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Abstract—Despite their ubiquity inmany important big-data applications, graph analytic kernels continue to challengemodernmemory
hierarchies due to their frequent, long-latency, pointer indirect accesses to vertex property data. Such accesses exhibit poor locality and
variable reuse that trouble cache replacement policies, and consequently increasememory bandwidth pressure. Specialized graph-tailored
prefetchingmechanisms, processor designs, andmemory hierarchy engines have been developed to tolerate the long latencies of such
accesses. However, these approaches are either too bandwidth-intensive, require invasive hardware changes that inhibit general-purpose
computation flexibility, or rely on software preprocessing that limits true speedup. Thiswork introducesGraphfire, a flexiblememory
hierarchy approach that learns different access patterns in graph processing and exploits the synergy of specialized fetch, insertion, and
replacement optimizations for problematic indirect accesseswithout relying on software or ISA support. More specifically, Graphfire
identifieswhen these irregular accesses occur and employs tailored access granularities, data-aware insertion, and frequency-based
replacement accordingly. It achieves up to a 1.79! speedup (geomean 1.3!) and these improvements scale due to bandwidth efficiency;
with 64 cores, Graphfire yields up to a 71.33! speedup (geomean 63.32!) over a single baseline core and allowsmemory-bound graph
analytic codes to scale far beyond prior work.

Index Terms—Cache, graph analytics, memory hierarchy

Ç

1 INTRODUCTION

FOR decades, caches have played a significant role in
improving CPU performance, reducing off-chip memory

access latency as well as processor-memory traffic [16], [43].
Many widespread applications, including linear algebra
routines for dense neural networks, demonstrate access reg-
ularity that benefits from the logic and structure of modern
cache designs. However, graph analytics remain an impor-
tant domain of applications where even state-of-the-art
cache management techniques continue to struggle.

Graph applications are gaining importance for machine
learning and data analytics [13], [41]. Many kernels in this
domain have unpredictable memory access patterns that
arise from pointer indirection [5]. These irregular memory
accesses correspond to the structure of the graph input, as it
is traversed on a per-vertex basis in order for the application

to gather and compute data about the graph. Unfortunately,
such irregular accesses have very little temporal and spatial
locality. Modern datasets, e.g. social networks, are also sig-
nificantly larger than the last-level cache (LLC), leading to
thrashing at all levels of the memory hierarchy. Lastly, the
irregular accesses themselves have variable reuse, which
troubles heuristic- and learning-based replacement policies
that rely on recency or temporal access sequences. As a
result, graph applications frequently perform expensive,
off-chip memory accesses, whose long latencies can domi-
nate application runtimes and limit scalability.

When irregular access patterns are coupled with massive
networks, software-only optimizations are unlikely to suc-
ceed efficiently. Instead, performance optimizations must uti-
lize hardware to reduce long-latency DRAM accesses. A large
body ofwork has spanned cachemanagement techniques [17],
[18], [39]. These approaches range from designing heuristics
to capture cache-friendly and cache-averse accesses, to pre-
dicting reuse and re-reference intervals, dead blocks, and per-
workload access patterns. However, none of these techniques
consider specific access patterns of graph applications and
instead focus on those that are well-known and common in
more regular workloads, e.g. streaming, strided, thrashing,
mixed, etc. Thus, any hardware overheads these techniques
incur arewastedwhen they are applied to graph analytics.

GRASP [15] proposed the first step towards domain-spe-
cialized LLC management for graph analytics, but incurs
software preprocessing costs for degree-based graph reor-
dering [14]. Software preprocessing renders the technique
less practical for large graphs, e.g. in many application sce-
narios where the input graph is only processed once [5], or
when the graph is not even fully traversed, e.g. in search
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algorithms. To our knowledge, there exists no memory hier-
archy approach for graph applications that learns and opti-
mizes for their access patterns with no software support.

With the goal of optimizing cache performance for graph
applications, our work makes the following key observations:
(i) The memory hierarchy must specialize for the problematic
indirect accesses (PIAs) to alleviate their bottlenecks. (ii) To be
software-agnostic, a lightweight mechanism must automati-
cally identify PIAs, which can be achieved on a per-instruc-
tion basis. (iii) While PIAs are irregular, a subset of them have
high reuse, so the LLCmust retain them.

Our Approach: Given these observations, this paper
presents Graphfire1, a flexible, hardware-based memory
hierarchy approach that (i) learns when PIAs occur in graph
applications and (ii) optimizes their performance through
tailored fetch, insertion, and replacement policies. Through
an adaptive hardware locality predictor that monitors L1
cache accesses, Graphfire learns different access patterns on
a per-PC basis and classifies them to identify which instruc-
tion(s) perform the PIAs. With this knowledge, Graphfire
decides when to exploit the synergies between caching poli-
cies optimized for the PIAs. More specifically, these data-
aware policies address issues in three main thrusts:

Fetch: All primary loads in graph applications are either
streaming or pointer indirect, which presents a challenge
for the memory hierarchy as they have different cacheline
size needs. Fetching PIAs at word–rather than line–granular-
ity improves cache utilization while allowing streaming
accesses to continue benefiting from locality.

Insertion: Streaming contiguous accesses have no reuse
once they fill a cacheline and thus require little cache space.
Having these accesses bypass lower memory hierarchy lev-
els devotes more cache space to high-reuse PIAs. This low-
ers their chances of being evicted from the LLC without
harming the performance of more regular accesses.

Replacement: Despite their poor locality, a subset of PIAs
have high reuse and benefit from caching [7], but their reuse
distances are often too long to protect them from eviction.
When the LLC is reserved for PIAs cached at word granu-
larity, frequency-based replacement is significantly more
effective at learning and retaining PIAs with high reuse,
unlike across-the-board temporal locality.

Ourwork advances these F-I-R policies individually.More
importantly, we are the first to note they need to be employed
together for their full impact. Furthermore, they require only
modest hardware additions and enable Graphfire to offer
domain-specialized improvements while retaining excellent
performance of other workloads. To summarize, this work’s
main contributions are:

1) We introduce a novel hardware locality predictor that
learns graph application access patterns online and
classifies them with no software or ISA support.

2) We develop a flexible memory hierarchy design that
caters to PIAs by exploiting synergies between:
(F) Tailored access granularities alleviate poor cache
utilization. (I) Data-aware insertion reserves space for
evenmore PIAs to fit in the LLC. (R) Frequency-based

replacement leverages the additional LLC space to
better learn and retain high-reuse PIAs.

3) We evaluate Graphfire on widely used workloads
and achieve: (i) Single-core speedups up to 1:79!
(geomean 1:3!) on in-order and 1:6! (geomean 1:2!)
on OoO over state-of-the-art approaches. (ii) Scalable
performance improvements through memory-level
parallelism and reduced DRAM contention: 63:32!
speedupwith 64 cores,much improved over the base-
line speedup of 47:04! .

Overall, with nimble workload adaptation and light-
weight hardware requirements, Graphfire offers important
advances for graph analytics and data processingworkloads.

2 MOTIVATION

2.1 Memory Access Patterns in Graph Processing
Graph applications are notorious for irregular memory
accesses that arise from data traversals. State-of-the-art,
work-efficient algorithm implementations performgraph tra-
versals iteratively through two nested kernel loops and uti-
lize the Compressed Sparse Row (CSR) format to efficiently
store the input dataset as one-dimensional dense arrays [45].
Pointer indirect accesses occur in the vertex property array,
which stores per-vertex results, e.g. distances or ranks [6].
CSR arrays store graph information, e.g. vertex and edge
locations, but are accessed regularly and/or infrequently.

