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A Data-enabled Dual Learning based Online Receding Horizon Safe-Critical
Control for Nonlinear Systems under Uncertainty

Shawon Dey and Hao Xu

Abstract— In this paper, a real-time reliable receding horizon
control (RHC) with a guaranteed safe adaptation mechanism is
developed for uncertain complex nonlinear systems. Ensuring
receding horizon optimality and safety, particularly in the
presence of uncertain nonlinear system dynamics, poses a
significant challenge in both control and learning societies. To
tackle this challenge, a novel safe-critical RHC framework has
been developed to enhance classical RHC with the capability of
prioritizing system safety by timely recognizing and adapting
environmental uncertainties. Specifically, the developed frame-
work utilizes a novel dual-learning approach with slow learning
to recognize environmental uncertainties and further refine
RHC along with a situation-aware physics-informed neural
network (SA-PINN), and fast learning to ensure system safety
by using a safe-critical control with fast learned adaptive control
barrier (FA-CBF) function. Therefore, slow learning in the
developed dual-learning approach can provide optimal RHC
albeit with longer computation time, while the fast learning
component provides safe control effectively adapting to the
uncertain environment in real-time.

I. INTRODUCTION

In real-time control scenarios for complex nonlinear sys-
tems, e.g. satellite control [1], autonomous transportation [2],
unmanned aerial vehicle [3] etc., it is crucial to ensure sys-
tem safety while pursuing performance optimality. Existing
research has extensively explored approaches like Receding
Horizon Control (RHC) [4] to strengthen practical control
cost-effectiveness, and Control Barrier Function (CBF) [5] to
guarantee safety. However, these methods face challenges in
real-time applications due to their computational complexity
and reliance on a fully known dynamics model. The existing
approaches [6], [7] are impractical for rapid safe adaptation
with performance optimality especially when the system dy-
namics are not fully known. To address this challenge as well
as achieve an efficient balance between cost performance and
system safety, a novel dual-learning approach is developed
in this paper. Inspired by human-brain that can effectively
balance optimality and safety, the developed dual learning
algorithm includes a slow learning component mirroring
the neocortical learning [8] and a fast learning component
mimicking the hippocampal learning process [8] in the
human brain. Neocortical learning, inspired by the human
brain neocortex, allows the system to assimilate knowledge
over time. Considering the system dynamic is unknown,
slow learning can develop a neural network-based system
identification approach that learns the unknown part of the
agent dynamics first. Then, the slow learning component is

The authors are with the Department of Electrical and Biomedical
Engineering, University of Nevada, Reno, NV, 89557 USA e-mail: sha-
wondey @nevada.unr.edu; haoxu@unr.edu.

able to learn the model over time through collected real-time
operation data gradually. Please note that the computational
complexity of model learning prohibits the instantaneous
identification of unknown dynamics. In addition, a reced-
ing horizon control (RHC) method has been developed to
improve system performance by guiding the agent to its
predetermined destination. However, RHC requires solving
optimization problems within a short time frame to provide
time-efficient control. This becomes challenging in real-time
implementation where rapid and safe adaptation is crucial. In
this approach, optimal control is periodically updated and fed
into the fast learning component to enhance overall system
effectiveness. Here, the solution of the receding horizon op-
timal control problem relies on a partial differential equation
(PDE) called the Hamilton-Jacobi-Bellman (HJB) equation
[9], [10]. To solve the HJB equation with an uncertain
nonlinear system and obtain the optimal control strategy, the
physic-informed neural network (PINN) [11] is modified to a
situation-aware physic-informed neural network (SA-PINN)
based learning algorithm. Meanwhile, hippocampal learning
allows the system to adapt to time-varying environments
rapidly. The fast learning consists of two parts. First, a
fast-learned adaptive control barrier function (FA-CBF) is
formulated to ensure the forward invariance of a safe set. The
proposed FA-CBF initially incorporates a bound threshold
for uncertain dynamics to ensure the strict safety of the sys-
tem. As the system model gradually improves through slow
learning, fast learning updates the threshold bound, becoming
less conservative over time. Furthermore, an adaptive control
framework has been developed to integrate an RHC-based
optimal controller from slow learning and a CBF-based safe
controller into a unified framework that can simultaneously
ensure system performance and safety. The key contributions
of this method are as follows:

o A real-time control algorithm based on Receding Hori-
zon Control (RHC) and safe control has been designed
and integrated into a unified framework.

