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Abstract— In this article, a novel adaptive lifelong safe
learning algorithm has been designed for real-time cost-
effective tracking control in unstructured environments with
non-stationary tasks. Learning sequential non-stationary tasks
while retaining memory of previous tasks in real-time control
is particularly challenging due to the computational complexity
of handling non-stationary tasks. To address this, we develop
a dynamic task selection-based adaptive lifelong learning algo-
rithm for safe optimal tracking control and also incorporate
a control barrier function (CBF) within the cost function.
The learning algorithm includes a novel real-time adaptive
lifelong learning-based actor-critic mechanism to achieve safe
optimal control in unstructured environments. Specifically, a
hybrid offline-online learning framework has been developed,
where the probability distributions of offline-trained weights for
sequential dynamic tasks are utilized in online training to select
the most relevant previous tasks in relation to the current online
task. The developed learning framework also includes a fairness
term to avoid repeatedly selecting specific tasks. The selected
previous tasks are then integrated with a weight consolidation
scheme in the designed critic weight update law to achieve
adaptive lifelong learning. This method balances catastrophic
forgetting with online computational efficiency for optimal safe
control. Eventually, the effectiveness of the developed algorithm
is validated through numerical simulations.

I. INTRODUCTION

In real-world applications, autonomous systems like un-

manned aerial vehicles (UAVs) and unmanned ground ve-

hicles (UGVs) have seen widespread use across various

tasks. These tasks include battlefield target tracking [1],

search and rescue operations [2], fire detection [3], and

transportation. Additionally, these autonomous systems are

increasingly being deployed in environmental monitoring,

disaster response, agricultural automation, and infrastructure

inspection, showcasing their versatility and critical role in

enhancing efficiency and safety in diverse fields. However,

ensuring performance and safety during real-time task execu-

tion, particularly in dynamic and unstructured environments,

is a challenging endeavor. Numerous studies have explored

optimal tracking control in both continuous [4] and discrete

[5] time frameworks to enhance system performance. Ad-

ditionally, significant research has been dedicated to safe

control [6] and safe learning [7], [8] systems. Recently,

a significant number of studies combined the performance

and safety [9], [10], [11] by integrating the control barrier

function (CBF) [12] with the cost function to ensure both
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safety and optimality. However, these existing methods do

not address the challenge of autonomous systems executing

real-time non-stationary sequential tasks while maintaining

performance and safety. A vital capability for executing

various tasks in real-time environments is the ability to learn

new tasks sequentially without forgetting previously acquired

skills. This feature is widely used in humans and animals to

continually acquire and transfer skills [13] throughout their

lifespan due to synaptic consolidation in the brain and is

known as lifelong learning. The lifelong learning [13], [14]

has been extensively researched within the neural network

and machine learning communities. It emphasizes that in-

telligent agents need to learn and remember multiple tasks

in real-world settings where tasks can switch unpredictably

and may not recur frequently. This introduces the problem

of catastrophic forgetting [15] in artificial neural networks,

where knowledge of previous tasks is lost as new tasks are

learned sequentially. To address this issue, [15] introduced an

Elastic Weight Consolidation (EWC) algorithm for artificial

neural networks. The EWC algorithm slows down learning

on certain network weights based on their importance to

previously learned tasks, enabling the network to learn new

tasks sequentially without forgetting older ones. Recently,

this algorithm has been adopted by the control community

for the trajectory-tracking problem [16] to manage sequential

tasks. However, since EWC considers all the weights of

previously learned tasks to compare with the current task and

prevent forgetting, it is challenging to implement in real-time

systems because of its computational complexity, particularly

when the environment is uncertain and contains multiple

non-stationary tasks. To adapt to environmental changes by

executing sequential tasks, an autonomous agent must strike

a balance between optimal and safe decisions and efficiently

remembering previous tasks to handle future tasks that are

similar to past ones.

To tackle this challenge, a novel adaptive lifelong safe

learning-based real-time optimal tracking control algorithm

has been developed for unstructured environments. In this

context, the goal of the autonomous system is to follow a tra-

jectory and execute multiple non-stationary tasks, which in-

volves avoiding multiple obstacles in dynamic environments.

