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SoCurity: A Design Approach for Enhancing SoC Security
Naorin Hossain , Alper Buyuktosunoglu , John-David Wellman , Pradip Bose , and Margaret Martonosi

Abstract—We propose SoCurity, the first NoC counter-based
hardware monitoring approach for enhancing heterogeneous SoC
security. With SoCurity, we develop a fast, lightweight anoma-
lous activity detection system leveraging semi-supervised machine
learning models that require no prior attack knowledge for detect-
ing anomalies. We demonstrate our techniques with a case study
on a real SoC for a connected autonomous vehicle system and find
up to 96% detection accuracy.

Index Terms—Heterogeneous SoC, network-on-chip, denial-of-
service, anomaly detection, semi-supervised model.

I. INTRODUCTION

SYSTEMS-ON-A-CHIP (SoCs) offer high-performance
processing with low area and power overheads. Heteroge-

neous SoC designs target a device’s computational needs by
bringing together specialized processing units tailored to accel-
erate the device’s tasks, all on a single die. State-of-the-art SoCs
use network-on-chip (NoC) interconnects for efficient commu-
nications between these SoC components [1], [3]. Components
can include general-purpose processing cores, hardware acceler-
ators, memory interfaces, and I/O interfaces. Some components
may be black-box third-party intellectual property (IP) units.

Despite the performance and power gains achieved by special-
ized SoC designs, sophisticated attacks can target and take down
components, rendering them unavailable. For example, a denial-
of service (DoS) attack may be launched by malware (Fig. 1),
flooding the NoC with packets targeting specific SoC resources
and preventing necessary tasks from reaching them [3]. Prior
works used hardware performance counters for malware detec-
tion in traditional CPU architectures, but existing SoC-specific
solutions are not broadly applicable to real-world heterogeneous
SoCs. Our goal is a widely applicable SoC design approach
to protect against resource availability attacks. To this end, we
propose SoCurity, a design method for enhancing security in
heterogeneous SoCs. Our contributions are:
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Fig. 1. Example SoC attack: 1© Malware is introduced in a network data
transfer. 2a© Malware launches DoS attack on an accelerator (Acc2) in an SoC
without SoCurity (red: increased NoC traffic; green: regular traffic). NoC traffic
and task load from the DoS attack make Acc2 inaccessible for device tasks.
2b© and 3© show how SoCurity helps. 2b© SoCurity anomaly detection system
is deployed on a core in the SoC. NoC counter data from each component is
collected by the SoCurity unit on an isolated NoC plane (dashed). 3©Anomalous
NoC data (red) is found in counters and can be used to find and mitigate threat.

Fig. 2. SoCurity introduces counters to NoC routers for each SoC tile to
monitor interactions between them (example counters shown). The counters
enable constantly active anomaly detection and mitigation during live workloads.

! SoCurity, a novel SoC monitoring approach to enhance
security with easily integrable NoC-based hardware coun-
ters.! A lightweight, automated anomalous activity detection
system targeting unwarranted on-chip SoC resource usage.! Our detection system needs no attack knowledge; devel-
oped with an adaptive approach based on semi-supervised
machine learning, it enables novel future attack detection.! We demonstrate these techniques with a study on a real
SoC for connected autonomous vehicles (CAVs) in high
variability settings. Our results show highly accurate DoS
detection (up to 96%) and fast prediction (∼30 µs on
ASIC).

In this paper, we focus on the most common availability
attack, DoS attacks, though other attack protection is also possi-
ble with SoCurity. The disruption from malware and hardware
trojans leveraged to flood the NoC with tasks, is distinguishable
at the hardware level, inspiring our approach to developing an
SoC anomaly detection system.

II. SOCURITY: NOC COUNTER-BASED SOC SECURITY

SoCurity enhances security measures on heterogeneous SoCs
with NoC-based hardware counters. This paper develops one
example of an anomalous activity detection system that can
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be implemented with SoCurity. Fig. 2 gives an overview of
SoCurity, including NoC counters and the detection system.

A. Threat Model

This work focuses on safeguarding heterogeneous SoCs
against attacks that disrupt component operation and accessi-
bility, e.g., DoS attacks or side-channel attacks. Possible attack
vectors include hardware trojans embedded by third-party IP
tiles and malware injection via connected devices or the cloud
(e.g., with system updates). This paper primarily focuses on
detecting malware injection-based attacks, though presented
techniques can also detect anomalous hardware activity from
other described attack vectors. Our threat model assumes the
software stack, including the operating system, is untrusted.
The attacker is assumed to have knowledge of on-chip ac-
celerators and the ability to send tasks to them. The case
study (Section III) highlights detection of DoS attacks on SoC
components.

