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ABSTRACT
In this study, we investigate the impact of microlensing on gravitational wave (GW) signals in the LIGO→Virgo sensitivity
band. Microlensing caused by an isolated point lens, with (redshifted) mass ranging from 𝑀Lz ↑ (1, 105) M↓ and impact
parameter 𝑁 ↑ (0.01, 5), can result in a maximum mismatch of ↔ 30% with their unlensed counterparts. When 𝑁 < 1, it strongly
anti-correlates with the luminosity distance enhancing the detection horizon and signal-to-noise ratio (SNR). Biases in inferred
source parameters are assessed, with in-plane spin components being the most a!ected intrinsic parameters. The luminosity
distance is often underestimated, while sky-localisation and trigger times are mostly well-recovered. Study of a population
of microlensed signals due to an isolated point lens primarily reveals: (i) using unlensed templates during the search causes
fractional loss (20% to 30%) of potentially identifiable microlensed signals; (ii) the observed distribution of 𝑁 challenges the
notion of its high improbability at low values (𝑁 ↭ 1), especially for 𝑁 ↭ 0.1; (iii) Bayes factor analysis of the population
indicates that certain region in 𝑀Lz → 𝑁 parameter space have a higher probability of being detected and accurately identified as
microlensed. Notably, the microlens parameters for the most compelling candidate identified in previous microlensing searches,
GW200208_130117, fall within a 1-sigma range of the aforementioned higher probability region. Identifying microlensing
signatures from 𝑀Lz < 100 M↓ remains challenging due to small microlensing e!ects at typical SNR values. Additionally, we
also examined how microlensing from a population of microlenses influences the detection of strong lensing signatures in pairs
of GW events, particularly in the posterior-overlap analysis.

Key words: gravitational lensing: strong – gravitational lensing: micro – gravitational waves

1 INTRODUCTION

Direct detection of gravitational wave (GW) signals by Laser Inter-
ferometer Gravitational-wave Observatory (LIGO; Aasi et al. 2015),
Virgo (Acernese et al. 2015), and Kamioka Gravitational Wave De-
tector (KAGRA; Somiya 2012) detectors which are coming from the
binary black hole (BBH), binary neutron star (BNS), and NS-BH
mergers opened a new window to probe the Universe. At a funda-
mental level, direct detection of GW signals allows us to test various
theories of gravity (e.g, Abbott et al. 2016, 2017, 2019b, 2021a).
Observation of GW signals from BBH mergers let us probe the prop-
erties of BHs in the Universe (e.g., Abbott et al. 2021c) and their
possible contribution to the dark matter (e.g., Bird et al. 2016). BNS
or BH-NS mergers, in addition to GW signal, also emit electro-
magnetic (EM) signal, which becomes an excellent tool for multi-
messenger astrophysics (e.g., Poggiani 2019; Margutti & Chornock
2021). So far, a total of 90 GW signals have been detected by LVK
detector network coming from BBH, BNS and BH-NS mergers in the
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first three observing runs (Abbott et al. 2019a, 2021b, 2024, 2023c).
Many more such events are expected to be detected in the future
observing run (e.g., Abbott et al. 2018) and with new detectors like
LIGO-India (Saleem et al. 2022), Cosmic Explorer (CE; Evans et al.
2021), Deci-hertz Interferometer GW Observatory (DECIGO; Kawa-
mura et al. 2021), Einstein Telescope (ET; Maggiore et al. 2020), and
Laser Interferometer Space Antenna (LISA; Barausse et al. 2020).

Since GWs couple very weakly with matter, there is no absorp-
tion and scattering as they move in space. However, since GWs
move along the geodesics, their path can still be altered if they en-
counter a matter distribution along their path, a phenomenon known
as gravitational lensing (e.g., Lawrence 1971; Ohanian 1974). For
GW signals in the LIGO frequency band, 𝑂 ↑ [10, 104] Hz, gravi-
tational lensing by galaxy or galaxy cluster scale lenses can lead to
the formation of multiple copies of the GW signal (de-)magnified by
di!erent factors and arriving with a certain time delay (𝑃d) between
them. These lensed signals can have time delays ranging from a few
hours to several months (e.g., Oguri 2018; More & More 2022).
In such cases, 𝑂 𝑃d ↗ 1 and we can study the gravitational lensing
using the geometric optics approximation (e.g., Bernardeau 1999).
The extra (de-)magnification introduced by gravitational lensing can
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introduce bias in the estimation of source distance and binary com-
ponent masses (e.g., Broadhurst et al. 2018; Oguri 2018; Smith et al.
2017; Hannuksela et al. 2019; Broadhurst et al. 2020a; Diego et al.
2021). In addition, strong lensing also introduces a constant phase
shift in the lensed GW signal (𝑄→𝐿𝑀𝑁 with 𝑅 = 0, 1/2, 1 for type-I,
type-II, type-III lensed images; Dai & Venumadhav 2017). Interest-
ingly, this phase shift can be a useful aid in the search of type-II
lensed GWs (Dai et al. 2020; Ezquiaga et al. 2021; V"aykumar et al.
2023). In the context of GWs, strong lensing has been investigated
in several works recently (e.g., Liao et al. 2017; Takahashi 2017;
Dai & Venumadhav 2017; Haris et al. 2018; Li et al. 2018; Smith
et al. 2017; Broadhurst et al. 2018, 2019; Broadhurst et al. 2020b;
Shan et al. 2021; Ezquiaga et al. 2021; Cremonese et al. 2021, 2023;
Çalı#kan et al. 2023b; Shan et al. 2023). Various searches have also
been carried out for signatures of strong lensing in the existing LVK
data (e.g., Hannuksela et al. 2019; Smith et al. 2019; Dai et al. 2020;
Liu et al. 2021; Abbott et al. 2021d, 2023a; Janquart et al. 2023).
However, none of these searches has provided any indications of the
existence of a strongly lensed GW signal.

If the GW signal encounters an isolated microlens with mass in
the range ↔ [1, 105]M↓ , the typical time delay (𝑃d) between di!er-
ent lensed signals is such that, 𝑂 𝑃d ↔ 1, where 𝑂 is the frequency
of GW signal (see fig. 4 in Meena & Bagla 2020). In such cases,
these multiple lensed signals interfere with each other giving rise
to non-negligible frequency-dependent e!ects in the observed sig-
nal (e.g., Deguchi & Watson 1986; Nakamura 1998; Baraldo et al.
1999; Nakamura & Deguchi 1999; Jung & Shin 2019; Seo et al.
2022; Bulashenko & Ubach 2022; Çalı#kan et al. 2023a) and we
study the gravitational lensing under the wave optics approximation.
Owing to this frequency dependence, the e!ect of microlensing is not
just limited to the luminosity distance or chirp mass but can extend
to other GW signal parameters (e.g., Meena & Bagla 2020; Diego
et al. 2019; Kim & Liu 2023). In galaxy or galaxy cluster scale
lenses, instead of isolated microlenses, a whole population (made
of stars and stellar remnants like NS and BHs) of microlenses re-
sides. This can lead to complex frequency-dependent microlensing
e!ects in the already strongly lensed GW signal. As shown in Diego
et al. (2019) and Mishra et al. (2021), strong lensing magnification
is an important parameter in determining the strength of these mi-
crolensing e!ects. However, microlensing e!ects are expected to be
negligible due to stellar-mass microlenses in strongly lensed GW sig-
nals lensed by galaxy scale lenses with magnification below ten as
shown in Meena et al. (2022). Later Meena (2023), by studying the
mismatch between un-lensed and microlensed GW signals, showed
that microlensing e!ects due to stellar mass microlenses are expected
negligible in nearly 90% of global minima in a sample of strongly
lensed GW systems with magnification < 50.

Since microlensing can introduce complex frequency-dependent
features in the observed GW signal, it is important to understand
and model these lensing features so that we can properly construct
the unlensed GW signal and deduce the properties of the microlens
itself. Previous studies (e.g., Cao et al. 2014; Lai et al. 2018; Chris-
tian et al. 2018; Urrutia & Vaskonen 2021; Basak et al. 2022; Bon-
darescu et al. 2023) have made valuable contributions in studying the
microlensing e!ects caused by isolated point-lenses. However, most
of the aforementioned studies examined only a restricted microlens
or GW parameter space. For example, the region 𝑁 < 0.1 has not
been studied well due to its low improbability. However, as we show
below, our findings demonstrate that selection bias during detection
amplifies the probability density in this region due to the extended
detection horizon for such signals. These results are consistent with
previous studies conducted by Takahashi & Nakamura (2003a) and

more recently by Bondarescu et al. (2023). Moreover, due to the
computational expense involved in performing a full parameter esti-
mation run, only a few studies have been conducted in this direction
(e.g., Christian et al. 2018; Abbott et al. 2021d). Furthermore, some
studies only worked primarily in geometrical optics for simplicity.
Additionally, most studies lack a comprehensive population-wide
study that could provide a broader understanding of the phenomenon
and make scientific predictions. These limitations pose challenges to
gaining a thorough understanding of the phenomenon. Hence, more
detailed studies are required to further improve our understanding of
microlensing e!ects in GW signals.

In our current work, we aim to address these gaps by studying
the e!ect of microlensing in a more exhaustive manner: utilizing
tools and techniques such as fitting factor, Bayesian analysis and
Fisher-information matrix. We begin by conducting a fitting factor-
based study to investigate the detectability of microlensed signals
and demonstrate how the non-inclusion of microlensing e!ects dur-
ing the search can a!ect the observed SNR. Furthermore, we examine
how the presence of isolated microlenses can enhance the true source
SNR. Next, we explore the bias in the parameter estimation of GW
source parameters when the true signal is microlensed due to an iso-
lated point lens, but the recovery model assumes the usual unlensed
signal without incorporating any microlensing e!ects. To provide a
broader perspective, we perform a population study of microlensed
signals, inferring the properties of the population and making predic-
tions about the most likely microlensing parameter space that will be
detected and correctly identified as a microlensed signal. Addition-
ally, we investigate the identification of microlensed signals using
a Bayes factor study, considering various scenarios such as varying
SNR values, lens masses, and impact parameter values. Finally, we
discuss the crucial aspect of how microlenses in lensing galaxies can
a!ect strongly lensed signals, thereby influencing the searches for
strongly lensed GW signals. Through these comprehensive analy-
ses, we aim to shed light on the multifaceted nature of microlensing
e!ects and their implications for GW signals.

This manuscript is organised as follows. In Sect. 2, we review
the relevant basics of gravitational lensing and GW data analysis.
Inspired by recent searches of microlensing, we focus on the point
lens model in Sections 3→6. In Sect. 3, we study the e!ect of indi-
vidual microlenses on the detection of GW signals. In Sect. 4, we
study the bias in the estimation of source parameters of observed
microlensed GW signals when recovered using the usual unlensed
waveform model. In Sect. 5, we study the properties of a mock
microlensed population. In Sect. 6, we study the challenges in iden-
tifying microlensing signatures in real data. Lastly, in Sect. 7, we
investigate a more complex scenario of microlensing of strongly
lensed GW signals intervened by a population of microlenses and
assess its impact on strong lensing searches. In Sect. 8, we conclude
our work and discuss its implications. Throughout this work, we use
𝑆0 = 70 km s→1 Mpc→1, ω𝑂 = 0.3, and ωε = 0.7 to estimate vari-
ous cosmological quantities. We focus exclusively on transient GW
signals originating from compact binary coalescence (CBCs). All
mass-related quantities, including 𝑀Lz, are consistently reported in
solar mass units (M↓).

2 BASIC THEORY

2.1 Gravitational lensing

Since both gravitational waves and electromagnetic (EM) waves fol-
low null geodesics, the gravitational lensing (GL) theory for the two
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is the same. However, some remarkable di!erences arise between
the GL of GWs and GL of EM waves because of the following: (i)
The GWs are usually coherent as opposed to the EM waves that we
observe from astrophysical sources; (ii) The di!erence in the fre-
quency range of interest: current ground-based detectors operate at
10→ 104 Hz, whereas observations in the EM domain are conducted
in a much higher frequency range ↔ 106 → 1020 Hz; (iii) We mea-
sure the amplitude of GWs, as compared to the flux for EM waves,
thereby preserving the phase information in the case of the former.
As a result, wave e!ects can arise in the lensing of GWs due to in-
tervening compact objects in the mass range [1, 105] M↓ owing to
the formation of extra images (microimages) of the signal with time-
delay values such that 𝑂 𝑃d ↔ 1 (e.g., Nakamura & Deguchi 1999;
Takahashi & Nakamura 2003b). In such scenario, the amplification
factor (i.e., ratio of lensed and unlensed signal) is given as (e.g.,
Bernardeau 1999; Goodman 2005),

𝑇 ( 𝑂 , 𝑁𝑁𝑁) = 𝑂

𝑈

∫
𝑉

2
𝑊𝑊𝑊 𝑄

𝐿2𝑁 𝑃 𝑄d (𝑅𝑅𝑅,𝑆𝑆𝑆)
, (1)

where 𝑂 is the frequency of the signal. 𝑊𝑊𝑊 ↘ (𝑊1, 𝑊2) and 𝑁𝑁𝑁 ↘ (𝑁1, 𝑁2)
denote the dimensionless image plane and source plane coordinates,
respectively, and the (double) integral is over the whole lens plane.
𝑃d (𝑊𝑊𝑊, 𝑁𝑁𝑁) denotes the time delay function (measured with respect to
its unlensed counterpart) given as

𝑃d (𝑊𝑊𝑊, 𝑁𝑁𝑁) =
(1 + 𝑋d)𝑌2

0
𝑍

𝑎s
𝑎d𝑎ds

[
1
2
(𝑊𝑊𝑊 → 𝑁𝑁𝑁)2 → 𝑏 (𝑊𝑊𝑊) + 𝑐m (𝑁)

]
, (2)

where 𝑎d, 𝑎s, and 𝑎ds denote the angular diameter distances be-
tween the observer and the lens, the observer and the source and the
lens and the source, respectively. 𝑋d is the lens redshift, 𝑍 is the speed
of light, and 𝑌0 is an arbitrary reference unit of length on the lens
plane responsible for making the coordinates dimensionless. Unless
otherwise noted, 𝑌0 is chosen to be the Einstein radius of the lens cor-
responding to the total lens mass. 𝑏(𝑊𝑊𝑊) is the lens potential, 𝑐𝑂 (𝑁)
is a constant independent of lens properties, and 𝑁 ↘ |𝑁𝑁𝑁 |. If 𝑂 𝑃

𝑇
↗ 1

in Eq. (1), known as geometric optics limit, the integral becomes
highly oscillatory and only the stationary points of the integrand
have a non-zero contribution to the integral. In such cases, Eq. (1)
can be written as

𝑇 ( 𝑂 )
$$
geo =

∑
𝑈

√
|𝑑 𝑈 | exp

(
2𝑒𝑈 𝑂 𝑃d,j → 𝑈𝑒𝑅 𝑈

)
, (3)

where 𝑑 𝑈 and 𝑃
𝑇, 𝑈

are, respectively, the magnification factor and
the time delay for the 𝑓-th image. Also, 𝑅 𝑈 is the Morse index, with
values 0, 1/2, and 1 for stationary points corresponding to minima,
saddle points and maxima of the time-delay surface, respectively.

