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ABSTRACT

Characterizing DNA methylation patterns is important for addressing key questions in
evolutionary biology, geroscience, and medical genomics. While costs are decreasing,
whole-genome DNA methylation profiling remains prohibitively expensive for most
population-scale studies, creating a need for cost-effective, reduced representation approaches
(i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of
the genome). Most common whole genome and reduced representation techniques rely on
bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases.
Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but
thorough benchmarking of EM-seq combined with cost-effective, reduced representation
strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing
protocol (TMS)—which profiles ~4 million CpG sites—for miniaturization, flexibility, and
multispecies use at a cost of ~$80. First, we tested modifications to increase throughput and
reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic
rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized
TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC
BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples).
In both cases, we found strong agreement between technologies (R*=0.97 and 0.99,
respectively). Third, we tested the optimized TMS protocol in three non-human primate species
(rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of
targeted CpG sites and produced methylation level estimates that agreed with those generated
from reduced representation bisulfite sequencing (R* = 0.98). Finally, we applied our protocol to
profile age-associated DNA methylation variation in two subsistence-level populations—the
Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia—and found
age-methylation patterns that were strikingly similar to those reported in high income cohorts,
despite known differences in age-health relationships between lifestyle contexts. Altogether, our
optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide
DNA methylation levels across human and non-human primate species.
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INTRODUCTION

Characterizing and understanding epigenomic variation is important for evolutionary and
developmental biology, geroscience, and biomedicine. DNA methylation—the covalent addition
of methyl groups to cytosines—is a semi-malleable and environmentally-responsive epigenetic
modification integral to gene regulation in many species, including our own (1). Because DNA
methylation moderates gene expression throughout the life course, it is critical for processes such
as development (2—4), cell programming (5), tissue specificity (6), aging (7-11), and disease
progression (12—14). For example, changes in DNA methylation are considered a “hallmark™ of
the aging process, with most studies reporting age-associated gains in methylation in
hypomethylated regions (e.g., promoters and transcribed regions) and age-associated losses in
methylation in hypermethylated regions (e.g., heterochromatic regions, Polycomb-repressed
regions) (15—-17). These age-related patterns are so consistent that DNA methylation patterns
have been used to construct molecular clocks that reliably predict chronological age (18,19).
Further, because DNA methylation is known to respond to environmental inputs, it has been
implicated as a mechanism through which diverse experiences can “get under the skin” to impact
long-term physiology and health (e.g., famine (20-24), psychosocial stress (25-29), or infection
(30-33)).

To profile genome-wide DNA methylation at scale, most studies rely on reduced
representation methods: human studies have largely favored microarrays, while non-human
studies have favored reduced representation bisulfite sequencing (RRBS) due to the lack of
species-specific microarrays (34). Both methods quantify DNA methylation at a subset (1-5%) of
CpGs in the genome, and thus provide a cost-effective strategy relative to genome-wide assays
(e.g., whole genome bisulfite sequencing (WGBS)). For example, the Infinium MethylationEPIC
v2.0 BeadChip, or EPIC array, covers ~930K CpG sites including functional elements identified
by the ENCODE project (35), DNase hypersensitive sites, and putatively important sites for
human disease and development (36,37). In contrast, RRBS fragments DNA using the Msp1
enzyme that cuts DNA at CCGG motifs, which following size selection, enriches for 1-5% of the
genome with high CpG content such as CpG islands and gene bodies (34,38). Importantly, both
microarrays and RRBS rely on sodium bisulfite, which converts unmethylated cytosines to
thymine while leaving methylated cytosines protected from conversion. This chemical reaction

requires high pHs and temperatures, which can cause unwanted DNA fragmentation and damage,
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especially to unmethylated cytosines (39). Ultimately, such damage can create difficulties during
library preparation as well as biases in the downstream data (39—41).

Enzymatic methyl sequencing (EM-seq) offers a useful alternative to bisulfite sequencing
with several key benefits: EM-seq relies on enzymatic rather than chemical conversion of
unmethylated cytosines to thymine, resulting in substantially less DNA damage (40). As a result,
whole genome EM-seq has been shown to recover more CpGs sites, have lower duplication
rates, have better between-replicate correlations, and require less DNA input than WGBS (40).
However, existing EM-seq benchmarked protocols rely on whole genome rather than reduced
representation strategies, hindering their adoption especially for population-scale studies. To
address this gap, Twist Biosciences recently created a hybrid capture panel that targets ~4 million
CpG sites in the human genome and is compatible with EM-seq. The first generation Twist
methylation capture probe set uses ~550k probes to target functionally relevant CpG sites (e.g.,
those in enhancers, gene bodies, and near transcription start sites) and to cover 95% of CpG sites
included on the widely used EPIC array (42—45). Importantly, off the shelf, this protocol is
similar or lower in cost to existing reduced representation approaches. For example, it provides
coverage of approximately four times as many CpG sites relative to the EPIC array at one fourth
the cost—a ~16-fold gain in the data-to-price ratio.

Here, we aimed to develop and benchmark an optimized and further cost-reduced version
of the targeted methylation sequencing (TMS) approach suitable for population-scale studies,
including both human and non-human primate (NHP) studies (Figure 1A). To do so, we built
upon the off the shelf TMS protocol (Figure 1B), which recommends 8 plexing of samples per
capture reaction and 200 ng of DNA input, and tested four multiplexing strategies (12, 24, 48,
and 96 plex, using 200 ng of sample input; Figure 1C). We also tested five DNA input amounts
(25, 50, 100, 200, and 400ng, using the 12-plex strategy) and other minor protocol modifications
such as varying the annealing temperature during hybrid capture and varying the method used for
DNA fragmentation (Figure 1C). Following optimization, we assessed: 1) the robustness of our
protocol through a direct comparison with the EPIC array and WGBS; 2) the extension of
optimized TMS for use in NHP species; and 3) the utility of our protocol to uncover biological
effects of interest (see Table 1 for sample sizes and sample information; Figure 1C). Specifically,
we tested for age effects on DNA methylation in two non-industrial populations that exhibit

minimal evidence for age-related increases in cardiometabolic diseases—the Tsimane of Bolivia
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and the Orang Asli of Peninsular Malaysia (46—48). We were interested in the degree to which
these groups exhibit epigenomic patterns similar to what has been reported for Western,
post-industrial settings, or alternatively, if they exhibit novel patterns that may be associated with
their favorable aging trajectories. Overall, we found that we were able to miniaturize and
optimize the TMS protocol to ~$80 per sample, while maintaining data quality and comparability
to existing methods, extending to NHP species, and applying the protocol to uncover age effects

in two under-represented human populations.

Table 1: Study populations and sample information for each experiment (names of experiments are as described in
Results). NHP = non human primate, F = female, M = male, VUMC = Vanderbilt University Medical Center. See also Table S1
for sample metadata and read depth.

