
Domain-Specific Retrieval-Augmented Generation
Using Vector Stores, Knowledge Graphs, and

Tensor Factorization

Ryan C. Barron !∥, Vesselin Grantcharov§∥, Selma Wanna∗¶, Maksim E. Eren∗!,
Manish Bhattarai , Nicholas Solovyev , George Tompkins∗∗,

Charles Nicholas!∗, Kim Ø. Rasmussen , Cynthia Matuszek!∗, and Boian S. Alexandrov

∗∗Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.
§University of New Mexico. ¶University of Texas at Austin. !University of Maryland Baltimore County.

∗Advanced Research in Cyber Systems, Los Alamos National Laboratory, New Mexico, USA.
 Theoretical Division, Los Alamos National Laboratory, New Mexico, USA.

Abstract—Large Language Models (LLMs) are pre-trained
on large-scale corpora and excel in numerous general natural
language processing (NLP) tasks, such as question answering
(QA). Despite their advanced language capabilities, when it comes
to domain-specific and knowledge-intensive tasks, LLMs suffer
from hallucinations, knowledge cut-offs, and lack of knowledge
attributions. Additionally, fine tuning LLMs’ intrinsic knowledge
to highly specific domains is an expensive and time consuming
process. The retrieval-augmented generation (RAG) process has
recently emerged as a method capable of optimization of LLM
responses, by referencing them to a predetermined ontology. It
was shown that using a Knowledge Graph (KG) ontology for
RAG improves the QA accuracy, by taking into account relevant
sub-graphs that preserve the information in a structured manner.
In this paper, we introduce SMART-SLIC, a highly domain-
specific LLM framework, that integrates RAG with KG and a
vector store (VS) that store factual domain specific information.
Importantly, to avoid hallucinations in the KG, we build these
highly domain-specific KGs and VSs without the use of LLMs,
but via NLP, data mining, and nonnegative tensor factorization
with automatic model selection. Pairing our RAG with a domain-
specific: (i) KG (containing structured information), and (ii) VS
(containing unstructured information) enables the development of
domain-specific chat-bots that attribute the source of information,
mitigate hallucinations, lessen the need for fine-tuning, and
excel in highly domain-specific question answering tasks. We
pair SMART-SLIC with chain-of-thought prompting agents. The
framework is designed to be generalizable to adapt to any specific
or specialized domain. In this paper, we demonstrate the question
answering capabilities of our framework on a corpus of scientific
publications on malware analysis and anomaly detection.

Index Terms—Artificial Intelligence, Retrieval Augmented
Generation, Knowledge Graph, Natural Language Processing,
Non-Negative Tensor Factorization, Topic Modeling, Agents

I. INTRODUCTION

The expanding volumes of data across large databases and

information collections necessitate the specialized extraction

of pertinent knowledge, often without an in-depth understand-

ing of the underlying database resources. Recent advancements

∥The first two authors contributed equally to this work.
U.S. Government work not protected by U.S. %copyright.

in Large Language Models (LLMs) have facilitated develop-

ments that enable users to engage in dialogues with LLM-

powered chat-bots to discover information. Despite these mod-

els’ impressive handling of general queries, their application

in domain-specific tasks is hindered by several limitations.

These include the production of factually incorrect responses

(”hallucinations”) [1], unawareness of recent developments or

events beyond their training data (”knowledge cutoff”) [2],

failure to accurately attribute sources of information (”implicit

knowledge”) [3], and a lack of specific technical knowledge

required for specialized fields [4].

Fine-tuning is a common strategy employed to tailor these

general models to specific domains. However, this approach

is resource-intensive, demanding significant amounts of data,

extensive computational power, and considerable time, which

makes it impractical for many domain-specific applications.

These limitations pose significant challenges in interpreting

and validating the knowledge generated by LLMs, as well

as in referencing their sources. Consequently, this reduces

the trustworthiness of LLMs and limits their effectiveness

in highly specialized scientific contexts where accuracy and

reliability are paramount. The ongoing challenges underscore

the need for more sophisticated solutions that can bridge

the gap between general-purpose LLMs and the nuanced

requirements of domain-specific applications.

Retrieval-Augmented Generation (RAG) with Knowledge

Graphs (KGs) and vector stores (VS) significantly enhances

the context of LLMs, mitigating the need to fine-tune these

models to specific domains [5], [6]. KGs provide a structured

way to store factual information, making it easier to access

and use, while VSs allow storing unstructured documents

and preserving the semantics of the text. This integration

allows LLMs to tap into both domain-specific and updated

information, effectively addressing the traditional limitations

of generative models.

Despite these improvements, challenges remain in the prac-

tical implementation of domain-specific RAG systems. Ex-

a
rX

iv
:2

4
1
0
.0

2
7
2
1
v
1

[c

s.
C

L
]

 3
 O

c
t

2
0
2
4

tracting accurate and representative domain-specific ontologies

to build KGs and VSs is a complex task. Additionally, curating

datasets with specific text data for constructing both KGs and

VSs is equally demanding. These steps are critical for ensuring

that the augmented LLMs can reliably produce high-quality,

relevant responses across different domains.

In this paper, we introduce a framework designed for con-

structing domain-specific corpora of scientific articles through

advanced techniques, including: text mining, information re-

trieval, dimension reduction, nonnegative tensor factorization,

citation graphs, and human-in-the-loop strategies. We intro-

duce a novel framework, which we call SMART-SLIC, for

developing KG’s ontologies, utilizing both metadata and full

texts from open-source scientific publications, as well the la-

tent structures of these corpora, extracted through nonnegative

tensor factorization, enhanced with automatic model deter-

mination. SMART-SLIC facilitates topic modeling [7], and

determination of the optimal number of topics [8], [9] for ef-

fective document classification. Our new framework underpins

the creation of a precisely tailored corpus of domain-specific

scientific articles, which is crucial for our AG approach and

supports the development of a chat-bot adept at answering

domain-specific technical inquiries. Further, the framework

is versatile, allowing for its application to any domain of

documents. In this paper, we illustrate the effectiveness of

our framework, SMART-SLIC, with a case study where we

construct a domain-specific corpus, KG, and VS, focused

on malware analysis and anomaly detection, and apply our

enhanced question-answering framework for scientific queries

related to this corpus. Our contributions are summarized as

follows:

• We detail the development of a framework for building

domain-specific scientific corpora using a blend of text

mining, information retrieval, artificial intelligence (AI),

and human-in-the-loop techniques.