The di!raction integral, Eq. 1, can be solved analytically only for
some trivial lens models. For example, the solution for a point-mass
lens of mass 𝑀L is given by

𝑇 (𝑔, 𝑁) = exp
{
𝑒𝑔

4
+ 𝑈𝑔

2

[
ln

(
𝑔

2

)
→ 2𝑐m (𝑁)

] }

≃ ϑ
(
1 → 𝑈𝑔

2

)
1𝑇1

(
𝑈𝑔

2
, 1;

𝑈𝑔𝑁
2

2

)
,

(4)

where 𝑔 = 8𝑒𝑕 (1 + 𝑋d)𝑀L 𝑂 /𝑍3, 𝑐m (𝑁) = (𝑊m → 𝑁)2/2 → ln(𝑊m)
and 𝑊m =

(
𝑁 +

√
𝑁

2 + 4
)
/2. The scale factor, 𝑌0, has been chosen as

equivalent to the Einstein radius of the point mass lens. On the other
hand, if we have a population of point mass lenses embedded in a
galaxy or galaxy cluster, then we can only solve Eq. (1) numerically.
The corresponding lensing potential is given as(e.g., Suyu et al. 2024;

Figure 1. Contour plot of the characteristic frequency, 𝑃ML, indicating the
onset of significant microlensing e!ects for varying point lens parameters
𝑉Lz and 𝑆 within the LIGO→Virgo sensitivity band (10-103 Hz). Contours
at 10 and 103 Hz denote the rough transition regions, dividing the parameter
space into three zones: (i) Long-wavelength regime (left-panel), where GW
frequency 𝑃GW is significantly lesser than 𝑃ML, i.e., 𝑃GW ⇐ 𝑃ML, resulting
in minimal interaction; (ii) Wave dominated zone (middle-panel): region
where 𝑃GW ↔ 𝑃ML, leading to significant interferenfce e!ects on GWs. (iii)
Geometrical-optics regime (right panel): region where 𝑃GW ↗ 𝑃ML. This
region is inclusive of milli-lensing and strong-lensing scenarios.

Saha & Williams 2011)

𝑏(𝑊𝑊𝑊) =
∑

k

𝑖k
𝑀0

ln |𝑊𝑊𝑊 → 𝑊𝑊𝑊k | +
𝑗

2

(
𝑊

2
1 + 𝑊

2
2

)
+ 𝑘1

2

(
𝑊

2
1 → 𝑊

2
2

)
+ 𝑘2𝑊1𝑊2,

(5)

where 𝑖k and 𝑊𝑊𝑊k denote the mass and position of the 𝑙-th point-
mass lens in the population, respectively. 𝑀0 is an arbitrary mass
corresponding to the Einstein radius of 𝑌0. (𝑗, 𝑘1, 𝑘2) represents the
external e!ects introduced by the galaxy or galaxy cluster.

In simple words, wave e!ects typically arise when the wavelength
of the signal, 𝑚, becomes comparable to the time delay between mi-
croimages, 𝑍𝑃d, i.e., when 𝑚 ↫ 𝑍𝑃d (or 𝑂 𝑃d ↭ 1). For a lens mass 𝑀 ,
this condition translates to, roughly, 𝑂 /Hz ↭ 105 (𝑀↓/𝑀). A more
careful representation has been plotted in Fig. 1 in case of an isolated
point lens, where we explicitly plot contours of the characteristic
frequency 𝑂ML ↘ 𝑃

→1
d at which wave e!ects become dominant as a

function of di!erent lens parameters, namely, the redshifted lens mass
𝑀Lz and the impact parameter 𝑁. The range of 𝑀Lz ↑ (10, 105)𝑀↓
has been chosen based on the condition stated above. The range of
𝑁 ↑ (0.01, 5) has been chosen so as to avoid regions which are highly
improbable (𝑁 < 0.01) as 𝑛(𝑁) ⇒ 𝑁, and regions which are not inter-
esting (𝑁 ↗ 1), where the magnification of the micro-images is not
significant to cause any appreciable interference as 𝑑I (𝑁 > 5) ↔ 1
and 𝑑II (𝑁 > 5) ↔ 0.

The detected GW signals coming from chirping solar mass bina-
ries have most of their power in the inspiral and pre-merger phase,
i.e., in the frequency range 𝑂low < 𝑂 ↭ O(102) Hz. Here, 𝑂low
denotes the initial frequency from which the analyses commence,
typically around O(10) Hz for ground-based gravitational wave de-
tectors. 1 The contours corresponding to 10 and 103 Hz in Fig. 1

1 Where the symbol O(𝑀) represents ‘of the order of n’.
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are then representative of the transition regions and demarcate the
parameter space into roughly three regimes: (i) Long wavelength
regime (𝑚GW ↗ 𝑜𝑊), (ii) Wave dominated zone (𝑚GW ↭ 𝑜𝑊), and
(iii) Geometric optics regime (𝑚GW ⇐ 𝑜𝑊). On account of the above
discussion, it is expected that microlensing will be significant in the
wave zone, especially the lower right region between these two con-
tours. Consequently, a microlensed GW signal in wave zone would
undergo frequency modulations. The region indicated by the “Long
wavelength regime" basically means the microlenses in this param-
eter space will only weakly interact with the incoming GWs, owing
to 𝑚GW ↗ 𝑜𝑊 . In this limit, the GW signal will only encounter the
initial low-frequency part of the amplification factor where it is only
gradually amplifying. Whereas the region marked with “geometrical
optics regime" is indicative of the parameter space where we would
usually find 𝑚GW ⇐ 𝑜𝑊 . The signals in this region would undergo
modulations corresponding to the geometrical optics limit. This re-
gion is inclusive of milli-lensing and strong-lensing scenarios (e.g.,
Liu et al. 2023; Janquart et al. 2023). The contour lines in the plot
exhibit a negative gradient, indicating an increase in the time delay
as we progress diagonally in an upward-right direction, from lower
values of 𝑀Lz and 𝑁 to higher values.

2.2 GW data analysis and parameter estimation

In this work, we restrict ourselves to GW signals arriving from bi-
nary black holes (BBHs) and modelled in accordance with General
Relativity (GR). The corresponding GW waveforms (WFs) are 15
dimensional, modelled by a set of parameters 𝑚𝑚𝑚 ↘ {𝑚𝑚𝑚𝐿𝑀𝑋 ,𝑚𝑚𝑚𝑌𝑅𝑋 }, with
8 intrinsic parameters (𝑚𝑚𝑚𝐿𝑀𝑋 ) that depend only on the properties of the
two BHs, and 7 extrinsic parameters (𝑚𝑚𝑚𝑌𝑅𝑋 ) that are related to how
the source is located and oriented relative to the GW detector (e.g.,
Husa 2009). The 8 intrinsic parameters comprise the two masses, 𝑖1
and 𝑖2, and the 6 spin components of the two spin angular momenta,
⇑𝑝1 and ⇑𝑝2 of the heavier and lighter binary components, respectively.
The spin parameters are usually defined in the frame aligned with
the total angular momentum ⇑𝑞, as it remains approximately con-
stant for simple precession cases (Fairhurst et al. 2020). These are
- (dimensionless) spin magnitudes, | ⇑𝑝1 | = 𝑟1 and | ⇑𝑝2 | = 𝑟2, the tilt
angles between the spin vectors and the orbital angular momentum
vector (⇑𝑠), 𝑡1 = arccos


𝑠̂ · 𝑝1


and 𝑡2 = arccos


𝑠̂ · 𝑝2


(where

𝑝i ↘ ⇑𝑝i/| ⇑𝑝i |), the di!erence between the azimuthal angles of the in-
dividual spin vector projections onto the orbital plane, 𝑐12, and the
azimuthal angle of ⇑𝑠 on its cone about ⇑𝑞, 𝑐𝑍𝑎). The fact that 𝑚𝑚𝑚𝐿𝑀𝑋
is only 8 dimensional in this case is a consequence of the no-hair
theorem, while ignoring electric charge. The rest 7 extrinsic param-
eters are: 4 spacetime coordinates for the coalescence event (arrival
time of the signal as it enters the sensitivity band of the detectors,
𝑢c, luminosity distance to the source, 𝑉L, and two coordinates for
specifying its sky location, i.e., right ascension, 𝑣, and declination,
𝑤), and 3 Euler angles for the binary’s orientation relative to the Earth
(inclination, 𝑥, polarisation, 𝑏, and coalescence phase, 𝑐).

The strain amplitude of GW signals is often much smaller than
the random noise present in the detectors. However, with the knowl-
edge of physical models describing the dynamics of compact binary
mergers and their associated GW waveforms, one can employ an
optimal filter to devise a very sensitive search methodology to detect
such signals, called the matched-filtering technique (Sathyaprakash
& Dhurandhar 1991). This involves computing correlations between
the detector data and millions of waveform templates, covering the
parameter space of possible masses and spins of the binary com-
ponents, and identifying instances of signal-to-noise ratio (SNR, or

𝑦) above a certain threshold2 (e.g., Usman et al. 2016; Allen et al.
2012).

For detector time-series data 𝑉 (𝑢) = 𝑧(𝑢) + 𝑅(𝑢), where 𝑧(𝑢) is a
GW signal and 𝑅(𝑢) is the detector noise, the matched-filter SNR of
a waveform template 𝑧T (𝑢,𝑚𝑚𝑚) with 𝑉 (𝑢) is given by

𝑦 = max
{𝑏,𝑋 }


𝑉

$$
𝑧̂T


↘ max

{𝑏,𝑋 }
⇓𝑉 |𝑧T⇔√
⇓𝑧T |𝑧T⇔

, (6)

where the maximisation is done over phase 𝑐 and time 𝑢 , and ⇓.|.⇔ is
the noise-weighted inner product, called overlap, defined as (Usman
et al. 2016)3

⇓𝑧1 |𝑧2⇔ ↘ 4 Re

∫
𝑃high

𝑃low
d 𝑂

𝑧̃
↖
1 ( 𝑂 ) 𝑧̃2 ( 𝑂 )
𝛥n ( 𝑂 )


, (7)

where 𝑧̃( 𝑂 ) = F {𝑧(𝑢)}( 𝑂 ) =

𝑉𝑢 𝑧(𝑢)𝑄𝐿2𝑁 𝑃 𝑋 and 𝛥n ( 𝑂 ) is the

single-sided power spectral density (PSD) of the detector noise.
Note that since extrinsic parameters primarily a!ect the signal by
introducing a constant phase shift and amplitude, they need not be
incorporated explicitly; they are implicitly accounted for during the
phase maximization process4. In this work, we mostly use the target
PSDs for the fourth observing run (O4) of the advanced LIGO and
Virgo detectors (Abbott et al. 2018)5.

Without loss of generality, one can also assume the expected value
of noise is zero, i.e., 𝑅(𝑢) = 0, in which case the expected value of
the SNR of a signal 𝑧(𝑢) using a template 𝑧T (𝑢) is given by

⇓𝑦⇔ = max
{𝑏,𝑋 }


𝑧

$$
𝑧̂T


= ↙𝑧↙ M( 𝑧̂, 𝑧̂T) = ↙𝑧↙ cos 𝑡, (8)

where we denote the norm as ↙𝑧↙ ↘
√
⇓𝑧 |𝑧⇔, and 𝑡 is the angle

between 𝑧 and 𝑧T in the Hilbert space of GW signals; the term

M( 𝑧̂, 𝑧̂T) ↘ max
{𝑏,𝑋 }


𝑧̂

$$
𝑧̂T


(9)

is referred to as match6, defined as the overlap maximised over time
and phase. In the context of GW searches, the function M(𝑚𝑐𝑚𝑐𝑚𝑐 ) ↘
𝑧̂

$$
𝑧̂T (𝑚𝑐𝑚𝑐𝑚𝑐 )


is called the ambiguity function, where the vector𝑚𝑐𝑚𝑐𝑚𝑐 ∝ 𝑚𝑚𝑚

represents parameters of the template vector and 𝑚𝑐𝑚𝑐𝑚𝑐 ↑ T , where T
is the discrete set of parameter grid employed for searching (e.g.,
Creighton & Anderson 2011; Droz 1999). From Eq. 8, one can see
that the optimal value of SNR, 𝑦opt, is simply ↙𝑧↙. However, in
realistic scenarios, the expected value of the observed matched-filter
SNR will be some fraction of the optimal SNR. This fraction is called
the (e!ective) fitting factor (Ajith et al. 2014; Canton & Harry 2017),

FF = max
𝑑𝑀𝑑𝑀𝑑𝑀 ,𝑋 ,𝑏

M(𝑚𝑐𝑚𝑐𝑚𝑐 ) =
⇓𝑦⇔
𝑦opt

, (10)

which is the maximum match obtained among all the templates. The

2 Current (network) SNR threshold used in the search of GW signals in the
LIGO→Virgo collaboration is 8.
3 In writing this, we assume that noise is stationary, i.e., ⇓𝑀̃( 𝑃 )↖𝑀̃( 𝑃 ′ ) ⇔ =
(1/2)𝑒n ( | 𝑃 | ) 𝑓 ( 𝑃 → 𝑃

′ ) .
4 However, this is not always true. For example, in the presence of higher-
order modes, the e!ect of coalescence phase cannot be absorbed into a con-
stant phase shift.
5 For LIGO detectors, we used the PSD given in https://dcc.ligo.
org/public/0165/T2000012/002/aligo_O4high.txt. While for Virgo,
we used the PSD available at https://dcc.ligo.org/public/0165/
T2000012/002/avirgo_O4high_NEW.txt.
6 Unless otherwise noted, the overlap is always maximised over time 𝑋 , phase
𝑏. A natural measure of deviation between any two waveforms can also be
defined using mismatch, MM ↘ 1 → M.
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Figure 2. E!ect of microlensing on GW WFs for di!erent microlensing and CBC parameters. The top panel show match values between the unlensed and the
corresponding microlensed WFs, whereas the bottom panel show fitting factor values (or, the maximum match) for the microlensed WFs when recovering with
the unlensed WFs corresponding to the 4D aligned-spin template WFs modelled by parameters {M𝑁 , 𝑔, 𝑕1𝑂 , 𝑕2𝑂 }. The analysis has been done for: (i) varying
redshifted lens mass (𝑉Lz ) and impact parameter (𝑆) for a fixed binary mass of 𝑉tot = 60 M↓ and mass ratio 𝑔 = 1 (left panel), (ii) 𝑉tot vs. 𝑆 parameter
space for fixed (𝑉Lz, 𝑔) = (100 M↓ , 1) (middle panel), (iii) 𝑔 vs. 𝑆 parameter space for fixed (𝑉Lz, 𝑉tot ) = (100 M↓ , 60 M↓ ) (right panel). The injected
spins are kept zero.

