights for all 10 tasks are stored for use in online learning.
The parameters of the cost function are selected as () =
1 and R = 1.5. Additionally, the activation functions for
different tasks in the adaptive lifelong critic neural network
are chosen from a polynomial expansion with the formula
2;33:1(2?:1 z;)P, with n represents the input dimension
and P is a constant value. Also, the weight parameters for the
task selection cost function are selected as w,. = 0.4, wy =
0.3, and w, = 0.3. Again, the learning rate of the adaptive
lifelong learning based critic NN for each task is selected
as a;y = 1 x 1072 and the error threshold is selected as
dimp = 1x 10!, Additionally, for the actor neural network,
the learning rates and error thresholds are defined as o, =
1x 1072 and §, = 1 x 1072, respectively. The task selection
threshold is chosen as Mg, = 2.

Next, a local UAV is deployed in an unstructured environ-
ment alongside other UAVs and static obstacle structures.
Given the differing nature of dynamic and static obstacles,
avoiding these barriers is treated as separate tasks for the
UAVs. This mirrors real-world scenarios, as UAVs frequently
encounter these challenges in dynamic environments. When
faced with a new task, executing it online while ensuring
safety and performance can be challenging. However, if the
UAV possesses prior knowledge of the tasks, learned from
the environment in a manner similar to humans, it can make
quick decisions to ensure safety and performance across
various tasks.

We illustrate the effectiveness of the developed adaptive
lifelong safe learning-based tracking algorithm with a series
of figures. The maneuvering of the deployed UAV using
the developed algorithm is demonstrated in Figure 1. In
this figure, a reference trajectory is provided to the local
UAV. Here, the red dashed line represents the curve of
the reference trajectory. Also, the local UAV is represented
by an orange circle, and its trajectory is illustrated with
an orange curve. However, during the time of trajectory
tracking, the local UAV encounters other dynamic UAVs and
static obstacles. This figure demonstrates how the local UAV
performs different tasks by ensuring safety and performance
during its trajectory tracking using the adaptive lifelong
learning-based non-stationary task execution algorithm. The
external UAVs are depicted in magenta and green circles,

with their respective trajectories shown in the same colors.
Additionally, a static obstacle represented by a grey rectangle
is placed along the reference trajectory’s path. The initial
position of the UAVs and static obstacle is shown in Figure
1(a) at the time ¢ = 0s. Then, the motion of the UAVs at time
t = 7sis depicted in Figure 1(b). In this figure, the local UAV
begins its movement from the left lower corner, which is the
starting position of the reference trajectory. Simultaneously,
the other external UAVs also start their motion from the
different parts of the figure. At that initial stage, the local
UAV encounters its first task. From this figure, we can
see that the UAV-1 approaches the local UAV. To avoid a
collision with the approaching UAYV, the local UAV executes
its first task by making a slight left turn from the reference
trajectory. Then in the figure 1(c) at time ¢ = 14s, the second
task execution is depicted. Here, the local UAV encounters a
static obstacle placed in the path of the reference trajectory.
To ensure safety while tracking the trajectory, the local UAV
makes a left turn to avoid the static obstacle. Subsequently,
UAV-2 enters the path of the local UAV. In figure 1(c) at time
20s, it is shown that the local UAV successfully executes the
third task by avoiding the potential collision with UAV-2 and
continues to track the reference trajectory. Since the third
task is similar to the first, the UAV performs better in terms
of safety and trajectory tracking due to its prior experience
with the first task.

» 60 | 1
o Task 1 Task 2 Task 3
i 40 F 1
Q 20
o
0 h ) .
0 5 10 15 20

Time t(Sec)

Fig. 3: Adaptive lifelong learning based critic neural network
HIB error.

Next, the tracking performance of the local UAV is il-
lustrated in Figure 2. Since the local UAV must track the
trajectory while also avoiding collisions, the tracking error
increases in certain instances to efficiently execute the given
tasks. Specifically, higher tracking errors are observed during
the execution of tasks 1 and 2. However, during task 3, as
the UAV gains more experience from the previous tasks, the
tracking error approaches zero.

Finally, the HJB error from the adaptive lifelong learning-
based critic neural network is depicted in Figure 3. This error
is shown for the entire simulation duration of 20s. During this
period, the local UAV performs three assigned tasks. Initially,
the first task assigned to the UAV is to avoid a collision with
external UAV-1. At this stage, the local UAV incorporates
2 offline trained weights, similar to the given tasks, using
the task selection cost function from equation (17). During
the Task-1 period, the UAV’s HIJB error approaches zero,
indicating the successful execution of Task-1. However, it
is important to note that the error does not converge to
zero perfectly during Task 1. When a new task is assigned,
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the HIB error rises. In this period, the UAV avoids a static
obstacle and utilizes weights from offline training to recall
the relevant task weights. For Task-2, the HJB error also
approaches zero. Finally, a new third task is assigned, which
is similar to the first task. During this period, the UAV uses
weights from both offline and online learning, as a similar
instance occurred during the UAV’s online maneuvering.
Since the UAV has more information related to Task 3 than
before, the HIB error converges to zero more efficiently.
In summary, the simulation results presented in this section
demonstrate the effectiveness of the proposed algorithm.

V. CONCLUSION

This study has developed a novel adaptive lifelong safe
learning-based real-time optimal tracking control algorithm
in the presence of an unstructured environment with non-
stationary tasks. Here, the optimal problem is formulated
with control barrier function (CBF) to ensure the safety
and performance of the system. Specifically, the developed
algorithm introduces a hybrid offline-online learning frame-
work with a real-time adaptive lifelong safe learning-based
actor-critic method. Here, the critic neural network is mod-
ified with a dynamic task selection-based adaptive lifelong
learning strategy. To adapt to the dynamic environment, the
offline neural network weights associated with specific tasks
are integrated with a probability distribution and fed into
the online algorithm. A novel task selection cost function
is provided to compare the relevant previous tasks and
efficiently select them to avoid computational complexity.
Additionally, a fairness term is incorporated into the algo-
rithm to prevent the repeated selection of previous tasks.
Then, the objective function of the critic neural network
is reformulated with the selected tasks using the elastic
weight consolidation method. Finally, the effectiveness of the
algorithm is validated through a series of simulation studies.
In the future, more tasks will be added in the online part to
validate the efficiency of the proposed algorithm.
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