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Abstract (129/150 words) 

This work reports in-situ (active) electrochemical control over the coupling strength between 

semiconducting nanoplatelets and a plasmonic cavity. We found that by applying a reductive 

bias to an Al nanoparticle lattice working electrode, the number of CdSe nanoplatelet emitters 

that can couple to the cavity is decreased. Strong coupling can be reversibly recovered by 

discharging the lattice at oxidative potentials relative to the conduction band edge reduction 

potential of the emitters. By correlating the number of electrons added or removed with the 

measured coupling strength, we identified that loss and recovery of strong coupling is likely 
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hindered by side processes that trap and/or inhibit electrons from populating the nanoplatelet 

conduction band. These findings demonstrate tunable, external control of strong coupling and 

offer prospects to tune selectivity in chemical reactions. 
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Exciton-polaritons are hybrid light-matter quasiparticles that form under strong coupling, which 

occurs when the coupling between an optical cavity and an exciton exceeds the losses of 

either.1-2 Exciton-polaritons are important in diverse fields, ranging from quantum computing3 to 

sensing4 to low-threshold lasing.5 Recently, these quasiparticles have gained attention to control 

the product distribution of chemical reactions by altering potential energy surfaces.6 However, 

most work on polariton-mediated charge transfer,7 singlet fission,8 and reaction control9 has 

been limited to theory; there are few experiments that have demonstrated exciton-polariton-

mediated chemical reactivity.10-11 

One key parameter to control reactivity is the coupling strength (g) between many (N) emitters 

and a cavity:12 

𝑔 =  √𝑁 ∙ 𝜇√
ℏ𝜔

2𝜖0𝑉𝑐
 

where µ is the transition dipole moment of the emitter, ω is the frequency of a photon resonant 

to the cavity, and Vc is the mode volume of the cavity. Active tuning (i.e., external, in-situ 

control)13-14 of g often requires complex means, including varying the refractive index 

environment through microfluidics15 or raising the temperature of the emitters.16 Ideally, 

manipulating g should occur in a simple, non-invasive manner, such that polariton-mediated 

reactions can be studied without compounding effects. Adjusting the coupling strength by 

segregating emitters from the cavity is one proposed approach to influence the product 

distribution of chemical reactions resulting from polariton-altered frontier molecular orbitals of 

reagents.17   

Populating or depleting frontier molecular orbitals by applying an electrochemical potential is 

known to change the optical properties of molecular species and therefore exciton formation.18 

Similarly, when a negative (positive) potential of appropriate magnitude is applied to 

semiconducting excitonic materials, electrons (holes) are injected into the conduction (valence) 

band of the emitters. With the conduction band occupied (or valence band depleted), electronic 



5 
 

transitions cannot occur, and optical absorptions are bleached. As a result, in an ensemble of N 

semiconductor excitons under reductive bias, fewer emitters are available to couple to the 

cavity. Although electrical19-20 and electrochemical21-23 tunability of coupling strength has been 

realized, the focus has been on either organic dyes or transition metal dichalcogenide (TMD) 

flake emitters. CdSe nanoplatelets (NPLs) have advantages because of their large oscillator 

strengths24-26 compared to organic emitters and their ease of ligand exchange compared to 

TMDs27-30 and are established materials for strong coupling to a variety of cavities at room 

temperature.31-32 Since CdSe NPLs can be synthesized with a variety of absorption and 

emission energies based on plate thickness,33 they can be used to target a broad range of 

reaction energetics. 

Plasmonic nanoparticle lattices are advantageous cavities for strong coupling and for carrying 

out chemical reactions due to their open lattice structure.34-37 Periodic lattices of metallic 

nanoparticles can support high-quality surface lattice resonance (SLR) cavity modes by 

coupling the localized surface plasmons of each nanoparticle to the diffractive photonic modes 

in the lattice in an index-matched environment.38-39 The single substrate and metal nanoparticles 

of the cavity facilitate incorporation into spectroelectrochemistry experiments, as the cavity is 

accessible to solvents and reagents, and the lattices can be fabricated on transparent 

conductive substrates.37 By tuning nanoparticle material and shape as well as periodicity, 

plasmonic lattice cavities can be designed to interact with different excitonic materials.39  

Here we show external, in-situ control of the coupling strength in polaritons formed between 