« To enable real-time intelligent safety-critical control, a
dual learning strategy is developed, drawing inspiration
from human behavior modeled from the hippocampus
and neocortex. This approach mirrors fast and slow
learning processes, with the slow learning component
focusing on understanding uncertain dynamics and im-
plementation of a receding horizon optimal control
utilizing a learning algorithm based on situation-aware
physics-informed neural networks (SA-PINN). Simul-
taneously, the fast learning component facilitates real-
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time safe adaptation, striking a balance between real-
time performance and safety considerations.

II. PROBLEM FORMULATION

Consider the following nonlinear affine dynamic system

#(t) = f(x) + g(x)u(t) (1

with z(t) € R™ denote the system state vector, u(t) € R™
represents the control input vector. Different than others
[12], [13], the intelligent safety-critical control input u(t) =
ug(t) + us(t) developed in this paper is the combination
of the optimal control wuy(t) which is directed to the fast
learning at k-th time instant and the safe control u(t). The
functions f : R® — R™ and g : R™ — R™*™ describe the
intrinsic dynamics of the system. Please note the dynamics
of the system are not known in advance. The primary goals
of this research are:

1) Develop a feedback control strategy for an uncertain
nonlinear dynamic agent to attain real-time optimal
performance and strict safety while navigating towards
a predefined destination. The strict safety requirements
ensure that the agent trajectory remains within a safe
set, satisfying the condition b(z) > 0 for ¢t > 0, where
b(x) represents a continuously differentiable barrier
function.

2) To achieve this real-time control, design a dual learning
approach inspired by human behavior learning from
the hippocampus and neocortex region, corresponding
to fast and slow learning, respectively.

Next, the details of the developed dual-learning algorithm
are given.

III. A DUAL LEARNING ALGORITHM

The learning algorithm outlined in this section draws
inspiration from the human learning process as described in
[14]. Tt emulates how humans learn through the interaction
of experiences, swiftly adapting to uncertain situations. For
achieving optimal performance towards a predefined goal,
the receding horizon control has been employed. However,
implementing this control strategy in real-time is challenging
due to computational complexity and the lack of built-
in safety measures. To enable real-time decision-making,
control, and ensure prompt safety measures, we introduce a
fast or hippocampal learning component that starts with con-
servative bounds and progressively relaxes conditions over
time. Specifically, the fast learning component implements
the controller in real-time, receiving optimal updates from
the slow learning to strike a balance between performance
and safety. The applied controller feedback is then looped
back to the slow learning component, allowing the algorithm
to gradually accumulate experience related to both optimal
performance and safety.

A. Slow Learning: A Neocortical Approach to Learn Model
Uncertainty and Optimal Strategies

To implement receding horizon optimal control, it is
necessary to know the system dynamics which is unrealistic.

311

Therefore, this paper aims to relax the requirement of known
system dynamics. Specifically, model learning is adopted
where the agent begins with a nominal model and gradually
learns the original system.

1) Neural Network-based System Approximator: The ac-
tual system dynamic of the agent can be represented as

2(t) = Az + fiue() + Guue () u(t) 2)

with u(t) = ur(t) + us(t) and A € R™*"™ represents a con-
stant matrix. In accordance with the universal approximation
property [15] of neural network (NN), the ideal nonlinear
functions can be represented as

Frne(@) = 0F ¢1(x) +€4(2) 5 Gine(x) = 0 by () + €4 ()
3)

with H}F and 6; are the respective weights of the NNs.
Moreover, ¢¢(x) and ¢4(x) are the activation functions and
ef(z) and e4(x) denotes reconstruction errors. Then, the
actual system dynamic can be rewritten as:
i(t) = Az + 07 dp(x) + 0] dg(x)u(t) + e (z) + 4(x)ult)
= Az + 07 Py (v)0 + & “4)
. T . _

with § = |0 99] s Pwe(x) = diag{o(z), Ppg(2)}, u =
[1 w(t)]” and & = e(z) + e4(z)u(t). Now, the initial
nominal model of the agent system is as follows:

3;3 = Az + fnomi(w) + gnomi(x)u(t) 5)
Then the NN-based estimated system dynamic is derived as:

&= A&+ foomi(2) + fi(2) + [gromi (2) + g1(2)]u(t)  (6)
where f;(x) and g;(z) are neural network estimation func-
tions. Also, £ € R™*™ be a design matrix with A, = A— L.
Then, the state estimation error is { = x(t)—2Z(t). Now, using
estimated weight and activation functions, the equation (6)
is rewritten with feedback term:

‘7;3 = A% + fnomi(w) + fl(x) + [gnomi(x) + gl(‘r)]u(t) + ['C
= A2 + 07 frue (2)T + LG )
Here, 0 is the estimated weight. The system dynamic model
approximation error is derived using equations (4) and (7):
é = Ao( + eTq;trueﬁ + HNTQZAStrueﬂ +€ (3
Now the objective function is defined as:
T.m: 1. o o
dena = §CTC = 5”37 - Aa: - €T¢true(x)u - ['CHQ (9)
Depending on this objective function, the gradient descent-
based weight update law is defined as:
adena
a0 ~ i
= ad¢truea[AoC + 9T¢truea + 9T¢lmea =+ &:]T
Here oy denotes the learning rate of the neural network. The
weight approximation error dynamics is:

é:—ad

(10)

é = _adqgtruea[AoC + QT(ZBtruea + éTélrueﬂ + f‘-:]T (11)
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2) Receding Horizon Control: Since the Receding Hori-
zon Control (RHC) is computationally expensive and hard
to implement in real-time, the slow learning framework
has been used and integrated with RHC to learn the opti-
mal control over time. Specifically, We have considered a
finite-length prediction horizon. Here, {tx}72, represents a
sequence over the timeline. The iteration period between
sequence k and k + 1 is denoted as &, € RT that is
tk+1 = tr + €in- Now, at each time instant t; the RHC
controller solves the optimal control problem over the time
interval [tg,tx + T, where T is the length of the prediction
horizon. It’s important to note that the prediction horizon
duration 7' is greater than or equal to the iteration period
€ia- Then the cost function can be formulated as follows:

te+T
Toow) = Valalte + )+ [ (el + Jul3la (12)
23

s.t. () = f(x) + g(z)u(t)

where V7 is the terminal cost, f and ¢ are the estimated func-
tions. Also, @) and R are the positive definite weight matrix
for the state and control input. Now, the receding horizon
optimal control is formulated for the estimated continuous
system dynamic given in (1) and the cost function in (12). In
addition, an optimal control policy is formulated to achieve
the optimal cost function in (12). Now, the Hamiltonian [16]
of this optimal control problem is defined as:

H(&,u) = (|23 + lulf + 000 (3, 4)[f(2) + §(2)u(t)]
13)

with f(z) and §(z) are the estimated nonlinear functions
from the neural network. Now, the optimal control at the kth
iteration from the slow learning part is defined as:

u(t) = ug(t) = —1/2 R g7 (2)0,J (&,u)  (14)

This control input is inserted into (13) to achieve the HIB
equation as follows:

|2l + 00 J (&, u) f(x) — 1/4 R g7 ()0, T (&, u)g" (x)
axJ(fc,u) =0 (15)

Addressing the receding horizon optimal control problem
involves tackling the Hamilton-Jacobi-Bellman (HJB) equa-
tion to derive the optimal value function. Substituting this
value function into the control equation (14) allows for the
determination of the optimal control. Nevertheless, solving
the HIB equation with an uncertain nonlinear system poses
challenges due to its inherent nonlinearity. Here, the solution
of the HJB equation involves the integration of a learning
algorithm with SA-PINNSs.

