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Optimal sample acquisition for optimally weighted
PCA from heterogeneous quality sources

David Hong, Member, IEEE, and Laura Balzano, Senior Member, IEEE

Abstract—Modern high-dimensional datasets are often formed
by acquiring samples from multiple sources having heterogeneous
quality, i.e., some sources are noisier than others. Collecting data
in this manner raises the following natural question: what is the
best way to collect the data (i.e., how many samples should be
acquired from each source) given constraints (e.g., on time or
energy)? In general, the answer depends on what analysis is to
be performed. In this paper, we study the foundational signal pro-
cessing task of estimating underlying low-dimensional principal
components. Since the resulting dataset will be high-dimensional
and will have heteroscedastic noise, we focus on the recently
proposed optimally weighted PCA, which is designed specifically
for this setting. We develop an efficient method for designing
sample acquisitions that optimize the asymptotic performance
of optimally weighted PCA given resource constraints, and we
illustrate the proposed method through various case studies.

Index Terms—heterogeneous quality, large-dimensional data,
principal component analysis, sample acquisition design

I. INTRODUCTION

MODERN high-dimensional datasets are often formed
by combining samples acquired from multiple sources,

where the sources have heterogeneous quality and cost.
Namely, some sources are noisier than others, and acquiring
samples from higher-quality (less noisy) sources is typically
more costly (whether in time or energy). For example, air qual-
ity data are currently acquired using both low-cost consumer-
grade sensors and high-precision instruments that are carefully
maintained by government agencies [1], [2]. In general, one
can imagine deploying sensor networks with a heterogeneous
mix of sensors of varying cost and corresponding quality.

One often seeks to find underlying low-dimensional struc-
ture revealed by the data. Principal component analysis (PCA)
is a foundational technique for this task, and it is a workhorse
method in modern signal processing. For example, PCA has
been used to identify sources of air pollution from air quality
data [3], [4]. However, conventional PCA is not designed for
samples with heterogeneous amounts of noise; it treats all
samples uniformly. A weighted PCA that gives noisier samples
less weight is a more suitable method, and recent work [5] de-
rived optimal weights for this scenario. The resulting optimally
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weighted PCA optimally downweights noisier samples to best
recover the underlying low-dimensional components.

This paper tackles the following question: what is the best
way to acquire samples for optimally weighted PCA? Namely,
given multiple sources of data, how many samples should be
acquired from each source to maximize the performance of
optimally weighted PCA? Naturally, the more data, the better
the performance of optimally weighted PCA. However, in
practice there are typically constraints. In particular, acquiring
samples often has associated costs, resulting in constraints of
the following form:

κ1n1 + · · ·+ κLnL ≤ τ, (1)

where n1, . . . , nL are the number of samples acquired from
each of L available data sources, κ1, . . . , κL are the per-sample
costs for each source, and τ is the corresponding budget. Each
type of cost (e.g., in time or energy) adds a constraint of this
form. Moreover, each source often has a finite quantity of
samples it can provide, resulting in additional constraints:

n` ≤ q`, for ` = 1, . . . , L, (2)

where q1, . . . , qL are the quantity of samples that each source
can provide. Both (1) and (2) are linear constraints, so can be
captured in general as follows:

An 4 b, (3)

where n := (n1, . . . , nL) is the number of samples to acquire
from each source, 4 denotes entrywise inequality, and A and
b define the constraints. The goal is to choose n to maximize
the performance of optimally weighted PCA subject to the
constraints (3).

A number of recent works have studied the topic of PCA
for high-dimensional heterogeneous-quality data [5]–[21], but
they generally focus on how to use the given data rather than
on how to acquire it. The question of how to best acquire data
falls within the field of experimental design, for which there
are numerous works (many more than can be reviewed here,
see, e.g., the textbooks [22]–[27]). However, to the best of our
knowledge, the question we consider here (optimal design for
optimally weighted PCA) has not yet been addressed. This
paper tackles this open problem.