• We describe the creation of a domain-specific KG &
VS ontology that leverages both observable metadata,

and full texts of the corpus of domain-specific open-

source scientific articles, as well as its latent structure

extracted by non-negative tensor/matrix factorization with

automatic model selection.

• We demonstrate the enhanced capabilities of SMART-

SLIC’s, RAG-enhanced LLM system, which utilizes

chain-of-thought prompting with LLM agents to profi-

ciently address scientific questions.

II. RELATED WORKS

Recent methods for building RAG-assisted [6] chatbot ap-

plications rely on unstructured text stored in vector databases

for question answering (QA) tasks [10]. Although the integra-

tion of knowledge graphs (KGs) in AI systems is not novel

[11], increasingly, researchers are leveraging them to improve

LLM reasoning while simultaneously addressing the reliability

issues discussed in Section I [12]–[14]. Despite the benefits,

integrating domain-specific knowledge into chatbots requires

substantial effort. Here, we review the prior work for common

chatbot designs, the integration of domain-knowledge in RAG

pipelines, and the steps required for constructing KGs.

A. KGs in RAG Pipelines

Building a sophisticated chatbot requires the knowledge of

a wide range of research fields; hence, rarely do prior works

present a fully engineered system like ours. Instead, most

efforts focus on improving specific aspects of RAG pipelines,

e.g., retriever design [15], [16], query intent recognition [17],

and KG reasoning [18]–[21]. Our approach resembles past

methods which leverage chain-of-thought [22] prompting on

KGs [19], [20]; in conjunction with LLM-agents to enhance

reasoning capabilities [23]–[25]. In addition to incorporat-

ing these state-of-the-art techniques, we improve our RAG

pipeline by modifying our retrieval method to use K-Nearest

Neighbors with the Levenshtein metric instead of cosine

distance as an entry point for context search. We also construct

a “highly-specific” knowledge base for targeted QA tasks.

Although expensive and time-consuming, a handful of prior

works incorporate domain-knowledge into their RAG pipelines

[26]–[29]; however, the majority either use existing KGs built

broadly on medical literature [26], [28]; or do not disclose any

details regarding their dataset construction [29]. We emphasize

that our method is “highly-specific” because it was driven by

subject matter expertise which informed our dataset curation

and cleaning techniques [30], [31].

B. KG Development

At a minimum, the development of knowledge graphs

requires building a corpus, defining an ontology, and extracting

the relevant entity-relation triplets from unstructured text.

Corpus Building. Here we define the term “highly-specific”

and explain our dataset collection method. A key feature of

our dataset collection is the use of unsupervised methods

[31] to decompose corpora into document clusters to finer

specificity than the author-provided tags available on open ac-

cess websites. This differs significantly from prior approaches

[27], [32], [33]. We leverage latent-topic information from

our NMFk method to filter and select the best data for

our knowledge base, and prune documents based on cita-

tion information and embedding distances. Our text cleaning

pipeline is informed by subject matter experts (SME) [31],

[34], thus going beyond standard methods by incorporating

expert-derived rules for document cleaning, e.g, acronym and

entity standardization.

KG Construction. Our ontology is shaped by traditional

methods, i.e., relying on SME design and capturing task-

specific features. However, we innovate by incorporating latent

information from our decomposition process [31] into our KG

as entities. For entity and relation extraction, we move be-

yond conventional learning-based techniques [35]; and instead,

leverage recent advancements which use LLM-agents [10],

[36] as opposed to other LLM prompting methods [37]–[40].

This approach yields non-sparse KGs, meaning, the average

out-degree of entities [41], [42] is high. To our knowledge, no

prior work integrates all of these methods into their knowledge

graph construction process.

III. METHODS

This section outlines our framework, covering corpus ex-

traction, KG ontology, VS construction, and the RAG process.

A. Domain-Specific Dataset

Overview of of our system is summarized in Figure 1.

To collect the dataset, we began with a set of core docu-

ments selected by subject matter experts (SMEs). Here, these

core documents represent the specific domain in which we

want to built our corpus on. These core documents were

used to build a citation and reference network, which al-

lowed for the expansion of the dataset through the autho-

rized APIs: SCOPUS [43], Semantic Scholar (S2) [44], and

Office of Scientific and Technical Information (OSTI) [45].

S
M

E
 D

o
cu

m
en

ts

Scopus
API

SME Search Criteria

S2
API

TELF

Vector Store

Knowledge
Graph

...

Documents

Topics,

Keywords

Fig. 1. User query routing overview.

We also extract common bi-

grams from the core docu-

ments to query these APIs

to search for relevant doc-

uments. As we expand on

the the corpus starting from

the core documents, it is

possible to add documents

that do not directly relate

to the information in the

core documents. To main-

tain the central quality and

thematic coherence of the

core dataset, we employed

several pruning strategies to remove these irrelevant documents

to preserve the speciality specific to the targeted domain. These

strategies focused on removing documents that diverge from

the central theme of the core. Pruning was performed through

two methods from [34]:
• Human-in-the-Loop Pruning: SMEs manually review and select a

handful documents that align with the core theme. Here, we reduce
the document’s TF-IDF matrix to two dimensions with UMAP and let
the SME look at the documents that are at the centroids of the given
clusters. SME can then select which documents to remove.

