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Abstract— In this paper, a real-time reliable receding horizon
control (RHC) with a guaranteed safe adaptation mechanism is
developed for uncertain complex nonlinear systems. Ensuring
receding horizon optimality and safety, particularly in the
presence of uncertain nonlinear system dynamics, poses a
significant challenge in both control and learning societies. To
tackle this challenge, a novel safe-critical RHC framework has
been developed to enhance classical RHC with the capability of
prioritizing system safety by timely recognizing and adapting
environmental uncertainties. Specifically, the developed frame-
work utilizes a novel dual-learning approach with slow learning
to recognize environmental uncertainties and further refine
RHC along with a situation-aware physics-informed neural
network (SA-PINN), and fast learning to ensure system safety
by using a safe-critical control with fast learned adaptive control
barrier (FA-CBF) function. Therefore, slow learning in the
developed dual-learning approach can provide optimal RHC
albeit with longer computation time, while the fast learning
component provides safe control effectively adapting to the
uncertain environment in real-time.

I. INTRODUCTION

In real-time control scenarios for complex nonlinear sys-

tems, e.g. satellite control [1], autonomous transportation [2],

unmanned aerial vehicle [3] etc., it is crucial to ensure sys-

tem safety while pursuing performance optimality. Existing

research has extensively explored approaches like Receding

Horizon Control (RHC) [4] to strengthen practical control

cost-effectiveness, and Control Barrier Function (CBF) [5] to

guarantee safety. However, these methods face challenges in

real-time applications due to their computational complexity

and reliance on a fully known dynamics model. The existing

approaches [6], [7] are impractical for rapid safe adaptation

with performance optimality especially when the system dy-

namics are not fully known. To address this challenge as well

as achieve an efficient balance between cost performance and

system safety, a novel dual-learning approach is developed

in this paper. Inspired by human-brain that can effectively

balance optimality and safety, the developed dual learning

algorithm includes a slow learning component mirroring

the neocortical learning [8] and a fast learning component

mimicking the hippocampal learning process [8] in the

human brain. Neocortical learning, inspired by the human

brain neocortex, allows the system to assimilate knowledge

over time. Considering the system dynamic is unknown,

slow learning can develop a neural network-based system

identification approach that learns the unknown part of the

agent dynamics first. Then, the slow learning component is
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able to learn the model over time through collected real-time

operation data gradually. Please note that the computational

complexity of model learning prohibits the instantaneous

identification of unknown dynamics. In addition, a reced-

ing horizon control (RHC) method has been developed to

improve system performance by guiding the agent to its

predetermined destination. However, RHC requires solving

optimization problems within a short time frame to provide

time-efficient control. This becomes challenging in real-time

implementation where rapid and safe adaptation is crucial. In

this approach, optimal control is periodically updated and fed

into the fast learning component to enhance overall system

effectiveness. Here, the solution of the receding horizon op-

timal control problem relies on a partial differential equation

(PDE) called the Hamilton-Jacobi-Bellman (HJB) equation

[9], [10]. To solve the HJB equation with an uncertain

nonlinear system and obtain the optimal control strategy, the

physic-informed neural network (PINN) [11] is modified to a

situation-aware physic-informed neural network (SA-PINN)

based learning algorithm. Meanwhile, hippocampal learning

allows the system to adapt to time-varying environments

rapidly. The fast learning consists of two parts. First, a

fast-learned adaptive control barrier function (FA-CBF) is

formulated to ensure the forward invariance of a safe set. The

proposed FA-CBF initially incorporates a bound threshold

for uncertain dynamics to ensure the strict safety of the sys-

tem. As the system model gradually improves through slow

learning, fast learning updates the threshold bound, becoming

less conservative over time. Furthermore, an adaptive control

framework has been developed to integrate an RHC-based

optimal controller from slow learning and a CBF-based safe

controller into a unified framework that can simultaneously

ensure system performance and safety. The key contributions

of this method are as follows:

• A real-time control algorithm based on Receding Hori-

zon Control (RHC) and safe control has been designed

and integrated into a unified framework.