Population Tissue type Sample size Sample sex Mean sample age | Experiment
(range)

Tsimane (human) Whole blood n=192 103 F; 49.6 years old 1,2,3,6, &8

89M (18.0-83.6)

VUMC (human) Whole blood n=55 Not available Not available 5

Orang Asli White blood cells | n=88 46 F; 35.3 years old 4&9

(human) 42 M (18-78)

Rhesus macaque Heart (16), kidney | n=96 39F; 10.57 years old 7&8

(NHP, Macaca (16), adrenal (16), 57TM (3.18-19.93)

mulatta) spleen (16), lung

(16), liver (16)

Gelada Whole blood n=68 21 F; Unknown; all 7

(NHP, 47 M animals >5 years

Theropithecus old

gelada)

Capuchin Whole blood n=28 19 F; 19.4 years old 7

(NHP, Sapajus IM (9.041.0)

apella)

Total n=527
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Figure 1. Experimental design and study populations.

(A) To optimize the TMS protocol, we used samples from three human and three NHP populations: the Tsimane of Bolivia, a
Vanderbilt University Medical Center cohort, the Orang Asli of Malaysia, rhesus macaques from Cayo Santiago in Puerto Rico,
capuchin monkeys from captive sites throughout the United States, and gelada monkeys from Ethiopia.

(B) The TMS protocol begins with DNA shearing and adapter ligation. Next, two enzymes, TET2 and APOBEC, are used to
oxidize and deaminate the DNA. TET2 recognizes methyl groups attached to cytosines and converts them to Ca/g. APOBEC
follows TET?2 and converts the unmethylated cytosines to uracils. Following PCR amplification (which converts uracils to
thymines), hybrid capture is used to enrich for targeted regions of the genome. Samples are then submitted for high throughput
sequencing.

(C) Overview of experiments and analyses. The samples used for each set of experiments are noted by a population-specific icon.

RESULTS
Data quality is robust to a range of multiplexing strategies, input amounts, and protocol
modifications
Experiments 1 & 2: Varying multiplexing strategies and input amounts

Using DNA from Tsimane individuals, we tested four multiplexing strategies (12, 24, 48,
and 96 plex, using 200ng of sample input) and five DNA input amounts (25, 50, 100, 200, and
400ng, using the 12-plex strategy). Raw quality control metrics such as percent CHH
methylation (a proxy for the rate at which unmethylated cytosines are converted to thymine) and
mapping efficiency (percent of reads uniquely mapped to the genome) were high for all samples.
Mapping efficiency was consistent across plexing strategies (average mapping efficiency:

12-plex = 71.9%, 24-plex = 72.9%, 48-plex = 72.5%, and 96-plex = 73.5%; ANOVA: F-value =


https://doi.org/10.1101/2024.09.09.612068

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.09.612068; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

0.843, p-value = 0.472; Figure 2A) but affected by input amount, with higher DNA input having
greater higher mapping efficiency (ANOVA: F-value = 13.57, p-value < 0.001, Figure 2B, Table
S2). CHH methylation was consistently well below 1%, indicative of high conversion rate across
all plexing and input strategies (range=0.1-0.27%; Figure S1, Table S3 & S4) (49).

After filtering for CpG sites with >5x coverage that were within the Twist probe set (+/-
200bp) and that were covered in the majority of samples in a given experiment, we retained an
average of 4,197,008 CpG sites (s.d.=546,767) across plexing experiments and 4,051,941 CpG
sites (s.d. = 93,106) across input experiments (Tables S5 & S6). On average, this represented
96.42% and 92.19% coverage of the TMS probe set across the plexing and input experiments,
respectively (Table S7 & S8). In addition to consistently recovering the expected set of CpGs, we
also observed extremely repeatable methylation levels across the plexing and input experiments
(all R*>0.99; Table S9 & S10). The CpGs covered by our experiments were distributed across
diverse genomic annotations, and the median DNA methylation levels within a given annotation
displayed expected patterns (Figure 2C & D) (50). For example, we observed high levels of
methylation in quiescent and heterochromatin regions and low levels of methylation in promoters

and transcribed regions.

Experiments 3 & 4: Optimizing capture efficiency and DNA shearing strategies

In experiments 1 and 2, we used the recommended 65°C annealing temperature during
the hybrid capture step—where prepared DNA is bound to the capture probe set to select CpG
sites of interest—and the recommended 2ul. of methylation enhancer, which increases the
efficiency of this reaction. Here, we found that ~3/4 of all of our mapped reads were “on-target”,
meaning that they overlapped with the designed probe set and represented successful hybrid
capture (Tables S7 & S8). This suggests that ~4 of reads are “off target” and randomly
distributed across the genome rather than within our regions of interest (Tables S9 & S10). We
therefore performed a third experiment to test two protocol modifications that might decrease the
off-target proportion: we increased the annealing temperature (testing 65°C or 68°C) and we
varied the amount of methylation enhancer (testing OuL, 2uL, or 4uL).

In experiment 3, we found that increasing the annealing temperature from 65°C to 68°C
resulted in a lower proportion of off-target reads (ANOVA: F-value = 84.2, p-value < 0.0001;
Figure 2E, Figure S2, Table S11). Across samples annealed at 65°C, an average of 78.5% of
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reads were on-target, while this number rose to 84.2% at 68°C. However, this increase in capture
efficiency came at a cost to the breadth of CpG sites covered: across samples annealed at 65°C,
we observed coverage of on average 92.0% of the probe set, while this number fell to 72.2% for
samples annealed at 68°C (Figure 2F; Tables S12 & S13). This suggests that higher annealing
temperatures lead to greater but more specific binding during the hybrid capture step, and thus
the increased capture efficiency comes at the expense of recovering all the expected CpG sites.
In general, we did not find meaningful differences across methylation enhancer amounts and we
therefore excluded this reagent from downstream experiments (Figure 2E & F). Given the loss of
certain genomic regions at 68°C, downstream experiments focused on a 65°C annealing
temperature.

We next performed a fourth experiment focused on protocol optimization, in which we
varied the strategies used to fragment genomic DNA prior to EM-seq library preparation:
specifically, we tested mechanical shearing via Covaris sonication against enzymatic shearing
with the NEBNext UltraShear reagent. Mechanical shearing is the current standard approach but
is expensive, requires special equipment, and is labor intensive. Conversely, enzymatic
fragmentation is cheaper, does not require special equipment, and is more compatible with
automation. For experiments 3 and 4, we used the 96-plex strategy and 200 ng of sample input,
since experiments 1 and 2 suggested that data quality does not suffer from higher plexing
strategies.

Enzymatic shearing resulted in a similar number of covered sites as was previously
observed with mechanical shearing (n=4,591,123 and 4,523,981 filtered CpG sites for the 10 and
20 minute protocols, respectively). Average site-specific methylation levels were also highly
concordant between approaches (mechanical versus 10 min enzymatic: R* = 0.9875; mechanical
versus 20 min enzymatic: R*=0.9876; 10 min versus 20 min enzymatic: R>=0.9944; Figures S3
& S4). This was also true when we focused on a subset of paired samples processed using both
methods (n=3; mechanical versus 10 min enzymatic: average R* = 0.971; mechanical versus 20
min enzymatic: average R*=0.971; 10 min versus 20 min enzymatic: average R*=0.987, Table
S14). From these experiments, we concluded that enzymatic fragmentation can be substituted
into the protocol with no loss to data quality.