• Automatic Pruning of Document Embeddings: Based on the SME
selections from the previous step, we next remove the document that
are certain distance away from the selected and the core documents.
Documents were transformed into embeddings with SCI-NCL [46], a
BERT based model fine-tuned on scientific literature, to measure seman-
tic similarity with core and SME selected documents. Those outside a
set similarity threshold were removed, ensuring only the documents
relevant to the core documents and SME selections remained.

Although a human is in the loop, the system remains scalable

by clustering documents. One review per cluster allows the

operator to decide on all documents in the group, making it

efficient even with large datasets without limit on cluster size.

Additionally, we applied pre-processing techniques using a

publicly available Python library, Tensor Extraction of Latent

Features (T-ELF)1 [31]. The cleaning procedures involved the

following pre-processing steps:

1T-ELF is available at https://github.com/lanl/T-ELF

• Exclude non-English, copyrights, and non-essential elements: stop
phrases, formulas, and email addresses.

• Remove formatting artifacts like next-line markers, parentheses, brack-
ets, accents, and special characters.

• Filter out non-ASCII characters and boundaries, HTML tags, stop
words, and standalone numbers.

• Eliminate extra whitespace and words f 2 characters.
• Standardize punctuation variations, particularly hyphens.

These pre-processing cleaning and standardization efforts

are essential for preparing the dataset for further analysis,

thereby enhancing the quality and consistency of the data.

B. Dimension Reduction

The extraction of the latent structure from the dataset is

accomplished through the following approach. Initially, the

data is prepared and the necessary computational framework

is established through these steps:

• Creation of the TF-IDF matrix, X, of the cleaned corpus

• X is decomposed using nonnegative tensor factorization

from T-ELF enhanced with our new binary search strat-

egy [47], to classify document clusters.

T-ELF allows us to extract highly specific features from the

data. This method identifies latent topics within the corpus,

grouping documents into clusters based on shared themes.

To avoid over/under-fitting, automatic model determination

is used where the final cluster counts are determined by

achieving the highest silhouette scores above a predetermined

threshold using the Binary Bleed method [47]. This method

employs a binary search strategy across k values, selectively

skipping those k values that do not surpass the silhouette

threshold. The search criterion for an optimal k is defined

as koptimal = max {k ∈ {1, 2, . . . ,K} : S(f(k)) > T}, where

S(f(k)) denotes the silhouette score of the k-th configuration

and T the threshold. Importantly, even after identifying an

initial “optimal” k, higher k values are visited regardless to

ensure no better configuration is overlooked.

The factorization of X yields two non-negative factor matri-

ces W ∈ R
m×k
+ and H ∈ R

k×n
+ , ensuring Xij ≈

∑
s WisHsj .

Distribution of words over topics are captured in W. The

matrix H shows the topic distribution across documents, and

is used to identify the predominant topic for each document

in post-processing. Full tensor and matrix factorization imple-

mentations of various algorithms are available in T-ELF 2.

C. Knowledge Graph Ontology

Features from T-ELF and document metadata is mapped

into series of head, entity, and tail relations, forming direc-

tional triplets, then injected into a Neo4j [48] KG.

Our KG incorporates document metadata as well as the

latent features. The primary source of information in the KG

comes from documents, which are injected into the graph

along with related attributes. Each document node contains

information such as DOI, title, abstract, and source API

document identifiers. Additional node labels include authors,

2Several tensor and matrix factorization algorithms:
https://github.com/lanl/T-ELF/tree/main/TELF/factorization

publication year, Scopus category, affiliations, affiliation coun-

try, acronyms, publisher, topics, topic keywords, citations, ref-

erences, and a subset of NER entities produced from spaCy’s

NER labels [49]. These NER labels cover events, persons,

locations, products, organizations, and geopolitical entities.

The KG nodes represent documents and their associated

metadata, while the edges capture the relationships between

these entities, such as citations, co-authorships, and topic

associations, enabling logical query and retrieval capabilities

for the RAG.

D. Vector Store Assembly

To augment the RAG, we introduced a vector database for

the original documents using Milvus [50]. Additionally, a sub-

set of documents’ full texts were vectorized and incorporated

into the vector store. Full texts, when available, are segmented

into smaller paragraphs, each assigned an integer ID to indicate

its position within the original document. These paragraphs are

then vectorized through the into embeddings using OpenAI’s

text-embedding-ada-002 [51] model and imported to the vector

store to support the RAG process.

The RAG application can query the vector store to

find relevant paragraph chunks from these full texts.

5. Natural Language Explanation

4. Data Review

3. Vectorized
Question To

Text Similarity

2. Bot Asks
Knowledge

Graph

1. Scientific
Question

Fig. 2. The RAG pipeline. Images
generated with DALL·E [52].

If the retrieved text contains

the needed information, the

LLM can answer the posed

question and include a cita-

tion of the document, pre-

cisely indicating the exact

paragraph. If further related

information is needed, the

application can use docu-

ment metadata (e.g., DOI, author) to expand its search through

the KG. This approach allows us to preserve the semantics of

the original documents and provide relevant responses.

E. Retrieval Augmented Generation

User Query

NER Extraction

Query
Type

React
Agent

Process
Genericize Question

Pull Sample Cypher

Sample
Answers
Question

Specific
Document

Query

General
Query

Yes No

Select Cypher Generate Cypher

Run Cypher Query

Answer To User Question

Fig. 3. User query routing overview.

RAG is an NLP method

that mixes retrieval and

generation techniques to

improve the accuracy and

relevance of responses in

generative AI. It works

by first gathering infor-

mation from an external

knowledge base based on

a user’s query. This re-

trieved information is then

used to guide and enhance

the outputs of the gen-

erative model, leading to

more relevant and context-

aware responses. By inte-

grating these tactics, RAG

addresses the limitations

of purely generative models and provides an adaptable frame-

work suitable for applications demanding detailed and current

information.