FF value then corresponds to the match with the nearest template to
the actual signal (one that subtends the minimum angle to it). The
reason why FF < 1 is primarily three folds - (i) parameter grid of
the templates are discretely spaced. (ii) limited dimensionality of
the template WFs: implying the template signals usually live on a
sub-manifold of the actual signal. Hence, the signal can only have
a fraction of the projection along that subspace. (iii) incomplete
model of the template WFs (or some missing physics): in addition to
the previous point, if the true waveform contains some physics not
incorporated in our template WFs, such as microlensing, eccentricity,
non-GR e!ects, etc., the non-inclusion of these physical e!ects in
the template WFs can further decrease the FF value.

Throughout this work, we perform parameter estimation us-
ing nested sampling (Wu et al. 2009). Specifically, we utilize the
Dynesty sampler (Speagle 2020) as implemented in the Bilby
package (Ashton et al. 2019, 2020). Additionally, for computing
microlensing e!ects, whether for generating microlensed injections
(simulated observations) or inferring microlens parameters, we em-
ploy a custom frequency domain source model. This model incorpo-
rates the two microlensing parameters 𝑀Lz and 𝑁, in addition to the
standard 15 BBH parameters, and is made publicly available through
the Python/Cython package GWMAT (Mishra, A., in prep.).

3 EFFECT OF MICROLENSING ON THE DETECTION OF
GWS: MATCHED-FILTERING ANALYSIS

In this section, we examine the potential impacts of microlensing
on GW detection. We adopt an isolated point lens model for our
microlens analysis. The lensed GW signal 𝑧L (𝑢) is obtained from
the unlensed signal 𝑧U (𝑢) by using the net amplification factor 𝑇 ( 𝑂 )

caused by the intervening lens system(s), given by the expression,

𝑧̃L ( 𝑂 ) = 𝑇 ( 𝑂 ) · 𝑧̃U ( 𝑂 ), (11)

where 𝑧̃L and 𝑧̃U are the Fourier transforms of the timeseries 𝑧L
and 𝑧U, respectively. Since 𝑇 ( 𝑂 ) maps real numbers to complex
numbers, it causes modulations in both the amplitude and the phase of
the signal, thereby a!ecting the morphology of the WF. As intrinsic
parameters are mainly determined from GW phasing, it is highly
likely that the intrinsic parameters of a detected microlensed signal
will be biased. Similarly, the modulations in the amplitude are likely
to a!ect the extrinsic parameters. We shall now study this in more
detail.

As mentioned earlier, there are several reasons why we anticipate
FF < 1 (or ⇓𝑦⇔ < ⇓𝑦⇔opt) in practical scenarios. In the context of
microlensing, our objective is to determine the reduction in SNR
resulting from the exclusion of this physical e!ect in the search
process. Motivated by real GW searches, we use 4D aligned-spin
template WFs to recover the microlensed WFs, which are modelled
by the parameters: chirp mass (M𝑖), mass ratio (𝛩), and aligned spin
components of the two component masses (𝛬1𝑗 , 𝛬2𝑗). To estimate
minimum loss of SNR during the search, we compute the maximum
match (Eq. 10), or the fitting factor (FF), between the microlensed and
the unlensed waveforms in the 4D parameters listed above. We use the
PyCBC package (Nitz et al. 2020, Usman et al. 2016) for computing
match values (Eq. 9), and work with the approximant IMRPhenomPv3
(Khan et al. 2019) with an 𝑂low value of 20 Hz, where 𝑂low is the
lower frequency cuto! in the evaluation of the overlap (see Eq. 7).
It is also the starting frequency for the generation of (𝛯 = 2, 𝑖 = 2)
mode of the GW waveform. The power spectral density (PSD) used
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is aLIGOZeroDetHighPower7, which is analogous to O4 targeted
PSDs of LIGO detectors (Abbott et al. 2018)8. The FF values have
been computed using the Nelder-Mead algorithm as implemented in
the ‘optimization’ module of the Scipy library (Wu et al. 2009). It’s
important to note that since we employ a maximization algorithm to
compute FF, we do not account for any additional reduction in FF
due to the discrete placement of templates (point (i) below Eq. 10
does not apply in our case).

A fitting factor value of 𝑊 ensures that the maximum fractional loss
of possible astrophysical signals is not more than a factor of (1→𝑊3).9
The template banks typically used for searching GW signals from
compact binary coalescences (CBCs) have a minimum fitting factor
threshold of around 97% for WFs within the parameter space, which
implies no more than ↔ 10% of possible astrophysical signals are
lost due to the discrete nature of the bank.

The results are shown in Fig. 2, where we study the e!ect of mi-
crolensing on GW signals for di!erent microlensing and CBC param-
eters. The top panel shows match values between the unlensed and the
corresponding microlensed WFs, quantifying the amount by which a
WF changes due to microlensing. The bottom panel shows fitting fac-
tor values (or, the maximum match) for the microlensed WFs when
recovering with the unlensed WFs corresponding to the 4D aligned-
spin template WFs modelled by parameters {M𝑖 , 𝛩, 𝛬1𝑗 , 𝛬2𝑗}. As
discussed above, this loss can lead to a drop in the detection rate
owing to the influence of microlensing on the signals. The analysis
has been done for: (i) varying redshifted lens mass (𝑀Lz) and im-
pact parameter (𝑁) for a fixed binary mass of 𝑀tot = 60 M↓ and
mass ratio 𝛩 = 1, which represents a "golden"10 black-hole binary
to which our detectors are sensitive from inspiral to ringdown phase
of the coalescence (Hughes & Menou 2005; Nakano et al. 2015;
Ghosh et al. 2016) (left panel), (ii) 𝑀tot vs. 𝑁 parameter space for
fixed (𝑀Lz, 𝛩) = (100 M↓ , 1) (middle panel), (iii) 𝛩 vs. 𝑁 parameter
space for fixed (𝑀Lz, 𝑀tot) = (100 M↓ , 60 M↓) (right panel). The
di!erences between the match and FF values in the top and bottom
panels suggest that microlensing of GW signals can lead us to infer
biased or inaccurate source parameters.

In the leftmost panel, the ranges of 𝑀Lz and 𝑁 have been kept the
same as in Fig. 1. The match and FF values are close to 1 for low
𝑀Lz and high 𝑁, consistent with the unlensed scenario, and decrease
almost diagonally as 𝑀Lz and 1/𝑁 are increased. However, we notice
both match and FF plots have oscillations across equal time delay
contours as shown in Fig. 1. Also, the worst match values (or the
highest mismatch) come from a region where wave e!ects are large,
i.e., the region depicted between the two contours 𝑂ML = {10, 100}
shown in Fig. 1. In the middle panel, the match and FF values are
close to 1 for high 𝑀tot and 𝑁 values, and decrease almost diagonally
down for low values of 𝑀tot and 𝑁. The reason we see a high match for
higher BBH masses is because the signal length becomes comparable
to the time delay between the microimages associated with those
lensing parameters. This leads to fewer modulations that can a!ect the
GW signal. It is also worth noting that the match and the FF contours
corresponding to a value of 97% (red curves) di!er significantly in a
region where 𝑁 ↑↔ (0.1, 1) and 𝑀tot ↑↔ (20, 60) M↓ . Similarly, in
the rightmost panel, the FF contours corresponding to a value of 97%

7 https://dcc.ligo.org/LIGO-T070247/public ;
https://dcc.ligo.org/T1800044-v5.
8 https://dcc.ligo.org/LIGO-T2000012/public;
https://dcc.ligo.org/LIGO-T1500293/public.
9 Assuming the rate of mergers 𝑘 ⇒ 𝑇

3 and that 𝑙 ⇒ 𝑇
→1, where d is the

luminosity distance to the source.
10 Binaries with total mass ↔ 50 → 200 M↓ .

(red curves) change drastically between the top and the bottom panel.
This variation between match and FF values hints towards a strong
degeneracy between microlensing the CBC intrinsic parameters and
the microlensing parameters.

Although Fig. 2 is important to determine the e!ect of microlens-
ing on the detection of GWs, it is not su$cient. Since microlensing
will also a!ect the inferred (e!ective) luminosity distance, the hori-
zon distance to a microlensed GW signal will also shift accordingly
relative to the unlensed case, and so will the inferred rate of merg-
ers. Therefore, in Fig. 3, we show how optimal SNR can vary in the
presence of microlens. The leftmost panel shows variation in the mi-
crolensing parameter space of 𝑀Lz and 𝑁, while keeping the binary
parameters fixed to (𝑀tot, 𝛩) = (60 M↓ , 1). Same with the middle
and the right panels, except we vary 𝑀tot and 𝛩, respectively, while
fixing 𝑀Lz = 100M↓ . In all the panels, the contours represent the
ratio of the optimal SNRs between the case when the microlens is
present vs. when it is absent, i.e., 𝑦ML/𝑦UL. This value should tend
to unity at higher impact parameter values, consistent with the darker
regions at high values of 𝑁 where microlensing e!ects are insignifi-
cant. In the leftmost panel, we observe a drastic change in the optimal
SNR. The SNR in the presence of microlens increases almost mono-
tonically as we increase 𝑀Lz and 1/𝑁, reaching a value of more than
10 times the unlensed SNR in the bottom-right corner of the plot.
Even for modest values of microlensing such as (𝑀Lz, 𝑁) = (10, 1),
we observe a 10% increase in the SNR. In the middle and the right
panels, since contour corresponding to the value 1.5 is almost flat,
we observe that the change in SNR is not correlated with varying
𝑀tot and 𝛩 for higher values of 𝑁 ↫ 0.5. However, for lower values
of 𝑁 ↭ 0.5, we do see a correlation in both panels. SNR tends to
increase for lower mass binaries, which is a consequence of longer
signal duration, i.e., the integrated e!ect of microlensing over the
signal. Although not visible explicitly, when we examine the varia-
tion of the SNR with 𝛩, we find oscillatory behaviour of SNR as 𝛩

increases. This oscillatory behavior is a consequence of amplitude
oscillations in 𝑇 ( 𝑂 ). As we fix the microlensing parameters, 𝑀Lz
and 𝑁, and only vary 𝛩, the GW frequency at ISCO would decrease
monotonically, and so does the strain at maximum strain amplitude.
The oscillations in |𝑇 ( 𝑂 ) | would then translate to oscillations in the
optimal SNR as the ISCO frequency varies.

In Fig. 2, we observed that although microlensing would further
decrease the SNR due to a decrease in fitting factor values, Fig. 3 sug-
gests that the SNR itself increases due to the presence of an isolated
microlens. Thus, the e!ect of microlensing on the detection of GWs
is non-trivial. These figures suggest that the observed distribution of
the microlens population can di!er significantly from the expected
prior distribution. We study this statistically in more detail in Sect. 5.

4 EFFECT OF MICROLENSING ON PARAMETER
ESTIMATION OF GWS: BAYESIAN ANALYSIS

In this section, we study the biases caused by the microlensing e!ects
on inferred source parameters. We also investigate the correlations
between the recovered parameters when microlensed signals are ei-
ther recovered with a microlensed waveform model or the usual 15D
unlensed waveform model. We again employ the isolated point lens
model for microlensing.

A frequency domain GW waveform, 𝑧̃( 𝑂 ), for a chirping BBH
system can be written in the form (Allen et al. 2012):

𝑧̃( 𝑂 ) = 𝛱( 𝑂 ;M,𝑎e!)𝑄→𝐿ϖ( 𝑃 ;M,𝑚, ⇑𝑊1 , ⇑𝑊2 )
, (12)

Here, M and 𝛴 represent the chirp mass and the symmetric mass

MNRAS 000, 1–23 (2021)

https://dcc.ligo.org/LIGO-T070247/public
https://dcc.ligo.org/T1800044-v5
https://dcc.ligo.org/LIGO-T2000012/public
https://dcc.ligo.org/LIGO-T1500293/public


GL of GWs: ML e!ects on inferred parameters 7

Figure 3. The figure depicts the variation in the optimal SNR in the no-lens versus microlens cases. The variation is shown as a function of point-lens mass
(𝑉Lz; left panel), binary mass (𝑉tot; middle panel), and mass-ratio (𝑔; right panel). The presence of an isolated microlens always increases the SNR relative to
the no lensing case.

ratio, while ⇑𝑝1,2 denote the binary constituent spin vectors, and 𝑎e!
is the e!ective luminosity distance of the source which is related to
the true luminosity distance, 𝑎𝑛, as

𝑎e! = 𝑎o


𝑇

2
+

(
1 + cos2

𝑥

2

)2
+ 𝑇

2
x cos2

𝑥

→1/2

(13)

where 𝑥 is the inclination angle defined in the orbital angular momen-
tum frame between the direction to the observer and the orbital an-
gular momentum axis of the binary system; 𝑇+/x ↘ 𝑇+/x (𝑣, 𝑤,𝑏, 𝑢𝑖)
are the antenna pattern response functions that relate the source ori-
entation to the detector orientation, described by the right ascension
and declination of the source, (𝑣, 𝑤), the trigger time at the detector,
𝑢c, and on the polarisation angle 𝑏. The induced strain on the detector
is then related to the pure polarised components as

𝑧 = 𝑇+(𝑣, 𝑤, 𝑏)𝑧+ + 𝑇x (𝑣, 𝑤, 𝑏)𝑧x (14)

Therefore, from Eq. 12, the inference of GW phasing is extremely
important to study the intrinsic source properties, like their masses
and spins, while the extrinsic parameters mainly a!ect the amplitude
of the signal and result in an e!ective luminosity distance. As already
pointed out earlier, since microlensing induces modulations in both
the amplitude and phase, Eq. 11, it is expected it will a!ect most of
the GW parameters.

To understand the e!ect of microlensing on the inferred source
parameters, we do a Bayesian analysis by performing a set of param-
eter estimation runs (Cutler & Flanagan 1994; Husa 2009; Thrane
& Talbot 2019; Christensen & Meyer 2022). We inject zero-noised
microlensed BBH signals into the three detectors (LIGO Livingston,
LIGO Hanford, and Virgo) having PSDs corresponding to the target
sensitivities of the upcoming O4 runs (Abbott et al. 2018). The in-
jected signals are non-spinning with extrinsic parameters correspond-
ing to GW150914, except for the luminosity distance, 𝑉L, which is
scaled to obtain a desired SNR. Firstly, we inject and recover a mi-
crolensed signal using a microlensed WF model to see the correlation
between the 17D parameters, especially between the 15D BBH pa-
rameters and the two lensing parameters. Then, to understand the
biases in the inferred BBH parameters and their degeneracies with
microlensing, we inject a set of microlensed signals and recover
using the usual unlensed templates, i.e., assuming no microlensing
is present in the signal. Parameter estimation (PE) runs are per-
formed using the publicly available package Bilby-Pipe (Ashton
et al. 2020, 2019; Romero-Shaw et al. 2020), keeping all param-
eters free while recovery. For both the injection and the recovery
templates, we use IMRPhenomXPHM (London et al. 2018) waveform

approximant with 𝑂low = 20 Hz as the lower frequency cuto! for the
likelihood evaluation. As mentioned previously, we use the Dynesty
sampler with the following settings: {nlive=2048, nact=50}, and use
n-parallel=4 to combine four independent parallel chains to get the
final posterior sample.