We also used these data, which represent our “best” protocol (96-plex, 200ng input, 65°C

annealing, no methylation enhancer, enzymatic shearing), to understand a critical aspect of
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experimental design—how many reads one would need to generate to achieve a given average
coverage per CpG site (Figure S5). In general, we observe a 1:2 relationship between the number
of mapped, paired end reads (in millions) and average coverage, such that ~25M mapped paired

end reads translates to ~50x average coverage per CpG site.
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Figure 2. Optimized TMS produces high-quality DNA methylation data across a range of plexing strategies, input
amounts, and protocol modifications.

(A) High (>70%) mean mapping efficiency across plexing strategies. Each point represents a sample within a plexing strategy
and the y-axis represents the percent of reads uniquely mapped per sample.

(B) Mapping efficiency increases as input amount increases. Each point represents a 12-plex pool made with varying DNA input
amounts per sample, the y-axis represents the percent of reads uniquely mapped per sample.

(C) Median DNA methylation levels for reads located within different chromHMM genomic annotations from NIH Roadmap
Epigenomics (using data from the 96-plex, 200 ng input from experiment 1).

(D) The number of CpG sites falling within different chromHMM genomic annotations (using data from the 96-plex, 200 ng
input from experiment 1).

(E) Percent of reads that are not within Twist probes (off-target reads) following protocol modifications to annealing temperature
and methylation enhancer (ME) volume. For each set of protocol conditions, the x-axis represents the percent of mapped reads
that do not overlap with the Twist probe set.

(F) Percent of Twist probes that are represented following protocol modifications to adjust the annealing temperature and ME
volume. For each set of protocol conditions, the x-axis represents the percentage of Twist probes that were represented by at least
1 read.

Epigenomic profiles measured with TMS recapitulate those measured with the EPIC array

and WGBS
Experiment 5: Comparison of TMS to the EPIC array
To ensure that TMS could perform comparably to the most popular current

reduced-representation technology (the EPIC array), we generated paired data for 55 samples
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using both platforms (and following the 96-plexing, 200 ng input TMS protocol from experiment
1). After filtering, we analyzed 682,295 CpG sites common to both technologies, and found high
concordance between per-site DNA methylation levels averaged across all individuals in the
dataset (R* = 0.97; Figure 3A). This remained true when we subsetted to 235,234 variably
methylated sites (i.e., sites with methylation levels >10% and <90%; mean R* = 0.83; Figure
3B). Because methylation patterns are relatively consistent within the human genome, we also
confirmed that these correlations were higher for EPIC-TMS data generated from the same
sample compared to EPIC-TMS comparisons made between random pairs of samples (mean R?
for non-variable sites: 0.92, mean R? for variable sites only: 0.75; Figure S6).

Of note, these analyses reconfirmed a known bias in the EPIC array data (51), which does
not allow for methylation levels of 100% (such that the correlation between average TMS- and
EPIC-measured DNA methylation levels is slightly off the x=y line; Figure 3A). This is because
EPIC-derived DNA methylation levels are represented as beta values, calculated as the ratio of
the intensity of the methylated bead type to the total locus intensity plus an offset value. Due to

the addition of the offset value, beta values of 1 are mathematically impossible.

Experiment 6: Comparison of TMS to WGBS

For further validation, we also generated WGBS data for 6 samples included in
experiment 3 (96-plexing, 200 ng input, 65°C annealing temperature, no ME, mechanical
fragmentation). After filtering and merging with the TMS data, we retained 3,078,771 CpG sites
covered by both the TMS and WGBS approaches. For these sites, the average methylation levels
observed across technologies was highly correlated (R*: 0.9871; Figure 3C). We also found that
the genome-wide distribution of DNA methylation levels derived from WGBS was more similar
to TMS than to the EPIC array, specifically in that it included many sites with average
methylation levels of 100% or close to 100%, as expected (Figure 3D, Figure S7).
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Figure 3. Optimized TMS recapitulates DNA methylation levels measured with the EPIC array and WGBS.

(A) Correlation in DNA methylation levels for EPIC array versus TMS (R?=0.97). Site-level methylation averaged across 6
samples measured using the EPIC array (x-axis) and 96-plex, 200 ng input TMS (y-axis). Each point represents a site measured
across both technologies and R? value was generated using linear modeling. Sites filtered to >5X coverage in >75% of samples
within each technology.

(B) Histogram of R? values calculated for each individual sample (i.e., comparing DNA methylation levels measured on both

technologies for a given sample). R? values are provided when all CpG sites common to both technologies are included, as well
as when only variably methylated CpG sites are included.

(C) Correlation in DNA methylation levels for WGBS versus TMS (R?=0.9871). Site-level methylation averaged across 6
samples measured using WGBS (x-axis) and 96-plex, 200 ng input TMS (y-axis). Each point represents a site measured across

both technologies and R* value was generated using linear modeling. Sites filtered to >5X coverage in >75% of samples within
each technology.

(D) Density plot of the average DNA methylation levels detected for matched sites between the three technologies (713,282

sites). Notably, the EPIC array is biased against DNA methylation levels of 100%, as previously observed by Shu et al. (2021)
(51) and explained by the equation used to calculate beta values.

TMS can be effectively applied to non-human primate species

Experiment 7: Applying TMS to capuchin, rhesus macaque, and gelada samples
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To enable epigenomic analyses in our close primate relatives, we also tested whether
TMS (96-plex, 200ng input protocol from experiment 1) could be effectively applied to three
NHP species: capuchins (Sapajus apella; n=28 samples from blood), rhesus macaques (Macaca
mulatta; n=96 samples from 6 tissues (see Figure S8 and Table S15), and geladas (Theropithecus
gelada; n=68 samples from blood). While the probe set is designed from the human genome,
NHP species share high levels of sequence homology with humans, especially in coding regions
and regions near genes (52), leading us to hypothesize that a majority of CpG sites would be
recovered. We mapped the Twist probe sequences to each of the NHP genomes to confirm this
intuition, and from this analysis expected to capture 3.0-4.8 million CpG sites across the three
species (Figure 4B). Importantly, for the rhesus macaque samples, we also generated paired
RRBS data and compared our TMS results to a technology that does not rely on hybrid capture.

When examining initial quality control metrics, we found that all three NHP species had
high mapping efficiencies (average = 81.96% for capuchins, 82.62% for geladas, and 81.35% for
macaques; Figure 4A). Further, the average CHH methylation levels were all extremely low
(<1%), again suggesting high conversion rates (Figure S9). Following filtering, we recovered ~%2
to % of expected CpG sites in the NHP datasets (3,343,133 in capuchin, 5,387,280 in gelada, and
5,486,073 in rhesus macaque). The number of sites recovered scales generally with divergence
time (capuchins share a common ancestor with humans 35-45 million years ago, geladas and
rhesus macaques share a common ancestor with humans 23-28 million years ago) (53). In all
species, we were able to reliably measure more sites than would be typical of RRBS (see below),
and we note that some of the between-species variation in performance could be explained by
heterogenous read depth (Table S16) as well as reference assembly quality.