Situation Aware Physics-Informed Neural Network (SA-
PINN): In this part, the agent aims to predict the optimal
value function through the SA-PINNs learning algorithm
with the unknown nonlinear system. By incorporating SA-
PINN, the agent can gradually and accurately learn the
optimal action without requiring an excessive amount of data
and exact system dynamic information, achieved through

solving the PDE known as the HIB equation. Now, the ideal
value function is defined:

J(&,u) = W] ¢y (2,u)+e4(2)

Here, W denotes the neural network weight, ¢ ;(Z, u) is the
activation function, and €7 (&) represents the reconstruction
error. Next, substituting (16) into the HIB equation (15), the
impact of the reconstruction error is taken into account:

122 + W7 006 (&, ) f(x) = 1/4 W] 0265(&, u)D (%)

W1 0,¢(&,u) +er () =0 (17)
with D(2) = g(z)R™*¢" (z) and e (%) = —1/2W7T0,
¢(2,u)D(2)0ze 5 (2) — 1/4 0y 1 (2)D(2)0r 5 (%) + Ore s
() f(x). Now, the value function approximation is:

j(iﬂj’) = WfQASJ(£7u>

(16)

(18)

Inserting the approximated value function in (15), the resid-
ual error can be calculated as:

Re = |33 + WS 0pds(d,u) f(z) — 1/A W] 000 (&, u)
D(&)W] 0265 (i,u) (19)
Then, substituting (19) into (17):
Re = WJ0,0,(&,u)f () + W] 00y (&,u) f(z) +1/4
W1 0:6(2,u)D(@)W] 0y (&, u) — 1/4 W] 0py(&,u)
D(&)WT0,05(,u) — er (20)

Moreover, the HIB equation is subject to the initial and
terminal conditions and is defined as:

J(£7u70) = Jini(i'7u) ; VT(IL’(tk + T)) = ‘/ter(i.7u) (21)

Then, the physics-informed learning model can be trained
based on the following objective function:

Jene(Wy) = 1/2 wieJic(Wy) + 1/2 wieJre (W)

+1/2 wr, |Re(Wy)? (22)
Witha JZC(WJ) = HJini(ivu) - Wfé](i,?j,,())”Z
= |WFs(@,u,0) — WFdy(#,u,0) + el (23)

Jie(W3) = |Viee(@, u) = WE (&, u, ty + T)||?

= |WTés(@,u,te +T) — W] ¢s(@,u,t, + T) + er)?
(24)

The weight update rule through the given objective function
is derived as follows:

W} = —ay 78JPINI\I(WJ)
oW
= a;[wicd s (&, u, ) {WF¢;(&,u,0) — W, (&, u,0)
+ eini} T+ wied s (@, u, ty + T{WT ¢ s(a, u,ty +T)—
WTos(a,uty +T) + eet? +wr,1/2 06 (i,u)
D()W] 0s0s (2, u)R] (25)
Here, vy is the learning rate. Next, the weight approximation

error dynamic is defined as:

Wy = —a;[wieds (&, u, 0 {WTé;(&,u,0) — Wy (2,u,0)
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Slow Learning: A Neocortical Approach
PINN-based LearningH PDE-HJB |
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Fig. 1: The structure of the dual learning approach.

+ eini}T 4 wiedy (&, u, te + TAWT ¢y (2, u, ty + T)—
W (&, sty + T) + e}’ +wr,1/2 8,65 (&, u)

D(E)WF 0,05 (2,u)RT] (26)

Substituting the ideal value function from (16) to the optimal
control equation (14), the optimal control at the kth iteration
from the slow learning part is rewritten as:

ugp(t) = —=1/2 R7'¢T(2)0, W T ¢ 5 (i, u) + € (3)]

= R W6 0) ~ 12 R0,
27

The estimated optimal control depends on the estimated
value function from (18) as

an(t) = —1/2 R7'GT (2)WT0u¢s(2,u)  (28)

The optimal control approximation error is derived as:
g (t) = —1/2 R'§7 (2)[W] 0,65 (2, u) + 0ye 5 (2)] (29)

Subsequently, the optimal control derived from the slow
learning phase is transferred to the fast learning phase.
In this fast learning phase, the agent implements real-time
control, effectively achieving a balance between safety and
performance considerations.