B. NoC-Based SoC Hardware Counters

In a heterogeneous SoC, the presence of black-box third-party
IP and various processing units requires that a holistic approach
to observing hardware activity throughout the SoC either a) re-
quires a specific interface implemented by each component to
monitor and expose its internal activity, or b) brings monitoring
outside these components to the NoC-level where usage of and
communications between components can be tracked. SoCurity
takes the latter approach, as the NoC interconnect provides a
reliable medium for monitoring SoC activity without imposing
additional requirements on component designs.

NoC-based counters can capture a holistic view of ongoing
SoC activity by monitoring: 1) NoC packets injected by each
tile, 2) NoC congestion at each tile, 3) memory tile requests,
and 4) accelerator usage. Counters can be implemented as pro-
tected registers at the router for each tile (examples in Fig. 2).
The area overhead of implementing the counters is negligible
(<0.1%) [11]. NoC packet counters can increment at source and
destination routers for each packet. NoC congestion counters
can track packet input queue size at each router. Memory tiles
counters can track coherence and direct memory access (DMA)
requests by incrementing on packet arrival from cores and
accelerators, respectively. Accelerator routers can count usage
cycles by recording cycles between a packet arrival from a core
and a departure of a response packet to that core. Our proposed
counters are generic and applicable for any NoC-based SoC.

C. Anomaly Detection Methods

Using the SoCurity NoC monitoring approach, we developed
an anomalous activity detection system. The goal for our system
is to use a lightweight algorithm to quickly flag uncharacter-
istic hardware behavior without searching for specific known
attack behaviors. Though complex solutions using deep neural
networks may provide high accuracy, they require immense
processing and memory resources to do so which is not ideal
for fast detection in devices with limited resources. Instead,
for broader applicability, we explore machine learning (ML)
based anomaly detection models that provide accurate and fast
detection with lighter computational requirements.

For our system, we studied a subset of semi-supervised
ML algorithms specific to anomaly detection. They are binary
classification models that are trained solely with benign data;

anomalous data need not be included in the training set. Train-
ing data is used to define bounded regions of possible benign
activity. Samples falling outside of these regions get labeled
anomalous. With no anomalous training data, these models are
capable of capturing both existing and novel future attacks.
We considered four semi-supervised anomaly detection models:
one-class nearest neighbors (OCNN), one-class support vector
machines (OCSVM), isolation forest (iForest), and local outlier
factor (LOF). These models are well-studied anomaly detection
algorithms and their simplicity, speed, accuracy, and general
applicability best fit our goals. For our case study (Section
III), we used available model implementations from the Python
scikit-learn library and wrote our own OCNN implementation
based on the k-Nearest Neighbors (kNN) module in scikit-learn.

D. End-to-End Anomaly Detection System

Model Training: Effective anomaly detection with a semi-
supervised approach relies on strong training data that accurately
portrays regular system behavior. Collecting representative data
sets is feasible since SoCs are designed for specific uses. The
detection model is statically trained with counter data collected
during representative workloads in a secure, offline setting. Once
deployed, the trained model can be updated periodically with
data that is collected during the device’s use.

Secure Implementation: When deployed on an SoC, the base
configuration for our proposed anomaly detection system is
executed on an isolated core at the highest privilege level,
independent of the software stack, protecting it against attackers
(Fig. 2). Alternatively, the detection system can be implemented
as a standalone hardware unit, enhancing its security from
intruders. For both cases, the NoC counters should only be
accessible to the detection system through a dedicated NoC plane
that is unavailable to other SoC units. This NoC plane introduces
minimal area overhead at <2% [7]. Memory for the detection
model and counter data should reside in a trusted, secure space
that only the detection system can access without interrupting
ongoing program executions. After detection, the anomalous
activity source must be verified to mitigate threats.

Full defense process for malware-injected attack:
1) NoC counter data is collected while running representative

workloads on the SoC in a secure, offline setting.
2) Anomaly detection model is trained with collected data.
3) Trained model is deployed on the SoC for live detection.
4) NoC counter data is regularly read and input to the model.
5) Detection model predicts if the counter data is anomalous.
6) If the data is anomalous, it is sent to a mitigation engine.
7) The mitigation engine finds the anomalous process and

mitigates it, or determines the data was mispredicted.
8) Counter data labeled benign by detection or mitigation

engine is used to update detection model over time.

III. CASE STUDY: CONNECTED AUTONOMOUS VEHICLE

We studied SoCurity detection on a real SoC designed for
a CAV. CAVs share data on surroundings through “swarm”
communications with nearby vehicles [10]. Despite complexity
and high input variability, we show our techniques are effective.