In Fig. 4, we study correlations between the 17 parameters of a mi-
crolensed waveform 𝑚𝑚𝑚ML ↑ {𝑚𝑚𝑚UL, 𝑀Lz, 𝑁}, where 𝑚𝑚𝑚UL represents
the 15 parameters corresponding to an unlensed BBH waveform as
described in Sect. 2.2. The injected signals are non-spinning equal
mass binaries having a total mass of 𝑀tot = 60 M↓ and a network
SNR of roughly 50. Among the microlens parameters, the redshifted
lens mass is fixed to 𝑀Lz = 100 M↓ and the impact parameter in-
creases from left to right as 𝑁 ↑ {0.05, 0.1, 0.5, 1.0,↗ 1} (also
indicated at the top of each column). The top row shows correlations
when the recovery model corresponds to 17D microlensed wave-
forms, while the bottom row depicts correlations when the recovery
model is the usual 15D unlensed BBH waveforms. The colours de-
pict Pearson correlation coe$cients ranging from→1 to 1, where blue
cells represent positive correlations (> 0) and orange cells represent
negative correlations (< 0). The matrix is symmetric by construction.
Studying the top row of the figure, we first notice that the correlations
of 𝑀Lz and 𝑁 with other parameters are mostly of opposite sign (see,
e.g., opposite tonalities in the bottom two rows of each subpanel
for almost all the parameters where correlations are significant.).
This is expected as the e!ect of increasing 𝑀Lz and decreasing 𝑁

favours microlensing e!ects, and vice-versa. It is worth noting that
the luminosity distance 𝑉L shows maximum correlation with the mi-
crolensing parameters, which can even exceed ↔ ±90%. For lower
values of 𝑁 < 1, the anti-correlation can increase significantly. This
is because as 𝑁 decreases, the magnification of micro-images in-
creases even more rapidly, which is compensated by an increase in
the e!ective distance of the binary, thereby showing strong negative
correlations. This justifies our earlier result of how optimal SNRs (or
distance estimates) get significantly a!ected due to microlensing, as
shown in Fig. 3. Next, the (detected) chirp mass Mdet

11 also shows
interesting correlations and can be as high as ↔ ±30%, while the spin
components show only weak correlations with the microlensing pa-
rameters. However, even small correlations can have severe e!ects in
the parameter estimation considering the sensitivity of WFs to these

11 We explicitly write “detector frame" here to avoid confusion with the
source frame chirp mass, which will be highly biased due to a biased inference
of the luminosity distance (or, the redshift).
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Figure 4. Correlations between the parameters of microlensed waveforms. The injected waveforms correspond to a BBH with a total binary mass of 𝑉tot = 60 M↓ ,
mass-ratio 𝑔 = 1, and having observed network SNR of ↔ 50. Among the microlens parameters, the redshifted lens mass is fixed to 𝑉Lz = 100 M↓ and the
impact parameter increases from left to right as 𝑆 ↑ {0.05, 0.1, 0.5, 1.0,↗ 1} (also indicated at the top of each column). Top: correlations when the recovery
model corresponds to 17D microlensed waveforms. Bottom: correlations when the recovery model is the usual 15D unlensed BBH waveforms.

parameters. To give an idea, the mismatch between a non-spinning
waveform, as considered in this exercise, with a waveform (i) having
a small e!ective spin 𝛬e! = 0.05 is > 5%, (ii) having only a slight
variation of 1% in the chirp mass is↔ 3%12. Apart from the luminos-
ity distance 𝑉L and the trigger time13, 𝑢c, other extrinsic parameters
such as the sky location parameters, right ascension and declination
(𝑣, 𝑤), the polarisation angle (𝑏), the phase of coalescence (𝑐), and
the inclination 𝑡JN show only negligible correlation with microlens-
ing. Another important thing to note is that the two microlensing
parameters 𝑀Lz and 𝑁 show a strong negative correlation among
themselves, which increases with increasing 𝑁 from left to right up
to 𝑁 = 1, reaching a value < →95% for 𝑁 = 1. This suggests that the
correlation between the two parameters increases in the geometric
optics limit. Therefore, while doing the 17D microlens parameter
estimation, sampling in these two parameters directly will not be the
most e$cient choice, and one may resort to di!erent combinations
of these two parameters like the relative magnification and the time
delay between the micro-images, as used in Liu et al. (2023).

Now focusing on the bottom row of Fig. 4, if only the unlensed
WF model is used in recovering a microlensed signal, there will
be several indirect (yet significant) correlations between the BBH
parameters and the microlensing parameters, as parameters that are
directly correlated with microlensing parameters will further a!ect
other parameters that are strongly correlated with them, and so on.
When this cascade e!ect is in place, it will drastically a!ect parameter
estimation. Such an e!ect can be seen for the two leftmost cases
𝑁 = {0.05, 0.10} in the bottom row of Fig. 4, where almost all
the BBH parameters have become strongly correlated. It is worth
noting that these two cases fall in the long-wavelength regime. This
behaviour could be a general characteristic of the bottom-right corner

12 A mismatch value above 1% is large enough to bias the inferred parameters
for an event with SNR ↫ 15.
13 Similar behaviour is observed for the ‘jitter time’ when the time-
marginalisation is used.

of the long wavelength regime, where microlensing e!ects are strong
but slowly varying.

As a reference, the rightmost panel show the correlations when
the injected waveform is unlensed, while the recovery model is ei-
ther microlensed (top-right panel) or unlensed (bottom-right panel),
highlighting the usual correlations present among the BBH parame-
ters. The variation in the correlation coe$cient values compared to
the unlensed case is clearly visible as we vary the impact parameter.
With changing 𝑁, the correlations become intertwined in di!erent
ways in an attempt to absorb microlensing e!ects. It is interesting to
note that the sign of correlations can also change, i.e., the correlation
between parameters can rotate due to microlensing e!ects. For ex-
ample, the variation in the correlation between Mdet and 𝑢c changes
from a slightly positive correlation to a strong negative correlation as
we decrease the impact parameter 𝑁. A similar e!ect can be observed
for spin components which show strong correlations with other pa-
rameters and among themselves as we compare the leftmost panel
with the other three panels.

In Fig. 5 and 6, we show biases in the inferred parameters when
the injected microlensed signals are recovered under the assump-
tion of unlensed hypotheses. The injected signals are such that
their observed SNR is roughly 50, which is achieved by tweak-
ing the luminosity distance accordingly. Fig. 3 then implies that
we keep the signals at higher distances as the lens mass increase
and the impact parameter decrease. We choose specific grid points
to cover the microlensing and source parameter space. For mi-
crolensing, we choose the redshifted lens mass values as 𝑀Lz ↑
{1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4, 5e4, 1e5}, and the (possible)
impact parameter values as 𝑁 ↑ {0.01, 0.05, 0.1, 0.5, 1.0, 3.0, 5.0}.
We further ignore those points in the parameter space that correspond
to a time delay between microimages greater than the signal duration,
i.e., cases where strong lensing is observed (see the empty region in
the top-right corner of each subplot). The source parameters corre-
spond to the equal mass binaries having mass ratio 𝛩 = 1 and total
mass 𝑀tot ↑ {20, 60, 100, 200}. The 𝑊 and 𝑁 axes in each subplot
represent varying 𝑀Lz and 𝑁 values, respectively. Each column rep-
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Figure 5. Bias in the inferred intrinsic source parameters of a microlensed signal when recovered using the usual unlensed waveform model, characterised
by 15 parameters. Each column represents the bias in a specific parameter, indicated at the top, while di!erent rows correspond to di!erent source binaries,
indicated on the right side of each row. The intrinsic parameters are represented by the detected chirp mass (Mdet), symmetric mass-ratio (𝑚), projected
e!ective spin (𝑕e! ), and precession e!ective spin (𝑕p). The source parameters correspond to equal mass binaries with a mass ratio of 𝑔 = 1 and a total
mass of 𝑉tot/ M↓ ↑ {20, 60, 100, 200}. Each subplot shows the bias in the microlensing parameter space of the redshifted lens mass, denoted as
𝑉Lz/ M↓ ↑ {1e1, 5e1, 1e2, 5e2, 1e3, 5e3, 1e4, 5e4, 1e5}, and the impact parameter values denoted as 𝑆 ↑ {0.01, 0.05, 0.1, 0.5, 1.0, 3.0, 5.0}. Each
circular marker in the plot has two halves: the left half represents the relative percentage error (absolute error for 𝑕e! and 𝑕p) between the median values of the
microlensed and unlensed recoveries, while the right half represents the two-sample Kolmegorov-Smironov (KS) Statistic value between the 1D marginalised
posteriors of the microlensed and unlensed recoveries (in percentage). We further ignore points in the parameter space corresponding to a time-delay between
microimages greater than the signal duration, indicating cases where strong lensing is observed (empty region in the top-right corner of each subplot).

resents the bias in a specific parameter as indicated at its top, while
di!erent rows correspond to di!erent source binaries as indicated on
the right side of each row. Each circular marker in the plot has two
halves, with the left half representing the relative percentage error be-
tween the median values of the microlensed vs unlensed recoveries,
while the right half represents the two-sample Kolmegorov-Smironov
(KS) statistic value between the 1D marginalised posteriors of the
microlensed and the unlensed recoveries (in percentage). For param-
eters 𝛬e! and 𝛬p, the left half represents the percentage absolute error
rather than the relative error as their injected values were zero. The
KS statistic value for two cumulative distribution functions, 𝛶1 (𝑊)
and 𝛶2 (𝑊), is defined as

𝛷𝛥 = max
𝑅

|𝛶1 (𝑊) → 𝛶2 (𝑊) |, (15)

which is more sensitive to the change in the distribution itself com-
pared to the change in the median values. So in simple words, the

left half indicates the bias in the recovery, while the right half indi-
cates the change in the 1D marginalised posterior distribution, both
converted to percentages.

In Fig. 5, we show bias in the intrinsic parameters, i.e., in masses
and spins of the binaries. The detected chirp massMdet and symmet-
ric mass-ratio 𝛴 represent the masses, while the projected e!ective
spin 𝛬e! (Racine 2008; Ng et al. 2018) and precession e!ective spin
𝛬p (Gerosa et al. 2021; Schmidt et al. 2015) represent the spins of the
binary black holes. These two-dimensional e!ective spin quantities,
𝛬e! and 𝛬p, o!er a simplified interpretation of the six-dimensional
spin parameters. For all the parameters and binary masses (i.e., all the
subplots in the figure), we see negligible biases in the recoveries for
low 𝑀Lz and 1/𝑁 values as the leftmost and topmost array of mark-
ers suggest errors to be ↭ 1% in most of the subplots (see the left
halves of the markers for the data points having either 𝑀Lz = 10 or
𝑁 = 5). This is expected as it corresponds to negligible microlensing
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Figure 6. Same as Fig. 5, but for extrinsic parameters. The extrinsic parameters are represented by the luminosity distance (𝑇L), inclination (𝑜JN), sky location
(RA and Dec; 𝑝 and 𝑓), polarization angle (ϖ), and coalescence phase (𝑏). The trigger time 𝑋c is not shown as it is well recovered throughout the parameter
space.

Figure 7. 1D marginalised posterior distributions for the recoveries of {Mdet , 𝑔, 𝑞1} of the 60M↓ binary system shown in Fig. 5 and 6. The dashed red line
represents the injected value

e!ects that are di$cult to be detected with the current sensitivities of
the ground-based detectors. However, even in this negligibly-lensed
regime, the biases in the spin parameters reach ↔ 10% in a few cases,
which is a result of bad recoveries of the spin parameters in general,
as they appear higher in the post-Newtonian orders. Additionally, the
two mass-related parameters, Mdet and 𝛴, are usually well recovered
for 𝑀Lz ↭ 100 M↓ , where we expect a larger number of microlenses.

As suspected in Fig. 1 of Sect. 2.1, we indeed observe the biases
to increase in the wave zone for all the parameters. This is espe-
cially clear if we look at the bottom-most row corresponding to the
(100, 100) M↓ binary, where biases seem to be more streamlined
and increasing along the diagonal from lower 𝑀Lz and 1/𝑁 values
to higher values in each column. As we move up the rows to lower
binary masses, this pattern along the diagonal broadens and even-
tually covers up a large parameter space, even spanning regions in
the long-wavelength regime, as we see in the case of (10, 10) M↓
binary. One of the reasons for such broadening of the biases along
the diagonal from the wave zone toward the long-wavelength regime

is due to the fact that lower mass binaries tend to cover a broader fre-
quency spectrum, i.e., they have a higher power in high frequencies
as compared to heavier binaries. From Fig. 1, it is then expected that
such a signal with significant contribution from high frequencies will
also show bias in the long-wavelength regime, i.e., for lower 𝑀Lz and
𝑁 values.

Of the four parameters, the spin parameters seem to be biased the
most, especially the precession e!ective spin 𝛬p, as compared to the
chirp mass Mdet and the symmetric mass-ratio 𝛴. This is also true
in the usual parameter estimations of the unlensed signals owing
to their appearance in the di!erent post-Newtonian orders. Chirp
mass and symmetric mass-ratio give the most dominant e!ect at 0th
PN order of GW phasing while 𝛬e! and 𝛬p appear at 1.5 PN and
2.5 PN orders, respectively (Arun et al. 2005; Schmidt et al. 2015;
Isoyama et al. 2020). The recoveries for 𝛬p exhibit biases across
most of the parameter space in each row, particularly in the wave
zone, and these biases appear to decrease as we move down the row
toward heavier mass binaries. This suggests that the biases in 𝛬p
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Figure 8. Variation in the correlation values between the 15 parameters of a BBH system due to microlensing e!ects. The studied BBH and lens system
corresponds to the 60 M↓ binary shown in Figures 5 and 6. Left: The variation is displayed for each parameter pair, resulting in a total of 120 possible pairs
represented as individual lines. These lines illustrate the correlation values as a function of the time-delay between micro-images, determined by the microlens
parameters in the grid shown in Fig. 5 and 6. Each line is associated with 63 data points, represented as dots, indicating the specific time-delay values used to
construct the line. Right: Same as the left panel but explicitly showing the correlations for four pairs as written in the legend. Moreover, the lines originate from
𝑄d = 0, showcasing the unlensed case.

are correlated with the length of the microlensed signal. It is also
worth noting that even for the modest values in our microlensing
parameter space, such as (𝑀Lz, 𝑁) ↔ (102

, 1), the recovery of 𝛬p
show significant biases. Thus, the bad recoveries for longer signals
indicate that microlensing and spin-precession are degenerate with
each other. Therefore, any signal showing signs of precession must
also be analysed for the presence of microlensing signatures to break
the degeneracy. However, vice-versa may not be true, i.e., it is unlikely
that the presence of precession can bias microlensing searches. This
is because the unlensed parameter space is always a subset of the
microlensed parameter space.

Similarly, in 6, we show the bias in the recoveries of the extrinsic
parameters, i.e., luminosity distance (𝑉L), inclination (𝑡JN), RA (𝑣),
Dec. (𝑤), polarisation angle (𝑏) and coalescence phase 𝑐. We do not
show the recoveries of trigger time 𝑢c as we do not see any appreciable
bias in its recovery. Among all the cases studied here, the absolute
errors for 𝑢c never exceeded 5%. We notice that the most a!ected
parameter is the luminosity distance, as it gets directly a!ected due
to the modulations in the amplitude induced by microlensing. On
the other hand, the sky position parameters Ra and Dec are among
the best-recovered parameters not a!ected by microlensing. This is
expected since the localization of GW sources is mainly based on the
observed time delays between each pair of interferometers. Since mi-
crolensing does not a!ect the observed trigger times, the localisation
is not a!ected except when microlensing e!ects are extreme.