When examining average DNA methylation levels across species, we found that, as
expected, all exhibited bimodal genome-wide profiles similar to humans (Figure 4F). Further,
because the rhesus macaque samples were derived from 6 different tissue types (Figure S8, Table
S15), we also confirmed that samples displayed expected tissue-specific epigenetic patterns.
Specifically, we demonstrated that a Principal Components Analysis (PCA) was able to reliably
separate samples by tissue type (Figure 4C), as has been observed in previous studies using both

bisulfite sequencing and the EPIC array (54-56).

Experiment 8: Comparison of TMS to RRBS
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Studies of NHP species have historically relied on RRBS because of the
species-specificity of microarray technologies and the cost barrier of WGBS (57-59). To test
how our optimized TMS protocol compares to RRBS, we generated paired data for all 96 rhesus
macaque samples. After filtering both datasets to 721,766 common CpG sites, we found a high
concordance of the average DNA methylation levels estimated by both technologies (R*=0.97;
Figure 4D, Figure S10). This remained true when we subsetted specifically to 92,692 variably
methylated CpG sites (i.e., sites with average DNA methylation levels >0.1 and <0.9;
R?=0.5945; Figure 4E).
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Figure 4. Optimized TMS performs well in non-human primate species and when compared to RRBS.

(A) Optimized TMS in NHPs results in high mapping efficiencies despite the use of human-specific probes. Here, each of the
species are mapped to their own genome. TMS data from experiment 1 (96 plex, 200ng input) are included for comparison. We
hypothesize that low mapping efficiency in certain rhesus macaque samples is due to variations in types of tissues processed.
(B) Number of expected and observed CpG sites covered in each NHP genome. Expected sites were derived from mapping the
Twist probes to each NHP genome, while observed sites represent those detected with an average coverage >5X in >75% of
samples.

(C) Principal components analysis of TMS-derived DNA methylation levels from rhesus macaque samples spanning six distinct
tissues.

(D) Similar levels of DNA methylation are detected on a site-by-site basis using RRBS (x-axis) and optimized TMS (y-axis) (R?
=0.97).

(E) Density plot of LM R* when comparing data generated via optimized TMS and RRBS for the same rhesus macaque sample.
R? values are provided when all CpG sites common to both technologies are included, as well as when only variably methylated
CpG sites are included.

(F) Density curves of the average methylation calculated at a given site across samples for each of the NHP species. Curves show
expected bimodal distribution in which much of the CpG sites are either hypomethylated or hypermethylated. .
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TMS reveals consistent age-associated DNA methylation patterns in diverse populations

We next sought to test whether TMS could reliably detect biological signatures of aging
and—because we generated data from several human populations—provide novel insights into
how diverse environments and ecologies affect human molecular aging. Much of the human data
we generated in optimizing TMS came from two Indigenous, non-industrial, subsistence-level
populations—the Tsimane of Bolivia, who practice small-scale horticulture and foraging, and the
Orang Asli of Peninsular Malaysia, who are comprised of multiple ethnolinguistic subgroups
practicing mixed subsistence strategies (60—63). Both groups have participated in long-term,
integrated studies of anthropology and health (47,48), which have revealed minimal evidence for
age-associated increases in non-communicable diseases such as cardiovascular disease, obesity,
and hypertension that are common in high income, post-industrial contexts (64,65).
Consequently, we were interested in understanding the degree to which age-associated DNA
methylation patterns in these groups broadly recapitulate what has been reported in cohorts from
high-income countries. More generally, very little population-scale work has characterized
epigenomic aging in populations outside of high-income countries (but see (29,66,67)).

When we tested for age effects on DNA methylation levels in each population (focusing
on variably methylated CpG sites and using beta-binomial models (68)), we found that 22% of
tested CpGs sites (n=229,727, FDR<5%) were significantly associated with age in the Orang
Asli (n=88, age range = 18-78). Of the significant age-associated sites, 40% gained methylation
with age and 60% lost methylation with age, recapitulating global patterns observed in previous
studies (15,69). In the Tsimane (n=94, age range = 18-75), 0.21% of tested CpG sites (n=1,979)
were significantly associated with age, with the lower number of age-associated sites potentially
driven by the more restricted age distribution in this sample. Specifically, the Tsimane dataset
included 83% of samples >40 years old compared to the Orang Asli dataset, which included 31%
of samples >40 years. In the Tsimane, we again observed a global bias toward hypomethylation
with age (62% of significant age-associated sites).

Next, we compared the age effect estimated for each CpG site in the Tsimane and Orang
Asli with age effects estimated from a modern, post-industrial Swedish cohort previously
published in (70) (n=421, age range = 14-94, data generated on the Human Methylation450
BeadChip). Across the 64,084 variably methylated CpG sites measured in all datasets, estimates
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of the age effect were similar (Pearson correlation: Tsimane v. Orang Asli: R = 0.24, p < 10°'6;
Orang Asli v. Swedish: R = 0.59, p < 107'%; Tsimane v. Swedish: R = 0.35, p = 0). Among CpG
sites that were significantly associated with age (FDR < 10%), we observed even higher
correlations in age effects (Tsimane v. Orang Asli: n=259, R =0.72, p = 1.07 x 10*; Orang Asli
v. Swedish: n=20642, R = 0.76, p = 0; Tsimane v. Swedish: n=424, R = 0.66, p = 3.30 x 104
Figure S11). Interestingly, the overlap of significant age-associated CpGs sites was more
consistent between the two subsistence-level populations than between either subsistence-level
population and the Swedish cohort (Fisher’s exact test: Tsimane v. Orang Asli: OR =2.22, CI =
1.8-2.7,p=7.81x 10"%; Orang Asli v. Swedish: OR =2.18, CI1=2.0-2.3, p=2.71 x 10%5;
Tsimane v. Swedish: OR = 1.42, CI =1.06 - 1.94, p = 0.02).

As methylation changes during aging are known to differ by genomic context, we
investigated the extent to which age-associated CpG sites were more likely to show gains
(hypermethylation) versus losses (hypomethylation) with age within different functional
annotations (Figure 5) (59,70). Despite their diverse lifestyles, epidemiological patterns, and
genetic backgrounds, we found strikingly similar age patterns between the three populations. For
example, all three populations exhibited age-related hypomethylation in quiescent regions and
regions weakly repressed by Polycomb complexes, as well as age-related hypermethylation in
promoters, bivalent TSS regions, and enhancers (Figure 5; Table S17). However, there were also
some functional annotations that showed patterns specific to subsistence-level lifestyles (e.g.,
enrichment of hypermethylation with age in gene bodies) or to certain populations (e.g.,
depletion of hypermethylation with age in heterochromatin in Tsimane), suggesting that while
some regions of the genome may exhibit “universal” epigenomic changes with age, others may

be modified by environmental or lifestyle factors.
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Figure S: TMS reveals that age-associated DNA methylation patterns are broadly consistent across small scale, subsistence-level
populations and post-industrial populations. After quantifying the CpG sites that were differentially methylated with age, we tested the extent
to which CpG sites that were hypomethylated with age (i.e., sites with lower methylation levels in older individuals) and hypermethylated with
age (i.e., sites with higher methylation levels in older individuals) were more or less likely to fall in different genomic regions. The y-axis is
ordered by median methylation levels (as in Figure 2C-D), such that regions higher on the y-axis values have higher average methylation levels
regardless of age. We performed enrichment tests for the three populations in which we quantified age effects, the Tsimane (experiment 1 -
96-plex condition, 200ng DNA input, mechanical fragmentation method), the Orang Asli (experiment 4 - 96-plex condition, 200ng DNA input,
enzymatic fragmentation method), and a cohort from a high-income country (Sweden) using summary statistics from Johansson et al. (2013).