• To enable real-time intelligent safety-critical control, a

dual learning strategy is developed, drawing inspiration

from human behavior modeled from the hippocampus

and neocortex. This approach mirrors fast and slow

learning processes, with the slow learning component

focusing on understanding uncertain dynamics and im-

plementation of a receding horizon optimal control

utilizing a learning algorithm based on situation-aware

physics-informed neural networks (SA-PINN). Simul-

taneously, the fast learning component facilitates real-
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time safe adaptation, striking a balance between real-

time performance and safety considerations.

II. PROBLEM FORMULATION

Consider the following nonlinear affine dynamic system

ẋ(t) = f(x) + g(x)u(t) (1)

with x(t) ∈ R
n denote the system state vector, u(t) ∈ R

m

represents the control input vector. Different than others

[12], [13], the intelligent safety-critical control input u(t) =
uk(t) + us(t) developed in this paper is the combination

of the optimal control uk(t) which is directed to the fast

learning at k-th time instant and the safe control us(t). The

functions f : Rn → R
n and g : Rn → R

n×m describe the

intrinsic dynamics of the system. Please note the dynamics

of the system are not known in advance. The primary goals

of this research are:

1) Develop a feedback control strategy for an uncertain

nonlinear dynamic agent to attain real-time optimal

performance and strict safety while navigating towards

a predefined destination. The strict safety requirements

ensure that the agent trajectory remains within a safe

set, satisfying the condition b(x) g 0 for t > 0, where

b(x) represents a continuously differentiable barrier

function.

2) To achieve this real-time control, design a dual learning

approach inspired by human behavior learning from

the hippocampus and neocortex region, corresponding

to fast and slow learning, respectively.

Next, the details of the developed dual-learning algorithm

are given.

III. A DUAL LEARNING ALGORITHM

The learning algorithm outlined in this section draws

inspiration from the human learning process as described in

[14]. It emulates how humans learn through the interaction

of experiences, swiftly adapting to uncertain situations. For

achieving optimal performance towards a predefined goal,

the receding horizon control has been employed. However,

implementing this control strategy in real-time is challenging

due to computational complexity and the lack of built-

in safety measures. To enable real-time decision-making,

control, and ensure prompt safety measures, we introduce a

fast or hippocampal learning component that starts with con-

servative bounds and progressively relaxes conditions over

time. Specifically, the fast learning component implements

the controller in real-time, receiving optimal updates from

the slow learning to strike a balance between performance

and safety. The applied controller feedback is then looped

back to the slow learning component, allowing the algorithm

to gradually accumulate experience related to both optimal

performance and safety.

A. Slow Learning: A Neocortical Approach to Learn Model

Uncertainty and Optimal Strategies

To implement receding horizon optimal control, it is

necessary to know the system dynamics which is unrealistic.

Therefore, this paper aims to relax the requirement of known

system dynamics. Specifically, model learning is adopted

where the agent begins with a nominal model and gradually

learns the original system.

1) Neural Network-based System Approximator: The ac-

tual system dynamic of the agent can be represented as

ẋ(t) = Ax+ ftrue(x) + gtrue(x)u(t) (2)

with u(t) = uk(t) + us(t) and A ∈ R
n×n represents a con-

stant matrix. In accordance with the universal approximation

property [15] of neural network (NN), the ideal nonlinear

functions can be represented as

ftrue(x) = θTf φf (x) + εf (x) ; gtrue(x) = θTg φg(x) + εg(x)
(3)

with θTf and θTg are the respective weights of the NNs.