CdSe NPL excitons and a plasmonic lattice cavity. Polariton coupling strength was modulated 

via an applied electrochemical potential to an Al nanoparticle lattice on an indium tin oxide 

substrate that functioned as the working electrode. By applying reductive potentials, we 

incrementally raised the Fermi level of a subset of CdSe NPLs in the film. When the magnitude 

of that potential exceeded the formal reduction potential of the conduction band edge, the 

excitonic absorption features of the NPLs bleached. Repeated cycles beyond the conduction 



6 
 

band edge were found to suppress the coupling strength between the cavity and NPLs. Under 

oxidative applied potentials, the NPL film discharged, and the polariton features were recovered. 

The extent of the reduction and recovery in coupling strength correlated directly with the number 

of electrons added or removed from the NPL film, a connection yet to be formalized in the 

literature. External, in-situ control of the degree of coupling will enable future experiments that 

take advantage of polariton-mediated reactions.   

We designed a custom-built, three-electrode cell for spectroelectrochemical experiments on 

the coupled lattice cavity–NPL film system (Figure 1a). The transparent working electrode 

functions as one window, and a second inert window confines the electrolyte solution. The 

Ag/AgNO3 reference electrode and Pt wire counter electrode complete the cell and were 

mounted offset so as not to obstruct the transmission of light through the cell under an applied 

potential. This architecture allows the electrochemical cell to be mounted into a Fourier 

transform microscope between a condenser and objective lens5, 40 so that changes to polaritons 

as a result of bias can be quantified in real time (Figure 1b). 
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Four-monolayer, oleate-capped CdSe NPLs (Figure 1c) were synthesized using our improved 

procedure5 and cast into an 110-nm thick film. There are two excitonic transitions in CdSe NPLs: 

(1) the heavy hole (HH) valence band to the conduction band at 2.41 eV (~514 nm) and (2) the 

light hole (LH) valence band to the conduction band at 2.58 eV (~480 nm).33 Photonic cavities 

consisting of square lattices of Al nanoparticles (diameter d = 90 nm, height h = 60 nm) with 

periodicity a0 = 320 nm (Figure 1d) were fabricated by electron beam lithography on ITO-coated 

 
Figure 1: Spectroelectrochemical cell for active tuning of exciton polaritons. (a) 

Diagram of the cell showing the sandwiched cell design with space for an electrolyte 

solution, reference, and counter electrodes. (inset) Detailed model NPL film in the dual-

function aluminum nanoparticle cavity on the working electrode ITO glass substrate (b) 

Photograph of the cell showing integration with the Fourier transmission microscope. (c) 

TEM image of monodisperse ~ 10 nm x 30 nm CdSe NPLs used in film. (d) SEM image of 

a0 = 320 nm periodicity lattice fabricated on ITO. (e) Optical micrograph of 2.5 x 2.5 cm ITO-

glass substrate patterned with 300 μm x 300 μm Al nanoparticle lattice and CdSe NPL film. 
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glass slides (Supporting Information). The emitter-cavity system consists of ITO on glass, an Al 

NP lattice, and a CdSe NPL film (Figure 1e). For electrochemical measurements, samples are 

immersed in 0.25 M [Bu4N][PF6] in CH3CN electrolyte (Supporting Information) since CH3CN is a 

polar solvent with low resistivity and stable in a wide potential window (~ 3 V to –3 V vs. SCE).41  

If the SLR cavity mode is close enough in energy to the heavy or light hole (or both), 

polaritons can form. Typically, the higher energy eigenmode is referred to as the upper polariton 

(UP) while the lower energy mode is defined as the lower polariton (LP). Since CdSe NPLs 

support two excitonic absorptions, depending on the operational frequency of the cavity, a 

middle polariton (MP) mode can also be present.5 Scheme 1 summarizes how an applied bias 

can inhibit HH and LH excitonic transitions by populating the NPL conduction band with 

electrons. As a result, the HH and LH hole excitons are suppressed, which lowers the number of 

available NPLs, N, that can couple to the cavity. 