The optimal control problem is formulated by integrating

the control barrier function (CBF) to embed safety into the

cost function. To solve the optimal safe control problem,

the Hamilton-Jacobi-Bellman (HJB) equation must be ad-

dressed. Reinforcement learning (RL) [17], [18] and adaptive
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dynamic programming (ADP) [19] techniques have been

employed to solve this equation. The proposed algorithm

introduces a hybrid offline-online learning framework, that

includes a novel real-time adaptive lifelong safe learning-

based actor-critic approach, where the critic neural network’s

learning is modified using a dynamic task selection-based

adaptive lifelong learning strategy. Each task is initially

trained offline using the actor-critic neural network approach.

Subsequently, a real-time neural network-based adaptive

lifelong safe learning actor-critic algorithm is proposed.

Due to the dynamically changing environment with non-

stationary tasks, the offline-trained neural network weights

are integrated with a probability distribution function. The

learned distribution functions of the weights from previous

tasks are compared with the current task in real time to

identify tasks that are most similar to the current online task.

Additionally, a fairness term is incorporated into the task

selection algorithm to prevent repeatedly selecting specific

tasks and completely neglecting tasks that are not encoun-

tered in the current environment. These selected tasks are

then incorporated into the objective function of the critic

neural network using elastic weight consolidation (EWC)

term to recall the most relevant previous tasks. This re-

duces computational complexity and facilitates quick, safe

decision-making in optimal tracking control. The primary

contributions of this work are as follows.:

• A novel dynamic task selection-based adaptive lifelong

safe learning algorithm is designed for the real-time safe

optimal tracking control problem in the presence of an

unstructured environment.

• A novel adaptive lifelong safe learning-based critic

neural network is developed, where previous tasks are

selected by balancing relevance and fairness. These

tasks are then incorporated into the critic algorithm’s

objective function using an EWC term to perform non-

stationary sequential tasks in real-time optimal safe

tracking control.

The structure of the paper is as follows: Section II presents

the problem formulation. In Section III, the development

of the adaptive lifelong learning-based actor-critic algorithm

is detailed. The simulation study is covered in Section IV.

Finally, Section V offers the conclusion.

II. PROBLEM FORMULATION

Consider the following differential equation of a nonlinear

affine system of an agent A

ẋ(t) = f(x) + g(x)u(t) (1)

where x(t) ∈ R
n represent the system state and u(t) ∈

R
m represents the control input. Moreover, The functions

f : Rn → R
n and g : Rn → R

n×m represents the intrinsic

dynamics of the system. Next, the external obstacles dynamic

can be represented as follows:

żq(t) = fo(zq(t), uq) (2)

where the notation q represents the index of the obstacle

and zq denotes the system state of the obstacle q. Please

note that the obstacle in this framework can be a dynamic

or static obstacle. Next, the objective of each agent A is to

track a predefined trajectory while avoiding collision with the

external obstacles in the environment. Now, the cost function

of the agent A is defined as follows:

V(x, u) =

∫ ∞

0

[L(x(t), u(t)) + h(x, z)]dt (3)

where the first term is defined as L(x(t), u(t)) = ∥e∥2Q +
∥u∥2R, captures the state error and control input’s quadratic

normals weighted by Q and R. Here, e(t) = x−xd represents

the tracking error of the agent. The term xd represents the

reference trajectory. Then, the tracking error dynamic can be

defined as follows:

de(t) = dx(t)− dxd(t)

= [fr(e) + gr(e)u]dt
(4)

with fr(e) = f(e+ xd)− (dxd/dt) and gr(e) = g(e+ xd).
The second term h(x, z) represents a control barrier function.

Here, the CBF has been incorporated into the cost function to

ensure safety with optimality. Please note that, a continuously

differentiable smooth function h(x, z) : X ¢ R
n → R is

known as CBF for the safe set S = {x ¢ R
n : b(x, z) g 0}

if there exists a locally Lipschitz class K functions β1, β2

and β3 such that the following condition is satisfied [9]:

1

β1(b(x, z))
f h(x, z) f

1

β2(b(x, z))
(5)

ḣ(x, z) f β3(b(x, z)) (6)

Next, Considering continuous dynamics of agent A given

in (1) and the cost function in (3), an admissible control

needs to be evaluated to achieve the optimal cost function

in (3). According to the optimal control [9] and Bellman’s

optimality principle [9], the Hamiltonian is:

H(x, u) = L(x(t), u(t)) + h(x, z) + ∂xV(x, u)

[f(x) + g(x)u(t)] (7)

with f(x) and g(x) are nonlinear functions and h(x, u)
represents the barrier function. Now, the optimal control the

agent A is evaluated as follows:

u(t) = −
1

2
R−1gT (x)∂xV(x, u) (8)

Next, the corresponding HJB equation can be achieved by

substituting the optimal control into the Hamiltonian defined

in equation (7)