Section II describes the data model and reviews optimally
weighted PCA. Section III states the main result: a character-
ization of the optimal sample acquisition designs that enables
us to develop a computationally efficient algorithm for finding
an optimal design. Sections IV and V demonstrate the method
through an illustrative example and case studies. Section VI
concludes the paper with a proof of the main result.
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II. DATA MODEL AND OPTIMALLY WEIGHTED PCA
This paper considers acquiring n1, . . . , nL samples from L

data sources with associated noise variances v1, . . . , vL > 0,
where the sources share k underlying orthonormal components
u1, . . . ,uk ∈ Cd with signal variances λ1 > · · · > λk > 0.
Precisely put, we model the data block Y` ∈ Cd×n` obtained
by acquiring n` samples from the `th source as in [5]:

Y` = FZ` + E` ∈ Cd×n` , for ` = 1, . . . , L, (4)

where d is the number of features,
• F := [

√
λ1u1, . . . ,

√
λkuk] ∈ Cd×k is a deterministic

factor matrix common to all the sources,
• Z` ∈ Ck×n` is a coefficient matrix with IID entries that

have zero mean and unit variance,
• E` ∈ Cd×n` is a noise matrix with IID entries that have

zero mean and variance v` > 0,
and the noise further satisfies a technical condition: bounded
a-th moment for some a > 4, i.e., supi,j E|(E`)i,j |a <∞.1

Since the data sources have different amounts of noise, one
should use a weighted PCA to account for their heterogeneous
quality. Given weights w := (w1, . . . , wL), weighted PCA
estimates the ith underlying component ui as

ûi(w,Y ) := ith leading eigenvector of
L∑
`=1

w`Y`Y
H
` , (5)

i.e., ûi(w,Y ) is the ith leading eigenvector of the w-weighted
sample covariance matrix. Naturally, one wants to use weights
that maximize the recovery of ui. Such weights were recently
found in [5]. Namely, asymptotically optimal weights w?

i and
their corresponding asymptotic performance r̄?i are given by

w?
i =

(
1

v1

1

1 + v1/λi
, . . . ,

1

vL

1

1 + vL/λi

)
, (6)

r̄?i = the unique solution x ∈ (0, 1)

of
L∑
`=1

n`/d

v`/λi

1− x
v`/λi + x

= 1,

(7)

unless
∑L
`=1(n`/d)(λi/v`)

2 ≤ 1, in which case r̄?i = 0.2

Roughly speaking, |uH
i ûi(w

?
i ,Y )|2 ≈ r̄?i when the number

of features d and the numbers of samples n1, . . . , nL are all
sufficiently large. Specifically, r̄?i is the optimal performance
in the limit where d and n1, . . . , nL all grow to infinity with
fixed aspect ratios n`/d;3 see [5] for further details. This high-
dimensional regime corresponds to many big data settings.

Note that the asymptotic performance of optimally weighted
PCA is component-specific, so the optimal sample acquisition
strategy may differ from component to component. Note also
that computing r̄?i requires either knowing the signal and noise
variances λi and v1, . . . , vL a priori or estimating them from
data, e.g., using the methods described in [5, Example 7.2].

1This technical condition is satisfied by numerous distributions including
the sub-Gaussian and sub-Exponential families [28, Prop. 2.5.2 and 2.7.1],
notably including the real-valued Gaussian setting considered in [8], [9].

2When
∑L

`=1(n`/d)(λi/v`)
2 > 1, the solution x ∈ (0, 1) to the equation

in (7) can be found simply and efficiently via bisection since it is unique.
3The number of components k and the number of data sources L, as well as

the signal and noise variances λ1, . . . , λk and v1, . . . , vL, are also considered
fixed with respect to n` and d.

III. MAIN RESULT: OPTIMAL SAMPLE ACQUISITION

The problem is to choose n := (n1, . . . , nL), the numbers
of samples to acquire from each source, to optimize the
performance (7) of optimally weighted PCA subject to linear
constraints on n. Precisely put,

argmax
n∈RL

+

r̄?i (n) subject to An 4 b, (8)

where R+ denotes the set of nonnegative real numbers, 4 is
entrywise inequality, A and b define the linear constraints, and
we have made the dependence of r̄?i on n explicit. Throughout
this paper, we will assume that A and b define nontrivial
constraints in the sense that {n ∈ RL+ : An 4 b} is not only
nonempty but also bounded. Otherwise, one can of course take
n → ∞ and achieve perfect performance. However, one can
always expect to have nontrivial constraints in practice since
collecting and processing samples takes both time and space.