Fig. 1 presents pseudocode for graph processing kernels.
The outer loop (lines 2-5) iterates through a worklist of verti-
ces (for the current algorithm iteration) while the inner loop
(lines 6-13) analyzes the current vertex’s neighbors to poten-
tially update their data, depending on the objective of the
algorithm. If a neighbor is updated, it is added to theworklist
for the next algorithm iteration (lines 12-13). The algorithm
terminates when the worklist is empty (line 1), i.e. the graph
has been traversed and updates have stabilized.

Memory access patterns in graph algorithms can be clas-
sified on a per-PC basis, assuming in-order processor execu-
tion. Instructions in the outer loop occur infrequently relative
to those in the inner loop, particularly for graphs with high
edge to vertex ratios. Accesses are either streaming or indi-
rect. This yields four different access patterns:

Infrequent, Streaming: These accesses appear in the outer
for loop or inside a conditional in the inner loop and have a
streaming behavior. As line 2 of Fig. 1 shows, the algorithm
iterates through a worklist of vertices and loads each vertex
index in a streaming fashion. However, this access does not

Fig. 1. Graph processing kernel example.

1. Graphfire = Graph fetch, insertion, and replacement.
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exhibit good locality because each access can be separated
by several memory accesses in the inner loop of the kernel.

Infrequent, Indirect: These pointer indirect accesses appear in
the outer for loop or a conditional in the inner loop. The current
vertex v indexes into the vertex_ptr array to load its neigh-
bor list indices (lines 4-5) and determine the number of inner
loop iterations. The first load to the starting index (line 4) is
pointer indirect, while the second (line 5) has locality. Another
indirect access arises from conditionally updating vertex prop-
erty data (line 10). However, these irregular accesses do not
have a significant impact on performance, as they occur infre-
quently. We focus on the primary memory accesses, i.e. those
that are executed in every inner loop iteration, as their access
latencies significantly impact application runtime.

Primary Streaming Accesses (PSAs): These accesses occur
in the critical path of the inner for loop and perform a
streaming load or store to neighbor indices (line 6). These
are true streaming accesses that exhibit both temporal and
spatial locality and they occur frequently and regularly.
Thus, they are cache-friendly and do not contribute to data
supply bottlenecks. We refer to these accesses as primary
streaming accesses (PSAs) to describe these characteristics.

Primary Indirect Accesses (PIAs): These accesses also occur
in the critical path of the inner for loop and perform a
pointer indirect load (highlighted in line 8) to the vertex
property array in order to load data for a given neighbor.
Because these indirect accesses occur in every loop iteration
and have long latencies that incur performance costs, they
are responsible for the data supply bottlenecks of graph
applications. We refer to them as primary indirect accesses
(PIAs) and detail their characteristics in the next section.

2.2 The Problems With PIAs
The vertex property array, the primary source of PIAs, com-
prises a very small percentage of the application’s total
memory footprint. The far right column of Table 1 presents
percentages for different application/input combinations.
These percentages depend on application data demands
(worklist sizes) and input sizes. On average, the vertex
property array is only 3.06% of the total memory footprint.

Fig. 2 shows that despite their relatively small data foot-
print, the PIAs themselves comprise a large fraction of the

total number of accesses in the application. Frequent
updates must be made to the vertex property array as the
application traverses the graph. Combining irregularity with
frequency yields a memory latency performance bottleneck.

Fig. 3 breaks down the total memory latency into PIAs
vs. other memory accessses. Among all applications and
inputs, the latencies of the PIAs average 88% of the total
memory latency, comprising the main application perfor-
mance bottleneck. Thus, innovations within the memory
hierarchy are necessary to account for the lack of regularity
and locality exhibited by these references.

Lack of Locality: Unfortunately, the irregularity of PIAs
causes them to exhibit poor locality. On average, 54.1 (L1), 59.9
(L2), and 59.5 (L3) bytes are unused in a 64B evicted cacheline
for the application/input combinations above. Thus, fetching
an entire cacheline’s data for PIAs iswasteful.

Interference Between Access Patterns: The coexistence of dif-
ferent memory access patterns in the same cache set can
hurt performance. PIAs can be evicted by PSAs or other
infrequent accesses, leading to several conflict misses, par-
ticularly PIAs with high reuse that should be retained in the
LLC [6]. PIAs are the primary eviction candidates in the
LLC due to their irregularity and frequency. On average,
21% of their evictions are caused by other types of accesses.
Removing this interference can improve the cache perfor-
mance of PIAs.

Variable PIA Reuse: Fig. 4 presents PIA access and reuse his-
tograms when BFS runs on a Kronecker network. This cap-
tures the power-law trend of many real-world datasets [22].
Fig. 4a shows that few vertices are accessed frequently, while
most are accessed infrequently. Vertices with high reuse
should not be evicted by low-reuse PIAs. Fig. 4b illustrates the
variability in PIA reuse distance. Many are reused, but most
reuse distances are too long (relative to cache associativities) to
protect PIAs from eviction. Thus, the replacement policy for
PIAs should adapt to vertex characteristics.

2.3 TailoringCacheManagement for GraphAnalytics
Motivated by the preceding data, Graphfire (i) automatically
classifies different access patterns on a per-instruction basis
through online learning, (ii) identifies when problematic
indirect accesses occur, and (iii) leverages synergistic cache

TABLE 1
Applications and Inputs Used in Our Evaluation and Their Properties

Applications Input Type Vertices Edges Avg / Max Deg. Prop. Array Footprint %
(BFS / SSSP / PRD / PR)

Breadth-First Search (BFS) Kronecker (Kron) synthetic, power-law 2.1 M 64 M 30 / 102440 1.55 / 1.38 / 1.48 / 3.00
Single Source Shortest Paths (SSSP) LiveJournal (LiveJ) real-world, social 4.8 M 69 M 14 / 20293 3.08 / 2.47 / 2.82 / 5.80
PageRank-Delta (PRD) Orkut (Ork) real-world, social 3.1 M 117 M 38 / 32998 1.25 / 1.13 / 1.20 / 2.43
PageRank (PR) Pokec (Pok) real-world, social 1.6 M 30 M 18 / 8763 2.41 / 2.02 / 2.25 / 4.60

Wikipedia (Wiki) real-world, web 1.8 M 40 M 21 / 6975 2.14 / 1.83 / 2.01 / 4.11

Fig. 2. PIAs (orange) are frequently accessed despite their small mem-
ory footprint relative to other data structures.

Fig. 3. PIAs (orange) dominate total memory access latency due to their
frequency and irregularity.
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optimizations to alleviate the performance bottlenecks these
accesses create. These specializations within the memory
hierarchy allow graph applications to achieve improved
cache performance, and consequently significant overall
speedups, on general-purpose hardware.

3 LEARNING MEMORY ACCESS PATTERNS

3.1 Re-Reference Table for Online Locality
Prediction

Graphfire learns different memory access patterns of graph
applications on a per-PC basis in order to identify and spe-
cialize for PIAs. It accomplishes this through a decoupled
hardware-based locality predictor that learns online by mon-
itoring L1 cache accesses in parallel with cache operations.
This predictor uses a re-reference table (RRT) to track reuse
from spatial locality for each memory instruction’s accesses.
Each RRT entry contains four fields: (1) the PC, (2) a utiliza-
tion value (UV ), (3) the L1 cache set ID the PC most recently
accessed, and (4) a frequency value. With each L1 access,
the predictor is indexed by its PC and updates the RRT
entry’s UV , cache set ID, and frequency.

Cacheline Utilization: Each PC’s UV is between 0 and N ,
where N þ 1 words fit in a cacheline (N ¼ 15 with 64B
cachelines). Upon an L1 hit, the predictor checks the cache
set ID stored in the PC’s entry. If it matches the cache set
accessed, then the entry’s UV increments. If it does not
match or the access missed in the L1, then the UV decre-
ments. After each access, the set ID is updated accordingly.
A PC must access the same cacheline at least twice in a row
to increase its UV . Thus, the UV signifies spatial locality;
UV ¼ N indicates that the PC fully utilizes cachelines it
accesses, while a UV ¼ 0 indicates poor utilization.