Figure 2 demonstrates the data pipeline operated throughout

the work for RAG. The process begins with a user query,

which the LLM then uses to query the knowledge graph.

The LLM transforms the query into a vector embedding. This

embedding is compared to existing texts to find the most

similar text. The retrieved information is appended to the

original query, and the LLM produces a relevant answer using

this context. Finally, the LLM constructs a final answer in

natural language to explain the answer to the user’s question.

To optimally leverage RAG, accurately understanding the

user’s question is crucial. Our RAG approach includes multiple

potential routes depending on a user’s question. The question

routing pipeline may be a General Query, which calls the

ReAct Agent Process [23], or a Specific Document Query,

which calls either a Retrieved Query or a Synthesized Query.

Understanding the question directs the information to the ap-

propriate toolset and subsequent process. The routing process

overview, as described below, can be seen in Figure 3.

Specific Document Query: If a user’s question requires

information from a specific document’s text (title + abstract),

it is better suited for a traditional RAG application in which

the LLM interacts with the VS to find the needed text. In

our case, we use a ReAct agent where the VS search is the

sole tool, allowing the LLM to make multiple search requests

as required. Specifically, a ReAct agent means the LLM has

distinct steps for reasoning and acting after determining the

input meaning. We use langgraph [53] to define an execution

graph with three nodes, as illustrated in Figure 4: (1) the ReAct

agent, (2) the tool executor, and (3) the end.

ReAct Agent Process: The agent node is the central

part of the ReAct graph, where the LLM calls are

encapsulated. The ReAct agent is responsible for

collecting inputs, making actionable decisions, and

explaining the results. The four prompt parts are:

Tool
Request

with
Params

...Route

Answer Output

1. ReAct Agent

Tool N

Tool 1

3. The End

Tool
Output2. Tool Executor

Final

Fig. 4. Nodes and tools of the ReAct
agent. Images from DALL·E [52].

a. Instructions
b. User query
c. Tool names, data
d. Tool Scratchpad

The agent is informed

how to answer a user’s

query from the instructions,

including answer formula-

tions and tool usage. The query aids tool selection or answer

directly. The tools have specific descriptions and parameters

required for their calls, including schemas if interacting with

databases. The scratchpad serves as temporary storage for tool

calls, responses, and the LLM’s reasoning, allowing the agent

to iteratively solve complex problems.

The tool executor takes the tool name and input parameters

from the agent node, routes to the corresponding function,

and returns the output. It handles execution logistics, error

handling, logging, and status updates.

The end node signals that the Reason-Act loop has com-

pleted. The final output from the LLM after the retrieval

augmented generation is returned to the user.

General Query: If the user asks a broader question, such as

those about trends, the required information is found within the

KG. In this route, we start with a preprocessing step in which

the LLM performs NER to decouple specific data from the

genericized question. After this, we send the genericized query

to a smaller vector store containing pairs of cypher queries and

descriptions of the information they return, with embedding

vectors generated from the descriptions. From here, there are

two possible subroutes.

Retrieved Query: If a retrieved query is able to answer the

question, we execute it’s cypher before making a final LLM

call to return the result. If no existing queries are able to

answer, we synthesize a new cypher query.

Synthesized Query: If the LLM opts for “synthesis,” it

generates a new cypher query using the graph’s schema

and retrieved examples. For reliability, the LLM audits this

generated query. First, we retrieve the query’s execution plan

and profile by using the cypher keyword “PROFILE,” which

lists the operators used on the knowledge graph. We also

provide descriptions of the relevant low-level operators from

Neo4j’s official documentation. Once we obtain the detailed

execution plan, the LLM performs two steps: it translates the

plan into plain language and assesses if it addresses the user’s

question. Valid generations proceed as if retrieved queries.

IV. RESULTS

In this section, we discuss identification of optimal clus-

ters for tensor decomposition, vectorization of the dataset,

construction of KG, and compare the system using the with

GPT-4-instruct [51] as the operating model of SMART-SLIC

to answer research questions. The same model was used

to answer without RAG as well. Our findings highlight the

accuracy and reliability of the SMART-SLIC’s RAG.

A. Dataset

Initially, 30 documents specializing on large-scale malware

analysis and anomaly detection with tensor decomposition

fields were selected by the SME as the core documents to

construct the data. These documents were expanded along

the citation/reference network 2 times. The final dataset was

enumerated at 8,790 scientific publications. From the cleaned

corpus, the tensor object was generated.

B. Extraction of Latent Features

After setting up the tensor, the most coherent grouping is de-

termined by iterating through a range of k = {1, 2, 3, . . . , 45}
clusters to decompose. Our analysis determined that 25 topic-

clusters represented the optimal division across all evaluated k

values. The decomposition itself was executed using T-ELF on

high-performance computing resources, specifically two AMD

EPYC 9454 48-Core Processors. This setup provided a total

of 192 logical CPUs, enabling us to complete the entire de-

composition process in approximately 2 hours. Following the

TABLE I
LABELS FOR TOPIC CLUSTERS

Label # Docs. Percent
0 Malware Behavioral Analysis 158 1.80
1 Cybersecurity Challenges 305 3.47
2 Cybersecurity Research 114 1.30
3 Botnet Detection Techniques 142 1.62
4 Malware Feature Selection And Extraction 353 4.02
5 Network Intrusion Detection 134 1.52
6 Evaluation of Malware Classifiers 301 3.42
7 Malicious Code Analysis 827 9.41
8 Artificial Intelligence for Malware 888 10.10
9 Nonnegative Matrix Decomposition 520 5.92
10 Security Threat Mitigation 180 2.05
11 Deep Learning for Malware 113 1.29
12 Machine Learning Techniques 275 3.13
13 Education Technology 447 5.09
14 Unsupervised Anomaly Detection 372 4.23
15 Ransomware Prevention 147 1.67
16 Temporal Graph Forecast 307 3.49
17 Mobile Malware Detection 230 2.62
18 Adversarial Defense Strategy 358 4.07
19 IoT Security 238 2.71
20 Privacy Protection Challenge 628 7.14
21 Sparse Tensor Decomposition 212 2.41
22 Backdoor Detection 350 3.98
23 Neural Network Architecture 581 6.61
24 Malware Analysis Techniques 610 6.94

decomposition, post-processing refined and defined clusters for

the topics, which are listed in Table I.