Moreover, φf (x) and φg(x) are the activation functions and

εf (x) and εg(x) denotes reconstruction errors. Then, the

actual system dynamic can be rewritten as:

ẋ(t) = Ax+ θTf φf (x) + θTg φg(x)u(t) + εf (x) + εg(x)u(t)

= Ax+ θTφtrue(x)ū+ ε̄ (4)

with θ =
[

θf θg
]T

, φtrue(x) = diag{φf (x), φg(x)}, ū =
[

1 u(t)
]T

and ε̄ = εf (x) + εg(x)u(t). Now, the initial

nominal model of the agent system is as follows:

˙̂x = Ax̂+ fnomi(x) + gnomi(x)u(t) (5)

Then the NN-based estimated system dynamic is derived as:

˙̂x = Ax̂+ fnomi(x) + fl(x) + [gnomi(x) + gl(x)]u(t) (6)

where fl(x) and gl(x) are neural network estimation func-

tions. Also, L ∈ R
n×n be a design matrix with Ao = A−L.

Then, the state estimation error is ζ = x(t)−x̂(t). Now, using

estimated weight and activation functions, the equation (6)

is rewritten with feedback term:

˙̂x = Ax̂+ fnomi(x) + fl(x) + [gnomi(x) + gl(x)]u(t) + Lζ

= Ax̂+ θ̂Tφtrue(x̂)ū+ Lζ (7)

Here, θ̂ is the estimated weight. The system dynamic model

approximation error is derived using equations (4) and (7):

ζ̇ = Aoζ + θT φ̃trueū+ θ̃T φ̂trueū+ ε̄ (8)

Now the objective function is defined as:

Jdyna =
1

2
ζ̇T ζ̇ =

1

2
∥ẋ−Ax̂− θ̂Tφtrue(x̂)ū− Lζ∥2 (9)

Depending on this objective function, the gradient descent-

based weight update law is defined as:

˙̂
θ = −αd

∂Jdyna

∂θ̂

= αdφ̂trueū[Aoζ + θT φ̃trueū+ θ̃T φ̂trueū+ ε̄]T (10)

Here αd denotes the learning rate of the neural network. The

weight approximation error dynamics is:

˙̃
θ = −αdφ̂trueū[Aoζ + θT φ̃trueū+ θ̃T φ̂trueū+ ε̄]T (11)
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2) Receding Horizon Control: Since the Receding Hori-

zon Control (RHC) is computationally expensive and hard

to implement in real-time, the slow learning framework

has been used and integrated with RHC to learn the opti-

mal control over time. Specifically, We have considered a

finite-length prediction horizon. Here, {tk}
∞
k=0 represents a

sequence over the timeline. The iteration period between

sequence k and k + 1 is denoted as εita ∈ R
+ that is

tk+1 = tk + εita. Now, at each time instant tk the RHC

controller solves the optimal control problem over the time

interval [tk, tk + T ], where T is the length of the prediction

horizon. It’s important to note that the prediction horizon

duration T is greater than or equal to the iteration period

εita. Then the cost function can be formulated as follows:

J(x, u) = VT (x(tk + T )) +

∫ tk+T

tk

[∥x∥2Q + ∥u∥2R]dt (12)

s.t. ẋ(t) = f̂(x) + ĝ(x)u(t)

where VT is the terminal cost, f̂ and ĝ are the estimated func-

tions. Also, Q and R are the positive definite weight matrix

for the state and control input. Now, the receding horizon

optimal control is formulated for the estimated continuous

system dynamic given in (1) and the cost function in (12). In

addition, an optimal control policy is formulated to achieve

the optimal cost function in (12). Now, the Hamiltonian [16]

of this optimal control problem is defined as:

H(x̂, u) = ∥x̂∥2Q + ∥u∥2R + ∂xJ(x̂, u)[f̂(x) + ĝ(x)u(t)]
(13)

with f̂(x) and ĝ(x) are the estimated nonlinear functions

from the neural network. Now, the optimal control at the kth

iteration from the slow learning part is defined as:

u(t) = uk(t) = −1/2 R−1ĝT (x)∂xJ(x̂, u) (14)

This control input is inserted into (13) to achieve the HJB

equation as follows:

∥x∥2Q + ∂xJ(x̂, u)f̂(x)− 1/4 R−1ĝT (x)∂xJ(x̂, u)ĝ
T (x)

∂xJ(x̂, u) = 0 (15)

Addressing the receding horizon optimal control problem

involves tackling the Hamilton-Jacobi-Bellman (HJB) equa-

tion to derive the optimal value function. Substituting this

value function into the control equation (14) allows for the

determination of the optimal control. Nevertheless, solving

the HJB equation with an uncertain nonlinear system poses

challenges due to its inherent nonlinearity. Here, the solution

of the HJB equation involves the integration of a learning

algorithm with SA-PINNs.