Since graph applications exhibit primarily either stream-
ing or indirect accesses, UV s quickly stabilize to values of 0
or N and the predictor uses these values to classify PCs as
streaming or indirect accesses. If UV > Nþ1

2 % 1, the PC has
accessed at least half of the same cacheline contiguously
(cache-friendly). Otherwise, the PC corresponds to either a
pointer indirect or infrequent, streaming access pattern
with long reuse distances.

PIA Identification: The RRT entry’s frequency value is a satu-
rating counter that incrementswith each PC access. If the value
saturates, the PC corresponds to a primary memory access.
Therefore, a PC that performs PIAs has a low UV and high fre-
quency. To give time forUV s to stabilize and frequency values
to accumulate, a global counter times a “learning” phase, dur-
ing which no PIA cache optimizations are used. If this counter

saturates and a PIA has been identified, Graphfire uses its pre-
dictor to apply cache optimizations on a per-PC basis. If no
PIA has been identified, which may occur in more dense and
regular applications, the counter resets to continue learning.
The counter also resets when a new PC is inserted into the
RRT, as a new part of the program has been reached. This
adaptive learning is particularly useful for multi-phase and
co-located applications, demonstrated in Sec. 7.

When a non-graph application is being executed, the
RRT can be disabled entirely via a global on/off switch
(determined by an OS or API call), which will prevent any
memory access from being identified as a PIA. This effec-
tively disables Graphfire, which can be useful when an
application does not have irregular accesses with variable
reuse, or the input graph has already been preprocessed
and reordered. Overall, Graphfire has a flexible design.

3.2 RRT Performance
We evaluate the predictor’s accuracy with graph kernels and
multi-phase applications (Sec. 6) running on five different
networks (Table 1). We measure accuracy by the percentage
of PIA and PSA PCs learned correctly. The predictor learns
primary accesses quickly, i.e. within 5-10 iterations of a ker-
nel loop, and identifies both access types with 100% accu-
racy. Thus, Graphfire robustly learns per-PC memory access
patterns based on their locality to identify the PIAs.

Hardware Overhead:Given a 32 KB L1 cache with 64B blocks
and 8-way set associativity, each RRT entry requires: (i) 64-bit
PC, (ii) 4-bit RRV saturating counter, (iii) 8-bit cache set ID,
and (iv) 3-bit frequency saturating counter. Therefore, each
entry stores 10B. The number of entries necessary to capture
the primarymemory accesses depends on the workload. Large
applications with many memory instructions can have a
bounded RRT that only tracks the most frequently occurring
PCs (PSAs and PIAs), while those not captured are labeled
infrequent and irregular. Graph processing kernels have only
a few PIA PCs. In our evaluated kernels and multi-phase
applications, 32 entries is more than sufficient, leading to a
320B hardware overhead. Nevertheless, the RRT size can be
increased, e.g. 2048 entries, to track more static loads and still
occupy less than 1% of the area devoted to each core’s caches.

4 CACHE POLICIES FOR PIAS

With its knowledge of PIAs, Graphfire optimizes fetch, inser-
tion, and replacement policies to mitigate long latencies.

4.1 Fetch: Tailored Access Granularity
Unlike streaming accesses, PIAs poorly utilize cachelines.
Based on the observation that loads in graph applications
are overwhelmingly streaming or indirect, Graphfire tailors
access granularities accordingly. Streaming accesses exhibit
high predictability and spatial locality that benefits from
prefetching and large cachelines. On the other hand, PIAs
are unpredictable and poorly utilize large cachelines, incur-
ring many cold and capacity misses. Therefore, upon identi-
fication of a PIA, Graphfire fetches data at word granularity.

4.2 Insertion: Data-Aware Caching
Streaming accesses in graph applications have poor, if any,
temporal locality once they contiguously fill a cacheline.

Fig. 4. Graphfire focuses on retaining vertices with high frequencies and
low reuse distances (red).
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PSAs load neighbor indices for the current vertex to process,
which is often not processed again. Therefore, the L1 cache is
sufficient for the PSAs. Contrarily, the PIAs ’ data footprint is
significantly larger than the LLC capacity and interference
from other accesses, e.g. streaming, create conflict. Despite
their irregularity, a subset of the PIAs have high reuse that
benefit from caching if more space is available for them.

Graphfire exploits PSAs’ low cache capacity requirements
and other non-PIAs ’ low frequencies to reserve as much
space as possible, i.e. the L2 and L3, for the PIAs. Thus, all
non-PIA accesses bypass these caches because they do not
gain much benefit from them. This prevents other accesses
from evicting high-reuse PIAs from the LLC.

4.3 Replacement: Frequency-Based Eviction
PIAs can be considered on a per-vertex basis during
replacement. Real-world, power-law graphs have few high-
degree vertices and many low-degree vertices (Fig. 4), creat-
ing many opportunities for low-degree PIAs to evict those
with high degrees. Given the distribution of vertex degrees,
high-reuse PIAs can be learned with access frequency. Fre-
quency-based replacement (FBR) is usually not effective for
modern caches because counters do not have enough time
to accumulate before their corresponding cachelines are
evicted. However, Graphfire’s fetch and insertion techni-
ques effectively increase the LLC capacity by improving
cache utilization, creating significant opportunity for FBR to
learn high-reuse PIAs. Thus, Graphfire applies FBR in the
lower cache levels instead of relying on recency. Mean-
while, because the L1 primarily caches PSAs, LRU effec-
tively evicts fully utilized cachelines of contiguous data.

5 MEMORY HIERARCHY DESIGN

To flexibly support fine-grained data fetches for PIAs in
graph applications, Graphfire utilizes two types of cache
blocks: (1) normal 64B cache blocks and (2)merged blocks, 64B
of coalesced, non-contiguous sub-blocks that store data for

fine-grained accesses. Sub-blocks can be 4B (integers or
floats) or 8B (doubles or longs); each merged block has a
granularity bit g that is set based on thememory instruction’s
data type. To perform operations on these specialized
merged blocks, Graphfire introduces a sub-tag matching unit
(STMU) for each cache to utilize. This mechanism employs
hierarchical tags for fine-grained accesses to allow non-contig-
uous sub-blocks to share a cacheline without incurring any
tag overhead.

Fig. 5 presents an overview of the memory hierarchy
design. For fine-grained accesses, each cache interfaces with
its STMU, which performs operations on merged blocks
(blue arrows). The STMUs can also communicate with one
another (green arrows). Upon insertion of new data from
DRAM, the RRT predicts whether the memory access is
streaming or irregular. The data is inserted as a normal (64B)
block or a sub-block in amerged block (orange arrows).

5.1 Hierarchical Tags With Sub-Tag Matching Units
To prevent sub-block metadata from imposing area over-
head and requiring significant cache modifications, the
STMU stores sub-block metadata inside the original data
block. Fig. 6 illustrates the minimal cache modifications
(red) necessary to support this design. The k least significant
bits of the original tag make up the flex-tag, which combine
with the block offset to create a sub-tag that identifies a par-
ticular sub-block stored in a merged block. The remaining
bits of the original tag not used in the flex-tag make up the
base-tag, which determines which cache block (way) a sub-
block resides in for a given set. Therefore, all sub-blocks of a
given merged block share the same base-tag (as opposed to
the original tag) and are identified by their distinct sub-tags.