C. Vector Store

The 8,790 documents were vectorized and ingested into

the Milvus vector store. When questions are posed to the

framework, they are also vectorized using this model. Of the

total documents, 22% had full-texts available, which were

vectorized into the Milvus. Each document and full-text had

a DOI, with the full-texts also including paragraph identifiers.

Knowledge Graph

NER Location

Text NER Product

NER Organization

Scopus Category

NER
Person

NER Event

NER Geopolitical
Entity

Author

Publisher

Year

Acronyms

Affiliation
NMFk Topic

Country
Keywords

Document

Fig. 5. The KG schema. Images generated with DALL·E [52].

D. Knowledge Graph

From the 25 clusters output form T-ELF, we formatted

the the data into 1,457,534 triplets. Once injected into the

knowledge graph, there were 321,122 nodes and 1,136,412

edge relationships. The nodes injected into the graph are

represented in Figure 5, where they are organized into 16 base

categories, referred to as labels, that define the foundational

classes for the injection process. Once the graph was built was

directly queried for information as Structured Query Language

(SQL) is directly queriable outside of an application. In Figure

6, the knowledge graph is queried for the SME keyword

related to cybercrime. The query is structured as:

MATCH (k:Keyword)-[r1]-(d:Document)-[r2]

-(aff:Affiliation)-[r3]-(c:Country)

WHERE k.term CONTAINS ’cybercrime’

RETURN k,r1,d,r2,aff,r3,c

To retrieve the country nodes from a keyword, several

relationships were navigated. First, from the keyword to doc-

uments, then from documents to affiliations and finally from

the affiliations to the countries. In the cypher query, these links

are the denoted as an r with a following integer, where r is the

relationship identifier. The syntax is ()-[]-()-[]-()-[]-(), where

brackets are relations and parenthesis are nodes. In the first

part of the “where” clause, the keyword label is further tailored

to the keyword node, such that it must contain “cybercrime.”

Overall this can answer the question, “which countries have

published papers that mention cybercrime?” The question’s

retrieved nodes in Figure 6 has 29 countries in red, 99 affiliated

institutions in yellow, and 65 published documents in blue.

Fig. 6. Keyword ’cybercrime’ graph search. A single keyword (green), along
with linked documents (light blue) are returned. The documents also link
affiliated institutions (yellow), and the country of the institutions (red).

E. Question Answering Validation

The raw data collected was analyzed using document-

specific questions in Zero-Shot Conditioning, including:
• How many citations are there for DOI?
• How many references are there for DOI?
• How many authors are there for DOI?
• What year was DOI published?
• Which publisher published DOI?
• How many scopus categories are assigned to DOI?
• What is the title of DOI?

After document specific questions, we then examined topic

specific questions, which included year variations, as in:
• How many papers are there on the topic of Topic?
• How many papers were written related to Topic in Year?

In total, there were 200 questions in this set. Using these

questions, in this study, we compare the performance of GPT-

4-instruct [51] with and without our RAG framework on both

topic-specific and document metadata questions. As shown in

Figure 7, our findings indicate that GPT-4 with RAG answers

all questions with a 97% accuracy rate. In contrast, without

RAG, GPT-4 abstains from answering 40% of the questions,

and the accuracy of the answered questions drops to 20%. A

similar trend is observed for topic-based questions, where the

specialized RAG significantly enhances the retrieval of correct

answers. The topic questions attempted with RAG was also

100%, but without was only 36%. In consideration of only the

attempted questions, the system with RAG answered the topic

questions correctly 92%. Without RAG, the LLM answered

the topic questions with 27.77% accuracy.
Without RAG, several questions about years were answered

incorrectly, with the system stating the year didn’t exist. The

LLM also struggled with author and reference details, often

asking for more information or recommending consulting a

human expert. In some cases, it noted its lack of internet access

but later suggested using Google Scholar, yet still provided

inaccurate responses.

Attempted
Document
Questions

Documents
Questions

Correct

Attempted
Topic

Questions

Topic
Questions

Correct

0

20

40

60

80

100
%

 A
tte

m
pt

 /
Co

rre
ct

100.00 97.67 100.00
92.00

60.00

20.00

36.00
27.77

SLIC RAG No RAG

Fig. 7. Two question types, document and topic, showing LLM percent
attempts and correct with SMART-SLIC RAG and without RAG.

The analysis highlights the effectiveness of SMART-SLIC

in accurately answering nearly all 200 research queries, cov-

ering both document-specific and topic-specific questions. In

contrast, GPT-4-instruct without RAG struggled. SMART-

SLIC excelled in handling complex queries related to cita-

tions, references, authorship, and topical relevance, underscor-

ing the advantages of integrating its methodologies for more

reliable AI-driven research tools and improved information

retrieval in scientific fields.
We then shifted to more complex questions requiring thor-

ough searches through various retrieval methods, using GPT-4-

instruct with and without RAG. The SME posed the following

questions, and the responses are from the SMART-SLIC RAG

process, with DOI citations provided in square brackets:
1) What challenge is associated with outlier detection in high-

dimensional data? The challenge associated with outlier detec-
tion in high-dimensional data is the “curse of dimensionality,”
which makes it difficult to detect outliers in the full data space
[10.1109/ICCC54389.2021.9674561].