∥x∥2Q + h(x, z) + ∂xV(x, u)f(x)− 1/4 R−1gT (x)∂x

V(x, u)gT (x)∂xV(x, u) = 0 (9)

Next, the agent A has been assigned to execute M number

of non-stationary tasks during its maneuvering period. Addi-

tionally, the index i is used to denote the current task, while

j represents the previous task. Now, addressing the optimal

tracking control problem involves tackling the Hamilton-

Jacobi-Bellman (HJB) equation to derive the optimal value

function. Furthermore, the agent needs to efficiently re-

member previous tasks without increasing computational
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complexity, while also solving the HJB equation to ensure

optimal and safe maneuvering in the current task, which

presents significant challenges. To tackle this challenge, An

adaptive lifelong safe learning-based actor-critic algorithm

with sequential dynamic tasks selection mechanism is devel-

oped in the following section.

III. ADAPTIVE LIFELONG SAFE LEARNING BASED

ACTOR-CRITIC ALGORITHM

In this part of the study, the agent aims to learn the

optimal value function for the current task while retaining

knowledge of previous tasks similar to the current one,

without increasing computational complexity. Additionally,

the agent must ensure that its strategy remains safe and

optimal. Now, the ideal value function of the critic neural

network for the current task i is defined as:

Vi(x, u) = WT
i,Vφi,V(x, u) + εHJB(x) (10)

In this context, Wi,V represents the neural network weights,

φi,V(x, u) is the activation function for the i-th task, and

εHJB(x) denotes the reconstruction error. Next, by substitut-

ing the ideal value function (10) into the HJB equation (9),

the effect of the reconstruction error is considered:

∥x∥2Q + h(x, z) + ∂x[W
T
i,Vφi,V(x, u) + εHJB(x)]−

1

4
∂x

[WT
i,Vφi,V(x, u) + εHJB(x)]

T +D(x)∂x[W
T
i,Vφi,V(x, u)

+ εHJB(x)] = 0

∥x∥2Q + h(x, z) +WT
i,V∂xφi,V(x, u)f(x)− 1/4 WT

i,V∂x

φi,V(x, u)D(x)WT
i,V∂xφi,V(x, u) + εHJBa = 0 (11)

with D(x) = g(x)R−1gT (x) and εHJBa is defined as follows:

εHJBa = −1/2WT
i,V∂xφi,V(x, u)D(x)∂xεHJB(x)− 1/4 ∂x

εHJB(x)D(x)∂xεHJB(x) + ∂xεHJB(x)f(x) (12)

Next, the approximated value function for the current task i
is defined as follows:

V̂i(x, u) = ŴT
i,Vφi,V(x, u) (13)

Now, the HJB equation error is defined as follows by

inserting the estimated value function from the equation (13)

in the HJB equation (9):

eHJB = ∥x∥2Q + ĥ(x, z) + ŴT
i,V∂xφi,V(x, u)f(x)− 1/4

ŴT
i,V∂xφi,V(x, u)D(x)ŴT

i,V∂xφi,V(x, u) (14)

Next, the objective function of the neural network training

for the i-th task can be derived as follows:

Ei(Ŵi,V) =
1

2
eTHJBeHJB (15)

Then, the normalized weight update law [17] of the neural

network is defined as:

˙̂
Wi,V = −αi,V

σi,V

1 + σT
i,Vσi,V

eTHJB (16)

with, σi,V = ∂xφi,V(x, u)f(x)−
1

2
∂xφi,V(x, u)D(x)∂xφi,V

(x, u)Ŵi,V .

Remark 1: Please note that this update law only incorporates

training for the current i-th task and does not include the

weights of previous tasks. Using this update law leads

to catastrophic forgetting of previous tasks. To efficiently

deploy optimal safe control for the agent across various non-

stationary tasks, information from previously executed tasks

is required. To address this, we propose a novel dynamic

task selection-based adaptive lifelong learning approach to

prevent the forgetting of previous tasks efficiently.