The cache performs first-level tag matching at block (e.g.
64B) granularity, and the STMU performs second-level tag
matching at sub-block granularity. If the requested data is
present in the cache, this results in either a normal (block
access) or partial (sub-block access) hit, depending on

Fig. 5. Graphfire utilizes a STMU at each cache level to encapsulate fine-
grained data operations (blue arrows). A cache sends a merged block of
multiple sub-blocks to its STMU for any fine-grained data operation. The
STMUs can also communicate fine-grained data with one another in the
event of sub-block misses and evictions (green arrows). Upon insertion
of new data in the hierarchy, the RRT predicts whether the memory
access is streaming or irregular (PIAs), which decides whether to insert
a normal (64B) block or sub-block (orange arrows).

Fig. 6. The STMU requires modest cache modifications (red) to support
merged blocks via hierarchical tags. Each cache block has an additional
“f” bit to denote whether it is fine-grained or not and whether to use the
base (lower k comparators disabled) or full tag for search. By default,
this bit is set to 0 (normal cache block) and enabled only when a merged
block (predicted by the RRT) is inserted into the cache. An additional
multiplexer is used to raise a partial hit if the block is fine-grained (“f” bit
enabled).
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whether the access was predicted as streaming or irregular.
One fine-granularity bit f per cache block distinguishes
fine- from coarse-grained accesses and is set by the RRT’s
prediction. This bit’s value never changes for the remainder
of the block’s lifetime in the memory hierarchy; the block
can experience either a normal or partial hit until it has been
evicted from all caches. Thus, data for a given address can
never be cached in a sub-block and block simultaneously.
Note that the caches do not use PCs; only the RRT interfaces
with the instruction cache.

The STMU operates on a block comprised of K data sub-
blocks, each with its own sub-tag and status bit metadata
(dirty/valid/coherency), which are necessary for sub-block
matching. Because the metadata resides inside the original
data block, some capacity is sacrificed. More specifically,
a data block fits up to blksize=ðsubblksize þ subblktag þ
subblkmetadataÞ sub-blocks as opposed to blksize=subblksize.
Graphfire maintains the same base tag size across the
cache hierarchy, so each cache level has a different number
of flex-tag bits, where the L1 (largest original tag) has the
most and the LLC (smallest original tag) has the least.
Despite this capacity sacrifice, our approach benefits PIAs
that otherwise would waste most of the cacheline if they
were accessed at block granularity; our results demonstrate
this.

For example, a 2 MB, 16-way LLC has 64B cache blocks
(2048 sets). The original tag contains 47 bits (11 index bits
and 6 block offset bits). If each sub-block has 4B of data and
there are 2 flex-tag bits, then base tags have 45 bits and sub-
tags jave 2þ 6 ¼ 8 bits. Therefore, 22 ! 2ð6%2Þ ¼ 64 sub-
blocks can share the same base tag and match to the same
merged block. Furthermore, each sub-block requires 32þ
8þ 10 ¼ 50 bits of storage (assuming 10 bits of metadata),
allowing 10 4B sub-blocks to fit in a 64B block in the LLC.

5.2 STMU Operations
All fine-grained operations are forwarded to and encapsu-
lated by each cache’s STMU, so the original cache behavior
remains unchanged. The STMU effectively acts as an
encoder/decoder unit that intercepts 64B accesses between
cache levels to access or insert 4B (or 8B) of data as a

sub-block. To accomplish this, the STMU supports three
operations, (1) Search, (2) Update/Evict, and (3) Insert
when it receives a (64B) input merged block.

Search: Fig. 7 displays how the STMU searches for a
sub-tag inside an input merged block (that comes from its
corresponding cache) to check for a sub-block hit. The
STMU compares K sub-tags to the input sub-tag in paral-
lel, similar to how a normal cache performs a search, in
order to determine if there is a sub-block hit or miss. In
the case of a load hit, the 4B data requested is returned.
For STMU1, this data is sent to the L1 cache to be deliv-
ered to the core, which allows the core to remain unmodi-
fied. For STMU2 and STMU3, the data is sent to the upper
level STMU, i.e. STMU1 and STMU2, respectively. In the
case of a store hit, the sub-block data corresponding to the
located sub-tag is updated and the returned (stale) data is
not used.

Update/Evict: Fig. 8 presents how the STMU updates a
sub-block in a merged block. This occurs when there is a
sub-block load miss and the sub-block data fetched from a
lower level STMU needs to be inserted, or a store miss. If
the merged block is full (all sub-block locations are occu-
pied), the STMU looks at the K sub-blocks’ metadata to
identify an eviction candidate, using the Least Frequently
Used policy, and replaces it with the new sub-block. Other-
wise, the STMU simply inserts the new sub-block into an
empty location. If there is an eviction candidate and it is
dirty, then it is sent to the lower level STMU.

Insert: Fig. 9 shows how the STMU inserts a new merged
block with a new sub-block in the event that there was a
merge block miss, i.e. the base tag was not present in the
cache. The STMU resets all sub-block tags and data to
zeroes and inserts the new sub-block tag and data into the
first sub-tag and data locations. This insertion of a merged
block could potentially evict a normal (64B) block or another
merged block. If the latter occurs, then the STMU evicts each
of the dirty sub-blocks in the evicted merged block individ-
ually. This can be performed asynchronously with respect
to the memory hierarchy operations on the critical path of a
memory access.

Conceptually, the STMU performs normal cache opera-
tions on sub-blocks. These operations incur additional laten-
cies that add to the existing cache latencies. However, the

Fig. 7. To search for a sub-block within a merged block, the STMU oper-
ates on K sub-blocks in parallel. Each sub-block has its own sub-tag
and metadata and the STMU compares theK sub-tags against the input
sub-tag to determine if there is a sub-block hit, similar to a normal cache.
Thus, the STMU outputs a hit signal and the 4B (or 8B) data requested
(upon a load hit).

Fig. 8. To update a merged block with a new sub-block in the event of a
sub-block miss, the STMU looks at the metadata of the K sub-blocks to
select an eviction candidate, if the merged block is full, and replace it
with the new sub-tag and data, or simply insert the new sub-block. The
evicted sub-block is sent to the lower level cache if it is dirty.
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extra cycles are significantly outweighed by the many lower
cache-level/DRAM access cycles saved when using fine-
grained accesses to improve cache performance.

5.3 Cache and STMU Interactions
Many different cache and STMU interactions can take place.
We describe and illustrate common scenarios that occur.

L1 Hit: Fig. 10 illustrates a normal L1 hit vs. a partial L1
hit that involves the STMU1. (1) L1 Normal Hit: A 4B
request "1 experiences a normal L1 hit "2 because the full
tag was present "3 , so the data is sent to the core "4 . This
access could not have been a PIA and only incurs the L1
access latency (4 cycles — see Table 2).

(2) L1 Partial Hit+STMU1 Hit: A 4B request"1 experien-
ces a partial L1 hit"2 because the base tag was present and
the full tag was not. The merged block with the partial hit is
sent to STMU1, which searches for and locates the sub-tag
(hit)"3 and provides the data to the core"4 . This access was
for a PIA and incurs both the L1 access latency and the
STMU1 latency (4+2 cycles — see Sec. 5.7).

L1 Partial Hit+STMU1 Miss: Fig. 11 presents scenarios
that can result from an STMU1 miss. A 4B request"1 experi-
ences a partial hit"2 , but experiences an STMU1 miss (sub-
tag not present) "3 , triggering an L2 access "4 . This access
must be fine-grained due to the partial L1 hit, so it experien-
ces a partial L2 hit, assuming an inclusive cache"5 , and the
merged block is sent to STMU2. This access can either hit"6
or miss in STMU2. The latter results in an access to the L3,
which would result in a partial hit and access to STMU3.
Both scenarios incur the access latencies of the L1 and L2
caches, as well as the latencies of their respective STMUs (4
+2+11+3 cycles).