DISCUSSION
We developed and thoroughly benchmarked a multiplexed, cost-effective version of the
TMS protocol and applied it to diverse human populations as well as multiple NHP species. We

recommend an optimal protocol for future work (96-plex, 200ng input, 65°C annealing, no
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methylation enhancer, enzymatic shearing), but found that data quality remained high across
plexing strategies, input amounts, and protocol modifications. Importantly, the 96-plex version of
the TMS protocol—including sequencing to achieve ~50x coverage per CpG site on the Illumina
NovaSeq X—can currently be performed for ~$80/sample (with roughly half being reagents and
labor, and the other half being sequencing on the NovaSeq X platform). Relative to the
commonly used EPIC array for human studies, which costs ~$400 per sample and profiles ~4
the number of sites covered by TMS, this represents massive savings enabling larger-scale,
population-based studies.

We found high concordance between TMS-derived DNA methylation levels and those
derived from other commonly used methods—namely the EPIC array, WGBS, and RRBS.
WGBS is the gold standard for comprehensive DNA methylation measurement, but is
prohibitively expensive for most studies. RRBS has filled in as a more cost-effective alternative,
but due to the stochastic nature of the Msp1 digest followed by size selection, not all CpG sites
are reliably covered across individuals and missing data can impede downstream analyses
(Figure S12). Both WGBS and RRBS also require somewhat specialized laboratory and
bioinformatics expertise to execute. As a result of these challenges, microarray-based methods
(such as the EPIC array) have become the most commonly used approach in human genomics.
Consequently, many popular bioinformatics pipelines and specialized algorithms for DNA
methylation data (e.g., epigenetic clocks or cell type deconvolution (72,73)) are currently keyed
to microarrays. While DNA methylation levels derived from TMS are strongly correlated with
the EPIC array, it is important to keep in mind that: 1) a small subset of sites are not covered by
both technologies, and 2) because microarrays output beta values (equivalent to methylated
signal/(total signal + an offset)), the relationship between TMS- and EPIC-derived values can not
be exactly 1:1 (as noted previously (51)). It is of course possible to recalibrate or rederive
popular algorithms such as epigenetic clocks, but we caution that care will be needed when
applying microarray-based algorithms to TMS data (as would be true for WGBS or RRBS as
well).

The study of DNA methylation in NHP species is deeply important to our understanding
of gene regulatory evolution (74—76), comparative aging (58,59,77,78), and environmental
impacts on phenotype (59,79). For example, both captive and field-based NHP studies have

strongly contributed to our understanding of how social and ecological inputs “get under the
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skin” to influence fitness-related traits through changes in DNA methylation (80,81). Because
microarrays are generally species-specific (but see (82,83)), NHP studies have struggled to
identify easy to use, reduced representation approaches for large-scale studies, with most
previous work relying on RRBS (59,78,79,81). Although RRBS is easily adapted for non-human
species, TMS can work with smaller amounts of input DNA than bisulfite-based protocols (40),
which can be critical for studies of wild or endangered species. While TMS uses capture probes
designed from the human genome, NHPs share high levels of sequence similarity, which we
show is sufficient to reliably capture 2-3 million CpG. Even though not all ~4 million CpG sites
are captured, this still represents a more consistent and cost-effective approach relative to the
alternatives. Notably, we find that TMS is effective in both catarrhine (monkeys of Africa and
Asia) and platyrrhine (monkeys of Central and South America) species, suggesting it may be
effective in other members of these clades.

We applied our optimized TMS protocol to profile DNA methylation levels in two
subsistence-level, small-scale, Indigenous populations—the Tsimane of Bolivia and the Orang
Asli of Peninsular Malaysia. Both populations have partnered with anthropologists and biologists
in long-term studies of behavior, health, and genomics (via The Tsimane Health and Life History
Project and The Orang Asli Health and Lifeways Project, respectively (47,48)). These studies
have revealed minimal evidence for age-associated increases in cardiometabolic disease in
subsistence-level contexts (see also (64,84,85)). Conditions such as cardiovascular disease, type
2 diabetes, and hypertension are widely regarded as being inevitable “diseases of aging” in
Western societies (86—88). Further, analyses across a gradient of market-integration and
acculturation with the Orang Asli have suggested that lifestyle can directly modify age-related
health patterns (89). We therefore wondered to what degree the well-established “hallmarks” of
epigenomic aging, derived almost entirely from studies of high-income cohorts, were reflected in
these populations (16,90). Our results reveal more similarities than differences in how the
epigenomes of the Tsimane, Orang Asli, and high-income individuals change with age. This may
reflect recent realizations that much of the epigenome is not functionally important in certain
developmental stages and/or cell types, and is thus not actively maintained with age. Instead,
DNA methylation patterns throughout much of the genome are thought to decay via a stochastic
but predictable process, whereby consistently hypermethylated regions lose methyl marks with

age and consistently hypomethylated regions gain methyl marks with age (71,91). However, we
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find that more functionally important regions of the genome such as enhancers and actively
transcribed regions display heterogeneity both in the direction of age effects and how this
manifests across populations, leaving clear scope for future studies of environmental and
lifestyle effects on epigenomic aging patterns (as well as extensions such as studies of
epigenomic age acceleration (66,92,93)). Together, our optimized TMS protocol has the potential
to add value and enable larger-scale studies in the many fields that query DNA methylation
patterns, such as genetic medicine, developmental biology, evolutionary biology, anthropology,

public health, geroscience, and more.

METHODS
Study populations, sample collection, and DNA extraction

Tsimane of Bolivia. The Tsimane are an Indigenous horticulturalists population spread

across >90 villages in the Bolivian lowlands and totaling approximately 17,000 people (47). We
extracted DNA from 192 venous whole blood (WB) samples collected between the years of
2010-2021 as part of the Tsimane Health and Life History Project (THLHP) and stored
long-term at -80C. The THLHP has continuously collected demographic, behavioral,
environmental, and health data along with the provision of medical services for over two decades
(94) (University of New Mexico IRB: #07-157; University of California, Santa Barbara IRB:
#3-21-0652). The sample set for this project included 103 females and 89 males, with a mean age
of 54.3 years old (range 18.0-83.6 years old) (see Table 1). Genomic DNA was extracted using
the Zymo Quick-DNA 96 kit (Zymo Research #D3012) following the manufacturer’s
instructions.