A. CAV SoC Implementation

We implemented an SoC prototype for the swarm commu-
nication component of a full CAV SoC, emulated on a Xilinx
Virtex UltraScale+ VCU118 FPGA running at 78 MHz using the
ESP platform [7], [11]. Our SoC has a 64-bit RISC-V Ariane
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Fig. 3. Overview of implemented SoC in a larger CAV SoC (e.g., Tesla
SoC [1]). Tiles are labeled 1-3 with CAV workload tasks in Section III-A. Black
arrows depict benign network traffic. Red arrows (right) show FFT DoS attack
traffic.

core, a memory tile, an I/O tile, 3 FFT accelerators, and 3 Viterbi
decoder accelerators (Fig. 3). The Ariane core has a 16 KB L1
I-cache and a 32 KB L1 D-cache. The memory tile has a 256 KB
LLC. Tiles are connected by a 2D mesh NoC with 6 planes.

Workload: Our SoC ran a representative CAV workload
focused on swarm communication for navigational decision-
making (Fig. 3) using a generated trace of upcoming road
obstacle positions. It performed the following at each time step:

1) Calculate distance to surrounding objects with FFT calcu-
lations on radar readings done by an FFT accelerator.

2) Messages from swarm communications (i.e., message
traffic) are processed by Viterbi decoders. Messages vary
in size. One to three messages are received per time step.
This reflects real-world variety in swarm communication.

3) Combine data from 1 and 2 to plan and execute actions.
Implementing NoC-Based Counters: In this study, we

deployed NoC counters in our SoC (Section II-B) using
Cohmeleon’s lightweight hardware monitoring system [11]. We
monitor 355 total NoC counters spanning the following events:! General: NoC packets, NoC backpressure cycles! Memory: off-chip memory accesses, coherence/DMA re-

quests/responses, LLC hits/misses! Accelerator: total, memory, and TLB-loading cycles

B. DoS Attack Targets

We ran four DoS variants on the SoC to slow down CAV tasks:
1) FFT: 1,000 FFT accelerator tasks are injected.
2) Viterbi: 1,000 randomly sized Viterbi tasks are sent.
3) FFT + Viterbi: 1,000 tasks are sent to FFT, Viterbi tiles.
4) Memory: 500,000 memory requests are made for random

addresses in a space that is twice the size of the LLC.

C. Evaluation Methods

We conducted offline and online experiments to evaluate
SoCurity detection on each attack. Based on offline studies, we
deployed the best ML model on the SoC for online tests.

Training: Training data was collected by reading counters
every 100 ms over three workload (Section III-A) runs on the
SoC, each for 300 time steps (∼155 ms per step). This was the
most frequent data collection possible on our single-core SoC.
The training set had 1094 samples with 355 counter features.

Testing: Test sets were collected by reading counters every
100 ms over five runs of each DoS attack on the CAV workload
and five runs of the workload alone. The workload ran for 300
time steps. Test sets had 3,684 to 4,932 samples. Ground truth
labels for test data were automated with k-means clusters.

Preprocessing: To maintain model performance, we reduced
our feature set from 355 NoC counters by: 1) selecting the k best
features based on variance, 2) using correlation matrices to select
unique counters, and 3) combining counters into informative
features, e.g., summing usage cycles for all FFT accelerators.
Table I gives our final six representative features.

TABLE I
SIX FEATURES USED FOR ANOMALOUS ACTIVITY DETECTION

TABLE II
AVG. ATTACK DURATION, TOTAL WORKLOAD DURATION WITH ATTACKS, AND

ATTACK IMPACT (HIGHER VALUE, HIGHER IMPACT)

Fig. 4. FN, TP, FP, TN for each attack/model. Low FN, FP are better. All did
well on FFT attacks. OCSVM was best on Viterbi and FFT + Viterbi attacks.
All had high FPs on memory attacks.

IV. RESULTS
Table II gives each DoS attack duration, time to run the

CAV workload for 300 time steps during attacks (on 78 MHz
FPGA), and an impact metric for overall effect of attacks on
the workload. Impact is quantified as the ratio of workload
slowdown ( ttotal

tno_attack
) to the proportion of the run in which the

attack occurred ( tattack
ttotal

).