With an STMU2 hit, STMU1 receives the fetched data
and updates the merged block that experienced the initial
STMUmiss"7 . This can result in a sub-block eviction, which
would be handled as an update to STMU2. STMU1 then
provides the L1 with the updated merged block"8 and the
L1 delivers the requested data to the core"9 . Note that if the
STMU2 hit prevents an L2 (and possibly L3) miss due to
Graphfire’s increased effective L2 capacity, then it saves 29
cycles (no 34-cycle L3 access) or 229 cycles (no 34-cycle L3
and 200-cycle DRAM access). The worst-case access latency
when Graphfire is enabled corresponds to 258 (4+2+11+3
+34+4+200) cycles, where the STMUs are responsible for
only 9 (2+3+4). Since Graphfire significantly reduces DRAM
accesses, this worst case occurs much less frequently.

L1 Miss: Fig. 12 presents scenarios that can result from a
normal L1 miss. A 4B request "1 experiences an L1 miss
(both base and original tag not present), so it accesses the
L2 "2 . Either a partial hit "3 , normal hit (before bypassing
has been enabled), or L2 miss (both base and original tag
not present) followed by an L3 access occurs. If a normal L2
hit occurs, then the data is propagated up the hierarchy and

Fig. 9. To insert a sub-block as part of an entirely new merged block in
the event of a merged block miss (base tag not found), the STMU resets
all sub-block tags and data (to zeroes) and inserts the new sub-tag and
data in the first respective locations.

Fig. 10. There are two ways an L1 hit can occur: (1) a request for a non
PIA results in a normal hit or (2) a request for a PIA results in a partial hit
(base tag match) followed by an STMU hit (sub-tag match).

TABLE 2
OoOVs. In-Order Core Models and Memory

Hierarchy Parameters

Fig. 11. A request for a PIA can experience a partial hit in the L1 and
miss in STMU1. Therefore, the request goes to the L2 and experiences
a partial hit (inclusive caches). The request is then followed by an
STMU2 hit or miss. If there is a hit, the fetched data is sent to STMU1,
which updates the merged block and sends the data to the L1 to be
delivered to the core. If there is a miss, then the request is sent to the L3.
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delivered to the core. If a partial L2 hit occurs, the STMU2
access can result in a hit"4 or miss, which is followed by an
L3 request. If an STMU2 hit occurs, STMU1 creates a new
merged block (since the base tag was missing in the L1) and
inserts the sub-block from STMU2 "5 . This new merged
block is then sent to the L1"6 , which can evict a normal or
merged block. If a merged block is evicted, then STMU1
asynchronously handles the eviction of the individual sub-
blocks. The L1 delivers the requested data to the core "7 ,
creating a 20-cycle (4+2+11+3) access. Again, STMU hits
prevent memory accesses that would access lower cache
levels and potentially DRAM in a conventional hierarchy,
shortening many access latencies despite STMU overheads.

5.4 Predicting PIA Reuse
Graphfire retains high-reuse PIAs via frequency-based
replacement. Thus, each sub-block maintains a frequency
count. A normal cache requires additional data to support
high frequency counts, but the STMU allows flexible storage
within the data block. Thus, additional bits are used for the
frequency counts at the expense of a sub-block. Storing one
less sub-block per merged block incurs negligible perfor-
mance loss and 6 frequency bits per sub-block maintains
sufficiently high counts to distinguish between PIAs with
variable reuse for graphs of varying sizes (Sec. 7.7). At the
sub-block level, this incurs no additional hardware over-
head, so FBR is used for any sub-block eviction. At the block
level, 6-bit counters only require about 1% overhead.

5.5 Flex-Tag Size
The number of flex-tag bits, k, determines the increase in the
number of sub-blocks that can share the same block, e.g. k ¼
2 yields 4x more mapping flexibility. Furthermore, since
each cache level has different index bit mappings, different
sub-blocks in each level can compose amerged block, similar
to how cache sets contain different normal blocks in each
level. Merged blocks in different levels simply have different
sub-block metadata, which is handled by the STMUs. Thus,

the L1, L2, and L3 values of k are independent of each other;
they simply determine themapping flexibility at each level.

A larger flex-tag provides greater flexibility, but increases
sub-tag size, which decreases the number of sub-blocks that
can fit in a block. To study this trade-off, we varied the number
of flex-tag bits in the LLC (has the greatest impact on perfor-
mance due to its size). For design simplicity, we maintained
the same base tag size across all 3 levels and adjusted k in the
L1 and L2 based on the LLC parameter. Fig. 13 presents
speedup comparisons of Graphfire operating with different
LLC flex-tag sizes, where runtimes are normalized to the con-
figuration with 1 LLC flex-tag bit. 2 flex-tag bits (and therefore
7 in L1 and 4 in L2) is consistently the most performant across
multiple application and input combinations (described in
Sec. 6), as it strikes an effective balance betweenmapping flexi-
bility and sub-block storage.

5.6 Cache Coherence
Graphfire maintains coherence at full block granularity,
similar to prior works [21], [44]. This design decision
avoids modifications to the coherence protocol and main-
tains the directory’s operations for normal blocks. When
the directory receives a coherence request for a merged
block, it queries the STMUs (corresponding to sharers of
the block) to perform sub-block coherence updates.
Coherency state bits of sub-blocks are embedded in their
metadata, so the STMUs can encapsulate all sub-block coher-
ence operations without impacting the directory capacity or
structure. Thus, the only necessary directory modification is
the addition of a fine-granularity bit f per cache block, similar
to the caches.

Upon a cache miss, the lower level STMU(s) provide the
sub-block to insert. The STMUprovides the sub-tag, which is
appended to the base-tag to form a full tag for directory look-
ups. STMUs perform fine-grained invalidations/updates if a
sub-block’s address has been modified by another core. As
STMUs perform all operations on sub-blocks, Graphfire does
not add complexity to the coherence protocol for managing
sub-blocks nor any new messages or states, and does not
increase cache coherence traffic.

In-cache directories (even if sparse) pose no issues. Say a
core C2 reads from a fine-grained address cached by core
C1 (in S state). To add C2 to the sharer’s list, its L1 cache
controller queries the directory (in L3), sees the full block in
S state, and adds C2 to the list (using a pointer if directory is
sparse). The directory does not know if the address is
cached in a normal or merged block in C2’s L1. If C1 later
writes to that address, it experiences a partial hit and its
STMU1 upgrades the sub-block coherency state from S to M
(metadata update). The directory sends invalidations to all
sharers, including C2 (as normal). When C2’s L1 receives
the invalidation, it experiences a partial hit and its STMU1

Fig. 12. A request for a PIA results in an L1 miss because the base tag
was not present (and consequently neither was the original tag). How-
ever, the request experiences a partial hit in the L2, which can be fol-
lowed by either an STMU2 hit or miss. Following a hit, the requested
sub-block data is sent to STMU1, which creates and inserts a new
merged block with the new sub-block. This merged block is then inserted
into the L1 and the data is delivered to the core.

Fig. 13. Speedup comparisons for varying LLC flex-tag bits, normalized
to 1 flex-tag bit. On average, 2 bits is most performant; it strikes a bal-
ance between mapping flexibility and sufficient sub-block storage.
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invalidates the sub-block (metadata update). In the direc-
tory, the full block state changes from S to I (as normal).

5.7 STMU Overheads
We used Cacti v7.0 [28] to obtain upper bound estimates for
area, power, and timing. Each STMU resembles a very small,
64B total, fully-associative cache (a mere 0.19% of the 32 KB
L1 storage). We conservatively modeled 16 ways, each con-
taining a 4B sub-block (Fig. 7) andmeasure the STMU area to
be 0.0065 mm2 (3.3% of the L1 area). Caches modifications to
support the STMUs are even more negligible and accounted
for in our pessimistic modeling. The dynamic energy per
STMU access is 0.0011nJ (4.65% of the L1 energy). Lastly,
while the access latency of the L1 is 0.6048 ns (0.471 ns data +
0.133 ns tag), the STMU1 requires 0.187 ns. Thus, we conser-
vatively model the STMU1 latency to be 2 cycles (1-cycle
access + 1-cycle L1 data update), and the STMU2 and
STMU3 latencies as 3 and 4 cycles respectively.