The KS values (right halves of the markers) show a similar trend
as that of errors. It is interesting to note that in most cases, the right
half of the circle is darker than the one on the left, indicating that
KS values are more sensitive to microlensing e!ects than the bias
in the inferred parameters. This can be seen in Fig. 7, where we
explicitly show the marginalised 1D posterior distributions for three
parameters {Mdet, 𝛩, 𝑟1} for the case having binary mass 60 M↓ . In
the leftmost panel, one can notice several cases where the distribution
shifts because of microlensing e!ects even when the posterior mode
itself hasn’t changed much. These cases are examples that result in a
high KS-value but a low relative error. In contrast, there are several

cases in the middle and the rightmost panels where the recovered
distribution is significantly biased and is also well converged (e.g.,
see well-converged distributions in the rightmost panel for 𝑟1 away
from the injected value of 0). Such cases result in a high relative error
as well as a high KS-value (markers with both left and right halves
coloured as dark blue in Fig. 5 and 6).

Lastly, in Fig. 8, we examine the variation in Pearson correlation
values between GW parameters for the (30, 30) 𝑀↓ binary discussed
earlier (second row in Figures 5 and 6). The left panel illustrates the
correlation values for all possible 120 pair combinations of the 15
parameters (represented by di!erent shades of blue). The 𝑊-axis cor-
responds to the time delay between microimages associated with the
microlens parameters considered for that binary. The data points,
indicated by circular dots, consist of 54 data points for each of the
120 lines. Additionally, the lines originate from 𝑃d = 0, representing
the unlensed case. The line with a Pearson correlation value of unity
indicates the diagonal elements of the correlation matrix, which rep-
resents the correlation of a parameter with itself. The purpose of
this plot is to demonstrate how correlations can vary based on the
microlens parameters. It is evident that correlations can significantly
fluctuate depending on the specific microlens parameters. For in-
stance, there is a notable concentration of lines around zero at low
time delay values (𝑃d < 10→5 s), which becomes sparser at 𝑃d = 10→3

s. Since it is not possible to follow which line corresponds to which
correlation pair, we specifically show the correlations for four pairs
in the right panel, as written in the legend.

5 STUDY OF MICROLENSED POPULATION

In this section and the subsequent section, we investigate a population
of microlensed signals. In contrast to the previous sections, where we
either fixed certain parameters while varying others or chose a grid
to cover the parameter space, in this section, we sample the sources
realistically to infer the population-wide distributions of parameters.
We will pay particular attention to the microlens parameters, which is
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Figure 9. Population study of microlensed BBH signals for the joint network of LIGO→Virgo detectors assuming the targeted O4 sensitivities. Top: Distribution
of population is shown in the microlensing parameter space of 𝑉Lz and 𝑆 (left), and for 𝑆 vs. 𝑗S (right), where 𝑉Lz, 𝑆 and 𝑗S denote the redshifted lens mass,
impact parameter and source redshift, respectively. The colour bar represents the observed network optimal SNR. Bottom: Comparison of probability density
functions (PDFs) between the ones that were used while generating the population (black coloured curves), and the ones inferred from the observed population
themselves (red coloured curves). The PDF comparison is shown for three parameters, 𝑆 (left), 𝑉Lz (middle) and 𝑗S (right).

the focus of this study. Furthermore, analyzing the population statis-
tics allows us to explore various aspects, such as the e!ectualness
of unlensed waveforms in detecting microlensed waveforms and the
potential parameter space for microlensing detection.

We generate mock GW data of around 2.5 ≃ 104 microlensed
BBH signals, where BBH parameters are derived from the popula-
tion model constructed using the GWTC-3 catalogue (Abbott et al.
2023c,b). We put an observed network SNR threshold of 8 when us-
ing the unlensed templates for recovery, and the detector noise PSDs
used correspond to the target O4 sensitivities (Abbott et al. 2018).
The population model basically provides a fit to the distribution of
observed parameters, particularly masses, spin magnitudes, spin tilts,
and the redshift distribution of the BBH mergers. All other BBH pa-
rameters are sampled uniformly from their respective domains. For
microlens parameters, we assume a log-uniform prior in 𝑀Lz (in
units of 𝑀↓) and a power-law prior for 𝑁 with an index of unity (a
linear prior):

𝑛(𝑀Lz) ⇒ LogUniform(101
, 105),

𝑛(𝑁) ⇒ 𝑁, 𝑁 ↑ (0.01, 3.00),
(16)

where the motivation to use 𝑛(𝑁) ⇒ 𝑁 comes from geometry and
isotropy (Lai et al. 2018). To wit, the probability of a source having
an impact parameter 𝑁 relative to a microlens will be proportional
to the area of a ring of infinitesimal width having radius 𝑁, i.e.,
𝑛(𝑁)𝑉𝑁 = 2𝑒𝑁𝑉𝑁. We assume Madau-Dickison profile for the merger
rate density in the universe, giving source-redshift density model as
(Madau 1997; Fishbach et al. 2018):

𝑛(𝑋S) ⇒
𝑉𝛹𝑖

𝑉𝑋S

1
1 + 𝑋S

𝑏(𝑋S),

where 𝑏(𝑋S) = 0.015
(1 + 𝑋S)2.7

1 + [(1 + 𝑋S)/2.9]5.6
.

(17)

The source redshift range was set to be 𝑋S ↑ (0.001, 10), with
the lower limit of 𝑋S ↘ 𝑋min = 0.001 ↔ O(1) Mpc correspond-
ing to a value below which merger rate is negligible due to low
cosmological volume and star formation rate. The upper limit of

𝑋S ↘ 𝑋max = 10 serves as an approximate representation of the maxi-
mum distance from which a microlensed signal can be detected using
current ground-based detectors. This limit assumes ideal conditions
such as low impact parameters, a high lens mass, and a massive bi-
nary system as the source. For instance, a system characterized by
parameters (𝑀Lz, 𝑁, 𝑀tot, 𝑥) = (104

, 10→2
, 200, 0) exemplifies

these ideal conditions.
In Fig. 9, we show a mock sample of the detectable microlensed

population - its distribution and the inferred properties. The top row
shows the network optimal SNR as a function of 𝑀Lz and 𝑁 (left
panel), 𝑁 vs. 𝑋S (middle panel), and 𝑀Lz vs. 𝑋S (right panel). Firstly,
we note that using only unlensed templates during the search of these
microlensed signals, we detected around 91.6% of total signals (us-
ing Eq. 10) in the parameter space considered here. We observe that
most of the detected signals tend to have higher impact parameters,
which is expected based on our initial assumption given in Eq. 16.
However, as predicted in Fig. 3 of Sect. 3, it is worth noting that we
do detect a significant number of events in the range 𝑁 ↑ (0.01, 0.1)
as well, which is usually considered to be a probabilistically insignif-
icant region. The top-middle panel confirms the hypothesis that these
signals with low-impact parameters can indeed arrive from far away
regions (𝑋 ↫ 2) as opposed to the current detection horizons for un-
lensed BBH signals (𝑋 ↭ 1). This is a consequence of an increase in
their SNR values because of microlensing, and hence an increase in
their detection horizon (see the left-most panel in Fig. 3). We also
notice that even in the case of population, the behaviour of FF in 𝑀Lz
and 𝑁 plane (top-left panel) is similar to the behaviour of FF shown
in Fig. 2, where we had kept the binary mass fixed.

The bottom row of Fig. 9 illustrates the comparison of probability
density functions (PDFs). The black curves represent the PDFs used
for sampling during the population generation (referred to as the
"prior"; see Eq. 16), while the red curves represent the PDFs inferred
from the detected population itself. The PDF comparison is shown
for three parameters, 𝑁 (left panel) and 𝑀Lz (middle panel) and 𝑋S
(right panel). We use kernel density estimation (KDE) to obtain the
PDFs from the observed data. The comparison of PDFs for the impact
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parameter, 𝑛(𝑁), shows very interesting behaviour. At low values of
𝑁 (↭ 1), the observed signals have roughly a flat density profile in 𝑁,
instead of the linear profile used as the prior (Eq. 16; see black curve).
The reason for this behaviour can be attributed to the behaviour of
magnification due to a point-lens, which is only a function of 𝑁, given
by

𝑑±(𝑁) =
1
2
± 𝑁

2 + 2
2𝑁

√
𝑁

2 + 4
. (18)

It can be seen that in the limit 𝑁 ⇐ 1, 𝑑±(𝑁) becomes proportional to
1/𝑁, which in turn increases the detection horizon, thereby increasing
the relative probability density in that region.

On the other hand, the probability density profile for 𝑀Lz (bottom-
middle panel) is roughly similar to our initial assumption of a Log-
uniform distribution with only a slight preference for lower masses
compared to heavier masses. This slight preference for lower masses
(log10 𝑀Lz ↭ 2.5) is a result of better FF recovery values in that
region as shown in the bottom left panel of Fig. 2, owing to smaller
microlensing e!ects. If we instead recover with the microlensed tem-
plates instead of the unlensed ones, we find 𝑛(𝑀Lz) to be even more
consistent with the Log-Uniform distribution showing no special
preference for any mass values. This indicates that the behaviour of
FF is indeed the reason behind the slight preference for lower mass
values in case of unlensed recoveries. The probability density of the
source redshift 𝑛(𝑋S) (bottom-right panel) shows a similar trend as if
there were no microlensing (e.g., see Fig. 2 in Fishbach et al. 2018)
but with a longer tail reaching much higher values up to 𝑋 ↔ 5 as
opposed to the current detection horizons for BBH signals (𝑋 ↭ 1)
(also see Abbott et al. 2023b).

We showed that the selection bias incurred during detection would
significantly a!ect the properties of the observed population com-
pared to the true microlensed population. However, not all the ob-
served microlensed events will be correctly identified as being mi-
crolensed, i.e., having significant evidence for the microlensing hy-
pothesis over the unlensed hypothesis. For example, a low SNR event
that has low 𝑀Lz and high 𝑁 values, such as (𝑀Lz, 𝑁) = (10 𝑀↓ , 3),
would not be correctly identified as being a microlensed event with
the current sensitivities of the detectors. Therefore, in order to predict
the parameter space which has a higher potential of being detected
and also identified as a microlensed event, we should anticipate a
further selection bias on the detected events. This involves weighing
events according to their microlensing e!ects, i.e., the events with
higher microlensing e!ects are more probable to be correctly identi-
fied as microlensed. In the next section, we investigate this bias and
present a combined PDF that incorporates both the detection and
identification aspects.

6 MODEL COMPARISON: UNLENSED VS.
MICROLENSED HYPOTHESIS

In order to determine if a GW event has been microlensed or not,
one can propose two models for data analysis - (i) UL: the unlensed
hypothesis, described by the usual 15 parameters, and (ii) ML: mi-
crolensed hypothesis, described using two additional (microlensing)
parameters, 𝑀Lz and 𝑁, to the unlensed hypothesis, i.e., a total of 17
parameters. 14 To determine which model is more preferred by the

14 It is important to note that this approach inherently assumes
M→closedness (Kass & Raftery 1995; Schad et al. 2022), which means
that one of the proposed models is indeed the true model. This assumption is

GW data D, we can use the Bayes’ theorem to calculate the odds
ratio, defined as (Deutsch 1999):

OML
UL ↘ 𝑛(ML| D)

𝑛(UL| D) =
𝑛(D| ML)
𝑛(D| UL) · 𝑛(ML)

𝑛(UL) . (19)

Under the assumption that all models are equally likely a priori 15,
we set 𝑛(UL) = 𝑛(ML) in Eq. 19. The odds ratio then reduces to
the Bayes factor, which is simply the ratio of the evidences (Z), or
marginalised likelihoods, of the two models:

OML
UL = BML

UL ↘ 𝑛(D|ML)
𝑛(D|UL)

=


V𝑃ML

𝑉𝑚𝑚𝑚ML 𝑛(D| 𝑚𝑚𝑚ML) 𝑛(𝑚𝑚𝑚ML | ML)
V𝑃UL

𝑉𝑚𝑚𝑚UL 𝑛(D| 𝑚𝑚𝑚UL) 𝑛(𝑚𝑚𝑚UL | UL)
↘ ZML

ZUL
,

(20)
where 𝑚𝑚𝑚UL ↑ R15 and 𝑚𝑚𝑚ML ↘ {𝑚𝑚𝑚UL, 𝑀Lz, 𝑁} ↑ R17 are the model
parameters of HUL and HML hypotheses; V

𝑑𝑑𝑑
represents the pa-

rameter space volume; 𝑛(D| 𝑚𝑚𝑚) is the likelihood of observing D for
a certain 𝑚𝑚𝑚; 𝑛(𝑚𝑚𝑚 | Model) is our prior belief which we aim to update
after a parameter estimation run.

It is rather convenient to work with the logarithm of the Bayes
factors, which can be expressed as:

log10 BML
UL = log10 ZML → log10 ZUL = log10 BML

noise → log10 BUL
noise,

(21)
where logBUL

noise represents the (logarithmic) Bayes factor indicating
the likelihood of an unlensed GW signal being present in the data,
as opposed to the null hypothesis of pure noise (similarly, logBML

noise
represents evidence for the presence of a microlensed signal over
pure noise). This second equality stems from the fact that the evi-
dence computation for the “noise model", Znoise, does not depend
upon the waveform models being compared but only on the data
segment and the assumed estimate of the noise PSD profile of the de-
tectors. Therefore,Znoise will result in equivalent values for both ML
and UL models given the same settings for the likelihood evaluation
and other sampler settings. When the (absolute) logarithmic value
of Bayes factor is large (log10 BML

UL ↫ 1.3), we say the microlensed
model is preferred over the unlensed model. When the value is neg-
ative or only slightly positive (logBML

UL ↭ 0.4), the ML model is
discarded in favour of the UL model.16 This follows from Occam’s
razor argument, which favours less complicated models, i.e., models
with fewer parameters are more preferred among similarly perform-
ing models.