B. Fast Learning: A Hippocampal Approach for Real-Time
Safe Control with Guaranteed Performance

In this section, the focus is on ensuring the safety of the
system. The safety framework is defined by an invariant
safe set denoted as S. This set S is considered the super
level set of a continuously differentiable smooth function
b : R™ — R. Given that the dynamics of the agent’s system
are initially unknown and gradually learned in the slow
learning phase, an adaptive bound for the system dynamics
is utilized to guarantee the strict safety of the agent. This
bound undergoes a gradual relaxation over time, reflecting
the evolving understanding of the system acquired during

the slow learning phase. Now the agent system dynamic in
the fast learning part is estimated as:

& = f(2) + Lofll2]| + [§(2) + Logl| &[] (wr (t) + us(2))
(30)

with Lgs and ﬁBg being the adaptive bound weight. Initially,
a conservative bound is given to ensure strict safety and this
bound is updated and relaxed over time. The system state
errors including the bound is described as follows:

&= [f(&) ~ F(@)] + [9(&) — §(@)] (un(t) + us(t)

— Lifl|#]| — Lugll2 ]| (ur () + us(2)) €2
Next, the bound weights are updated as:
Lyt = —npe[(1/2) 0{&T2}) /0 Lgs = nel| 2|27 (32)

Lpg = —npg[(1/2) 0{aTi}]/0Lpg = npel|2 | (wr + us)i”
(33)

where 7 and 7p, are the tuning rate. Also, the approximated
weight error is defined as:

Lyt = —npel| 2|27 Loy = — el @ (ux +us)z"  (34)

Next, Nagumo’s theorem [17] provides a necessary and
sufficient condition for set invariance in dynamical systems.
Applying this theorem to the system described in equation
(30), the condition for set invariance can be expressed as:
S={{xeR":b&) >0} 08 ={z € R": b)) =0}
and Int(S) = {& € R™ : b(z) > 0}. Here, OS and
Int(S) represent the boundary and interior of the safe set
S respectively. Now, b can be identified as a fast adaptive
control barrier function (FA-CBF) if there is a function
« belonging to the extended class X, and the provided
dynamical system meets the following condition:

ilelg[azb(if)(f(w) + Lpt| &) + 0.0(2)(g(x) + Lag || 21))
(ur(t) + us(t))] = —a(b(2))

Here, the optimal control u(t) is injected from the slow
learning part. Please note that wus(t) is the safe control
applied in the fast learning part which satisfies the above
condition. Now, the extended K, function can be defined as
follows:
Definition 1: A function o : R — R is known as an extended
class K, function if the function is strictly increasing and
a(0) = 0. Please see ([5]) for the definition.

The control inputs that meet the conditions specified in
equation (35) and ensure the safety of the set S can be
described as:

Keoi(#) = {u € U : 8,b(&)(f(x) + Lgi|2) + 0:b(2)
(g(2) + Lig | @) (ur(t) + us () + a(b(@)) >0} (36)

It’s important to highlight that the optimal control, denoted
as u(t), obtained from slow learning, faces challenges in
real-time implementation due to computational complexity
and is inherently unsafe. In the fast learning phase, the

(35)
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combination of a safe control strategy and optimal control en-
sures real-time control that is both safe and high-performing.
The design of the controller responsible for maintaining
the system state within a safe set and stable requires the
incorporation of a Lyapunov function denoted as L.(). The
integration of this Lyapunov function is crucial to address
the constraint on the derivative of L.(#) and to unify it with
the Fast Adaptive-CBF constraint. This integration aims to
ensure safety, stability, and system performance. To design
this safe controller that filtered the optimal action from the
slow learning part to ensure safety and real-time execution,
a quadratic programming (QP) based approach has been
chosen.

. . 1
us(2) = arg min §||ug||2 + po?

u,d
st 9,b(2)(f(x) + Lue||2]]) + 0:b(2) (9(x)+
Lig|2]]) (s (£) + us(t)) + a(b(@)) > 0

L(2) <9 (37)

Note that ¢ represents a relaxation variable introduced to
ensure the solvability of the quadratic program, while p
denotes the coefficient for the relaxation factor.

IV. SIMULATION RESULTS

This simulation study implemented the developed algo-
rithm in an autonomous vehicle (AV) to demonstrate real-
time, reliable control that combines fast and slow learning
for guaranteed performance and safety. The objective is to

10 10

8 - 8

6 6

4
X-axis X-axis

(a) t=0s (b) t = 20s

Fig. 2: The movement of the AV is depicted here. The
red curve shows the path taken by the vehicle. Two black
curves indicate the boundaries. The yellow circle marks the
destination point.

enhance vehicle performance by integrating a slow learning

approach based on the neocortex, while also swiftly making

safe decisions through a fast learning framework inspired by

the hippocampus. The initial state of the AV is selected as
T T s .

r = [xl IQ] = [7 8] . Next, the intrinsic dynamic of

the AV is defined as

flz) = [_o,ml 052l — (ons(221) +2)7)

g(x) = {1(.)5]

(38)

(39
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Fig. 3: Convergence of control input (a) control input wuy

from slow learning (b) safe control input us from fast

learning.