6 METHODOLOGY

Applications: This work analyzes three of the most wide-
spread graph processing primitives [8], [10], [38]: (1) BFS,
(2) SSSP, and (3) PageRank (listed in Table 1). All naturally
and efficiently fit the graph processing model (Fig. 1) and
thus are bottlenecked by PIAs. Our evaluation uses imple-
mentations from the competitive graph DSL, GraphIt [45].
For PageRank, we study both the push-based, work-efficient
(PRD) and pull-based, topological implementations (PR).

To measure the predictor’s ability to adapt to worklist
and working set changes, we also evaluate graph kernels in
the context of three multi-phase workloads: (1) Direction-
Optimizing (DO) BFS [8] is a state-of-the-art BFS imple-
mentation that alternates between pull- and push-based
phases to minimize the edges traversed in each iteration.
(2) Graph-Sparse and (3)Graph-Densemimic modern data
analytic workloads, e.g. Graph Neural Networks [40], com-
prised of graph traversals to gather node/edge features for
sparse (SPMV) or dense (SGEMM) matrix processing.

Datasets: Graph application behavior highly depends on
input. We select a synthetic power-law Kronecker network
that enables quantitative analysis with different data charac-
teristics and also real-world inputs, i.e. social and web net-
works from LiveJournal, Orkut, Pokec, and Wikipedia, to
demonstrate our contributions in a practical setting. The data
footprint of each input is much larger (50% 100!) than the
LLC size. Table 1 specifies the inputs and their properties.

Simulator: We utilize MosaicSim [24], a cycle-driven sim-
ulator for hardware-software co-design explorations and
heterogeneous systems. MosaicSim has been validated
against real systems and enables detailed analysis for mem-
ory hierarchy tailoring to graph application access patterns.
We configured it to use DRAMSim2 [30].

System Parameters: Our evaluation mainly focuses on
in-order cores to highlight Graphfire’s efficacy and perfor-
mance achieved even with simple, low-power systems. How-
ever, our techniques are core-agnostic and we demonstrate
this with a (Haswell-like) out-of-order core model. Table 2
presents the two evaluated core models (top) and modeled
memory hierarchy (bottom). All evaluated systems have a
streaming prefetcher for the L1. In multi-core configurations,

the LLC has a static NUCA design with a 512 KB local bank
per core.

Replacement Policies: We evaluate Graphfire against the
following state-of-the-art and domain-specialized policies:

DRRIP [18] targets mixed access patterns, where referen-
ces can have a near-immediate or distant re-reference inter-
val. DRRIP performs set dueling to apply SRRIP, a scan-
resistant policy that prioritizes references with longer or no
reuse distances for replacement, or BRRIP, a thrash-resistant
policy that aims to keep the working set in the cache.

SHiP [39] learns re-reference intervals of a signature, e.g.
PC, memory region, or instruction sequence. By tracking
saturating re-reference counters that are updated based on
per-signature hits and misses, SHiP learns which signatures
have an immediate or distant re-reference interval. We
focus on SHiP-PC, which most closely relates to the RRT.

Hawkeye [17] leverages a Belady’s algorithm variant to
predict whether a LLC reference is cache-friendly or not. By
using access pattern history, Hawkeye learns individual ref-
erence behaviors to determine which ones benefit from
caching. It then prioritizes cache-averse lines for eviction
knowing (based on history) which lines’ lifetimes overlap.

GRASP [15] introduces domain-specialized cache man-
agement for graph analytics. It correlates PIA reuse to ver-
tex degree and leverages RRIP to make replacement
decisions. GRASP relies on software reordering to identify
groups of high-degree vertices and rearrange them together,
while the hardware knows where high-degree vertices are
stored. GRASP is implemented on top of Degree-Based
Grouping (DBG) [14]. To evaluate hardware-only degree-
based replacement (DBR), we model GRASP without soft-
ware reordering and annotate each PIA with its vertex
degree. For each cacheline accessed by PIAs, insertion and
hit policies are based on the degree of the vertex most
recently accessed. In practice, annotations incur additional
storage and accesses, but this idealized model evaluates
DBR without software reordering.

Fine-Grained We model the baseline with LRU and 4B
cachelines to evaluate fine-grained access effects in the
absence of Graphfire’s other policies.

7 RESULTS

7.1 Application Speedups
Fig. 14 compares runtime performance speedups (normal-
ized to LRU) between Graphfire, DRRIP, SHiP-PC, Hawk-
eye, and individual replacement and fetch techniques DBR
and Fine-Grained. Graphfire outperforms all state-of-the-art
techniques, achieving up to a 1:79! speedup (geomean
1:3!) over LRU, while prior techniques have negligible
improvements. This is because these techniques focus on
the binary problem of immediate vs. distant re-reference
interval prediction instead of variable fine-grained access
reuse. While DRRIP makes replacement decisions based on
individual cacheline accesses, it does not learn different
access patterns and its operations are too coarse-grained for
the PIAs. SHiP-PC learns which PCs are associated with
immediate re-reference intervals (PSAs), but treats all PIAs
equally because they share the same PC. In fact, SHiP-PC
prioritizes them all for eviction due to their irregularity
even though many of them benefit from being retained in
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the cache. Hawkeye faces the same problem and requires
more hardware to support its history-based learning.

DBR tailors its replacement policy to variable PIA reuse by
prioritzing low-degree vertices for eviction, but wastes cache-
line space with coarse-grained PIAs and allows all accesses,
both streaming and indirect, to thrash in the LLC. The
fine-grained baseline also suffers from a lack of data-aware
caching, as cache-friendly PSAs experience performance deg-
radation and occupy the LLC, which removes available space
for the PIAs. Thus, tailored fetch, insertion, and replacement
policies are not effective if applied individually, especially
when they are not data-aware. Graphfire attributes its signifi-
cant performance gains to both learning distinct access pat-
terns and optimizing for the PIAs by exploiting synergies
between its graph-specialized techniques.

7.2 Effects of Graphfire’s Cache Policies
Fig. 15 illustrates how Graphfire’s composition of tailored
fetch, insertion, and replacement policies is key to improving
graph analytic performance. First, the STMU enables fine-
grained fetch (F) for the PIAs to improve cache utilization.
Data-aware insertion (I) addresses LLC interference by
reserving the cache for PIAs. Lastly, frequency-based replace-
ment (R) for fine-grained sub-blocks leverages the opportu-
nity (provided by F+I) for per-vertex specialization to
accommodate the variable reuse exhibited by PIAs. Each pol-
icy builds on the prior for significant performance gains.

Last-Level Cache Utilization: Improved LLC utilization is
necessary for Graphfire’s performance gains. We measure
utilization as the percentage of cacheline data accessed before
the line is evicted. Graphfire cannot achieve 100% utilization
due to metadata storage for the STMU, but achieves 67.18%
on average (max. possible is 68.75%). Its techniques together
to fit more PIAs in the LLC. Prior works suffer because they
achieve only 7.04% utilization on average.

High-Degree PIA Retention: To evaluate Graphfire’s ability
to retain high-reuse PIAs, we define a “hot” vertex as one of
the N most frequently accessed, where N vertices fit in the
LLC (524288 4B-vertices fit in 2 MB). This quantifies how
well Graphfire caches such vertices. Fig. 16 (left) compares
the average percentages of “hot” vertices retained. Graph-
fire’s techniques together retain up to 49.6% (avg. 29.9%),

outperforming prior works while only using 68.8% of cache-
lines. This highlights that FBR succeeds when specialized
fetch and insertion increase the effective LLC size.