Situation Aware Physics-Informed Neural Network (SA-

PINN): In this part, the agent aims to predict the optimal

value function through the SA-PINNs learning algorithm

with the unknown nonlinear system. By incorporating SA-

PINN, the agent can gradually and accurately learn the

optimal action without requiring an excessive amount of data

and exact system dynamic information, achieved through

solving the PDE known as the HJB equation. Now, the ideal

value function is defined:

J(x̂, u) = WT
J φJ(x̂, u) + εJ(x̂) (16)

Here, WJ denotes the neural network weight, φJ(x̂, u) is the

activation function, and εJ(x̂) represents the reconstruction

error. Next, substituting (16) into the HJB equation (15), the

impact of the reconstruction error is taken into account:

∥x̂∥2Q +WT
J ∂xφJ(x̂, u)f̂(x)− 1/4 WT

J ∂xφJ(x̂, u)D(x̂)

WT
J ∂xφJ(x̂, u) + εR(x̂) = 0 (17)

with D(x̂) = ĝ(x)R−1ĝT (x) and εR(x̂) = −1/2WT
J ∂x

φJ(x̂, u)D(x̂)∂xεJ(x̂)− 1/4 ∂xεJ(x̂)D(x̂)∂xεJ(x̂) + ∂xεJ
(x̂)f̂(x). Now, the value function approximation is:

Ĵ(x̂, u) = ŴT
J φ̂J(x̂, u) (18)

Inserting the approximated value function in (15), the resid-

ual error can be calculated as:

Re = ∥x̂∥2Q + ŴT
J ∂xφ̂J(x̂, u)f̂(x)− 1/4 ŴT

J ∂xφ̂J(x̂, u)

D(x̂)ŴT
J ∂xφ̂J(x̂, u) (19)

Then, substituting (19) into (17):

Re = W̃T
J ∂xφ̂J(x̂, u)f̂(x) +WT

J ∂xφ̃J(x̂, u)f̂(x) + 1/4

WT
J ∂xφJ(x̂, u)D(x̂)WT

J ∂xφJ(x̂, u)− 1/4 ŴT
J ∂xφ̂J(x̂, u)

D(x̂)ŴT
J ∂xφ̂J(x̂, u)− εR (20)

Moreover, the HJB equation is subject to the initial and

terminal conditions and is defined as:

J(x̂, u, 0) = Jini(x̂, u) ; VT (x(tk + T )) = Vter(x̂, u) (21)

Then, the physics-informed learning model can be trained

based on the following objective function:

JPINN(ŴJ) = 1/2 wicJic(ŴJ) + 1/2 wtcJtc(ŴJ)

+ 1/2 wRe
∥Re(ŴJ)∥

2 (22)

with, Jic(ŴJ) = ∥Jini(x̂, u)− ŴT
J φ̂J(x̂, u, 0)∥

2

= ∥WT
J φJ(x̂, u, 0)− ŴT

J φ̂J(x̂, u, 0) + εini∥
2 (23)

Jtc(ŴJ) = ∥Vter(x̂, u)− ŴT
J φ̂J(x̂, u, tk + T )∥2

= ∥WT
J φJ(x̂, u, tk + T )− ŴT

J φ̂J(x̂, u, tk + T ) + εter∥
2

(24)

The weight update rule through the given objective function

is derived as follows:

˙̂
WJ = −αJ

∂JPINN(ŴJ)