2) Can tensor decomposition methods be leveraged to detect SCADA

anomalies? Yes, tensor decomposition methods can be leveraged to
detect SCADA anomalies. The use of non-negative tensor decom-
position, specifically the Canonical Polyadic Alternating Poisson Re-

gression (CP-APR) method, has been applied to model the complex
and multi-faceted activity details of SCADA events, improving the
specificity and accuracy of identifying anomalies in electrical grid
systems [10.1109/MILCOM58377.2023.10356348].

3) What does MADHAT stand for? The acronym MADHAT stands for
Multidimensional Anomaly Detection fusing HPC, Analytics, and Ten-
sors [10.1109/HPEC.2019.8916559].

4) What’s the most advanced anomaly detection method on the LANL

Unified Host and Network Dataset? The most advanced anomaly
detection method on the Los Alamos National Laboratory Unified
Host and Network Dataset is the tensor factorization model that
exploits the multi-dimensional and sparse structure of user authen-
tication logs for improved detection of penetration testing events
[10.1109/ISI49825.2020.9280524].

For each response, the SMART-SLIC agent selected DOIs

that the SME also chose, demonstrating the agent’s accuracy in

retrieving relevant sources. The consistency in DOI selections

highlights the robustness of the retrieval mechanisms, ensuring

reliable and pertinent information for the user’s questions.

The same questions were asked without RAG, and the

results varied. The LLM answered the first general question

accurately, but while the initial response to the second question

was correct, its elaboration missed key details. The third and

fourth responses were entirely wrong, with fabricated answers

like ”Malware and Attack Detection Hunting and Analysis

Team” and ”Long Short-Term Memory.” Additionally, none of

the responses included DOI citations, reducing the credibility

of the information by omitting source references.

The evaluation of SMART-SLIC and GPT-4-instruct, with

and without RAG, highlights the importance of retrieval sys-

tems for accurate research output. SMART-SLIC’s RAG ex-

celled in selecting relevant DOI citations for complex queries,

while GPT-4-instruct struggled with fabrications, showing the

need for advanced systems like SMART-SLIC. Its strength

lies in using high-quality, domain-specific corpora for strong

performance in defined research areas, while also offering

potential for further exploration in less-defined domains.

V. CONCLUSION

Our SMART-SLIC framework leverages advanced lan-

guage models and specialized tools to effectively address

user queries by categorizing them into Specific Document

Queries and General Queries for efficient processing. The

ReAct agent manages general inquiries, while NER and cypher

query generation handle document-specific questions.

LLMs excel in general NLP tasks but struggle in domain-

specific areas due to hallucinations, knowledge cut-offs, and

lack of attribution. Our system addresses this by integrating

RAG with a domain-specific KG and VS, enhancing reliability

without fine-tuning. Built using NLP, data mining, and non-

negative tensor factorization, this setup enables accurate attri-

butions, reduces hallucinations, and excels in domain-specific

queries, as shown in malware analysis research.

The framework significantly enhances query response ac-

curacy and reliability, making it adaptable to various ap-

plications. Future work will expand the framework’s use

across domains like robotics, materials science, legal cases,

and quantum computing. Enhancements in graph completion,

entity linking, and link prediction will further interconnect

graphs, reveal hidden connections, and support LLMs in infor-

mation clarification, keeping SMART-SLIC at the forefront of

intelligent information retrieval and generation.

REFERENCES

[1] Y. A. Yadkori, I. Kuzborskij, A. György, and C. Szepesvári, “To believe
or not to believe your llm,” arXiv preprint arXiv:2406.02543, 2024.

[2] N. Harvel, F. B. Haiek, A. Ankolekar, and D. J. Brunner, “Can llms
answer investment banking questions? using domain-tuned functions to
improve llm performance on knowledge-intensive analytical tasks,” in
Proceedings of the AAAI Symposium Series, vol. 3, no. 1, 2024, pp.
125–133.

[3] N. Zhang, Y. Yao, B. Tian, P. Wang, S. Deng, M. Wang, Z. Xi, S. Mao,
J. Zhang, Y. Ni et al., “A comprehensive study of knowledge editing for
large language models,” arXiv preprint arXiv:2401.01286, 2024.

[4] S. K. Freire, C. Wang, and E. Niforatos, “Chatbots in knowledge-
intensive contexts: Comparing intent and llm-based systems,” arXiv

preprint arXiv:2402.04955, 2024.
[5] A. Bertsch, M. Ivgi, U. Alon, J. Berant, M. R. Gormley, and G. Neubig,

“In-context learning with long-context models: An in-depth exploration,”
arXiv preprint arXiv:2405.00200, 2024.

[6] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in

Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.
[7] R. Vangara, E. Skau, G. Chennupati, H. Djidjev, T. Tierney, J. P.

Smith, M. Bhattarai, V. G. Stanev, and B. S. Alexandrov, “Semantic
nonnegative matrix factorization with automatic model determination
for topic modeling,” in 2020 19th IEEE International Conference on

Machine Learning and Applications (ICMLA), 2020, pp. 328–335.
[8] B. T. Nebgen, R. Vangara, M. A. Hombrados-Herrera, S. Kuksova,

and B. S. Alexandrov, “A neural network for determination of latent
dimensionality in non-negative matrix factorization,” Machine Learning:

Science and Technology, vol. 2, no. 2, p. 025012, 2021.
[9] R. Vangara, M. Bhattarai, E. Skau, G. Chennupati, H. Djidjev, T. Tierney,

J. P. Smith, V. G. Stanev, and B. S. Alexandrov, “Finding the number
of latent topics with semantic non-negative matrix factorization,” IEEE

access, vol. 9, pp. 117 217–117 231, 2021.
[10] J. Liu, “LlamaIndex,” 11 2022. [Online]. Available: https://github.com/

jerryjliu/llama index
[11] R. F. Simmons, “Natural language question-answering systems: 1969,”

Commun. ACM, vol. 13, no. 1, p. 15–30, jan 1970. [Online]. Available:
https://doi.org/10.1145/361953.361963

[12] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying
large language models and knowledge graphs: A roadmap,” IEEE

Transactions on Knowledge and Data Engineering, vol. 36, no. 7, pp.
3580–3599, 2024.