The conduction band edge potential of CdSe NPLs was quantified in UV-Vis absorbance 

spectroelectrochemical experiments of NPL films on Al lattice/ITO substrates (Figure 2). In 

these experiments, the applied potential was stepped from –0.94 to –2.34 V vs. Fc+/0. The 

 
Scheme 1: Fermi and energy level diagrams of the coupled CdSe NPL-Al lattice system 

with no voltage applied (top) and under a reductive potential (bottom). 
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potential range was selected to ensure that the transition from NPL emitters with unpopulated 

conduction bands to fully populated was resolved.42-46 UV-vis absorbance spectra were 

collected with large reductive potential steps (100 mV) in the initial 400 mV of the range (from –

0.94 to –1.34 V vs. Fc+/0) to minimize exposure of the sample to bias where no change in the 

absorbance profile was observed. Once bleaching of the LH and HH excitonic features 

occurred, spectra were collected every 50 mV (from –1.34 to –2.34 V) to track the bleach 

throughout the population of the conduction band and beyond (Figure 2a). After each reductive 

step, an oxidative step (–0.14 V vs. Fc+/0) was applied to remove charges from the NPL film (i.e., 

the NPLs were discharged) and mitigate undesirable charging that may lead to degradation47-48 

(Supporting Information). We did not observe electrochemical degradation of either the Al lattice 

or ITO film.  
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Figure 2a shows a progressive bleaching of the LH and HH absorption with increasing 

reductive potentials in the range of –1.40 to –1.85 V vs. Fc+/0. Plots of the change in absorption 

(∆A) of both the HH and LH transitions represent the fraction of reduced emitters as a function 

of applied potential (Figure 2b). These data can be fit to a sigmoidal function, as expected from 

the Nernst equation, and used to determine the formal reduction potential of the conduction 

band edge (–1.67 ± 0.06 V vs. Fc+/0, see Supporting Information). Under such reductive bias, 

formation of the exciton is inhibited; we use this measured NPL conduction band edge potential 

as the starting bias to electrochemically tune the coupling in our system. 

 
Figure 2: Quantified conduction band edge potentials. (a) Change in absorbance of 

CdSe NPL film on Al lattice cavity with an increasing applied potential showing the loss of 

absorbance from the HH and LH exciton transitions. (b) Fitting of the change in absorbance 

from the HH and LH exciton transitions vs. applied potential with a sigmoid curve to obtain 

the conduction band edge potential of –1.67 V vs. Fc+/0. Each reductive and oxidative 

potential was applied for 35 s. 
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Figure 3a shows that the HH and LH excitonic transitions of CdSe NPL films are non-

dispersive, as expected. By varying the periodicity of the lattice, the Γ-point of SLR bands can 

be shifted higher or lower in energy.38 We selected a0 = 320 nm because this periodicity results 

in a distinct SLR mode whose Γ-point (k|| = 0 µm-1, 2.26 eV) is lower in energy than the HH, and 

the most intense SLR bands crossing the HH relatively unobscured (Figure 3b). In order to 

perform the background correction and normalization required for spectroelectrochemical 

measurements, we only considered SLR modes excited under transverse electric (TE) 

polarization. The dispersion diagram of the bare Al nanoparticle lattice shows many modes 

because of the refractive index mismatch between the n = 1.525 superstrate and the ITO-glass 

substrate. Index oil was used for the uncoupled measurements to match the refractive index of 

glass to minimize the number of unique indices in the system. When the difference in refractive 

index is high, waveguide modes can form and couple to the SLR and generate waveguide-SLRs 

(W-SLR).49-50 Based on finite-difference time-domain simulations (Supporting Information), we 

identify the lower energy dispersive X-shaped modes (Γ = ~ 2.26 eV) as having predominantly 

dipolar character (SLR1). The higher energy X-shaped mode (Γ = ~ 2.56 eV) is also 

predominantly dipolar character (SLR2), however the shift in energy is attributed to the SLR 

sensitivity to the local refractive index environment51-52 of either the ITO or the superstrate. The 

parabolic mode intersecting SLR1 at k|| = 0 µm-1 has increased field intensity in the ITO layer, 

and is likely a waveguide mode. For this electrochemical study of polaritons, we will only focus 

on the cavity mode described by SLR1.  
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Figure 3c depicts anti-crossing behavior characteristic of strong coupling between the SLR 

mode of the plasmonic cavity and the HH band of the NPL film at ca. k|| = ±2.3 µm-1 and 2.42 

eV. The LP band occurs below the HH in energy and is overlaid with a teal dashed line based 

on a fit from the coupled oscillator model.5, 31 Below ~2.3 eV, the LP retains significant SLR 

character, matching the transmission from the uncoupled lattice. However, at energies close to 

the HH, the bands begin to bend outwards, resulting in flat bands at large k|| reminiscent of the 

HH band. The MP, between the 2.42 and 2.58 eV, can likewise be fit and is traced in yellow. 