Orang Asli of Peninsular Malaysia. The Orang Asli consist of ~19 ethnolinguistic groups
and a total population of ~210,000 people (48). They traditionally subsist on a mixture of
hunting, gathering, fishing, small-scale farming, and trade of forest products (60,61). We
extracted DNA from 88 white blood cell (WBC) samples that were collected in 2023 as part of
the Orang Asli Health and Lifeways Project (Vanderbilt University IRB #212175). These
samples were derived from venous blood draws followed with washing with QIAGEN PureGene
red blood cell lysis. Samples were stored in liquid nitrogen upon collection, and at -80C for
longer term storage. The Orang Asli sample included 46 females and 42 males, with a mean age

of 35.3 years old (range 18-78 years old; Table 1). Genomic DNA was extracted using the Zymo
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Quick-DNA/RNA MagBead kit (Zymo Research #R2131) following the manufacturer’s
instructions.

Vanderbilt University Medical Center cohort. We were granted access to de-identified
EPIC array data (Infintum MethylationEPIC v2.0 Kit) and TMS data from 55 paired human
whole blood samples. These samples were sourced from a healthy cohort recruited through the
Vanderbilt University Medical Center (VUMC) in Nashville, TN USA. Due to IRB restrictions,
demographic data or other metadata were not available for these samples.

Rhesus macaques. We obtained extracted DNA from rhesus macaque tissue samples
(n=96) collected by the Cayo Biobank Research Unit in partnership with the University of Puerto
Rico’s Caribbean Primate Research Center (CPRC) (95-99). Beginning in 2016, samples were
collected from individuals living on the island of Cayo Santiago, an NIH-managed free-range
colony of provisioned rhesus macaques. Specifically, as part of an ongoing population
management plan designed by CPRC, select individuals were culled and tissues from all major
organ systems were systematically harvested, stored in a fixative buffer, and frozen at -80C
(IACUC #A400117). This data set consists of samples from six different tissue types: adrenal,
heart, kidney, lung, liver, and spleen, with 16 samples from each type and samples coming from
23 unique individuals (Table S3). This dataset includes samples from 11 females and 12 males,
ages 3.2 to 19.9 years old (mean 10.6 years old), collected from 2016-2019 (Table 1; Table S3).
Genomic DNA was extracted using the Zymo Quick-DNA/RNA MagBead kit (Zymo Research
#R2131) following the provided manufacturer’s protocols.

Geladas. We extracted DNA from whole blood from 68 geladas; 21 were female and 47
were male and all were considered adult (i.e., over 5 years old, the typical age of reproductive
maturation in this species (100)) (Table 1). Gelada samples were collected as part of the Simien
Mountains Gelada Research Project (SMGRP) which, since 2017, has carried out annual
capture-and-release campaigns to collect morphometric data and whole blood samples from wild
Ethiopian geladas. Samples were stored in liquid nitrogen upon collection, and at -80C for longer
term storage. This research was conducted with approval from the Ethiopian Wildlife and
Conservation Agency (EWCA), and the Institutional Animal Care and Use Committees
(IACUC:S) at the University of Washington (protocol 4416-01) and Arizona State University
(20-1754 R) (see Chiou et al. for more details on sample collection (101)). Genomic DNA was
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extracted using the Qiagen DNeasy Blood & Tissue kits (Qiagen #69581) following the provided
protocols.

Capuchins. Blood was collected from individuals in the captive capuchin monkey colony
at Georgia State University in January 2023. Of the 28 capuchins, 19 were female and 9 were
male with an average age of 19.4 years old (range 9—41 years old; Table 1). A trained
veterinarian anesthetized the monkeys using 13 mg/kg Ketamine, delivered intramuscularly.
Whole blood samples were collected in 6mL EDTA tubes, stored at 4°C, and shipped to Arizona
State University where they were flash frozen into 0.5mL aliquots and stored at -80°C until used
for analysis. DNA was extracted using the Qiagen DNeasy Blood & Tissue kits (Qiagen #69581)
following the manufacturer’s protocols. Blood collection was approved by the GSU IACUC
(protocol A20018).

Overview of TMS library preparation

We used the Qubit dsDNA assay to determine the quantity of all extracted DNA. The
samples were normalized to the desired input amount, and libraries were prepared using the
NEBNext® Enzymatic Methyl-seq kit (P/N: E7120L) following a modified version of the
manufacturer's protocol that included 9 cycles of PCR for the final library amplification followed
by a 0.65X bead cleanup. 71.4 ng of each resulting library was pooled and captured using the
Human Methylome panel from Twist Biosciences following the manufacturer’s instructions
(P/N: 105521). The final post-capture PCR reaction was split into 2 reactions per pool and
cleaned with a 1X bead cleanup and then combined. Pool quality was assessed post-hybridization
using the Agilent Bioanalyzer and quantified using a qPCR-based method with the KAPA
Library Quantification Kit (P/N: KK4873) and the QuantStudio 12K instrument.

Prepared library pools were sequenced on the NovaSeq 6000 at the Vanderbilt
Technologies for Advanced Genomics (VANTAGE) Core. We used 150 bp paired-end
sequencing and targeted 30-50M paired-end reads per sample. Real Time Analysis Software
(RTA) and NovaSeq Control Software (NCS) (1.8.0; Illumina) were used for base calling.
MultiQC (v1.7; Illumina) was used for data quality assessments. For each sample, we applied the
[llumina DRAGEN Methylation Pipeline v4.1.23 using the custom bed file from Twist
Biosciences. The deliverables from DRAGEN consist of FASTQs, bams, cytosine reports (which
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include counts of methylated and unmethylated reads per CpG site), and methyl and mapping

metric reports.

TMS library preparation for experiments 1 & 2: Varying multiplexing strategies and input
amounts

To determine whether TMS can be effectively multiplexed beyond the recommended
8-plex, we used 96 Tsimane samples to test four different multiplexing strategies during capture:
12-, 24-, 48-, and 96-plex. To test whether TMS is robust to DNA input amounts, we tested five
input amounts: specifically, 25, 50, 100, 200, and 400 ng of sample were used as input into the
EM-seq library prep. Here, we kept the plexing strategy constant (12-plex) and used three
Tsimane samples, each represented three times within each pool and included three replicates of

a control sample (HG01879 from the 1000 Genomes Project) (102).

TMS library preparation for experiments 3 & 4: Optimizing capture efficiency and DNA
shearing strategies

To optimize the capture efficiency of Twist target sites, we tested the use of two different
annealing temperatures—65° and 68° C—along with the use of a methylation enhancer (ME)—
produced by Twist Biosciences (Catalog #103557) consisting of Tris EDTA buffer to block the
binding of off-target probes thereby improving on-target capture efficiency. The specific
combinations we explored were: testing a 65°C annealing temperature with OuL (n=192), 2uL
(n=96), and 4uL (n=96) of ME and testing a 68°C annealing temperature with OuL. (n=96) and
2uL (n=192) of ME. These experiments were conducted with 96-plexed Tsimane samples
(n=192), and using 200 ng of sample input.

Next, we tested the use of an enzymatic fragmentation method to replace the Covaris
(LE220) mechanical shearing method to fragment the DNA. Mechanical shearing is known to
decrease library quality through damage to DNA; however, previous use of enzymatic shearing
methods have been shown to remove methyl groups from methylated CpG sites, thus biasing
detected methylation levels. Here, we aim to test whether enzymatic fragmentation, which is not
currently recommended by the TMS protocol, impacts site-level DNAm estimates through a
comparison with samples prepared using mechanical shearing. We performed the optimized

TMS with enzymatic shearing using 4uL of NEBNext UltraShear (NEB #M7634S/L) for 10 or
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20 minutes. This experiment was conducted using 96-plexed samples from the Orang Asli

(n=88) and using 200 ng of sample input.