The algorithm comprises two components: a slow-learning
module and a fast-learning module. The slow learning
module focuses on understanding uncertain dynamics and
facilitating receding horizon optimal control. The NN-based
system approximation consists of a three-layer nonlinear
feedforward network comprising one input, one hidden, and
one output layer. The activation functions of NN-system
approximation are selected as a hyperbolic tangent function,
i.e. tanh(x). This activation function is selected for both
f(z) and g(x) approximation. The learning rate and error
threshold of this NN is defined as ag = 1 x 10~2 and ¢
respectively. Also, the prediction horizon is set to T = 4
seconds, and the iteration period is defined as ¢, = 0.1
seconds. The activation function for the SA-PINNs learning
was selected from a polynomial expansion represented by
the formula Z§=1(Z?=1 z;)P, where n denotes the input
dimension and P is a predetermined constant. Also, the
learning rate and error threshold are selected as aj; =
1x 1072 and §; = 1 x 10~°. The tuning rates are chosen as
ner = g = 0.1. Additionally, the threshold is specified as
8z = 1x1072. Now, the barrier function is defined as b(%) =
(|12 — Zmax|l2 — €1)(|1& — Zminll2 — €2) with £; = 0.3 and
g2 = 0.3. Here, the ¢; and e, represent the minimum safe
distance of the AV from the boundary. Figure 2 illustrates
how the autonomous vehicle maneuvers using the developed
fast-slow learning-based real-time reliable control method.
The objective is to maintain optimal performance and safety
while reaching a predefined destination. The locations of
the vehicle are shown at different time instants: ¢ = 0Os
and ¢ = 20s in Figures 2(a) and 2(b) respectively. From
the figure, it is clear that the AV avoids unsafe maneuvers
and safely reaches the destination without approaching the
boundary. Figure 3 illustrates the control input from both fast
and slow learning components. In Figure 3(a), the optimal
control input wuy from the slow learning is shown. This
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Fig. 4: Error convergence of the physics-informed based
neural network.

optimal control steadily converges over time. A smaller
window provides a closer look at the details. The figure
demonstrates that the control input from the Receding Hori-
zon Control (RHC) updates periodically over time, which is
then transferred to the fast learning part. However, relying
solely on this control can potentially lead to unsafe control
strategies. The subsequent illustration showcases the con-
trol mechanism from fast learning, as referenced in Figure
3(b). This safety-oriented control aids the AV in quickly
making safe decisions. Variations observed at different time
points signify the timely adjustments made by the control
to maintain a safe distance from the safety boundary Figure
4 illustrates the convergence of the objective function error
for the SA-PINNs employed in learning the HJB partial
differential equation (PDE), leading to the determination of
the optimal control.

V. CONCLUSION

This paper introduces a biologically inspired dual learn-
ing approach, combining real-time optimal receding hori-
zon control (RHC) strategy with integrated real-time safety
measures for a complex nonlinear system subject to uncer-
tainties. The developed algorithm aims to strike a balance
between the agent’s optimal performance and safety. The
framework incorporates a novel dual learning algorithm,
where the slow learning component involves training neural
networks to model the uncertain system and implement-
ing optimal RHC control using a situation-aware physics-
informed neural network (SA-PINN). In addition, the fast
learning component addresses this unsafety challenge from
uncertain environments by designing a fast adaptive Control
Barrier Function (FA-CBF) along with adaptive boundary
updates. The resulting safe control from the fast learning
part, combined with the optimal control from the slow
learning aspect, offers a real-time, reliable control strategy
that ensures both optimal performance and safety. Moreover,
the paper includes Lyapunov stability analysis to demonstrate
the convergence of the dual learning process and closed-loop
stability. Eventually, numerical experiments are conducted to
illustrate the effectiveness of the developed approach.
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