Similar to the LP, the MP has a more flat-band shape from the LH at larger k|| values. However, 

the portion of the MP near the HH bends the opposite way, towards k|| = 0 µm-1. Fitting these 

features is more complicated because of the presence of both SLR1 and SLR2 modes. The UP 

would fall above the LH in energy out of the frame of the visualized area. By fitting the LP with 

the coupled oscillator model, we can extract a gHH value that can be compared to the loss 

values (γ) of the HH exciton and SLR cavity (Supporting Information). The measurements 

 
Figure 3: Strongly coupled CdSe NPL film to Al nanoparticle lattice cavity. (a) 

Transmission from an uncoupled CdSe NPL film showing the non-dispersive light and heavy 

hole absorption bands. (b) TE-polarized transmission from an uncoupled a0 = 320 nm Al 

lattice showing the dispersive SLR and waveguide modes, with the SLR of interest 

highlighted in yellow. (c) TE-polarized transmission from coupled CdSe NPL film and Al 

lattice cavity. Lower polaritons (green) and middle polariton (cyan) demonstrate anti-crossing 

behavior to deviate from the SLR dispersion at the HH energy. 
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confirm that the coupling strength (gHH ≈ 45 meV) is sufficiently large (γex = 40 meV, γca = 81 

meV) to satisfy the criteria for strong coupling (2gHH > γex, γca).  

To tune the coupling strength as a function of applied potential, we performed a linear sweep 

voltammetry experiment, where the applied potential was swept from –1.53 V to –1.82 V vs. 

Fc+/0. We observed a decrease in coupling at –1.74 V vs. Fc+/0 (Supporting Information). 

Informed by the reduction potential of the of the NPL conduction band edge (–1.67 V vs. Fc+/0) 

and the change in coupling strength at –1.74 V vs. Fc+/0, a step potential experiment was then 

performed by alternating between an applied reductive potential Vapp of –1.78 V vs. Fc+/0 and a 

more positive discharging potential Vdis of –0.13 V vs. Fc+/0, each for 35 s intervals. Significant 

charge injection into the NPL conduction band should occur at Vapp, leading to a bleach of the 

excitonic absorption features and elimination of strong coupling. Charge can then be removed 

by applying the “discharge” step to restore strong coupling.  

Figure 4 indicates that the coupling strength can be tuned from strong to the weak coupling 

under an applied voltage. Without Vapp, the magnitude of gHH can be interpreted in the 

dispersion diagram as the displacement of the LP away from the expected crossing between the 

SLR and the HH (k|| = ±2.3 µm-1) (Figure 4a). Through two cycles of Vapp and Vdis, the coupling 

strength decreases and recovers. Using our electrochemical cell, we observed that during the 

second cycle of Vapp, gHH contracted by 33% since an estimated 39.5% of NPLs had their 

excitonic transitions occluded and hence effectively segregated from the cavity (Figure 4b). The 

obvious band bending of the LP (teal) was reduced, and the LP can no longer be as clearly 

distinguished from the HH or SLR modes (white), and hence only weak coupling is present.2, 53 

Through the third and fourth cycles, the band-bending continues to reduce, and the dispersion 

diagrams of the cavities with and without NPL become more similar. During the 5th cycle of Vapp, 

89% of emitters in the NPL film were bleached, and gHH decreased significantly, resulting in a 

significant kink forming between the now nearly completely X-shaped dispersive SLR modes 

and the flat-banded CdSe film HH (Figure 4c). 
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Because gHH is directly proportional to N, gHH would be expected to stabilize to the same value 

after each cycle. However, the continual decrease in coupling strength can be rationalized by 

estimating the number of electrons added and removed from the system. Calculations of the 

number of electrons in the NPL film during each potential step (Supporting Information) reveals 

that through the first cycle at Vapp, 1.4 × 1016 electrons are added to the system (Figure 5a), 

resulting in a reduction in gHH of 10 meV (from 45 to 35 meV) (Figure 5b). However, when the 

system is discharged in that cycle at –0.13 V vs. Fc+/0 for 35 s, only 4.8 × 1015 electrons are 

removed from the film, and a recovery of 5 meV in gHH was observed. After the first cycle, a net 

