
1. Introduction

Seismic imaging plays an important role in hydrocarbon detection and study of deep Earth's structure 
(Claerbout, 1985; Freeman et al., 1988; Gray, 2001). It extrapolates observed data in reverse time and applies an 
appropriate imaging condition to reconstruct subsurface impedance interfaces. In the past 30 years, with the rapid 
development of computing technologies, seismic imaging methods have evolved from early ray-based Kirchhoff 
migration (Gray & May, 1994; Hokstad, 2000; Keho & Beydoun, 1988; Wiggins, 1984), through one-way wave 
equation migration (Gazdag,  1978; Stoffa et  al.,  1990; Zhang et  al.,  2005), and then to current reverse-time 
migration (Baysal et al., 1983; McMechan, 1983; Nguyen & McMechan, 2015; Sun & McMechan, 2001; Yan & 
Sava, 2008). Although the accuracy of numerical solvers for the wave equation was greatly improved during the 
evolution of the algorithms, the basic physical frameworks of these imaging methods is conceptually similar, and 
can be considered mathematically as an adjoint operator of seismic forward modeling. It is difficult for them to 
produce high-quality images for complicated subsurface structures, because of band-limited sources and receiver 
wavefields, incomplete data acquisition, and irregular subsurface illumination.

Tarantola (1984a, 1984b) incorporated seismic imaging into a generalized inversion scheme and proposed to esti-
mate seismic model parameters by fitting observed data with simulated seismograms. The nonlinear inversion, i.e., 
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full-waveform inversion (Pratt et al., 1998; Virieux & Operto, 2009), aims to construct seismic velocity, density, 
attenuation, and anisotropy in a broad wavenumber band, while the linearized waveform inversion, which is later 
known as least-squares migration (LSM), estimates the high-wavenumber model parameters in a least-squares 
sense. Because direct computation of LSM solution is too expensive, the gradient-based methods, such as steepest 
descent and conjugate gradient, are usually used to fit observed records with the predicted seismograms (Fomel 
et al., 2008; Nemeth et al., 1999; Wang et al., 2013; Wong et al., 2015). Currently, the data-domain LSM has been 
implemented using a variety of different ray-based and wave equation migration methods (Dai et al., 2011, 2012; 
Xue et al., 2016; Yang & Zhang, 2019; Yang et al., 2018; Zhang & Schuster, 2014), and extended to (an)elastic 
and anisotropic media (Dutta & Schuster, 2014; Feng & Schuster, 2017; Ren et al., 2017; Yang et al., 2020). 
These developments make LSM a robust imaging method and so has been gradually applied to field data process-
ing (Latter et al., 2018; Lu et al., 2018; Wong et al., 2011; Zhang et al., 2015), which produces superior imaging 
results in comparison to traditional adjoint migration. However, many iterations of data-domain LSM require a 
large number of forward simulations and adjoint migrations to converge to a good solution, which is still expen-
sive and difficult to be widely used for large-scale models in production under current computational capacity.

To alleviate computational cost, many optimization strategies have been proposed to accelerate the convergence 
of LSM. For instance, a true or approximated diagonal Hessian is commonly used as a preconditioner for the 
misfit gradient to compensate for limitations in deep illumination (Plessix & Mulder, 2004; Rickett, 2003; Shin 
et  al.,  2001). Guitton  (2004) computes a bank of nonstationary matching filters to approximate the Hessian 
inverse, and applies them to 3D LSM to speed up the convergence (Guitton, 2017). Aoki and Schuster (2009) 
introduce a deblurring filter into LSM and obtain similar results to standard LSM with less than one-third of 
the cost. Hou and Symes  (2015) derive a Born inversion operator in the subsurface offset domain using the 
asymptotic approximation and design a weighted conjugate gradient algorithm to accelerate the convergence of 
extended LSM. Recently, Yang et al. (2021) approximate the Gauss-Newton Hessian with a space-wavenumber 
filter, which allows LSM to converge to a good solution in four or five iterations.