TMS and RRBS library preparation for experiments 7 and 8

To evaluate the efficacy of optimized TMS on three NHP species—macaques, geladas,
and capuchins—we applied the 96-plex protocol design from experiment 1 with 200 ng input. To
compare rhesus macaque TMS to RRBS, we generated libraries using 150 ng of DNA input in
combination with 1ng of lambda phage DNA and 1uL of Mspl—a digestive enzyme which cuts
CCGG nucleotide motifs. Next, using NEBNext Ultra II reagents, we performed end repair and
adapter ligation to the DNA fragments produced by Mspl digestion. We then performed bisulfite
conversion on the fragments using the EZ-96 DNA Methylation Lightning MagPrep kit (Zymo
Research #D5046) following the manufacturer directions. The samples were then PCR amplified
for 16 cycles with unique dual indexed sequencing primers. We selected for 180-2000 bp
fragments and sequenced on an Illumina NovaSeq S2 flow cell with 2x51bp sequencing

(78,103).

Low-level processing of TMS data

For experiments 1, 2, 7, and 8, we used a custom bioinformatics pipeline to process all
FASTAQ files into counts of methylated versus unmethylated cytosines at each CpG site. For
experiments 3, 4, 5, and 6, we used [llumina’s Dynamic Read Analysis for GENomics
(DRAGEN) pipeline (104) to process all FASTQ files into counts of methylated versus
unmethylated cytosines at each CpG site. Importantly, both our custom pipeline and DRAGEN
follow the same general steps and rely on the Bismark suite (105), making them highly
comparable. We also processed 7 samples from experiment 4 using both methods to empirically
confirm that our custom pipeline and the [llumina DRAGEN pipeline produced near identical
results (Figure S13).

For our custom pipeline, we first trimmed adapters using Trimmomatic (version 0.39)
(106) and TrimGalore (version 0.6.6) (107) for human and NHP samples, respectively.
Following trimming, we used Bismark (version 0.24.0) (105) to map reads to each species'
respective genomes (hg38 for human, mmul10 for rhesus macaque, cimit for capuchin, and tgell

for gelada). We retained only uniquely mapped reads and used the methylation extractor function
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within Bismark to extract counts of methylated versus unmethylated cytosines at each cytosine.
These files were further filtered for CpG contexts only.

For all samples, run through either the custom or DRAGEN pipeline, we extracted two
measures of data quality that are automatically calculated by Bismark: the percent of reads that
mapped uniquely to the reference genome and the average methylation percentage for cytosines
in a CHH context. The latter value serves as a commonly used estimate of the efficiency with
which a given protocol converts unmethylated cytosines to thymine, because cytosines located
outside of CpG contexts are extremely unlikely to be methylated in the mammalian genome
(108,109). For experiments 1 and 2, we tested whether multiplexing strategy and input amount
impacted mapping efficiency and percent CHH methylation using a one-way ANOVA test,
followed by a pairwise t-test in the case of significance, with the ‘aov’ and ‘pairwise.t.test’
functions in the ‘stats’ R package (110).

For each study, we used the BSseq R package (111) to compile count matrices (derived
from our custom pipeline or DRAGEN) across samples and to perform region, coverage, and
missingness filtering. For experiments 1, 3, 4, 5, and 6 we used built-in functions in BSseq to
filter for sites within the probes regions (+/- 200 bp) and for sites covered at >5X in >75% of
samples. We made slight modifications to this filtering pipeline for other experiments. For
experiment 2, where n=3 for each input amount, we relaxed our missingness filter to sites with at
least one read observed in at least %3 samples. For experiment 7, which focused on NHP genomes
for which the probe set coordinates (which are provided in hg38) are irrelevant, we did not
perform region filtering. The number of sites analyzed for each experiment (reported in the main
text and in Figure S2) therefore varies slightly depending on sample size, sequencing coverage,
and other factors that impact which CpG sites passed our filters.

To confirm the fidelity of optimized TMS, we also checked whether CpGs captured by
the protocol were distributed as expected throughout different genomic regions (e.g., promoters,
enhancers) and that the average methylation levels in different genomic regions were as expected
(e.g., quiescent regions being lowly methylated, repressed polycomb being highly methylated).
To do so, we annotated each CpG site by whether it fell into a gene body, promoter, or non-genic
region, and by chromatin state. We used hg38 gene body coordinates from Ensembl’s ‘biomaRt’
package in R, and we defined promoter regions as the 2000 bp region upstream of TSSs. We
annotated CpGs as falling in chromatin states as defined by hg38 ChromHMM annotations from
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NIH’s Roadmap Epigenomics Project (50). We then counted the number of CpG sites that fell in

each region (Figure 2C) and evaluated the median methylation across samples (Figure 2D).

Quantifying capture efficiency

A subset of our experiments sought to understand and optimize two measures of
efficiency of the hybrid capture step: 1) how many of the expected CpG sites from the probe set
passed our filtering parameters and were thus analyzable and 2) how many of the reads we
generated for a given sample were on-target and putatively captured by the probe set, rather than
representing off-target randomly sequenced DNA fragments that do not contribute to analyzable
data as they are often sparsely shared between samples. For #1, we used the bedtools (version
2.28.0) (112) intersect command to determine the proportion of CpG sites that are within +/-
200bp with at least 1 probe (using a bed file available on the Twist Biosciences website
(https://www.twistbioscience.com/resources/data-files/twist-human-methylome-panel-target-bed-
file). For #2, we used the bedtools function bamtobed to convert the mapped reads for each
sample into a bed file; because we used a paired end sequencing strategy, each bed coordinate
included a fragment start position from R1 and a fragment end position from R2. We then used
the bedtools intersect command to determine the proportion of mapped read pairs that are within

200bp of at least 1 Twist probe.

Comparing DNA methylation measurements between TMS, the EPIC array, and WGBS
We used our filtered BSSeq object from experiment 5 to compare to data from the EPIC
array generated for 55 paired human samples (average number of CpG sites measured with EPIC
= 936,280; average call rate = 0.999). We downloaded the EPIC CpG coordinates from the
Illumina website and merged with the TMS CpG locations, resulting in a shared dataset of
682,295 CpG sites passing filters and common to both technologies. We then performed two
analyses to understand consistency. First, we calculated the average per-site methylation level
across all samples included in the TMS or EPIC array datasets, respectively. We then ran a linear
model testing the relationship between the two sets of average methylation levels using the ‘Im’
function in the ‘stats’ package in R. Second, we used the ‘Im’ function to estimate the R*value
comparing per-site methylation levels for estimates derived from each technology for a given

individual (i.e., not averaged across the dataset). This resulted in a distribution of 55 R? values.
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Because all humans share canonical methylation patterns, we also compared this distribution to a
distribution of 55 R?values derived from the same analysis after sample identity was permuted.
We used the ‘t.test’ function in the ‘stats’ package in R to ask whether these distributions were
significantly different.