∂ŴJ

= αj [wicφ̂J(x̂, u, 0){W
T
J φJ(x̂, u, 0)− ŴT

J φ̂J(x̂, u, 0)

+ εini}
T + wtcφ̂J(x̂, u, tk + T ){WT

J φJ(x̂, u, tk + T )−

ŴT
J φ̂J(x̂, u, tk + T ) + εter}

T + wRe
1/2 ∂xφ̂J(x̂, u)

D(x̂)ŴT
J ∂xφ̂J(x̂, u)R

T
e ] (25)

Here, αJ is the learning rate. Next, the weight approximation

error dynamic is defined as:

˙̃WJ = −αj [wicφ̂J(x̂, u, 0){W
T
J φJ(x̂, u, 0)− ŴT

J φ̂J(x̂, u, 0)
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Fig. 1: The structure of the dual learning approach.

+ εini}
T + wtcφ̂J(x̂, u, tk + T ){WT

J φJ(x̂, u, tk + T )−

ŴT
J φ̂J(x̂, u, tk + T ) + εter}

T + wRe
1/2 ∂xφ̂J(x̂, u)

D(x̂)ŴT
J ∂xφ̂J(x̂, u)R

T
e ] (26)

Substituting the ideal value function from (16) to the optimal

control equation (14), the optimal control at the kth iteration

from the slow learning part is rewritten as:

uk(t) = −1/2 R−1ĝT (x)∂x[W
T
J φJ(x̂, u) + εJ(x̂)]

= −
1

2
R−1ĝT (x)WT

J ∂xφJ(x̂, u)− 1/2 R−1ĝT (x)∂xεJ(x̂)

(27)

The estimated optimal control depends on the estimated

value function from (18) as

ûk(t) = −1/2 R−1ĝT (x)ŴT
J ∂xφJ(x̂, u) (28)

The optimal control approximation error is derived as:

ũk(t) = −1/2 R−1ĝT (x)[W̃T
J ∂xφJ(x̂, u) + ∂xεJ(x̂)] (29)

Subsequently, the optimal control derived from the slow

learning phase is transferred to the fast learning phase.

In this fast learning phase, the agent implements real-time

control, effectively achieving a balance between safety and

performance considerations.

B. Fast Learning: A Hippocampal Approach for Real-Time

Safe Control with Guaranteed Performance

In this section, the focus is on ensuring the safety of the

system. The safety framework is defined by an invariant

safe set denoted as S . This set S is considered the super

level set of a continuously differentiable smooth function

b : Rn → R. Given that the dynamics of the agent’s system

are initially unknown and gradually learned in the slow

learning phase, an adaptive bound for the system dynamics

is utilized to guarantee the strict safety of the agent. This

bound undergoes a gradual relaxation over time, reflecting

the evolving understanding of the system acquired during

the slow learning phase. Now the agent system dynamic in

the fast learning part is estimated as:

˙̂x = f̂(x) + L̂Bf∥x̂∥+ [ĝ(x) + L̂Bg∥x̂∥](uk(t) + us(t))
(30)

with L̂Bf and L̂Bg being the adaptive bound weight. Initially,

a conservative bound is given to ensure strict safety and this

bound is updated and relaxed over time. The system state

errors including the bound is described as follows:

˙̃x = [f(x̂)− f̂(x̂)] + [g(x̂)− ĝ(x̂)](uk(t) + us(t))

− L̂Bf∥x̂∥ − L̂Bg∥x̂∥(uk(t) + us(t)) (31)

Next, the bound weights are updated as:

˙̂
LBf = −ηBf[(1/2) ∂{ ˙̃x

T ˙̃x}]/∂L̂Bf = ηBf∥x̂∥ ˙̃x
T (32)

˙̂
LBg = −ηBg[(1/2) ∂{ ˙̃x

T ˙̃x}]/∂L̂Bg = ηBg∥x̂∥(uk + us) ˙̃x
T

(33)

where ηBf and ηBg are the tuning rate. Also, the approximated

weight error is defined as:

˙̃LBf = −ηBf∥x̂∥ ˙̃x
T ; ˙̃LBg = −ηBg∥x̂∥(uk + us) ˙̃x

T (34)

Next, Nagumo’s theorem [17] provides a necessary and

sufficient condition for set invariance in dynamical systems.