In the high-SNR limit, when most of the posterior volume is con-
fined around a particular value, i.e., when the posterior density is
highly peaked around the posterior mode, the evidence can be ap-
proximated using the Laplace approximation and the resulting Bayes
factor can be written as (Cornish et al. 2011; Vallisneri 2012):

lnBML
UL ∞ 1

2
𝑦

2
res + ln𝒽ML

UL (22)

not true in the case of real GW triggers, as there could be various systematics
or incomplete physical models which we do not know a priori. The possible
consequences of this assumption in model selection should be explored in
future studies.
15 This assumption makes sense for the initial set of searches. However,
based on such results, an informed prior on models can be used, which
should incorporate our belief that the number of microlensed signals is much
smaller than the unlensed signals, i.e., 𝑟ML ⇐ 𝑟UL.
16 This interpretation is based on Kass-Raftery’s scale (Kass & Raftery
1995).
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Figure 10. The figure shows log Bayes factor values, log10 BML
UL , for the evidence for microlensed hypothesis (HML) over unlensed hypothesis for varying

network SNR, 𝑙net
opt ↑ {8, 13, 20, 32, 50}, redshifted lens mass, 𝑉Lz ↑ {5, 20, 35, 50, 100}𝑉↓ , and impact parameter values, 𝑆 ↑ {0.1, 1.0}.

where 𝑦
2
res = (1 → 𝑇𝑇

2)𝑦2
ML is the SNR of the residual waveform

(𝑧ML → 𝑧

′
UL) after the best fit UL waveform has been subtracted out

from the true ML waveform, 𝑇𝑇 is the fitting factor as defined in
Eq. 10, and𝒽 represents the Occam’s factor defined as the ratio of the
posterior volumeϱ𝛹 to the prior volume𝛹 , i.e,𝒽 ↘ ϱ𝛹/𝛹 ⇒

√
|𝑇→1 |,

where 𝑇 is the Fisher information matrix. Thus, up to a di!erence of
(logarithmic value of) Occam’s factors, the log Bayes factor should
scale as 𝑦

2
res, which grows as a square of the SNR. Thus, SNR

becomes crucial in determining the subtle e!ects buried in the signal.
In Fig. 10, we show Bayes factor values, log10 BML

UL , for the evi-
dence of microlensed hypothesis over unlensed hypothesis for vary-
ing network SNR, 𝑦

net
opt ↑ {8, 13, 20, 32, 50}, redshifted lens

mass, 𝑀Lz ↑ {5, 20, 35, 50, 100}, and impact parameter values,
𝑁 ↑ {0.1, 1.0}. A low impact parameter value of 0.1 is chosen
to foresee results in the case of best-case scenarios while 𝑁 = 1
represents the characteristic value of 𝑁. For microlens parameter re-
coveries, we set priors as 𝑛(𝑀Lz) ⇒ LogUniform(10→1

, 105) and
𝑛(𝑁) ⇒ 𝑁, 𝑁 ↑ (0.01, 3.00). We limit ourselves to only lower
microlens masses (𝑀Lz ∈ 100 M↓) because, from an astrophysical
standpoint, more massive BH lenses are less probable. The black and
red lines correspond to a Bayes factor value of 𝑄 and 𝑄

3, respectively,
and mark the threshold for the positive and strong evidence for mi-
crolensing. This threshold has been set following the interpretation of
Bayes factors as given in Kass & Raftery (1995), which sets a higher
cuto! for the strong evidence as compared to the Je!rey’s scale
(Deutsch 1999)17. In this and subsequent sections, we will use the
terms "positive" and "strong" to characterise the strength of evidence
in accordance with the terminology used in the aforementioned refer-
ences. We can see how SNR exponentially increases the Bayes factor
values, especially in the left panel for 𝑁 = 0.1, where microlensing
e!ects are higher than in the right panel. We find that up to an SNR
of 13, microlensing e!ects due to 𝑀Lz < 100 M↓ do not show any
interesting Bayes Factor recoveries in favour of microlensing. It is
important to note that an SNR of 13 is above the expected average
SNR of the detected events (∞ 12; see Schutz (2011)), as PDF for
the SNR goes as 𝑛(𝑦) ⇒ 𝑦

→4. Considering the fact that in the real

17 However, we note that a better approach to interpreting the Bayes factor
values would be to do a background injection study.

GW data noise will bring in additional complexities, it seems highly
unlikely that we will detect microlensing for 𝑀Lz < 100 M↓ with
current sensitivities of the detectors. However, for high SNR events,
microlensing e!ects from even small mass microlenses become de-
tectable, such as 𝑀Lz ↫ 20 M↓ for SNR 50.

In the right panel of Fig. 10, we notice that for the characteris-
tic value of the impact parameter 𝑁 = 1, the microlensing model
is not favoured for 𝑀Lz < 50 M↓ upto an SNR of 32, which fur-
ther showcases the di$culty of correctly identifying a microlensed
event. An important consequence of this is the fact that in dark matter
constraint studies using microlensing, one should, in principle, in-
corporate SNR dependence. That is, the microlens parameter space
that can be correctly identified to be a microlensed event is SNR
dependent. Hence, a non-detection of the microlensed event can only
put a constraint on the fraction of dark matter in the parameter space
where it is sensitive to detecting those microlensing e!ects. If such an
SNR dependence is not included, it will result in an over-constraint
on the dark matter fractions.

The aforementioned observation inspires us to inquire about the
microlens parameters that are most likely to be detected and also
correctly identified as microlensed. In Fig. 9, we presented the dis-
tribution of the detected microlensed population. Now in Fig. 11,
we conduct a more thorough analysis of this population to deter-
mine such parameter space where microlensing is most likely to be
detected. Although a rigorous approach would require computing
Bayes factors for the population using nested sampling algorithms, it
will be highly expensive computationally. Therefore, we exploit the
expression given in Eq. 22 to estimate the Bayes factors. We further
neglect the Occam’s factor term and approximate Bayes factors as
simply

lnBML
UL ∞ 𝑦

2
res/2 = (1 → 𝑇𝑇

2)𝑦2/2. (23)

However, a more rigorous study would require estimating Occam’s
factor as well. As mentioned before, since the Occam’s factor term
is just the ratio of the posterior to the prior volume, one can estimate
it using the (inverse of) Fisher matrix by computing the ratio of
the uncertainty in the recovered value of an extra parameter to the
prior volume for that parameter. These uncertainties in the parameter
roughly scale inversely with the SNR.

Assuming the prior volume to be a unit hypercube of 𝑉 dimen-
sions, in the case of a true microlensed signal with a su$cient SNR
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Figure 11. Bayes factor study for the microlensed population estimated using the fitting factor (FF) and the SNR (𝑙) , i.e., ln BML
UL ∞ (1 → 𝑠𝑠

2 )𝑙2/2. Top row:
FF values and the Bayes factor values for the evidence of microlensing over the unlensed hypothesis (log10 BML

UL ) are shown in the microlens parameter space of
the observed population. Bottom row: The probability density functions (PDFs) for the microlens parameters are shown for four cases: (i) our prior assumption,
(ii) the detected population (selection bias), (iii) the population that is detected and also correctly identified as being microlensed assuming a threshold of
log10 BML

UL > 3 log10 (𝑌) , and (iv) same as (iii) but with a higher threshold of log10 BML
UL > 9 log10 (𝑌) . These threshold values are chosen to investigate various

confidence levels in a microlensed event detection while also taking into account the uncertainties related to using the approximation for BML
UL .

value, the information content in the posteriors would be higher for
the microlensing (ML) hypothesis compared to the unlensed (UL)
hypothesis. Consequently, the ratio of the posterior volume to the
prior volume would be smaller for the HML hypothesis. Thus, the
second term in Eq. 22 becomes

ln𝒽ML
UL ∞ ln

ϱ𝛹ML
ϱ𝛹UL

< 0. (24)

Since we are neglecting this term, we conclude that we are mostly
over-estimating the Bayes factors when we use Eq. 23. This reasoning
is supported by the observations in Fig. B1. In this figure, we compare
the numerically computed Bayes factors (using nested sampling)
displayed in Fig. 10 with the theoretically estimated BML

UL values
(indicated by cross marks) obtained using Eq. 23. We observe that,
in almost all cases, our approximation tends to overestimate the true
value of BML

UL , and its performance improves as the SNR increases.
For example, one can see that for SNR values of 32 and 50 in Fig. B1,
the di!erence between the numerically computed Bayes factors with
that of theoretically estimated ones is quite small compared to what
we notice for lower SNR values (↭ 20).

Our investigation demands that when estimating log10 BML
UL us-

ing Eq. 23, we employ a higher threshold for positive/strong evi-
dence for microlensing compared to established scales like Kass-

Raftery’s scale (Kass & Raftery 1995). For our purpose, we choose
this threshold heuristically based on our observation in Fig. B1.
Specifically, we set the threshold values to be three times that of the
Kass-Raftery’s scale. For positive evidence for microlensing, we con-
sider log10 BML

UL ↑ (3 log10 (𝑄), 9 log10 (𝑄)). For strong evidence, we
require log10 BML

UL > 9 log10 (𝑄). By setting these higher thresholds,
we aim to ensure that our assessment of positive or strong evidence
for microlensing is conservative and accounts for the potential over-
estimation indicated by our analysis.

We now apply the method described above to analyse the dis-
tribution of Bayes factors using fitting factor values, as given by
Eq. 23, for the population generated in Sect. 5. In the top row of
Fig. 11, we present the fitting factor values and the corresponding
Bayes factor values (log10 BML

UL ) in the microlens parameter space
of the observed population. While in the bottom row, the probability
density functions (PDF) for the microlensing parameters, 𝑀Lz and
𝑁, are shown for four cases: (i) our prior assumption (black line),
(ii) the detected population (red line; as also shown in the bottom
row of Fig. 9), (iii) population that is detected and also correctly
identified as being microlensed assuming thresholds as discussed
above, i.e., log10 BML

UL > 3 log10 (𝑄) (solid blue line; representing
threshold for positive evidence for ML), and (iv) a higher threshold
of log10 BML

UL > 9 log10 (𝑄) (dashed blue line; representing threshold
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(a) log10 BML
UL ↑ (3 log10 (𝑌) , 9 log10 (𝑌) ); Expected microlensed population

detectable with low confidence.
(b) log10 BML

UL > 9 log10 (𝑌) . Expected microlensed population detectable with
high confidence.

Figure 12. The corner plots depict the probable region in the microlensing parameter space for a point lens that can be detected and identified as a microlensed
event in the joint network of LIGO→Virgo detectors, assuming the targeted O4 sensitivities. The Bayes factor values of the population and the probability density
functions (PDFs) of the microlens parameters are explicitly shown in Fig. 11. The panels on the left and right use di!erent threshold values for log10 BML

UL ,
which is estimated using the expression ln BML

UL ∞ (1 → 𝑠𝑠
2 )𝑙2/2. These threshold values are chosen to explore di!erent confidence levels for claiming a

microlensed event detection while also considering the uncertainties associated with this approximation. The contour plot in the 2D space and the red lines in
the 1D distributions represent credible regions with quantile values of 16%, 50%, and 84%.

for strong evidence for ML). Here we employ two distinct threshold
values to study how di!erent levels of evidence for microlensing
influence the probability density in the lensing parameter space. We
observe that the fitting factor values exhibit similar behaviour and
range of values as shown in Fig. 2, where the source binary was kept
fixed. The Bayes factor values also show interesting values in the re-
gion where FF values are low (darker and bigger circles), especially
the lower end of the wave zone as discussed in 1. On the other hand,
we do not observe any appreciable BML

UL values for lower 𝑀Lz and 𝑁

values, where the number of detections is also relatively low. When
we set a threshold of 3 log10 (𝑄) for the recovered log10 BML

UL , we
find that the distribution of 𝑛(𝑁) peaks around 𝑁 = 1, while 𝑛(𝑀Lz)
peaks at log10 𝑀Lz = 3. Additionally, there is a slight bimodality
in the distribution of 𝑛(𝑁), with another peak observed at a lower 𝑁
value around 0.2. This bimodality arises from the fact that although
lower 𝑁 values lead to stronger microlensing e!ects, their detection
probability is lower compared to those with higher 𝑁 values. When
we increase the threshold to BML

UL > 10, we find that the bimodal dis-
tribution in 𝑁 converges to a value close to the lower peak at 𝑁 ↔ 0.3.
Moreover, for 𝑛(𝑀Lz), a higher threshold causes the peak to shift
towards higher 𝑀Lz values, around 𝑀Lz ↔ 4.5.

In Fig. 12, we provide corner plots for the microlens parameters,
showcasing the distribution of microlensed events that were detected
and (potentially) identified as microlensed within our microlensed
population. The contour plot in the 2D space and the red lines in
the 1D distributions represent credible regions with quantile val-
ues of 16%, 50%, and 84%. These correspond to the median with
1𝛺 uncertainty on either side. The left panel of the figure depicts
cases where the evidence for the microlensing (ML) hypothesis is
positive, specifically when log10 BML

UL ↑ (3 log10 (𝑄), 9 log10 (𝑄)).
In simpler terms, the left panel predicts the distribution of mi-
crolensed events that would be interesting candidates in the search
for microlensed events but may not be definitively confirmed as

Table 1. E!ect of using unlensed templates during the search for microlensed
signals. Below, “Total" refers to all the events; “ML" (“UL") refers to the
case when microlensed (unlensed) templates are employed for search; 𝑟1
depicts the total number of events with log10 BML

UL > 3 log10 (𝑌) , indicating
events with mostly positive evidence in favour of microlensing; 𝑟2 depicts
the total number of events with log10 BML

UL > 9 log10 (𝑌) , indicating events
with strong evidence in favour of microlensing. Here we estimate log10 BML

UL
using Eq. 23. 𝑡ML

UL denotes the fractional loss of microlensed signals when
unlensed templates are used during the search, as defined in Eq. 25.

Total 𝑟1 𝑟2 𝑟1/Total 𝑟2/Total
[%] [%]

ML 25458 8137 3734 32.0 14.7
UL 23318 6481 2653 27.8 11.4

𝑡
ML
UL [%] 8.4 20.4 29.0 13.1 22.4

such. The conclusions drawn from these events would likely re-
main inconclusive due to various systematics that could mimic sim-
ilar behaviour. Up to an uncertainty of 1→sigma, the most proba-
ble parameters18 that will show only positive evidence for ML are
(log10 𝑀Lz, 𝑁) = (3.35+1.13

→0.93, 1.21+0.68
→0.51). Meanwhile, the right panel

highlights events that would be identified as microlensed with a high
degree of confidence, with log10 BML

UL > 9 log10 (𝑄). The most prob-
able parameters for such confidently detected microlensed events
would be (log10 𝑀Lz, 𝑁) = (3.76+0.86

→0.88, 0.58+0.70
→0.37).

It is interesting to note that among all the super-threshold events
detected by LIGO and Virgo detectors so far, the most compelling

18 We note that a lot of reasonable assumptions have gone into making such
a prediction. The population is generated assuming an O4-like sensitivity.
The Bayes factor estimation is not rigorous and we ignore some other factors
such as noise systematics, its degeneracy with other physical e!ects like
eccentricity, etc.
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Figure 13. Comparison between the 1 → 𝑢 regions of the posteriors for the
microlensed parameters of event GW200208_130117 (highlighted in red)
and the predicted 1→ 𝑢 region of the low-confidence microlensed population
derived from our population study (highlighted in blue). Additionally, the
1 → 𝑢 contour for the predicted high-confidence microlensed population is
shown for reference (marked with a black dotted line).

candidate in the microlensing search was GW200208_130117 dur-
ing the third observing run (Abbott et al. 2023a; Janquart et al.
2023). This event exhibited the highest Bayes factor value for the
evidence of microlensing over the unlensed hypothesis, with a value
of log10 BML

UL ↔ 0.919. However, the paper concluded the data is
inconclusive about the microlensing hypothesis, and it was hinted
that the e!ect could be due to some short-duration noise fluctua-
tions in one of the detectors. The recovered microlens parameter
values for the event, with median values and 1-sigma errors, are
(log10 𝑀Lz, 𝑁) = (3.15+0.18

→0.21, 1.07+0.61
→0.32). Interestingly, we note that

this recovered value is remarkably close to our predicted value of
(log10 𝑀Lz, 𝑁) = (3.35+1.13

→0.93, 1.21+0.68
→0.51) (see Fig. 13 for the compar-

ison) for events that would only positively support the microlensed
hypothesis. Hence, based on our population study, there is sugges-
tive evidence in favour of the microlensing hypothesis for the event
GW200208_130117. However, it is important to acknowledge that
this study is not rigorous enough to claim lensing with certainty, and
therefore, the ultimate nature of this event remains inconclusive.