Solving the optimization problem (8) is nontrivial because
r̄?i (n) is not given as an explicit expression in n. It is instead
defined implicitly in (7) via the roots of a rational function
with coefficients that depend on n. Furthermore, r̄?i (n) is a
nonlinear function of n. Fortunately, as our main result shows,
solutions occur at extreme points of the constraint region.

Theorem 1 (Optimal sample acquisition). The optimal sample
acquisition problem (8) has a solution (not necessarily unique)
that is an extreme point of the constraint polyhedron

P := {n ∈ RL+ : An 4 b}. (9)

Remark 1 (Non-integer values). Note that we have relaxed n
to have nonnegative real-valued (rather than integer-valued)
entries. This relaxation should have little impact in the high-
dimensional regime of interest; simply round the solution of
(8) to obtain integer numbers of samples to acquire. One can
also avoid this technicality by instead formulating (8) in terms
of the (already real-valued) asymptotic aspect ratios n`/d.

It follows from Theorem 1 that global optimization of (8)
can be accomplished by simply choosing the best among the
extreme points of P (a finite set). This leads naturally to the
following simple and efficient algorithm.

Algorithm 1 Sample acquisition optimization
Input: noise variances v ∈ RL+; signal variance λi ∈ R+;

dimension d ∈ N; linear constraints (A, b) ∈ RK×L×RK .
1: P ← {n ∈ RL+ : An 4 b} . constraint polyhedron
2: E ← extreme points of P . collect candidates
3: n? ← argmaxn∈E r̄

?
i (n) . choose best candidate

4: return n?

Remark 2 (Computing extreme points). The extreme points of
P in Line 2 of Algorithm 1 can be efficiently obtained from
(A, b) using standard polyhedral software; see, e.g., [29], [30].

The runtime of Algorithm 1 can grow dramatically when the
number of sources is large; developing algorithms that scale
better is an interesting direction for future work. That said, we
found that cases with tens to even hundreds of constraints can
often complete in fractions of a second when the number of
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sources is moderate (e.g., around ten or less), as is the case
in many applications.

IV. ILLUSTRATIVE EXAMPLE

We illustrate our main result (Theorem 1) and the resulting
algorithm (Algorithm 1) with the following example of two
sources with limited quantities and a single budget constraint.

An 4 b

n1

n2 n1 ≤ 180

n2 ≤ 90

1 · n1 + 3 · n2 ≤ 300

(0, 0)

(0, 90)

(30, 90)

(180, 40)

(180, 0)

Fig. 1. Constraint region from Example 1: L = 2 data sources with limited
quantities of 180 and 90 samples, respectively, and corresponding per-sample
costs of 1 and 3 with a total budget of 300.

Example 1. Consider acquiring d = 100 dimensional samples
from L = 2 sources with an underlying component ui having
signal variance λi = 10, where
• source 1 samples have noise variance v1 = 2, a limited

quantity of 180 samples, and a per-sample cost of 1,
• source 2 samples have noise variance v2 = 1, a limited

quantity of 90 samples, and a per-sample cost of 3,
and the total budget is 300. This yields the linear constraints
defined by

A =

1 0
0 1
1 3

 , b =

180
90
300

 ,
illustrated in Fig. 1. To find the optimal sample acquisition,
we proceed according to Algorithm 1 (based on Theorem 1):

1) Find the extreme points E of P = {n ∈ RL+ : An 4 b}:

E = {(0, 0), (0, 90), (30, 90), (180, 40), (180, 0)}.

2) Evaluate r̄?i (n) for each n ∈ E and choose the best:

(180, 40) ∈ argmax
n∈E

r̄?i (n)

since

r̄?i
(
(30, 90)

)
≈ 0.903, r̄?i

(
(180, 40)

)
≈ 0.917.