9.2 × 1015 electrons are still in the film, corresponding to 66% of the initially added electrons, 

 
Figure 4: Repeated voltage and discharge cycles reduce and increase the coupling 

strength of the system. (a) Dispersion diagrams showing strong coupling before any 

voltage was applied. Inset is a detail view of the area of anti-crossing, with the heavy hole 

plotted in white, lower polariton fitting plotted in green, and the location of the original 

uncoupled SLR (calculated by coupling the Rayleigh anomaly from the empty lattice model 

with the LSP) in teal. (b) taken during the second cycle of Vapp = –1.78 V vs. Fc+/0 applied, 

and (c) the fifth cycle of Vapp. Each potential was applied for 35 s and was followed by a 

discharge step of equal duration.  
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and gHH has only recovered 50% of the initial deficit by the end of the cycle (Supporting 

Information). This response is consistent through 5 cycles, after which accurately fitting the LP 

becomes challenging. The data suggests that strong coupling is not fully recovered at any point 

with a 35 s discharge step because the number of electrons added to the system are not fully 

removed within this timescale either. 

 

The incomplete reduction of the film in the first cycle can be explained by the localization of 

electrochemically injected charge.54-56 As electrons are injected into the NPL film, cations from 

the electrolyte ([Bu4N]+) are also drawn into the film voids.54, 56 The reduction of NPLs is 

restricted by the uptake of charge-compensating ions that depend on the size of the counter ion, 

 
Figure 5. Jaynes-Cummings model fitting shows decrease of strong coupling as 

electrons are added into the system. (a) Plot of number of cumulative number of electrons 

added to the system (x1016) after applying a voltage and after discharging for 35 s each. 

Grey points correspond to the system at the beginning of the experiment prior to applying 

any potential. Green corresponds to –1.78 V vs. Fc+/0 applied potential and red points 

correspond to discharging at –0.13 V. (b) Plot of gHH values vs. applied potential or discharge 

step within each cycle. 
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the void space of the NPL film, and the length of the NPL ligands.54 Therefore, experimental 

differences in NPL film thickness or packing density can propagate to differences in NPL 

reduction efficiency. Injected charge can also be trapped in localized states at the NPL surface 

that will affect conduction band population and limit the full reduction of the NPL film in each 

cycle within experiment timescales.43, 47-48, 57-62 Charge trapping at NPL surface states may also 

result in chemically irreversible degradation.47 The complications of electrochemically injected 

charge not only affect the addition of electrons, but also the efficient removal of all added 

electrons in the discharge step.43, 58 Additionally, injected charges can react with solvent 

impurities and prevent injected electrons from reducing the film.63-64 Ultimately, we attribute the 

incomplete removal of electrons and restoration of strong coupling during the cycling experiment 

to limitations on the rate or amount of charge that can be added or removed.56, 65 

In conclusion, we demonstrate that the coupling between CdSe NPLs and a plasmonic lattice 

cavity can be actively tuned across the strong and weak coupling regimes. The magnitude of 

the coupling lost and recovered correlated to the number of charges injected or removed from 

the NPL film. Tracking cumulative charge in an electrochemical system is useful for catalytic 

processes, helping to determine its efficiency in forming specific products.66 For improved 

recovery, cross-linking or ligand exchange procedures could be used to aid electron and 

electrolyte movement, and more robust emitters, such as core-shell NPLs, may withstand the 

harsh reductive environment better than oleate-capped NPLs.67 Our open cavity design and thin 

electrochemical cell show promise for active controlling strong coupling by applying 

electrochemical potentials. This work provides a foundation to understand the energetics of the 

upper and lower polariton, which is important for tuning the driving force of polariton-mediated 

redox reactions. Storing qubits in polaritons, tuning the driving force of photoelectrochemical 

reactions, and controlling polariton condensates will benefit from continued studies on external, 

in-situ control of coupling strength and polariton energetics. 
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