[13] S. Pan, Y. Zheng, and Y. Liu, “Integrating graphs with large language
models: Methods and prospects,” IEEE Intelligent Systems, vol. 39,
no. 1, pp. 64–68, 2024.

[14] Y. Li, Z. Li, P. Wang, J. Li, X. Sun, H. Cheng, and J. X. Yu, “A survey
of graph meets large language model: Progress and future directions,”
in Proceedings of the Thirty-Third International Joint Conference on

Artificial Intelligence, IJCAI-234, 2023.
[15] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading Wikipedia

to answer open-domain questions,” in Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), R. Barzilay and M.-Y. Kan, Eds. Vancouver, Canada:
Association for Computational Linguistics, Jul. 2017, pp. 1870–1879.
[Online]. Available: https://aclanthology.org/P17-1171

[16] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov,
D. Chen, and W.-t. Yih, “Dense passage retrieval for open-domain
question answering,” in Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP),
B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online: Association
for Computational Linguistics, Nov. 2020, pp. 6769–6781. [Online].
Available: https://aclanthology.org/2020.emnlp-main.550

[17] J. Tan, Z. Dou, Y. Zhu, P. Guo, K. Fang, and J.-R. Wen, “Small models,
big insights: Leveraging slim proxy models to decide when and what
to retrieve for llms,” in Proceedings of the 62nd Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers).
Bangkok, Thailand: Association for Computational Linguistics, 2024.

[18] J. Jiang, K. Zhou, X. Zhao, Y. Li, and J.-R. Wen, “ReasoningLM:
Enabling structural subgraph reasoning in pre-trained language models
for question answering over knowledge graph,” in Proceedings of

the 2023 Conference on Empirical Methods in Natural Language

Processing, H. Bouamor, J. Pino, and K. Bali, Eds. Singapore:
Association for Computational Linguistics, Dec. 2023, pp. 3721–3735.
[Online]. Available: https://aclanthology.org/2023.emnlp-main.228

[19] L. LUO, Y.-F. Li, R. Haf, and S. Pan, “Reasoning on graphs: Faithful
and interpretable large language model reasoning,” in The Twelfth

International Conference on Learning Representations, 2024. [Online].
Available: https://openreview.net/forum?id=ZGNWW7xZ6Q

[20] B. Jin, C. Xie, J. Zhang, K. K. Roy, Y. Zhang, Z. Li, R. Li,
X. Tang, S. Wang, Y. Meng, and J. Han, “Graph chain-of-thought:
Augmenting large language models by reasoning on graphs,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.07103

[21] M. Li, H. Yang, Z. Liu, M. M. Alam, Ebrahim, H. Sack, and
G. A. Gesese, “KGMistral: Towards boosting the performance of
large language models for question answering with knowledge
graph integration,” in Workshop on Deep Learning and Large

Language Models for Knowledge Graphs, 2024. [Online]. Available:
https://openreview.net/forum?id=JzL0qm3YA8

[22] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,
E. Chi, Q. Le, and D. Zhou, “Chain-of-thought prompting elicits
reasoning in large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2201.11903

[23] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao,
“React: Synergizing reasoning and acting in language models,” in The

Eleventh International Conference on Learning Representations, 2023.
[Online]. Available: https://openreview.net/forum?id=WE vluYUL-X

[24] J. Lála, O. O’Donoghue, A. Shtedritski, S. Cox, S. G. Rodriques,
and A. D. White, “Paperqa: Retrieval-augmented generative agent for
scientific research,” arXiv preprint arXiv:2312.07559, 2023.

[25] D. Sanmartin, “Kg-rag: Bridging the gap between knowledge and
creativity,” 2024. [Online]. Available: https://arxiv.org/abs/2405.12035

[26] K. Soman, P. W. Rose, J. H. Morris, R. E. Akbas, B. Smith, B. Peetoom,
C. Villouta-Reyes, G. Cerono, Y. Shi, A. Rizk-Jackson et al., “Biomed-
ical knowledge graph-enhanced prompt generation for large language
models,” arXiv preprint arXiv:2311.17330, 2023.

[27] C. Edwards, “Hybrid context retrieval augmented generation pipeline:
Llm-augmented knowledge graphs and vector database for accreditation
reporting assistance,” 2024.

[28] N. Matsumoto, J. Moran, H. Choi, M. E. Hernandez, M. Venkatesan,
P. Wang, and J. H. Moore, “KRAGEN: a knowledge graph-enhanced
RAG framework for biomedical problem solving using large language
models,” Bioinformatics, vol. 40, no. 6, p. btae353, 06 2024. [Online].
Available: https://doi.org/10.1093/bioinformatics/btae353

[29] Z. Xu, M. J. Cruz, M. Guevara, T. Wang, M. Deshpande, X. Wang,
and Z. Li, “Retrieval-augmented generation with knowledge graphs
for customer service question answering,” in Proceedings of the 47th

International ACM SIGIR Conference on Research and Development

in Information Retrieval, ser. SIGIR ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 2905–2909. [Online].
Available: https://doi.org/10.1145/3626772.3661370

[30] N. Solovyev, R. Barron, M. E. Eren, K. O. Rasmussen, M. Bhattarai,
I. D. Boureima, and B. S. Alexandrov, “Slic: Scientific leadership
identification and characterization: Interactive distillation of large single-
topic corpora of scientific papers,” DOE Data Days (D3) at Lawrence
Livermore National Laboratory, LA-UR-23-30223, Tech. Rep., 2023.