An alternative for data-domain LSM is to solve the least-squares inverse problem in the image domain as Hm = I, 
where H is the Hessian matrix, m is the expected reflectivity model, and I is the traditional adjoint migration 
image. Theoretically, one column of the Hessian can be computed using one pass of Born modeling and adjoint 
migration over all sources and receivers. In seismic imaging, even 2D models typically have millions of grid 
points and 3D models have tens of billions of grid points, which make it prohibitively expensive to directly 
compute the Hessian. Thus, the core of image-domain LSM is how to efficiently calculate the Hessian matrix. 
By limiting the imaging region near hydrocarbon reservoirs, Valenciano et al. (2006) proposes a target-oriented 
wave-equation inversion and considerably reduces the size of Hessian matrix. Tang (2009) introduces plane-wave 
and random phase encoding into the Hessian computation to further reduce the computational cost. Using the 
Born modeling and reverse-time migration, Fletcher et al. (2016) calculate point-spread functions (PSFs) on a 
sparsely distributed seed grid to approximate the Hessian. Guo and Wang (2019) approximate the Hessian matrix 
with nonstationary filters by comparing a reference image with a demigration/remigration image, and develop an 
image-domain LSM scheme with a sparsity constraint. However, one common issue in the PSF calculation is the 
trade-off between fine-enough sampling to capture their spatial variations associated with heterogeneities, and 
the sufficient sparsity to avoid overlapping of PSFs. As analyzed by Fletcher et al. (2016), these two competing 
requirements cannot always be reconciled, and additional modeling and migration are needed to generate more 
PSFs.

In this study, we propose an efficient method to calculate PSFs and utilize the PSF deconvolution to improve the 
image quality for complicated subsurface structures. With the Green's function computed using Gaussian beam 
summation, we develop a local Born modeling and migration scheme to compute the PSFs on a coarse grid. The 
spacing of the coarse grid is set as five to eight times of the fine image sampling increment in order to capture 
fluctuations in illumination and blurring of the image. In addition, the point scattering responses in the Born 
modeling are saved only in a short time window, and the cross-correlation used to compute the PSFs is performed 
only in a window with a length about one wavelength. These localized features in modeling and migration enable 
significantly reduction of computational costs, while avoiding the overlapping, with sufficient PSF sampling. 
Then, a multidimensional Gaussian function is applied to the PSFs to attenuate artifacts far away from the PSF 
centers. Using the partition of unity, which is a collection of window functions that sum to one everywhere in 
the domain of interest, we decompose the traditional adjoint migration results into a series of local images. 
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Finally, these local images are deconvolved by the PSFs in the wavenumber domain to alleviate the effects of 
geometric spreading and the band-limited source functions. Numerical examples, using both synthetic and field 
data, demonstrate that the proposed method can significantly improve image resolution and amplitudes for deep 
structures, while not being sensitive to velocity errors as data-domain LSM.

2. Method

2.1. Review of Data-Domain and Image-Domain LSM

Full-waveform seismic modeling can be expressed as

��(�) = �, (1)

where F is a full-wavefield modeling operator, R is a restriction operator associated with receiver distributions, 
m contains the model parameters, and d is the synthetic data. Based on the Born approximation for the model 
parameters and seismic data as

� ≈ �0 +�1, � ≈ �0 + �1, (2)

Equation 1 can be simplified to a linear operator (Tarantola, 1984b)

�� (�0)�1 = �1, (3)

where m0 and m1 denote the background and perturbed models (e.g., P wave velocity v and density ρ), d0  
and d1 denote the background and first-order scattering data, L(m0) is a linearized modeling operator that only 
depends on the background model. In LSM, the first-order scattering data d1 is usually used to approximate 
primary reflections, and the high-wavenumber perturbation m1 is generally defined as the reflectivity model. The 
least-squares solution for m1 can be calculated by solving a data fitting problem such as

� (�1) =
1

2
‖���1 − ����‖

2
, (4)

where dobs is the observed data, m1 is the high-wavenumber velocity perturbation and is usually considered as 
the reflectivity model, and the background model in L(m0) is ignored in Equation 4. The normal equation of the 
misfit function J(m1) can be derived by setting ∂J/∂m1 = 0, which yields

�
†
�

†
���1 − �

†
�

†
���� = 0, (5)

which L † is traditional migration operator and can be considered as the adjoint of linearized modeling operator, 
and R † is the adjoint restriction operator and denotes loading data at receiver locations in migration. By defining 
the Hessian matrix as

� = �
†
�

†
��, (6)

the data-domain LSM solution can be written as

�1 = �
−1
(

�
†
�

†
����

)

. (7)

With L and L † operators, Equations 6 and 7 can be numerically solved using local optimization algorithms, such 
as steepest-descent and conjugate gradient methods (Allwright, 1976; Meza, 2010; Scales, 1987). Each iteration 
requires a pair of Born modeling and adjoint migration, and commonly dozens to hundreds of iterations are 
needed to converge to an accurate solution, which is still too expensive for large-scale problems under current 
computational condition.