We used a very similar strategy to compare ~30x WGBS data generated for six paired
Tsimane samples with TMS data generated from experiment 1 (96-plex, 200 ng input). First, we
performed low level processing of the WGBS data using [llumina’s DRAGEN pipeline and
merged this with our filtered TMS data, resulting in 3,078,771 CpG sites common to both
datasets. We calculated the average methylation level across samples reported for each site and
technology and ran a linear model using the ‘Im’ function in the ‘stats’ package in R to calculate
the R? value. We did not compare individual-based R* values to permuted values for this

experiment, given the small number of individuals.

Understanding TMS performance in NHP species and comparing DNA methylation
measurements between TMS and RRBS

To estimate the number of CpG sites that we expected to recover when applying the
human probe set to each NHP species, we converted the probe bed file to a FASTA file using the
bedtools command ‘getfasta’ (112) and the hg38 reference genome. We then used Bismark to
map the FASTA file to each non-human primate’s respective genome. From the mapped bam
file, we used the ‘bamToBed’ function in bedtools to extract coordinates for the mapped probes
and to add a +/- 200 bp offset. Finally, we applied the ‘getfasta’ function in bedtools to extract
the sequence for the mapped regions (plus the 200bp buffer) from the non-human primate
genome and to count the number of CpG sites in this region set.

Similar to the comparisons between TMS and the EPIC array, we used paired RRBS data
for the 96 rhesus macaque samples to directly compare methylation data generated using TMS
versus RRBS. To do so, we processed the RRBS data using the same custom pipeline and
filtering parameters described for TMS data, with the only modification being that we used the
'—rrbs' parameter in Trim Galore to remove unmethylated cytosines artificially introduced
during library preparation from the 3 end of fragments. We merged the filtered TMS and RRBS
datasets, resulting in 721,766 CpG sites common to both technologies. As described for the

TMS-EPIC array comparison, we then 1) calculated the average per-site methylation level across
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all samples included in each dataset and compared these vectors using linear models and 2)
estimated the R? value for methylation level estimates derived from each technology for a given
individual, and used a t-test to compare this distribution to a distribution for the same analysis

where sample identity was permuted (Figure S14).

Testing for age-associated changes in DNA methylation in the Tsimane and Orang Asli

We tested the extent to which DNA methylation varied with age using data from two
experiments: 1) 96-plex, 200 ng input data from experiment 1 for the Tsimane of Bolivia and 2)
96-plex, 200 ng input, enzymatically sheared data from experiment 4 for the Orang Asli of
Peninsular Malaysia. Subsistence-level groups generally show little age-related decline in
cardiometabolic health (113), but it remains unknown if their relative lack of age-related chronic
disease extends to molecular phenotypes because these populations are chronically understudied
and underrepresented, especially in genomics. To evaluate age-effects on DNA methylation
levels, we focused on sites that passed the filtering parameters described above and that were
variably methylated (median methylation >10% and <90%). This resulted in 936,547 and
1,001,011 testable sites in the Tsimane and Orang Asli, respectively. We used the ‘betabin’
function from the R ‘aod’ package (114) to test for age effects on the proportion of methylated /
total read counts at each CpG site in each population, controlling for self-reported sex, batch, and
cell type composition (proportion of neutrophils and lymphocytes, including B, CD4-T, and
CDS-T cells). We extracted the p-value for the age effect for each tested site, and corrected for
multiple hypothesis testing using the Benjaminin-Hochberg false discovery rate approach
implemented in the ‘p.adjust’ function in R.

Cell type composition was estimated via deconvolution in the R package ‘EpiDISH’
(115), using the ‘centDHSbloodDMC.m’ reference and the ‘RPC’ method. We focused on the
cell populations referenced above because they matched empirically derived estimates available
for the same samples for the Orang Asli (R*>0.5, p<0.05). Specifically, information about the
relative proportion of lymphocytes, neutrophils, eosinophils, monocytes, and basophils was
obtained for each Orang Asli sample from a 5-part white blood cell differential via the HemoCue
WBC DIFF system and compared to deconvolution estimates.

We compared the age-related effects we found in Tsimane and Orang Asli to those

reported by Johansson et al. (2013) (70), which quantified DNA methylation throughout aging in


https://paperpile.com/c/gNA9sr/bWeL
https://paperpile.com/c/gNA9sr/rlRD
https://paperpile.com/c/gNA9sr/cjTH
https://paperpile.com/c/gNA9sr/Uhjca
https://doi.org/10.1101/2024.09.09.612068

bioRxiv preprint doi: https://doi.org/10.1101/2024.09.09.612068; this version posted September 9, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

27

a Swedish cohort using the 450K array. As Johansson et al. provided age estimates by Illumina
ID and chromosome/position (i.e., site), we used UCSC’s Genome Browser LiftOver to convert
genomic coordinates to hg38. We then were able to combine this dataset with our TMS data
based on genomic coordinate position. This allowed us to test for correlations of age effect sizes
amongst CpGs with data in all three datasets (Johansson, TMS from Tsimane, and TMS from
Orang Asli). To understand how age effects varied across regions of the genome with distinct
functions, we annotated each CpG site by the chromatin states in which it fell using ChromHMM
annotations from NIH’s Roadmap Epigenomics Project (50). We then asked—for each
population separately—whether CpGs significantly hypermethylated with age (FDR < 10%)
were enriched in each chromatin state compared to all other sites and age-associated
hypermethylated sites that did not fall into that region using the ‘fisher.test’ function in R. We
performed this test for all regions and did the same for hypomethylated sites. All statistical

analyses were performed using R version 4.2.2.

DATA AND CODE AVAILABILITY

All NHP data generated as part of this study has been deposited in NCBI’s Sequence
Read Archive under accession number PRINA1156067.

The human genomic data generated as part of this study comes from Indigenous
participants from the Tsimane Health and Life History Project (THLHP) and the Orang Asli
Health and Lifeways Project (OA HeLP). Both THLHP and OA HeLP’s highest priority is the
minimization of risk to study participants. Both projects adhere to the “CARE Principles for
Indigenous Data Governance” (Collective Benefit, Authority to Control, Responsibility, and
Ethics) and are also committed to the “FAIR Guiding Principles for scientific data management
and stewardship” (Findable, Accessible, Interoperable, Reusable). To adhere to these principles
while minimizing risks, genomic data from both projects are available via restricted access. For
OA HeLP, these requests can be made via dbGap (accession number TBD). For THLHP, these
requests can be made via email following the instructions provided here:
https://tsimane.anth.ucsb.edu/data.html. In both cases, requests for de-identified genomic data
will take the form of an application that details the exact uses of the data and the research
questions to be addressed, procedures that will be employed for data security and privacy,

potential benefits to the study communities, and procedures for assessing and minimizing
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stigmatizing interpretations of the research results. Both projects are committed to open science
and the leadership is available to assist interested investigators in preparing data access requests.
All scripts used to perform the analyses described here are available at

“https://github.com/alongtin15/TMS-Cost-effective-solutions-for-high-throughput-enzymatic-D

NA-methylation-sequencing.”
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