Dynamic Sequential Tasks Selection Mechanism: Let, the

total number tasks can be selected as M . The goal of

the agent A is to execute these sequential non-stationary

tasks while reducing computation in safe optimal track-

ing control. Next, the actor-critic neural network has been

trained for each of the tasks offline. Since there are

M tasks, each task has its own activation function, and

the set of activation functions can be defined as φV =
φ1,V , φ2,V , ..., φM,V . Next, the set of learned weight dis-

tribution functions from offline learning is represented as

ρ(WV) = ρ1(W1,V), ρ2(W2,V), ..., ρM (WM,V). Using this

information from offline learning, a novel cost function is

defined to select a certain number of tasks that are similar

to the current i-th task from the set of M tasks, as described

below:

Jtsel = wac[E{ρi(Wi,V)}φi,V − E{ρj(Wj,V)}φj,V ] + wd

[
1

2
{

∫ ∞

−∞

ρi(Wi,V) log(
ρi(Wi,V)

M(W)
)dx}+

1

2
{

∫ ∞

−∞

ρj

(Wj,V) log(
ρj(Wj,V)

M(W)
)dx}] + wcFc (17)

with, M(W) = 1

2
(ρi(Wi,V) + ρj(Wj,V)). Also, j defined

the index of the previous task and wac, wd, and wc are

the weight terms. Moreover, E{ρi(Wi,V)} and E{ρj(Wj,V)}
represent the mean value of the probability distribution of

the weights from task i and j, respectively. The second term

is included in the cost function to measure the statistical

distance between two probability distributions. We use the

well-known KL divergence [20] to measure this distance.

Lastly, the final term is incorporated to ensure fairness in

task selection, preventing the same task from being selected

repeatedly. The function Fc is defined as follows:

Fc =

{

(
Sj,i

taski
)2 if Msel g i

(
Sj,i

taskM
)2 if i > Msel

(18)

with, Msel is a predefined maximum selected tasks threshold

number and Sj,i total instances of the selection of jth task

before all sequential tasks of current task i. Also, the term

taski and taskM are defined as follows.

taski = (i− 1) + (i− 2) + ...+ (i− i)

= i2 − (1 + 2 + ...+ i) (19)

taskM = M2

sel − (1 + 2 + ...+Msel) + (i− 1−Msel)Msel

= iMsel − (1 + 2 + ...+ 2Msel) (20)

Next, a set µsel is chosen, defining the selected previous tasks

based on the minimum values of the cost function presented

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 25,2025 at 18:24:17 UTC from IEEE Xplore.  Restrictions apply. 



in equation (17). Next, the new critic NN cost function for

adaptive lifelong learning is defined as follows:

EL,i = Ei(Ŵi,V) +
∑

j∈µsel

∑

p

1

2
λFj,p∥Ŵi,V,p − Ŵj,V,p∥

2

(21)

The second term in this new objective function represents

the adaptive EWC cost function. Here, λ indicates the

importance of the previous task, p represents the parameters

of the corresponding weight vectors, and F denotes the

Fisher information matrix [15]. Next, the adaptive lifelong

learning-based critic weight update is defined as follows:

˙̂
WL,i,V = −αi,V

σi,V

1 + σT
i,Vσi,V

eTHJB − αi,V

∑

j∈µsel

∑

p

λFj,p

∥Ŵi,V,p − Ŵj,V,p∥ (22)

Next, the ideal function for the actor neural network during

the time of ith task execution is defined as follows:

ui(x) = WT
i,uφi,u(x) + εu(x) (23)

Here, Wi,u is the actor neural network weight, φi,u(x) is the

activation function of the actor NN, and εu(x) represents the

reconstruction error. Now, by substituting the ideal function

into the optimal control equation defined in (8), we obtain

the following equation

WT
i,uφi,u(x) + εu(x) +

1

2
R−1gT (x)WT

i,u∂xφi,u(x) = 0

(24)

The estimation of the control input is defined as follows:

ûi(x) = ŴT
i,uφ̂i,u(x) (25)

The residual error of the actor neural network is now

evaluated by inserting the estimated control into the equation

(8)

ei,u = ŴT
i,uφ̂i,u(x) +

1

2
R−1gT (x)ŴT

i,u∂xφ̂i,u(x) (26)

The residual error including the reconstruction error is now

achieved by combining equations (24) and (26)

eu = −W̃T
i,uφ̂i,u(x)−WT

i,uφ̃i,u(x)−
1

2
R−1gT (x)

∂xṼi(x, u)− εu(x) (27)

Now, the normalized weight update law of the actor neural

network is defined as follows:

˙̂
Wi,u = −αi,u

φ̂i,u

1 + φ̂T
i,uφ̂i,u

eTi,u (28)

IV. SIMULATION RESULTS

In this section of the simulation study, we implement

an adaptive lifelong learning-based safe tracking control

algorithm for a local autonomous unmanned vehicle (UAV).