Furthermore, in Table 1, we present the derived statistics from
our population, particularly focusing on the fractional loss of sig-
nals caused by employing unlensed templates during the search for
microlensed signals. The fractional loss, 𝛻ML

UL , is defined as:

𝛻
ML
UL ↘ 1 → 𝑅(UL)

𝑅(ML) , (25)

where 𝑅(UL) and 𝑅(ML) represent the number of events quoted in
the row labelled as ‘UL’ and ‘ML’, respectively. These labels indicate

19 This value di!ers from the quoted value of 0.8 in Abbott et al. (2023a) as it
has been recomputed by the authors using the GWMAT framework (Mishra,
A., in prep.).

scenarios where unlensed templates and microlensed templates are
used to recover the signals, respectively. Within the parameter space
of 𝑀Lz ↑ (10, 105) and 𝑁 ↑ (0.01, 3.00), we observe an approximate
loss of 8% for the microlensed signals (refer to the first column, third
row). However, this fraction is dependent on our chosen parameter
space and does not fully capture the impact on potentially identifiable
signals. Therefore, we further estimate the fractional loss for events
that satisfy specific conditions: (i) log10 BML

UL > 3 log10 (𝑄) (referred
to as 𝛼1; column 2), and (ii) log10 BML

UL > 9 log10 (𝑄) (referred to as
𝛼2; column 3). We find that the fractional loss of events in case (i)
is ↔ 20%, while for case (ii) it increases to about 29%. It is expected
that the fractional loss would increase with higher threshold values
on Bayes factors, as the greater the microlensing e!ects, the more
significant the loss in their SNR during the search process. Moreover,
considering that real searches utilize template banks that discretely
cover the parameter space, typically constructed with a maximum
loss threshold of 3%, there is an additional loss of such microlensed
signals during the search process. Specifically, for case (i) and case
(ii), we find that the total fractional losses can reach up to 27% and
35%, respectively. This observation suggests that neglecting the loss
of microlensed signals during the search process (e.g., Basak et al.
2022) may impose an over-constraint on the fraction of compact dark
matter based on the non-detection of microlensed gravitational wave
signals.

7 EFFECT OF MICROLENS POPULATION ON THE
SIGNATURES OF STRONG LENSING

In this section, we study the e!ect of microlensing from a popula-
tion of microlenses on the search for strongly lensed gravitational
wave signals. The intervening galaxy or galaxy cluster acting as a
macrolens contains substructures in the form of microlens popula-
tion that can further perturb the signal due to microlensing e!ects
(e.g., Diego et al. 2019; Mishra et al. 2021; Meena et al. 2022). We
simulate such signals and investigate their e!ects on strong lens-
ing searches, particularly on the interpretation of posterior overlap
analysis (Haris et al. 2018). To accomplish this, we perform a set of
parameter estimation runs. The strongly lensed signal, which is taken
to further undergo microlensing (to produce an “SL+ML" signal), is
generated after computing the amplification factor for such systems
using the methodology described in Mishra et al. (2021) and Mishra,
A. (in preparation).

Posterior overlap analysis is a fast and robust method for identify-
ing potential strongly lensed pairs of GW signals. The method relies
on two primary observations: (i) strongly lensed images should origi-
nate from the same patch of the sky, and (ii) the gravitational lensing
does not a!ect the GW phasing, which means that the parameter
estimation for the intrinsic parameters should remain una!ected.
Consequently, the sky and the intrinsic parameters should exhibit
similarity between the two images of a strongly lensed system. So
for any two GW signals, one can compute the overlap between the
posteriors for the aforementioned parameters and develop a statistic
to assess its significance. Given the posteriors of two events 𝑉1 and
𝑉2, the Bayes factor for the (strongly-) lensed hypothesis over the
unlensed hypothesis can be defined as (Haris et al. 2018)

BL
U =

∫
𝑉𝑡𝑡𝑡

𝛽(𝑡𝑡𝑡 |𝑉1)𝛽(𝑡𝑡𝑡 |𝑉2)
𝛽(𝑡𝑡𝑡) , (26)

where 𝑡𝑡𝑡 is the set of parameters over which we compute the
overlap. As mentioned above, 𝑡𝑡𝑡 is at most a 9D quantity, i.e.,
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Table 2. Lens system information, with the lens and source redshifts denoted by 𝑗L and 𝑗S, respectively, is listed here. The macro (𝑣macro) and smooth (𝑣smooth)
magnifications, the microlens density (ς↓), and the network optimal SNR for both the SL-only case, 𝑙net

opt (𝑤SL ) , and the SL+ML case, 𝑙net
opt (𝑤SL+ML ) , of our

chosen GW150914-like source are also tabulated.

system 𝑗L 𝑗S image 𝑣macro 𝑣smooth ς↓ [M↓/pc2 ] 𝑙
net
opt (𝑤SL ) 𝑙

net
opt (𝑤SL+ML ) match(𝑤SL, 𝑤SL+ML ) [%]

1 0.50 0.56 I 4.75 3.27 1030.5 23.7 24.6 99.92
II 10.85 4.66 1419.5 34.9 38.5 99.21
III →11.22 +13.52 2121.6 35.4 34.8 99.96
IV →1.56 →2.57 4905.8 11.5 11.4 99.93

2 0.28 0.50 I 6.92 4.41 304.7 32.3 35.2 99.80
II 11.14 5.54 351.1 50.5 56.5 99.97
III →12.64 +25.99 513.31 55.1 50.5 99.89
IV →2.59 →4.33 864.94 24.9 23.9 99.97

𝑡𝑡𝑡 = {M, 𝛩, 𝑟1, 𝑟2, 𝑡1, 𝑡2, 𝑡JN, 𝑣, 𝑤}, where the symbols have
their usual meaning as described in Sec. 2.2.

For the lensing systems, we selected two (quadruply) lensed sys-
tems from the catalog described in More & More (2022). We specif-
ically chose systems where the source redshift was relatively lower
to ensure high SNR events, and where the brightest image had a
(macro-)magnification of ↫ 10. As mentioned in Sect. 4, we used a
GW150914-like event as the source, including its spins. The proper-
ties of both systems are provided in Table 2. As expected, our choice
of lens systems with low source redshifts led to smaller Einstein
angle (0.03′′ and 0.54′′ for system-1 and system-2, respectively)
compared to typical lens systems in EM observations where Einstein
angle is ↔ 1′′. However, as we specifically focus on high SNR sys-
tems for our introductory analysis, we proceed with these systems in
our current work and leave a more detailed analysis for future work.

The results of the posterior overlap analysis are shown in Fig. 14.
This figure compares the Bayes factors in favour of lensing ob-
tained from the posterior overlap analysis for both the strongly lensed
macroimages (black solid circles) and the macroimages that further
undergo microlensing (red solid stars). The middle and right panels
of the figure also display the corresponding (micro-)lensing am-
plification factors 𝑇 ( 𝑂 ) for the four macroimages. The small-scale
fluctuations observed in the 𝑇 ( 𝑂 ) curves are numerical artifacts that
are mitigated by applying a high-pass filter before their utilization.
Firstly, for system 1 (top row), we note that the Bayes factor values
can significantly reduce in extreme cases of microlensing in the path
of a strongly lensed signal. For example, in the top-left panel, we see
orders of magnitude drop in the BL

U for image pairs I-II, II-III and
II-IV, i.e., all image pairs with the second image. This behaviour can
be explained if we note that the corresponding amplification factor,
𝑇 ( 𝑂 ), curves in the middle and right panels of the first row. Even
though the 𝑇 ( 𝑂 ) curves for the third and fourth images show large
modulations, they do so only at high frequencies (> 103 Hz). On the
other hand, one can clearly notice from visual inspection that only
the 𝑇 ( 𝑂 ) curves for image II (orange-coloured curve) show signif-
icant modulations at low frequencies, where most of the power of
the gravitational wave is contained. For system 2 (bottom row), we
still see Bayes factor values to drop for all image pairs but relatively
lesser than that for system 1. In this case, 𝑇 ( 𝑂 ) curves for image I and
III showed significant modulation at lower frequencies compared to
other images. One can see this from the phase plots in the lower-right
panel, where blue and green curves start deviating from orange and
red curves at around ↔ 100 Hz.

One can further ask which of the parameters incorporated for the
computation of the posterior overlap is responsible for such a drop in
the Bayes factor values for some of the microlensing cases. To that
end, in Fig. B2, we show 1D marginalised posteriors correspond-
ing to the parameters used for computing the overlap. For ease of

representation, we denote spin components using {𝛬e! , 𝛬p} instead
of {𝑟1, 𝑟2, 𝑡1, 𝑡2}. The di!erently coloured curves correspond to
posteriors associated with di!erent images, as shown in Fig. 14. The
dotted curves represent cases with only strong lensing (SL only),
while the solid curves depict recoveries for signals that undergo both
strong lensing and microlensing (SL+ML). The dashed black vertical
lines depict the injected values. We notice that the posteriors for most
of the parameters are well recovered around the true injected value
for both cases (SL only and SL+ML). However, in system 1, the pos-
teriors representing the recoveries for the second image of SL+ML
case show the maximum deviation from the injected value among
di!erent parameters (solid orange-coloured curves). In the case of
system 2, although the deviation between the recovered parameters
for the SL and SL+ML scenarios is largely similar, the posterior dis-
tributions for parameters in the SL+ML case exhibit slightly greater
variability, which can be attributed to the variability in 𝑇 ( 𝑂 ) values
for di!erent images.

Among all the parameters considered here, the sky-position pa-
rameters, i.e., RA and Dec (𝑣 and 𝑤), are the best-recovered pa-
rameters, as their posteriors are sharply peaked around the injected
value for both the systems. Therefore, the sky-position parameters
contribute the most to the posterior overlap values. The drop in the
Bayes factor values is then mostly coming from the biased recoveries
of parameters like {Mdet, 𝛬e! , 𝛬p, 𝑡JN} for SL+ML case.

We note that in this section, we studied only a few scenarios of
microlensing due to a population of microlenses a!ecting strongly
lensed GWs. Due to our selection of systems with high SNR val-
ues, even small deviations (high match values in Table 2; also see
Fig. B2) led to a significant decrease in the Bayes factor. However,
it is important to conduct a more comprehensive statistical study to
generalise the e!ects of microlensing on strong lensing searches. We
leave this to future investigations.

8 DISCUSSION AND CONCLUSION

In this work, we primarily examine the impact of microlensing caused
by isolated microlenses on GW signals. We begin by illustrating
how the time delay between microimages divides the microlens pa-
rameter space into three distinct regions. Next, we investigate how
microlensing can significantly influence the observed SNR, match,
and fitting factor values. Subsequently, we analyze the microlensing-
induced bias in the observed GW source parameters. Furthermore,
we explore the statistical properties of microlensed GW signals and
estimate the fraction of missed GW signals if we employ unlensed
templates in the search. The distribution of Bayes factors for the pop-
ulation reveals certain regions in the microlensing parameter space
that are more likely to be correctly identified as microlensed signals.
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Figure 14. E!ect of microlensing on strongly lensed gravitational wave signals due to a population of microlenses. Left panel: The comparison between the
Bayes factors in favour of lensing using the posterior overlap analysis is shown for two quadruple-lensed systems (top and bottom rows), indicating both the
strongly lensed systems ("SL only“; represented using black circled markers) and the systems further undergoing microlensing ("SL+ML“; represented using
star-shaped red markers). Middle and Right panels: A realisation of the (micro-)lensing amplification factor 𝑠 ( 𝑃 ) is displayed for the four macroimages resulting
due to the presence of microlens population in the vicinity of the macroimages.

Finally, we examine more complex and realistic scenarios involving
the interaction of strongly lensed GW signals with a population of
microlenses residing within lensing galaxies and study their e!ect
on posterior overlap analysis.

Based on our analysis, the results are as follows:

(i) Employing unlensed waveforms to search for microlensed GW
signals can significantly decrease the fitting factor (FF), reaching as
low as ↔ 70%. The FF values decrease as we increase (decrease) the
value of 𝑀Lz (𝑁). Consequently, the observed SNR also decreases.
However, microlensing itself amplifies the signal and can signifi-
cantly increase the SNR, with values exceeding 10 times higher in
extreme cases. This behaviour overall increases the detector horizon
and can even allow us to detect GW signals from high redshifts 𝑋 ↫ 2,
beyond the peak of the star-formation rate.

(ii) The correlation study reveals a strong correlation between the
microlens parameters and the luminosity distance. Specifically, the
parameter 𝑁 exhibits a significant anti-correlation with the distance,
reaching values exceeding 90% in certain cases. Moreover, we ob-
serve that the correlations between the microlens parameters and
GW signal parameters are generally opposite in nature. For instance,
a positive correlation of 𝑀Lz with a GW signal parameter often
implies an anti-correlation of 𝑁 with the same parameter. Recov-
ering microlensed GW signals using an unlensed waveform model
introduces strong degeneracies among the source parameters, par-
ticularly when the microlensing e!ects are significant and slowly
varying, such as in the bottom-right corner of the long-wavelength
regime (Fig. 1). These degeneracies exhibit a highly nonlinear rela-
tionship with variations in the microlens parameters. In other words,
our analysis indicates that microlensing can lead to a rotation of the
correlation among di!erent pairs of parameters.

(iii) Recovering microlensed GW signals with unlensed GW sig-
nals can lead to significant bias in the estimated parameter values,
particularly when the microlenses belong to the wave-dominated
zone, where 𝑂 𝑃d ↔ 1. Among intrinsic parameters, the in-plane
spin components, particularly the precession e!ective spin 𝛬p, are

most a!ected, suggesting a degeneracy between the e!ects of mi-
crolensing and the modulations arising from spin-induced pre-
cession. With SNR ↔ 50, the errors increase for longer signals
(lighter binaries) and can even exceed > 90% in cases such as
(𝑀Lz, 𝑁) = (102 M↓ , 1), which is a modest representative of mi-
crolensing through an intermediate-mass-black-hole (IMBH). This
suggests that any signal showing signs of precession must also be
analysed for the presence of microlensing signatures to avoid any
erroneous claims regarding the presence of precession. However,
vice-versa may not be true, i.e., it is unlikely that the presence of
precession can bias microlensing searches. This is because the pa-
rameter space of unlensed signals always falls within the subset of
the microlensed parameter space. Hence, unless significant wave-
form systematics are involved in inferring the precession of a signal,
such biasing is not expected. In addition, other intrinsic parameters
related to binary component masses, chirp mass and mass ratio, can
also be significantly a!ected. Although their relative errors is mostly
within 10%, it can even exceed 50% when microlensing e!ects are
strong. Moreover, KS-statistics show higher sensitivity of the poste-
rior distribution to microlensing e!ects compared to the recovered
best-fit values.