[31] M. Eren, N. Solovyev, R. Barron, M. Bhattarai, D. Truong,
I. Boureima, E. Skau, K. O. Rasmussen, and B. Alexandrov, “Tensor
Extraction of Latent Features (T-ELF),” Oct. 2023. [Online]. Available:
https://github.com/lanl/T-ELF

[32] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal

of Network and Computer Applications, vol. 185, p. 103076, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1084804521000990

[33] S. Yu, Z. Yuan, J. Xia, S. Luo, H. Ying, S. Zeng, J. Ren, H. Yuan,
Z. Zhao, Y. Lin, K. Lu, J. Wang, Y. Xie, and H.-Y. Shum, “Bios:
An algorithmically generated biomedical knowledge graph,” 2022.
[Online]. Available: https://arxiv.org/abs/2203.09975

[34] N. Solovyev, R. Barron, M. Bhattarai, M. E. Eren, K. O. Rasmussen, and
B. S. Alexandrov, “Interactive distillation of large single-topic corpora
of scientific papers,” in 2023 International Conference on Machine

Learning and Applications (ICMLA), 2023, pp. 1000–1005.

[35] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 33, no. 2,
pp. 494–514, 2022.

[36] H. Ye, H. Gui, A. Zhang, T. Liu, W. Hua, and W. Jia, “Beyond isolation:
Multi-agent synergy for improving knowledge graph construction,”
2023. [Online]. Available: https://arxiv.org/abs/2312.03022

[37] S. Wadhwa, S. Amir, and B. Wallace, “Revisiting relation extraction in
the era of large language models,” in Proceedings of the 61st Annual

Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds.
Toronto, Canada: Association for Computational Linguistics, Jul. 2023,
pp. 15 566–15 589. [Online]. Available: https://aclanthology.org/2023.
acl-long.868

[38] M. Marinov, Y. Benkhedda, G. Nenadic, and R. Batista-Navarro,
“Relation extraction for constructing knowledge graphs: Enhancing
the searchability of community-generated digital content (CGDC)
collections,” in Workshop on Deep Learning and Large Language

Models for Knowledge Graphs, 2024. [Online]. Available: https:
//openreview.net/forum?id=ZOKivqqTjg

[39] V. Zavarella, J. C. Gamero, and S. Consoli, “A few-shot approach
for relation extraction domain adaptation using large language
models,” in Workshop on Deep Learning and Large Language

Models for Knowledge Graphs, 2024. [Online]. Available: https:
//openreview.net/forum?id=rBUbEKOECY

[40] D. Edge, H. Trinh, N. Cheng, J. Bradley, A. Chao, A. Mody,
S. Truitt, and J. Larson, “From local to global: A graph rag
approach to query-focused summarization,” 2024. [Online]. Available:
https://arxiv.org/abs/2404.16130

[41] X. Lv, X. Han, L. Hou, J. Li, Z. Liu, W. Zhang, Y. Zhang, H. Kong,
and S. Wu, “Dynamic anticipation and completion for multi-hop
reasoning over sparse knowledge graph,” in Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing

(EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds. Online:
Association for Computational Linguistics, Nov. 2020, pp. 5694–5703.
[Online]. Available: https://aclanthology.org/2020.emnlp-main.459

[42] W. Chen, Y. Cao, F. Feng, X. He, and Y. Zhang, “Hogrn: Explainable
sparse knowledge graph completion via high-order graph reasoning
network,” IEEE Transactions on Knowledge and Data Engineering, pp.
1–13, 2024.

[43] Elsevier, “Scopus,” 2024, accessed: 2024-07-20. [Online]. Available:
https://www.scopus.com

[44] Allen Institute for AI, “Semantic scholar,” 2024, accessed: 2024-07-20.
[Online]. Available: https://www.semanticscholar.org

[45] U.S. Department of Energy, “Office of scientific and technical
information (osti),” 2024, accessed: 2024-07-20. [Online]. Available:
https://www.osti.gov

[46] M. Ostendorff, N. Rethmeier, I. Augenstein, B. Gipp, and G. Rehm,
“Neighborhood Contrastive Learning for Scientific Document Repre-
sentations with Citation Embeddings,” in The 2022 Conference on

Empirical Methods in Natural Language Processing (EMNLP 2022).
Abu Dhabi: Association for Computational Linguistics, December 2022,
7-11 December 2022. Accepted for publication.

[47] R. Barron, M. E. Eren, M. Bhattarai, I. Boureima, C. Matuszek,
and B. S. Alexandrov, “Binary bleed: Fast distributed and parallel
method for automatic model selection,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.19125

[48] Neo4j, Inc., “Neo4j: The #1 platform for connected data,” https://neo4j.
com/, 2023.

[49] Explosion AI, “spacy english core web transformer model,” https://spacy.
io/models/en#en core web trf, 2023.

[50] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu et al., “Milvus: A purpose-built vector data management system,”
in Proceedings of the 2021 International Conference on Management of

Data, 2021, pp. 2614–2627.
[51] OpenAI, “Openai api,” 2024, accessed: 2024-07-28. [Online]. Available:

https://www.openai.com/api/
[52] OpenAI’s DALL·E, “Visual representations of llms, kg, & rag concepts,”

2024.
[53] L. Inc., “Langgraph: Building language agents as graphs,” https://

langchain-ai.github.io/langgraph/, 2024, version 1.0.

	Introduction
	Related Works
	KGs in RAG Pipelines
	KG Development

	Methods
	Domain-Specific Dataset
	Dimension Reduction
	Knowledge Graph Ontology
	Vector Store Assembly
	Retrieval Augmented Generation

	Results
	 Dataset
	 Extraction of Latent Features
	Vector Store
	Knowledge Graph
	Question Answering Validation

	Conclusion
	References