A. Comparing Models for DoS Attack Detection

To evaluate the detection models, we counted true/false posi-
tive (TP/FP, anomalous) and true/false negative (TN/FN, benign)
predictions. We tuned model parameters to prioritize low FNs
(<10%), minimizing missed anomalies, and low FPs, avoiding
system resource costs. Fig. 4 shows FNs, TPs, FPs, and TNs for
each model and attack. Higher impact attacks (Table II) were
detected more easily. Due to its lower impact, memory attack
data was similar to benign data. Minimizing FNs resulted in
models that were more susceptible to predicting FPs for the
memory attack test set. Storage-wise, iForest, LOF, and OCNN
required 807.3 KB, 316.0 KB, and 187.0 KB, respectively.
OCSVM required just 2.9 KB, making it lightweight and ideal
for fast online detection. It also best distinguished variable
benign message traffic from Viterbi-based attacks.

B. SoCurity Robustness

We stress tested our detection system to see how Viterbi-
based attack detection is impacted under high incoming message
traffic conditions, e.g., extreme urban settings with large CAV
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Fig. 5. AUC of each model when incoming message traffic variability for CAV
workload increases. Higher is better. OCSVM and iForest maintain high AUCs
despite increased variability.

TABLE III
AVERAGE DETECTION CYCLES TO FLAG ATTACK (LOWER IS BETTER),

ACCURACY (HIGHER IS BETTER), AND FPR (LOWER IS BETTER) PER ATTACK

presence. We randomized message traffic with up to 3, 12,
21, and 30 incoming messages of random size per time step.
Beyond three messages put a higher task load on Viterbi units.
Fig. 5 shows areas under receiver operating characteristic curves
(AUCs, higher is better) for detecting Viterbi and FFT + Viterbi
attacks under these workload conditions with each detection
model. Distance-based OCNN and LOF could not separate high
Viterbi activity from benign message traffic and the Viterbi
attack, but fared better with added FFT noise in the FFT + Viterbi
attack. OCSVM and iForest incorporate feature relations for a
stronger model and maintained high AUCs for both attacks with
increasing benign message traffic.

C. SoCurity in Action on the CAV SoC

We selected OCSVM for our online study due to its low stor-
age needs and robust performance across offline experiments.
We statically trained and deployed the model on the FPGA using
m2cgen. When run on the 78 MHz FPGA, the model had a pre-
diction time of 320µs (32µs on an ASIC [7]). For each detection
cycle, NoC counters were read every 100 ms (like training data)
and input to the detection model for prediction. Table III presents
the average number of detection cycles required to flag attacks
after they are launched, accuracy ( TP+TN

TP+FP+TN+FN ), and false
positivity rates (FPRs: FP

TN+FP ) for each DoS attack on the
FPGA. The model had low FPRs for all attacks and high accuracy
for accelerator-based attacks. The memory attack’s lower impact
(Table II) made counter data harder to recognize as anomalous
during some detection cycles, so overall accuracy was lower.
Nonetheless, it was flagged within a few detection cycles, so a
mitigation engine would quickly investigate it.

V. DISCUSSION

Scalability: Larger SoCs with SoCurity require more NoC
counters throughout. To reduce load on a detection unit, detec-
tion can be parallelized across multiple units, each monitoring a
subset of tiles and maintaining regional NoC traffic knowledge.

Future Work: SoCurity is simple and generalizable, so it can
be used to detect other SoC threats (e.g., hardware trojans or
side channel attacks) or hardware resource failures. SoCurity
detection systems can also be built with evasion attacks in mind
by randomly selecting from a set of detection models [6].

VI. RELATED WORK

Several works explored CPU hardware performance counters
for anomaly and attack detection using ML models [4], [5], [6],
[9]. As discussed in [3], others have explored security measures
for NoC-based SoCs in which CPU performance counters are not
a sufficient solution [2], [8], [9]. [8] detected bandwidth denial
attacks by a malicious NoC. [9] evaluated malware detection
with CPU performance counters from SoC cores and found high
FPRs averaging 11.3%. [9] also extracted coherence NoC traffic
information from packets to detect DoS attacks. [2] relied on
predictability of NoC traffic latencies. SoCurity NoC counters
are simpler and provide more coverage for heterogeneous SoCs
by not requiring information extraction from packets and moni-
toring more than just coherence packets. SoCurity counters are
also inaccessible through software tools like perf which can
be used to reverse-engineer CPU counter-based detectors [5].
Further, we found the semi-supervised ML models used in
our study to outperform supervised counterparts from related
work [4], [9], but omit these results for space.

VII. CONCLUSION

This letter presents SoCurity, a design approach for en-
hancing SoC security by enabling NoC-level hardware activ-
ity monitoring with NoC-based counters. Using SoCurity, we
developed a fast and lightweight anomaly detection system for
detecting impacts on SoC component availability. We demon-
strated our detection system on a real SoC implementation for
a CAV and showed highly accurate (up to 96%) DoS attack
detection.
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