Applying this theorem to the system described in equation

(30), the condition for set invariance can be expressed as:

S = {x ∈ R
n : b(x̂) g 0}, ∂S = {x ∈ R

n : b(x̂) = 0}
and Int(S) = {x ∈ R

n : b(x̂) > 0}. Here, ∂S and

Int(S) represent the boundary and interior of the safe set

S respectively. Now, b can be identified as a fast adaptive

control barrier function (FA-CBF) if there is a function

α belonging to the extended class Kα, and the provided

dynamical system meets the following condition:

sup
u∈U

[∂xb(x̂)(f̂(x) + L̂Bf∥x̂∥) + ∂xb(x̂)(ĝ(x) + L̂Bg∥x̂∥)

(uk(t) + us(t))] g −α(b(x̂)) (35)

Here, the optimal control uk(t) is injected from the slow

learning part. Please note that us(t) is the safe control

applied in the fast learning part which satisfies the above

condition. Now, the extended Kα function can be defined as

follows:

Definition 1: A function α : R → R is known as an extended

class Kα function if the function is strictly increasing and

α(0) = 0. Please see ([5]) for the definition.

The control inputs that meet the conditions specified in

equation (35) and ensure the safety of the set S can be

described as:

Kcbf(x̂) = {u ∈ U : ∂xb(x̂)(f̂(x) + L̂Bf∥x̂∥) + ∂xb(x̂)

(ĝ(x) + L̂Bg∥x̂∥)(uk(t) + us(t)) + α(b(x̂)) g 0} (36)

It’s important to highlight that the optimal control, denoted

as uk(t), obtained from slow learning, faces challenges in

real-time implementation due to computational complexity

and is inherently unsafe. In the fast learning phase, the
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combination of a safe control strategy and optimal control en-

sures real-time control that is both safe and high-performing.

The design of the controller responsible for maintaining

the system state within a safe set and stable requires the

incorporation of a Lyapunov function denoted as Le(x̂). The

integration of this Lyapunov function is crucial to address

the constraint on the derivative of Le(x̂) and to unify it with

the Fast Adaptive-CBF constraint. This integration aims to

ensure safety, stability, and system performance. To design

this safe controller that filtered the optimal action from the

slow learning part to ensure safety and real-time execution,

a quadratic programming (QP) based approach has been

chosen.

us(x̂) = argmin
(u,δ)

1

2
∥us∥2 + pδ2

s.t. ∂xb(x̂)(f̂(x) + L̂Bf∥x̂∥) + ∂xb(x̂)(ĝ(x)+

L̂Bg∥x̂∥)(uk(t) + us(t)) + α(b(x̂)) g 0

L̇e(x̂) f δ (37)

Note that δ represents a relaxation variable introduced to

ensure the solvability of the quadratic program, while p
denotes the coefficient for the relaxation factor.

IV. SIMULATION RESULTS

This simulation study implemented the developed algo-

rithm in an autonomous vehicle (AV) to demonstrate real-

time, reliable control that combines fast and slow learning

for guaranteed performance and safety. The objective is to

(a) t = 0s (b) t = 20s

Fig. 2: The movement of the AV is depicted here. The

red curve shows the path taken by the vehicle. Two black

curves indicate the boundaries. The yellow circle marks the

destination point.

enhance vehicle performance by integrating a slow learning

approach based on the neocortex, while also swiftly making

safe decisions through a fast learning framework inspired by

the hippocampus. The initial state of the AV is selected as

x =
[

x1 x2

]T
=

[

7 8
]T

. Next, the intrinsic dynamic of

the AV is defined as

f(x) =

[

−x1 − x2

−0.5x1 − 0.5x2(1− (cos(2x1) + 2)2)

]

(38)

g(x) =

[

0
1.5

]

(39)

Fig. 3: Convergence of control input (a) control input uk

from slow learning (b) safe control input us from fast

learning.