This UAV operates in an environment with both static and

dynamic obstacles, including other UAVs. The objective of

the local UAV is to follow a reference trajectory while com-

pleting sequential tasks, ensuring safe navigation by avoiding

(a) t = 0s (b) t = 7s

(c) t = 14s (d) t = 20s

Fig. 1: The trajectory tracking of the unmanned autonomous

vehicle (UAV) in the presence of dynamic and static obsta-

cles. The red dashed line depicts the path of the reference

trajectory. The orange curve represents the local UAV trajec-

tory. Also, the magenta and green curves depict the UAV-1

and UAV-2 trajectories, respectively. The circle shapes with

different colors represent the UAVs. The static obstacle is

represented with a grey-colored rectangular shape. (a) the

initial states of the UAVs and obstacles at time t = 0s. (b)

(c) the UAVs state at time t = 7s and t = 14s. (d) The final

states of the UAVs at time t = 20s.

collisions with dynamic UAVs and stationary obstacles like

buildings. The initial state of the local UAV is chosen as

x =
[

x1 x2

]T
=

[

6.5 3
]T

. Moreover, the initial states

of the dynamic external UAV-1 and UAV-2 are selected as

z1 =
[

10 3
]T

and z2 =
[

16 13.5
]T

, respectively. Also, a

rectangular static obstacle is positioned along the path of the

reference trajectory. The center of the obstacle is selected as

z3 =
[

11.5 9.5
]T

with width= 1.5m and height= 2.5m.

Next, the local UAV intrinsic dynamic is defined as:

f(x) =

[

−x1 +
1

2
x2

2

−0.6x2

2

]

; g(x) =

[

0
1.2

]

(29)

Here, x =
[

x1 x2

]T
. Also, the dynamic functions of the

external UAVs are selected as follows:

fo(z1) =

[

z1,1 − 0.5t
z2,1 + 3sin(0.3t) + 0.03t

]

(30)

and,

fo(z2) =

[

z1,2 − 0.6t
z2,2 − 1.5sin(0.4t) + 0.15t

]

(31)

with, z1 =
[

z1,1 z2,1
]T

and z2 =
[

z1,2 z2,2
]T

.

Now, an actor-critic neural network is trained offline for 10
sequential tasks, with 7 tasks focusing on avoiding dynamic

UAVs and 3 tasks dedicated to avoiding static obstacles. The

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on March 25,2025 at 18:24:17 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Tracking error of the local unmanned aerial vehicle

(UAV).

learning rate of the critic NN for each task is selected as

αV = 1× 10−6 and the error threshold is selected as δHJB =
1 × 10−8. Additionally, for the actor neural network, the

learning rates and error thresholds are set to αu = 1× 10−5

and δu = 1 × 10−7, respectively. Subsequently, the learned

weights for all 10 tasks are stored for use in online learning.

The parameters of the cost function are selected as Q =
1 and R = 1.5. Additionally, the activation functions for

different tasks in the adaptive lifelong critic neural network

are chosen from a polynomial expansion with the formula
∑P

β=1
(
∑n

j=1
zj)

β , with n represents the input dimension

and P is a constant value. Also, the weight parameters for the

task selection cost function are selected as wac = 0.4, wd =
0.3, and wc = 0.3. Again, the learning rate of the adaptive

lifelong learning based critic NN for each task is selected

as αi,V = 1 × 10−3 and the error threshold is selected as

δi,HJB = 1×10−1. Additionally, for the actor neural network,

the learning rates and error thresholds are defined as αu =
1×10−3 and δu = 1×10−2, respectively. The task selection

threshold is chosen as Msel = 2.

Next, a local UAV is deployed in an unstructured environ-

ment alongside other UAVs and static obstacle structures.

Given the differing nature of dynamic and static obstacles,

avoiding these barriers is treated as separate tasks for the

UAVs. This mirrors real-world scenarios, as UAVs frequently

encounter these challenges in dynamic environments. When

faced with a new task, executing it online while ensuring

safety and performance can be challenging. However, if the

UAV possesses prior knowledge of the tasks, learned from

the environment in a manner similar to humans, it can make

quick decisions to ensure safety and performance across

various tasks.