Note that (0, 0), (0, 90), and (180, 0) can all be skipped
because either n1 or n2 can be increased for each choice,
trivially yielding an improvement in performance.

The optimal sample acquisition n? = (180, 40) corresponds
to collecting all the available samples from source 1 (i.e., all
the cheaper, noisier samples that are available) then spending
the rest of the budget on samples from source 2 (i.e., the more
costly, higher quality samples).

V. CASE STUDIES AND INSIGHTS

The following case studies demonstrate Theorem 1 through
a few interesting scenarios that provide some new insights into
optimal sample acquisition for optimally weighted PCA.

A. Optimal sample acquisition under a single constraint
Suppose the constraint region reduces to a single constraint.

For example, consider the setting of Example 1 but with over
300 source 1 samples and over 100 source 2 samples available.
In this case, the constraints reduce to the single constraint

A =
[
1 3

]
, b =

[
300
]
,

with three extreme points E = {(0, 0), (300, 0), (0, 100)}. As
before, (0, 0) can be skipped, so either (300, 0) or (0, 100) is
optimal. Namely, it is optimal to use only one source. In this
case, (300, 0) is better, i.e., it is optimal to acquire samples
from only the noisier less-costly source.

Indeed, as the following corollary states, it is always optimal
to use only one source when there is effectively one constraint.

Corollary 2 (Optimality for a single constraint). If the con-
straint region reduces to a single constraint, i.e.,

∃a∈RL,b∈R P = {n ∈ RL+ : a>n 4 b},
then the optimal sample acquisition problem (8) has a solution
using only one source, i.e., a 1-sparse solution of the form

n? = (0`−1, b/a`,0L−`) where ` ∈ {1, . . . , L}. (10)

Corollary 2 follows straightforwardly from Theorem 1 by
observing that the nonzero extreme points are of the form (10).

While this result is perhaps natural given Theorem 1, note
that it was not obvious a priori. It would have been natural
to expect the optimal sample acquisition to require a precise
mix of both high-quality high-cost samples and low-quality
low-cost samples, especially given the nonlinearity of r̄?i (n).

B. Optimal sample acquisition for multiple components
The performance of optimally weighted PCA depends non-

trivially on the signal variance, so may vary from component
to component. Thus, the optimal sample acquisition strategy
could also differ among components. However, unlike the
optimal weights (6), the optimal sample acquisition can also be
the same for components that have different signal variances.

Consider the setting of Example 1 but where we sweep λi
from 1 to 10. Fig. 2 shows the optimal sample acquisition
strategies computed by Algorithm 1 (omitting the small inter-
val λi ∈ [1, 1.013] where the optimal performance was zero).

1 2 3 4 5 6 7 8 9 10

30
40

90

180

Signal variance λi

n?
1 n?

2

Fig. 2. Optimal sample acquisition n? = (n?
1, n

?
2) v.s. signal variance λi.

Notably, the optimal sample acquisition strategy is constant
over large intervals. Thus, there can be a single optimal strat-
egy for all the components, as long as their signal variances
lie in the same interval. Interestingly, these results also suggest
that the optimal strategy may be somewhat robust to potential
errors in estimating the signal and noise variances.
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VI. PROOF OF MAIN RESULT (THEOREM 1)

Let Q be the solution set for the optimization problem (8),
and let ρ? be the associated optimal value, i.e.,

Q := argmax
n∈P

r̄?i (n), ρ? := sup
n∈P

r̄?i (n). (11)

The goal is to show that

∃n? ∈ Q s.t. n? is an extreme point of P. (12)

Note first that (12) holds trivially if ρ? = 0 because Q = P in
that case and P always has at least one extreme point (by [31,
Theorem 2.6]) since it is a nonempty bounded polyhedron (by
assumption). So it remains to show (12) for ρ? > 0.

The proof for ρ? > 0 proceeds in two stages: (i) show that
Q has extreme points, and (ii) show that extreme points of Q
are also extreme points of P . (12) then follows immediately.