The algorithm comprises two components: a slow-learning

module and a fast-learning module. The slow learning

module focuses on understanding uncertain dynamics and

facilitating receding horizon optimal control. The NN-based

system approximation consists of a three-layer nonlinear

feedforward network comprising one input, one hidden, and

one output layer. The activation functions of NN-system

approximation are selected as a hyperbolic tangent function,

i.e. tanh(∗). This activation function is selected for both

f(x) and g(x) approximation. The learning rate and error

threshold of this NN is defined as αd = 1 × 10−3 and δζ
respectively. Also, the prediction horizon is set to T = 4
seconds, and the iteration period is defined as εita = 0.1
seconds. The activation function for the SA-PINNs learning

was selected from a polynomial expansion represented by

the formula
∑P

β=1(
∑n

j=1 zj)
β , where n denotes the input

dimension and P is a predetermined constant. Also, the

learning rate and error threshold are selected as αJ =
1×10−3 and δJ = 1×10−5. The tuning rates are chosen as

ηBf = ηBg = 0.1. Additionally, the threshold is specified as

δx̃ = 1×10−2. Now, the barrier function is defined as b(x̂) =
(∥x̂ − xmax∥2 − ε1)(∥x̂ − xmin∥2 − ε2) with ε1 = 0.3 and

ε2 = 0.3. Here, the ε1 and ε2 represent the minimum safe

distance of the AV from the boundary. Figure 2 illustrates

how the autonomous vehicle maneuvers using the developed

fast-slow learning-based real-time reliable control method.

The objective is to maintain optimal performance and safety

while reaching a predefined destination. The locations of

the vehicle are shown at different time instants: t = 0s
and t = 20s in Figures 2(a) and 2(b) respectively. From

the figure, it is clear that the AV avoids unsafe maneuvers

and safely reaches the destination without approaching the

boundary. Figure 3 illustrates the control input from both fast

and slow learning components. In Figure 3(a), the optimal

control input uk from the slow learning is shown. This
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Fig. 4: Error convergence of the physics-informed based

neural network.

optimal control steadily converges over time. A smaller

window provides a closer look at the details. The figure

demonstrates that the control input from the Receding Hori-

zon Control (RHC) updates periodically over time, which is

then transferred to the fast learning part. However, relying

solely on this control can potentially lead to unsafe control

strategies. The subsequent illustration showcases the con-

trol mechanism from fast learning, as referenced in Figure

3(b). This safety-oriented control aids the AV in quickly

making safe decisions. Variations observed at different time

points signify the timely adjustments made by the control

to maintain a safe distance from the safety boundary Figure

4 illustrates the convergence of the objective function error

for the SA-PINNs employed in learning the HJB partial

differential equation (PDE), leading to the determination of

the optimal control.

V. CONCLUSION

This paper introduces a biologically inspired dual learn-

ing approach, combining real-time optimal receding hori-

zon control (RHC) strategy with integrated real-time safety

measures for a complex nonlinear system subject to uncer-

tainties. The developed algorithm aims to strike a balance

between the agent’s optimal performance and safety. The

framework incorporates a novel dual learning algorithm,

where the slow learning component involves training neural

networks to model the uncertain system and implement-

ing optimal RHC control using a situation-aware physics-

informed neural network (SA-PINN). In addition, the fast

learning component addresses this unsafety challenge from

uncertain environments by designing a fast adaptive Control

Barrier Function (FA-CBF) along with adaptive boundary

updates. The resulting safe control from the fast learning

part, combined with the optimal control from the slow

learning aspect, offers a real-time, reliable control strategy

that ensures both optimal performance and safety. Moreover,

the paper includes Lyapunov stability analysis to demonstrate

the convergence of the dual learning process and closed-loop

stability. Eventually, numerical experiments are conducted to

illustrate the effectiveness of the developed approach.
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