PIA Miss Rate Reduction: Graphfire’s primary goal is to
improve performance through PIA specialization. Fig. 16
(right) highlights that Graphfire on average reduces 21.7% of
PIAmisses in the LLC,while priorworks are not nearly as suc-
cessful. Graphfire thus achieves up to a 3:92! reduction (geo-
mean 1:83!) in DRAM accesses, which improves memory
bandwidth efficiency by up to 2:28! (geomean 1:41!). Graph-
fire can synergize with aggressive latency tolerance
approaches, e.g. prefetching, by alleviating bandwidth con-
sumption to provide additional performance improvements.

7.3 Scalability
When bandwidth is limited in a multi-core system, many
latency tolerance mechanisms suffer. Fig. 17 compares the
average bandwidth usages (GB/s) (top) and performance
speedups (bottom) of Graphfire and LRU on the Kronecker
network (we focus on this input to avoid redundancy) when
scaling from 1-64 cores, normalized to LRU.Withmore cores,
both techniques exploit more memory-level parallelism
(MLP), consumingmore bandwidth.

While both techniques demonstrate performance improve-
ments due toMLP, LRU nears thememory bandwidth limit of
24 GB/s at 64 cores, limiting its scalability, while Graphfire
reduces DRAM accesses to be more bandwidth-efficient.
Graphfire not only consistently outperforms LRU despite

Fig. 14. Speedup comparisons of Graphfire with state-of-the-art and graph-specialized cache management policies. Through automatically identify-
ing PIAs and exploiting synergies between its techniques, Graphfire significantly outperforms all prior cache management policies without relying on
software preprocessing.

Fig. 15. With synergistic data-aware optimizations—(1) variable (F)etch, (1) data-aware (I)nsertion, and (3) frequency-based (R)eplacement—
Graphfire achieves considerable speedups over LRU. Each optimization builds upon the previous and contributes to the total speedup.

Fig. 16. Comparisons between average percentages of “hot” (high-
reuse) vertices retained in the LLC (left) and percentages of PIA misses
saved in the LLC (right). Graphfire retains significantly more “hot” verti-
ces and consequently saves significantly more PIA misses compared to
prior techniques.
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synchronization overheads, but also scales with more parallel-
ism. With 64 cores, it achieves up to a 71:3! speedup (geo-
mean 63:3!) over the single-thread baseline, while LRU
achieves up to 64:9! (geomean 47!).

7.4 Software Reordering
Software reordering aims to exploit structural properties of
graphs to improve locality. Sophisticated techniques require
many application executions to amortize preprocessing
costs [5]. Even lightweight techniques, e.g. DBG [14], are less
effective when a fraction of the graph is traversed. Search
algorithms, e.g. BFS, traverse the graph until they find
desired data. In such cases, reordering can be costly, espe-
cially if the graph is very large. Graphfire as a hardware-
based alternative avoids such preprocessing costs.

Fig. 18 compares Graphfire to DBG software reordering
and GRASP, whose replacement policy heavily relies on
DBG. All runtimes were measured when the application runs
on its densest andmost representative frontier, with perform-
ances normalized to LRU. When factoring in preprocessing
costs, Graphfire outperforms both reordering-based techni-
ques, achieving up to a 1:52! speedup (geomean 1:21!) over
DBG, while GRASP does not offer significant improvements
over DBG. In some cases, reordering even hurts performance.
Graphfire’s locality predictor identifies PIAs with 100% accu-
racy even with a reordered graph, as no reordering scheme
can consistently utilize at least 50% of cachelines similar to
streaming contiguous PIAs. However, Graphfire’s cache poli-
cies are designed for PIAs with poor locality, so it does not
make sense to incur the cost of reordering and use Graphfire.

7.5 Adaptability
Graphfire’s techniques are agnostic to the core model. Fig. 19
shows that Graphfire offers significant speedups over prior
works in an OoO setting (solid colored bars), achieving up to

1:6! speedup (geomean 1:2!). Graphfire offers improve-
ments on top of OoO core structures, e.g. wide issue queues,
ROBs, and LSQs, but as pointed in [6], these structures are
underutilized when executing graph applications. To
explore a more area-efficient configuration, we trade these
structures for greater MLP and perform an equal-area
speedup comparison between 8 in-order cores and 1 OoO
(Tab. II). Thus, Fig. 19 compares to Graphfire running on 8
in-order cores with all runtimes normalized to 1 OoO with
LRU. The in-order configuration is the most performant,
achieving up to a 2:45! speedup (geomean 1:71!).

General-Purpose Workload Performance: Graphfire targets
sparse and irregular graph analytic workloads that lack spa-
tial locality. Therefore, its techniques are specifically designed
for fine-grained memory accesses and naturally are not
expected to be amenable to traditional, cache-friendly appli-
cations. We evaluate our approach with the entire Parboil
benchmark suite [34], SPEC2006 workloads, and additional
sparse linear algebra applications SPMM and Sparse-Dense
Hadamard Product (SDHP) [36]. Four workloads, MRI-Q,
SAD, SGEMM, and TPACF, experience no performance
effects and three workloads, CUTCP, SPMM, and SDHP,
experience < 10% slowdowns relative to LRU. The remain-
ing workloads experience 22-88% performance slowdowns.
These slowdowns arise because the RRT is not currently
designed to recognize all (cache-friendly) memory access
patterns, though it could be combined with prefetchers to
becomemore robust. For applications with varying amounts
of cache-friendly locality, Graphfire should simply be dis-
abled as described in Sec. 3.1, or their performances can
suffer.

Multi-Phase Adaptation: Graphfire still retains high perfor-
mance for many dense workloads at low area, unlike prior
graph acceleration work. This is useful for graph analytic
kernels that involve dense computations, e.g. over vertices.

Fig. 17. Average BW (top) and speedup (bottom) comparisons between Graphfire and LRU when scaling from 1 to 64 cores on the Kron input. All
speedups are normalized to single-thread LRU performance. As LRU reaches the BW limit, it stops reaping benefits from memory-level parallelism
and its scalability suffers. Meanwhile, Graphfire performance gains scale due to its improved bandwidth efficiency, offering more improvements with
more parallelism.

Fig. 18. Speedup comparisons between Graphfire, DBG software reordering, and GRASP. The densest frontier is traversed and all speedups are nor-
malized to LRU. Graphfire consistently outperforms all techniques, as reordering costs cannot always be amortized, especially when only part of the
graph is traversed.
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To evaluate the RRT’s robustness and adaptability in these
scenarios, Fig. 20 compares Graphfire to prior techniques on
multi-phase applications DO BFS, Graph+Sparse, and Graph
+Dense. Graphfire outperforms all prior techniques across
the board, achieving up to a 1:61! speedup (geomean 1:22!).
DO BFS begins and ends with work-efficient push-based
phases, but primarily has bandwidth-efficient pull-based
phases that exhibit more locality. Graph+Sparse and Graph
+Dense alternate between graph (SSSP) and matrix (SPMV/
SGEMM) computations on a per-vertex basis. The RRT iden-
tifies all primary access patterns accurately and quickly
adapts toworklist andworking set changes. Graphfire targets
graph phases (and improves sparse phase cache utilization)
without harming dense phases, ultimately benefiting multi-
phase and co-locatedworkloads.

7.6 Prefetching
Pattern-based prefetchers for temporal access sequences
and spatial locality prediction [11], [20] do not target PIAs.
Recent work explored pointer-based prefetching for irregu-
lar accesses [32], [42], but these works struggle with variable
indirect access patterns in graph applications or require sig-
nificant training. Even graph-tailored prefetchers [2], [3], [6]
struggle with timeliness and accuracy due to varying
amounts of computation and control flow.