Stage 1. This stage shows that Q has extreme points when
ρ? > 0. To begin, we establish the following properties of Q:
(nonempty) r̄?i (n) is a continuous function on the domain P

and P is both compact (it is a bounded polyhedron) and
nonempty. Thus, r̄?i (n) attains its maximum ρ? on P ,
and Q is nonempty.

(bounded) Q ⊆ P and P is bounded (by assumption), so Q
is also bounded.

(polyhedron) Note that

∀n∈RL
+,ρ>0

[
r̄?i (n) = ρ ⇐⇒ Ri,n(ρ) = 0

]
, (13)

where

Ri,n(x) := 1−
L∑
`=1

n`/d

v`/λi

1− x
v`/λi + x

, (14)

because Ri,n(x) has exactly one root in the interval (0, 1)

unless
∑L
`=1(n`/d)(λi/v`)

2 ≤ 1, in which case it has no
roots in the interval. Thus, Q can be expressed as follows:

Q = {n ∈ P : r̄?i (n) = ρ?} (15)
= {n ∈ P : Ri,n(ρ?) = 0}

=

{
n ∈ P : 1−

L∑
`=1

n`/d

v`/λi

1− ρ?

v`/λi + ρ?
= 0

}

= P ∩

{
n ∈ RL :

L∑
`=1

n` ·
[
λi
v`

1− ρ?

v`/λi + ρ?

]
= d

}
,

where the first line follows from the definition of Q, the
second line follows from (13), the third line follows by
substituting (14), and the fourth line is rearranging. It
follows from the form of (15) that Q is a polyhedron.

Hence, Q is a nonempty bounded polyhedron, and it follows
from [31, Theorem 2.6] that Q has at least one extreme point.

Stage 2. This stage shows that any extreme point of Q must
also be an extreme point of P when ρ? > 0. We proceed by
proving the contrapositive, i.e., that any non-extreme point of
P cannot be an extreme point of Q.

Note that the statement trivially holds for any non-extreme
point of P that is not in Q. So, it remains to consider the
case where the non-extreme point of P is in Q. Let n? ∈ Q

s
t̃

n?
t

n? = γ · s + (1− γ) · t
t̃ = γ̃ · s + (1− γ̃) · n?

Fig. 3. Diagram illustrating the relative positions of s, t̃, n?, and t. Namely,
n? is between s and t, and t̃ is between s and n?.

be a non-extreme point of P . Then, there must exist points
s, t ∈ P \ {n?} and γ ∈ (0, 1) so that

n? = γ · s + (1− γ) · t. (16)

Moreover, since r̄?i (n) is continuous and P is convex, we can
always choose the points s and t to be close enough to n? so
that r̄?i (s), r̄?i (t) > ρ?/2. Without loss of generality, suppose
that r̄?i (s) ≤ r̄?i (t). Since n? maximizes r̄?i (n), this yields

r̄?i (s) ≤ r̄?i (t) ≤ r̄?i (n?). (17)

Thus, it follows by the intermediate value theorem that r̄?i (n)
takes on the value ρ̃ := r̄?i (t) at a point between s and n?,
i.e., there exists some γ̃ ∈ [0, 1] so that

r̄?i (t̃) = ρ̃, where t̃ := γ̃ · s + (1− γ̃) · n?. (18)

Note next that s, t̃, n?, and t are collinear (as shown in Fig. 3),
so it follows that n? and s are both affine combinations of t̃
and t. Specifically, solving (16) and (18) for n? and s yields

n? = µ · t̃ + (1− µ) · t, s = µ̃ · t̃ + (1− µ̃) · t, (19)

where µ = γ/(γ + γ̃ − γγ̃) and µ̃ = 1/(γ + γ̃ − γγ̃).
Substituting the first equation of (19) into (14) yields

Ri,n?(x) = 1−
L∑
`=1

n?`/d

v`/λi

1− x
v`/λi + x

(20)

= µ ·

(
1−

L∑
`=1

t̃`/d

v`/λi

1− x
v`/λi + x

)

+ (1− µ) ·

(
1−

L∑
`=1

t`/d

v`/λi

1− x
v`/λi + x

)
= µ ·Ri,t̃(x) + (1− µ) ·Ri,t(x).