We illustrate the effectiveness of the developed adaptive

lifelong safe learning-based tracking algorithm with a series

of figures. The maneuvering of the deployed UAV using

the developed algorithm is demonstrated in Figure 1. In

this figure, a reference trajectory is provided to the local

UAV. Here, the red dashed line represents the curve of

the reference trajectory. Also, the local UAV is represented

by an orange circle, and its trajectory is illustrated with

an orange curve. However, during the time of trajectory

tracking, the local UAV encounters other dynamic UAVs and

static obstacles. This figure demonstrates how the local UAV

performs different tasks by ensuring safety and performance

during its trajectory tracking using the adaptive lifelong

learning-based non-stationary task execution algorithm. The

external UAVs are depicted in magenta and green circles,

with their respective trajectories shown in the same colors.

Additionally, a static obstacle represented by a grey rectangle

is placed along the reference trajectory’s path. The initial

position of the UAVs and static obstacle is shown in Figure

1(a) at the time t = 0s. Then, the motion of the UAVs at time

t = 7s is depicted in Figure 1(b). In this figure, the local UAV

begins its movement from the left lower corner, which is the

starting position of the reference trajectory. Simultaneously,

the other external UAVs also start their motion from the

different parts of the figure. At that initial stage, the local

UAV encounters its first task. From this figure, we can

see that the UAV-1 approaches the local UAV. To avoid a

collision with the approaching UAV, the local UAV executes

its first task by making a slight left turn from the reference

trajectory. Then in the figure 1(c) at time t = 14s, the second

task execution is depicted. Here, the local UAV encounters a

static obstacle placed in the path of the reference trajectory.

To ensure safety while tracking the trajectory, the local UAV

makes a left turn to avoid the static obstacle. Subsequently,

UAV-2 enters the path of the local UAV. In figure 1(c) at time

20s, it is shown that the local UAV successfully executes the

third task by avoiding the potential collision with UAV-2 and

continues to track the reference trajectory. Since the third

task is similar to the first, the UAV performs better in terms

of safety and trajectory tracking due to its prior experience

with the first task.

Fig. 3: Adaptive lifelong learning based critic neural network

HJB error.

Next, the tracking performance of the local UAV is il-

lustrated in Figure 2. Since the local UAV must track the

trajectory while also avoiding collisions, the tracking error

increases in certain instances to efficiently execute the given

tasks. Specifically, higher tracking errors are observed during

the execution of tasks 1 and 2. However, during task 3, as

the UAV gains more experience from the previous tasks, the

tracking error approaches zero.

Finally, the HJB error from the adaptive lifelong learning-

based critic neural network is depicted in Figure 3. This error

is shown for the entire simulation duration of 20s. During this

period, the local UAV performs three assigned tasks. Initially,

the first task assigned to the UAV is to avoid a collision with

external UAV-1. At this stage, the local UAV incorporates

2 offline trained weights, similar to the given tasks, using

the task selection cost function from equation (17). During

the Task-1 period, the UAV’s HJB error approaches zero,

indicating the successful execution of Task-1. However, it

is important to note that the error does not converge to

zero perfectly during Task 1. When a new task is assigned,
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the HJB error rises. In this period, the UAV avoids a static

obstacle and utilizes weights from offline training to recall

the relevant task weights. For Task-2, the HJB error also

approaches zero. Finally, a new third task is assigned, which

is similar to the first task. During this period, the UAV uses

weights from both offline and online learning, as a similar

instance occurred during the UAV’s online maneuvering.

Since the UAV has more information related to Task 3 than

before, the HJB error converges to zero more efficiently.

In summary, the simulation results presented in this section

demonstrate the effectiveness of the proposed algorithm.

V. CONCLUSION

This study has developed a novel adaptive lifelong safe

learning-based real-time optimal tracking control algorithm

in the presence of an unstructured environment with non-

stationary tasks. Here, the optimal problem is formulated

with control barrier function (CBF) to ensure the safety

and performance of the system. Specifically, the developed

algorithm introduces a hybrid offline-online learning frame-

work with a real-time adaptive lifelong safe learning-based

actor-critic method. Here, the critic neural network is mod-

ified with a dynamic task selection-based adaptive lifelong

learning strategy. To adapt to the dynamic environment, the

offline neural network weights associated with specific tasks

are integrated with a probability distribution and fed into

the online algorithm. A novel task selection cost function

is provided to compare the relevant previous tasks and

efficiently select them to avoid computational complexity.

Additionally, a fairness term is incorporated into the algo-

rithm to prevent the repeated selection of previous tasks.

Then, the objective function of the critic neural network

is reformulated with the selected tasks using the elastic

weight consolidation method. Finally, the effectiveness of the

algorithm is validated through a series of simulation studies.

In the future, more tasks will be added in the online part to

validate the efficiency of the proposed algorithm.
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