(iv) Among extrinsic parameters, the recoveries of luminosity
distance are a!ected the most. In contrast, the trigger time and the sky-
position parameters, RA and Dec (𝑣 and 𝑤), are the best-recovered
source parameters. This is expected since the localization of GW
sources is mainly based on the observed time delays between each
pair of interferometers and microlensing does not significantly a!ect
them.

(v) A population study of microlensed signals reveals that the
fraction of potentially identifiable microlensed signals missed due
to the use of usual unlensed templates during the search is around
𝛻

ML
UL ↑ (20%, 30%). Hence, neglecting the loss of microlensed

signals during the search process (e.g., Basak et al. 2022) may im-
pose an over-constraint on the fraction of compact dark matter based
on the non-detection of microlensed GW signals. Furthermore, in-
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vestigating the impact of selection bias on the distribution of mi-
crolens parameters in the observed signals reveals a significant de-
viation of the PDF of the impact parameter, 𝑛(𝑁), at low values of
𝑁 ↭ 0.1. Therefore, in contrast to the commonly used lower limit of
0.1 in microlensing searches of real data (e.g., Abbott et al. 2021d,
2023a), a value of 𝑁 = 0.01 is not as insignificant as previously
thought. On the other hand, we only observe a mild preference for
lower 𝑀Lz (< 103 M↓) compared to larger ones, which primarily
arises from the use of unlensed waveforms in recovering microlensed
signals.

(vi) A model comparison study highlights the challenges in confi-
dently identifying microlensing by↭ 100 M↓ microlenses, especially
with average SNR values of↔ 12 (Schutz 2011), unless the impact pa-
rameter 𝑁 is very low (i.e., 𝑁 < 0.1). However, for high SNR (↔ 50)
events, even microlenses with masses 𝑀Lz ↫ 20 M↓ can be de-
tected (assuming a characteristic value of 𝑁 = 1). On the other hand,
microlensing signatures for an event with (𝑀Lz, 𝑁) = (102 M↓ , 1)
is not detectable up to an SNR value of around 25.

(vii) The Bayes factor analysis of our population of microlensed
signals indicates certain region in 𝑀Lz → 𝑁 parameter space have
a higher probability of being detected and accurately identified as
microlensed. The analysis reveals that events identified as only pos-
itively20 indicating microlensing would typically fall within the
parameter space (log10 𝑀Lz, 𝑁) = (3.35+1.13

→0.93, 1.21+0.68
→0.51). On the

other hand, events that are expected to favour the microlensing
hypothesis strongly would typically lie within the parameter space
(log10 𝑀Lz, 𝑁) = (3.76+0.86

→0.88, 0.58+0.70
→0.37).

(viii) In the GWTC-3 catalog (Abbott et al. 2023c), the most
compelling candidate in the microlensing search thus far is the event
GW200208_130117, which exhibited the highest Bayes factor of
log10 BML

UL ↔ 0.9 (Abbott et al. 2023a; Janquart et al. 2023). The
recovered values of the microlens parameters for this event, in-
cluding median values and 1-sigma errors, are (log10 𝑀Lz, 𝑁) =
(3.15+0.18

→0.21, 1.07+0.61
→0.32). Interestingly, we note that this recovered value

is remarkably close to our predicted value of (log10 𝑀Lz, 𝑁) =
(3.35+1.13

→0.93, 1.21+0.68
→0.51) (see Fig. 13) for events that would only pos-

itively support the microlensing hypothesis. Hence, based on our
population study, there is suggestive evidence in favour of the mi-
crolensing hypothesis for the event GW200208_130117. However,
it is important to acknowledge that further work is required to con-
firm lensing with certainty, and the true nature of this event remains
inconclusive.

(ix) Finally, to study the e!ect of microlensing on the search of
strongly lensed gravitational wave signals, specifically the posterior
overlap analysis, we focused our attention on a much more complex
scenario of microlensing when a strongly lensed GW signal encoun-
ters a population ofO(104) microlenses present in the lensing galaxy.
We find that, in general, the presence of microlens population de-
creases the measured Bayes factor in favour of strong lensing (see
Fig. 14). However, the exact amount of drop is sensitive to the mag-
nitude of microlensing e!ects in the signal, which in turn depends
primarily on the strong lensing magnification and properties of the
microlens population. This suggests that, in extreme cases, the pres-
ence of microlensing may pose challenges in accurately identifying
and characterizing strongly lensed GW signals. However, a more
detailed study is required to generalise the above inferences.

20 We use the terms "positive" and "strong" to characterise the strength
of evidence, in accordance with the terminology used in Je!reys’ or Kass-
Raftery’s scale for interpreting Bayes Factor values (Deutsch 1999; Kass &
Raftery 1995).

In summary, this extensive investigation across various sections
sheds light on the diverse e!ects of microlensing on GW signals.
The findings contribute to our understanding of the detectability, pa-
rameter estimation biases, and population characteristics associated
with microlensed signals.

In future research, it is crucial to distinguish the e!ects of mi-
crolensing from other physical e!ects, such as eccentricity, preces-
sion, tidal heating, etc., as microlensing has the potential to alter the
morphology of signals. Furthermore, it is important to investigate
whether these e!ects can lead to false triggers in various tests of
general relativity (GR). Additionally, there is a need to delve deeper
into the impact of microlensing on strongly lensed GWs and explore
their implications for future searches.
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APPENDIX A: STATISTICAL UNCERTAINTIES IN THE
MEASUREMENT OF LENSING PARAMETERS USING
FISHER ANALYSIS

In this section, we will estimate the statistical uncertainties in the
inference of lensing parameters of a point-lens, namely the redshifted
lens mass 𝑀Lz and the impact parameter 𝑁, using Fisher analysis (or
Fisher information-matrix formalism) (Finn 1992; Vallisneri 2008;
Borhanian 2021; Antonelli et al. 2021; Mukherjee et al. 2022). Here,
we give a brief overview of the formalism.

Under the assumption that noise, 𝑅(𝑢) = 𝑉 (𝑢) → 𝑧(𝑢), is stationary
and Gaussian with zero mean, the (log) likelihood of observing a
specific data stream realisation can be written as

log 𝑛(𝑎 |𝑚𝑚𝑚) ⇒ →1
2
⇓(𝑎 → 𝑆 (𝑚𝑚𝑚) |𝑎 → 𝑆 (𝑚𝑚𝑚)⇔, (A1)

where 𝑎 and 𝑆 are Fourier transforms of 𝑉 and 𝑧, respectively,
and 𝑚𝑚𝑚 is the parameter vector that determines a particular waveform.
Next, the formalism exploits the fact that for a su$ciently high SNR,
the deviation in strain can be approximated as a linear function of
parameter errors around the true value at the leading order, called
linear signal approximation (LSA) (Finn 1992). Since the best-fit
parameter𝑚𝑚𝑚best→fit can be assumed to be a perturbation from the true
parameter 𝑚𝑚𝑚true in the presence of noise, one can write 𝑚𝑚𝑚best→fit =
𝑚𝑚𝑚true + ϱ𝑚𝑚𝑚. Thus, using LSA, the waveform model in the vicinity of
the best-fit parameters can be written as

𝑧(𝑢;𝑚𝑚𝑚best→fit) ∞ 𝑧(𝑢;𝑚𝑚𝑚true) + 𝛾𝐿𝑧(𝑢;𝑚𝑚𝑚true)ϱ𝑚𝐿 , (A2)

where we make use of the Einstein-summation convention and 𝛾𝐿 ↘
𝛾/𝛾𝑚𝐿 . The expression is valid for |ϱ𝑚𝐿 | ⇐ 1. Substituting Eq. A2
into Eq. A1, one obtains

→2 log 𝑛(𝑎 |𝑚𝑚𝑚) = (ϱ𝑚𝐿 → ϱ𝑚𝐿noise)ϑ𝐿 𝑈 (ϱ𝑚
𝑈 → ϱ𝑚 𝑈

noise), (A3)

ϱ𝑚𝐿noise = (ϑ→1)𝐿 𝑈

𝛾 𝑈𝑧

$$
𝑅


(A4)

where ϑ𝐿 𝑈 is the Fisher matrix defined by

ϑ𝐿 𝑈 =

𝛾𝐿𝑧

$$
𝛾 𝑈𝑧


. (A5)

Defining the statistic ϱ𝑚𝐿 = ϱ𝑚𝐿noise, one finds

E[ϱ𝑚𝐿] = 0, Cov(ϱ𝑚𝐿 , ϱ𝑚𝐿) ↘ ς = (ϑ→1)𝐿 𝑈 + O(𝑦→1). (A6)

The diagonal and o!-diagonal elements of the covariance matrix ς

denote the variances and covariances of the parameters, respectively,
due to the uncertainty introduced by the detector noise and give
1𝛺-uncertainty estimates via 𝛺𝑑𝑄 =

∋
ς𝐿𝐿 .

Note that the validity of Fisher analysis demands a high-SNR
where LSA is valid. Furthermore, the Fisher matrix needs to be ’well-
conditioned’ for invertibility, which could even be compromised due
to the limited arithmetic precision. See, e.g., the excellent discussion
in Ref. Vallisneri (2008) of these issues related to Fisher analysis.

We compute the statistical uncertainties in 𝑀Lz and 𝑁 in the
lensing parameter space spanning log10 𝑀Lz ↑ (0, 5)M↓ and
𝑁 ↑ (0.01, 3). We introduce microlensing e!ects to a GW150914-
like system with no spins and adjust the luminosity distance to
maintain an optimal network SNR of 50 across the Hanford, Liv-
ingston, and Virgo detector network, using projected O4 PSDs (Ab-
bott et al. 2018). To compute the covariance matrix, we utilize the
publicly available package GWBENCH (Borhanian 2021). To ensure a
well-conditioned Fisher matrix, we only vary the parameters φ =
{M, 𝛴, 𝑟1, 𝑟2, log10 𝑀Lz, ln 𝑁}. We employ the IMRPhenomXPHM
waveform approximant with lower and upper frequency cuto!s set at
20Hz and 1024 Hz, respectively, with a bin size of 2→4 Hz, which is
adequate for the signal’s duration in this context.

The results are shown in Fig. A1, where we plot the statistical
relative uncertainties in the measurement of the redshifted lens mass
ϱ𝑀Lz/𝑀Lz (top panel) and impact parameter ϱ𝑁/𝑁 (bottom panel)
in the (𝑀Lz, y) plane for a point lens. The white and blue lines cor-
respond to 10% and 100% relative errors, respectively. The relative
errors in the white regions are larger than 100%.

Firstly, if we focus on the geometrical-optics regime in Fig. A1
(top-right corner; see Fig. 1 for reference), we observe mostly similar
trends betweenϱ𝑀Lz/𝑀Lz andϱ𝑁/𝑁. Notably, in the top-right corner
of both panels, we observe that the relative uncertainties become
independent of variation in the lens mass, i.e., they become constant
for a given y value (see, for example, the white contour lines in
the top-right corner.). Similarly, we observe that as we decrease 𝑁

below ↔ 0.5 keeping log10 𝑀Lz to be high ↫ 3, the uncertainties
increase drastically and can even exceed 100% for low 𝑁 < 0.1.
This is because in the geometrical-optics regime, the uncertainties
in both the parameters depend only on 𝑁 and the SNR of the signal.
As we go away from 𝑁 = 1, the uncertainties increase. For 𝑁 ↗ 1,
they are proportional to, roughly, ↔ ∋

𝑁, while for low 𝑁 ⇐ 1, they
increase as, roughly,

√
1/𝑁. Since we have kept the SNR fixed, the

uncertainties become roughly constant for a given 𝑁 value when
lens mass is high log10 𝑀Lz ↫ 3. These results are consistent with
Takahashi & Nakamura (2003b), where a thorough investigation of
relative uncertainties in the geometrical-optics regime is illustrated.
We note that although the region in the bottom-right corner is not
where geometrical optics is a good approximation, the divergence in
the uncertainties is still well-captured by the expression obtained for
that regime (Takahashi & Nakamura 2003b).

In the long-wavelength regime (mainly bottom-left region; see
Fig. 1 for reference), where the microlensing e!ects are weak, we
notice that the uncertainties in 𝑁 are much larger than those in 𝑀Lz.
This is explained by the fact that in this regime, the modulations are
proportional to the dimensionless frequency 𝑔 = 8𝑒𝑕𝑀Lz 𝑂 /𝑍3 in
the leading order (Tambalo et al. 2023). Hence, the estimation of 𝑀Lz
is better than that of 𝑁, which leads to the fact that for a given 𝑀Lz
in this regime, 𝑁 is only poorly constrained leading to high relative
errors.

Lastly, in Fig. A2, we plot the ratio of relative uncertainties in the
measurement of log10 𝑀Lz and 𝑁 for comparison. We notice that in
the parameter space of interest, log10 𝑀Lz is almost always better
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Figure A1. Statistical 1-𝑢 relative uncertainties in the measurement of the
redshifted lens mass ϱ𝑉Lz/𝑉Lz (top panel) and impact parameter ϱ𝑆/𝑆
(bottom panel) in the (𝑉Lz, 𝑆) plane for a point lens. The white and blue
lines lines correspond to 10% and 100% relative errors. In the white regions,
the relative errors are larger than 100%. The system comprises GW150914-
like signals with added microlensing e!ects. The SNR is kept fixed to 50 in
the detector network of Hanford, Livingston and Virgo using projected O4
sensitivities.

measured than 𝑁, owing to the majority of region having a value less
than unity.

APPENDIX B: ADDITIONAL FIGURES

This paper has been typeset from a TEX/LATEX file prepared by the author.

Figure A2. Comparison of the relative 1-𝑢 uncertainties in the (log) red-
shifted lens mass log10 𝑉Lz and 𝑆. The relative uncertainties in the measure-
ment of log10 𝑉Lz are almost always less than that in 𝑆.

MNRAS 000, 1–23 (2021)



24 Anuj Mishra et al.

Figure B1. Same as Fig. 10, but with added theoretical estimates (cross marks) using Eq. 23 for comparison. For nested sampling, the dashed black and red
lines have a similar meaning as in Fig. 10, representing the threshold values for positive and strong evidence for microlensing, respectively. For the theoretical
estimate, these values are depicted using dashed and solid red lines, respectively.

Figure B2. E!ect of microlensing due to a population of microlenses on strongly lensed gravitational wave signals. The panels display 1D marginalised posterior
distributions for a set of parameters, as labelled on the 𝑅-axis, for two systems (along the row). These parameters were utilised to compute the posterior overlap,
with the exception that we have condensed the spin parameters to {𝑕e! , 𝑕p} instead of {𝑞1, 𝑞2, 𝑜1, 𝑜2} for the ease of representation here. The di!erently
coloured curves correspond to posteriors associated with di!erent images, as shown in Figure 14. The dotted curves represent cases with only strong lensing,
while the solid curves depict recoveries for signals that undergo both strong lensing and microlensing. The dashed black vertical lines represent the injected
values.
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