Likewise, substituting the second equation of (19) into (14)
yields

Ri,s(x) = µ̃ ·Ri,t̃(x) + (1− µ̃) ·Ri,t(x). (21)

Since r̄?i (t̃) = r̄?i (t) = ρ̃, it follows that Ri,t̃(ρ̃) = Ri,t(ρ̃) = 0
and hence Ri,n?(ρ̃) = Ri,s(ρ̃) = 0. Noting that ρ̃ > ρ?/2 > 0
and applying (13) then yields that r̄?i (n?) = r̄?i (s) = ρ̃, and
as a result

r̄?i (s) = r̄?i (t̃) = r̄?i (n?) = r̄?i (t), (22)

i.e., r̄?i (s) = r̄?i (t) = ρ? so s, t ∈ Q\{n?}, implying that n?

is not an extreme point of Q and completing the proof.

ACKNOWLEDGMENT

The authors thank Jeffrey A. Fessler and Claire Y. Hong for
helpful discussions during the development of these ideas.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2025.3550280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 25,2025 at 18:43:42 UTC from IEEE Xplore.  Restrictions apply. 



5

REFERENCES

[1] US Environmental Protection Agency, “Air data: Air quality data
collected at outdoor monitors across the us,” accessed on November 10,
2022. [Online]. Available: https://www.epa.gov/outdoor-air-quality-data

[2] PurpleAir, “Real time air quality monitoring,” accessed on November
10, 2022. [Online]. Available: https://www2.purpleair.com

[3] M. Chavent, H. Guegan, V. Kuentz, B. Patouille, and J. Saracco, “PCA-
and PMF-based methodology for air pollution sources identification and
apportionment,” Environmetrics: The official journal of the International
Environmetrics Society, vol. 20, no. 8, pp. 928–942, 2009.

[4] A. Azid, H. Juahir, M. E. Toriman, M. K. A. Kamarudin, A. S. M.
Saudi, C. N. C. Hasnam, N. A. A. Aziz, F. Azaman, M. T. Latif, S. F. M.
Zainuddin et al., “Prediction of the level of air pollution using principal
component analysis and artificial neural network techniques: A case
study in Malaysia,” Water, Air, & Soil Pollution, vol. 225, no. 8, pp.
1–14, 2014.

[5] D. Hong, F. Yang, J. A. Fessler, and L. Balzano, “Optimally weighted
PCA for high-dimensional heteroscedastic data,” SIAM Journal on
Mathematics of Data Science, vol. 5, no. 1, pp. 222–250, 2023.

[6] D. Hong, L. Balzano, and J. A. Fessler, “Towards a theoretical analysis
of PCA for heteroscedastic data,” in 54th Allerton Conference on
Communication, Control, and Computing, Sep. 2016, pp. 496–503.

[7] ——, “Asymptotic performance of PCA for high-dimensional het-
eroscedastic data,” Journal of Multivariate Analysis, vol. 167, pp. 435–
452, 2018.

[8] ——, “Probabilistic PCA for heteroscedastic data,” in 2019 IEEE 8th
International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), Dec. 2019.

[9] D. Hong, K. Gilman, L. Balzano, and J. A. Fessler, “HePPCAT: Proba-
bilistic PCA for data with heteroscedastic noise,” IEEE Transactions on
Signal Processing, vol. 69, pp. 4819–4834, 2021.

[10] A. Breloy, G. Ginolhac, F. Pascal, and P. Forster, “Clutter subspace
estimation in low rank heterogeneous noise context,” IEEE Transactions
on Signal Processing, vol. 63, no. 9, pp. 2173–2182, 2015.

[11] ——, “Robust covariance matrix estimation in heterogeneous low rank
context,” IEEE Transactions on Signal Processing, vol. 64, no. 22, pp.
5794–5806, 2016.

[12] Y. Sun, A. Breloy, P. Babu, D. P. Palomar, F. Pascal, and G. Ginolhac,
“Low-complexity algorithms for low rank clutter parameters estimation
in Radar systems,” IEEE Transactions on Signal Processing, vol. 64,
no. 8, pp. 1986–1998, 2016.