Fig. 21 compares Graphfire (with and without the base-
line L1 stream prefetcher) toDROPLET [6] a state-of-the-art
data-aware decoupled prefetcher for graph analytics. By
using an L2 streaming prefetcher for PSAs, it aims to fetch
PIAs early. Because DROPLET’s design is informed by OoO
execution characterizations, we measure all runtimes using
1 OoO and normalize to no prefetching. Both Graphfire con-
figurations consistently outperform DROPLET, which aver-
ages 63.3% streaming access prefetch accuracy that harms
PIA prefetch accuracy. Prefetching does not reduce DRAM
access frequency. In contrast, Graphfire reduces the fre-
quency and latency of PIAs without requiring invasive
hardware specializations, e.g. to support address calcula-
tion and address snooping modules, and prefetch buffers.
These overheads far surpass Graphfire’s, e.g. [3] uses full

in-order cores (orders of magnitude larger than STMUs) as
programmable prefetchers.

7.7 Sensitivity to Graph Size
To evaluate Graphfire’s performance on varying graph sizes,
Fig. 22 compares the percentages of “hot” vertices retained by
LRU and Graphfire as Kronecker networks grow in size from
220 % 224 nodes (400 MB - 7 GB) whereas the LLC always
stores 2 MB. Graphfire consistently demonstrates significant
improvements over LRU and all state-of-the-art approaches,
which perform similarly (not shown due to space). For all
application/dataset pairs, Graphfire advances state-of-the-art
and yields speedups ranging from 1:11% 1:79! . These
speedups attribute to Graphfires improvement of cache utili-
zation, which fits many more PIAs in the LLC, lowers the
probability of PIAs thrashing the cache, and retains a much
greater fraction of the hot PIAs regardless of the graph size.

With larger graphs, it ismore difficult for counters to learn
access frequencies. Massive graphs are very challenging for
any caching technique; e.g. using a 2 MB LLC in this experi-
ment to cache 64 MB of PIAs (from a (7 GB graph) leads to
thrashing amongst the PIAs alone. However, Graphfire’s
alleviates thrashing effects with more success than state-of-
the-art caching policies. Multi-core architectures are most
suitable for such large graphs where the reuse distances
between vertices consistently exceeds the cache capacity.
With these systems, Graphfire can leverage their aggregate
LLC capacities to yield evenmore improvement.

8 DISCUSSION

Adaptive Cache Lines: In other domains, accesses may benefit
from varying sub-block sizes. The STMU’s flexible design
can manage sub-block sizes beyond 8B via a “granularity”
bit in each merged block’s metadata (the g bit in Fig. 7-9). By
allocating more than 1 b to this field, the STMU can support
more sub-block sizes, e.g. {4B, 8B, 16B, 32B}.

Prefetch-Aware Caching: Graphfire offers opportunities for
additional performance improvements via prefetching. For
example, an indirect memory access prefetcher, e.g.
IMP [42], can interface with the STMU to cache more

Fig. 19. Equal area geomean speedup comparisons of Graphfire (OoO
and in-order) with state-of-the-art replacement policies on OoO. Graph-
fire consistently outperforms prior works on an OoO core and is most
performant with in-order cores on push-based applications.

Fig. 20. Speedup comparisons of Graphfire with state-of-the-art on multi-
phase applications. Graphfire accelerates sparse phaseswithout degrad-
ing dense phases, yielding significant speedups overall.

Fig. 21. Speedup comparisons of Graphfire with graph-specialized pre-
fetcher DROPLET (all on an OoO core). Graphfire significantly outper-
forms DROPLET, which has low prefetch accuracy for PSAs used to
prefetch PIAs.

Fig. 22. Comparisons between “hot” PIA retention percentages in the
LLC for Kron networks of varying sizes (x-axis shows PIA footprint,
which is always larger than LLC capacity). Graphfire always caches hot
vertices better.
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prefetches and consequently eliminate more PIA cold
misses. Domain-specific prefetchers can also synergize with
the RRT to identify spatial locality non-speculatively and fur-
ther enhance locality prediction.

9 RELATED WORK

Cache Partitioning: Many techniques aim to improve cache
utilization by reserving different parts of the cache for dif-
ferent threads, cores, or applications [9], [12], which is bene-
ficial for simultaneous workload execution. Graphfire
instead tailors its insertion scheme at a finer granularity to
focus on heterogeneous access patterns within a single
graph application. XMem [37] dedicates partial or full cache
areas to blocks with high-reuse so they cannot be evicted by
other accesses. This is only practical when all high-reuse
blocks fit in the cache. Large graphs with thousands of
high-degree vertices require more than the LLC capacity.

Partial Cachelines: Several works tailor to spatial local-
ity [21], [44] by offering complex designs or high metadata
overheads to support a wide range of cacheline sizes. Tag-
split cache [23] divides tags to support coarse and fine-
grained accesses for GPGPUs, but incurs area overhead to
store partial cacheline tags. Decoupled sector caches [31]
share tags between cachelines from different sectors. Graph-
fire avoids tag sharing with hierarchical tags. IMP [42]
focuses on PIAs, but requires partial cachelines to remain
continuous, limitating their performance gains.

Cache Replacement Policies: Sophisticated variants of LRU,
LFU, RRIP, and other cache efficiency metrics [18], [29], [43]
rely on static metrics that do not adapt well to varying, dis-
tinct access patterns and especially the variable reuse of PIAs
in graph analytics. More recent approaches aim to learn vary-
ing access patterns through history-based techniques or via
machine learning [19], [33], [35], which can require long, com-
putationally intensive offline training. Unfortunately, even
intelligent learning schemes can be ineffective for graph
applications as PIAs rarely, if ever, exhibit patterns to learn,
making such policies potentially costly. Graphfire instead
exploits synergies between PIA-tailored policies to non-spec-
ulatively focus on problematic accesses.

P-OPT [4] proposes an architecture solution that uses the
transpose of a graph’s adjacency matrix, referred to as the
Rereference Matrix, to implement Belady’s MIN replace-
ment policy. Constructing the Rereference Matrix incurs a
preprocessing cost, while Graphfire remains software-
agnostic. Furthermore, Fig. 14 and 15 demonstrate that
replacement alone offers limited speedup, as even an opti-
mal policy cannot prevent high-reuse PIAs from being
evicted if too many (more than the associativity) map to the
same set. Improving cache utilization is key to creating
more performance opportunity for tailored replacement.

Graph-Tailored Memory Hierarchies: Domain-specific mem-
ory subsystem designs augment hardware with specialized
engines or accelerators. These modules perform computa-
tions or alter traversal scheduling to exploit power-law
properties or graph locality [1], [26], [27]. As a result, such
approaches require significant hardware modifications
within the caches themselves, as well as ISA changes, which
are difficult to implement in general-purpose systems.

10 CONCLUSION

This work presents Graphfire, a flexible, fully hardware-
based memory hierarchy approach that learns and opti-
mizes for irregular accesses in graph applications. By
leveraging the key observations that PIAs require special-
ized treatment, can be identified in hardware, and have a
subset that benefit from caching, Graphfire learns distinct
memory access patterns on a per-PC basis to identify PIAs
and synergizes data-aware fetch, insertion, and replacement
policies tailored to them. This results in considerable perfor-
mance improvements and bandwidth efficiency over state-
of-the-art techniques, allowing graph applications to scale
on general-purpose, multi-core, shared-memory systems,
where software can run quickly and unchanged. This work
is a timely contribution for Big Data processing, as graph
algorithms at the heart of data analytics must keep up with
ever-growing modern network trends.
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