[13] A. Collas, F. Bouchard, A. Breloy, G. Ginolhac, C. Ren, and J.-P.
Ovarlez, “Probabilistic PCA from heteroscedastic signals: Geometric
framework and application to clustering,” IEEE Transactions on Signal
Processing, vol. 69, pp. 6546–6560, 2021.

[14] O. Besson, “Bounds for a mixture of low-rank compound-Gaussian
and white Gaussian noises,” IEEE Transactions on Signal Processing,
vol. 64, no. 21, pp. 5723–5732, 2016.

[15] R. B. Abdallah, A. Breloy, M. N. E. Korso, and D. Lautru, “Bayesian
signal subspace estimation with compound Gaussian sources,” Signal
Processing, vol. 167, pp. 1–15, 2020.

[16] W. Leeb and E. Romanov, “Optimal spectral shrinkage and PCA
with heteroscedastic noise,” IEEE Transactions on Information Theory,
vol. 67, no. 5, pp. 3009–3037, 2021.

[17] W. E. Leeb, “Matrix denoising for weighted loss functions and hetero-
geneous signals,” SIAM Journal on Mathematics of Data Science, vol. 3,
no. 3, pp. 987–1012, 2021.

[18] A. R. Zhang, T. T. Cai, and Y. Wu, “Heteroskedastic PCA: Algorithm,
optimality, and applications,” The Annals of Statistics, vol. 50, no. 1,
pp. 53–80, 2022.

[19] D. Hong, Y. Sheng, and E. Dobriban, “Selecting the number of
components in PCA via random signflips,” 2024. [Online]. Available:
http://arxiv.org/abs/2012.02985v3

[20] Z. T. Ke, Y. Ma, and X. Lin, “Estimation of the number of spiked eigen-
values in a covariance matrix by bulk eigenvalue matching analysis,”
Journal of the American Statistical Association, pp. 1–19, 2021.

[21] B. Landa, T. T. C. K. Zhang, and Y. Kluger, “Biwhitening reveals the
rank of a count matrix,” SIAM Journal on Mathematics of Data Science,
vol. 4, no. 4, pp. 1420–1446, 2022.

[22] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis
of Experiments: With Applications to Engineering and Science. Wiley,
2003.

[23] F. Pukelsheim, Optimal Design of Experiments. Society for Industrial
and Applied Mathematics, 2006.

[24] P. Goos and B. Jones, Optimal Design of Experiments: A Case Study
Approach. Wiley, 2011.

[25] D. C. Montgomery, Design and Analysis of Experiments, 10th ed.
Wiley, 2019.

[26] C. F. J. Wu and M. Hamada, Experiments: Planning, Analysis, and
Optimization. Wiley, 2021.

[27] H.-M. Kaltenbach, Statistical Design and Analysis of Biological Exper-
iments. Springer International Publishing, 2021.

[28] R. Vershynin, High-Dimensional Probability. Cambridge University
Press, 2018.

[29] M. Forets and C. Schilling, “LazySets.jl: Scalable Symbolic-Numeric
Set Computations,” Proceedings of the JuliaCon Conferences, vol. 1,
no. 1, p. 11, 2021.

[30] B. Legat, “Polyhedral computation,” in JuliaCon, 2023. [Online].
Available: https://pretalx.com/juliacon2023/talk/JP3SPX/

[31] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization.
Athena Scientific, 1997.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2025.3550280

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 25,2025 at 18:43:42 UTC from IEEE Xplore.  Restrictions apply. 

https://www.epa.gov/outdoor-air-quality-data
https://www2.purpleair.com
http://arxiv.org/abs/2012.02985v3
https://pretalx.com/juliacon2023/talk/JP3SPX/

	Introduction
	Data model and optimally weighted PCA
	Main result: optimal sample acquisition
	Illustrative example
	Case studies and insights
	Optimal sample acquisition under a single constraint
	Optimal sample acquisition for multiple components

	Proof of main result (Theorem 1)
	References