In image-domain LSM, the forward problem can be expressed by reformulating Equation 5 as

��1 = �, (8)

where I  =  L †R †dobs is the image computed using traditional adjoint migration. The misfit function for the 
image-domain LSM can be written as
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�(�1) = ‖��1 − �‖2. (9)

The least-squares solution of Equation 9 is

�1 =
(

�
†
�
)−1

�
†
�, (10)

where superscript † denote the conjugate transpose. By reordering Equation 10, we obtain m1 = H −1I, which is 
equivalent to the data-domain LSM solution. Once the Hessian matrix is computed, Equation 10 can be computed 
using gradient-based methods. One column of the Hessian matrix can be numerically calculated using the Hessian 
vector product as

�� = �
†
��, (11)

where v is a point scatterer vector. The right-hand side of Equation 11 reveals that calculating each column of the 
Hessian requires one modeling and migration sequence. Thus, it is too expensive to directly compute the entire 
Hessian for a model with a large number of grid nodes, and in image-domain LSM, the key step is to efficiently 
calculate the Hessian matrix.

2.2. The Hessian Matrix and PSF in an Acoustic Medium

In an acoustic medium, the synthetic data can be calculated as

� (��; ��, �) = ∫
�

0

�
(

� − �′
)

�
(

��; ��, �
′
)

��′, (12)

where f(t) is the source wavelet, xs denotes the source location, xr denotes the receiver location, and T is the record 
duration. G(xr; xs, t) is the Green's function and can be computed by solving the following wave equation:

1

�(�)�2(�)

�2�(�, �)

��2
− ∇ ⋅

(

1

�(�)
∇�(�, �)

)

= �(�)� (� − ��) , (13)

where v(x) is the velocity, ρ(x) is the density, and δ() is the Kronecker delta function. Because it is difficult to 
estimate density accurately using seismic data, we consider only the high-wavenumber velocity perturbations as 
the reflectivity model in LSM. Based on the Born approximation (Aki & Richards, 1980), the velocity and data 
can be linearized as

�(�) = �0(�) + �1(�),

� (��; ��, �) = �0 (��; ��, �) + �1 (��; ��, �) ,
 (14)

where subscripts 0 and 1 denote the background and perturbed arguments. Inserting Equation 14 into Equa-
tion 12, we obtain the perturbed data as

�1 (��; ��, �) = 2∫
�

0
∫

�

0
∫
Ω

�2� (�′ − �′′)

��′′2
�
(

�; ��, �
′′
) �1(�)

�2
0
(�)

�
(

��; �, � − �′
)

��3��′′��′, (15)

where Ω denotes the subsurface image domain of interest. m1(x) is the reflectivity model and it is defined as the 
relative velocity perturbation:

�1(�) =
�1(�)

�0(�)
. (16)

Then, the Hessian can be expressed as the second-order derivative of the misfit function in Equation 4, which 
yields

�(�, �) =
�� 2(�)

��1(�)��1(�)
=

[

��1(�)

��1(�)

]†
��1(�)

��1(�)
. (17)

Substituting d1 in Equation 17 with Equation 15, we have
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�(�, �) =
4

�2
0
(�)�2

0
(�)

∑

�� ,�� ∫
�

0
∫

�

0
∫

�

0

�2� (�′ − �′′)

��′′2
�
(

�; ��, �
′′
)

�
(

��; �, � − �′
)

��′′��′

×∫
�

0
∫

�

0

�2� (�′ − �′′)

��′′2
�
(

�; ��, �
′′
)

�
(

��; �, � − �′
)

��′′��′��,

 (18)

Equation 18 indicates that the Hessian elements can be calculated in the following two ways. One is to compute 
perturbed data d1(xr; xs, t) from point scatterers at x and y over all sources and receivers separately, and then 
apply a dot product of these two data sets. The other way is to first compute perturbed data d1(xr; xs, t) from a 
point scatterer at x, and then migrate these records to location y. Both methods require calculating four Green's 
functions in modeling or migration.

The PSF is the migration response of a point scatterer under a given acquisition geometry and background veloc-
ity model. It is equivalent to the image calculated by mapping one column of the Hessian matrix to the image 
domain. As analyzed by Tang (2009) and Yang et al. (2021), with a good source and receiver coverage, the PSFs 
are spatially local functions with concentrated energy in the vicinity of point scatterers. Therefore, based on the 
Hessian in Equation 18, we can write the PSF as

��� (�, �) =
2

�2
0
(� + �)

∑

�� ,�� ∫
�

0
∫

�

0

�2� (�′ − �′′)

��′′2
�
(

� + �; ��, �
′′
)

��′′

×∫
�

0

�
(

� + �; ��, � − �′
)

��� (��; �; ��, �) ����
′,

 (19)

for the data generated from a point scatterer at x

��� (��; �; ��, �) =
2

�2
0
(�) ∫

�

0
∫

�

0
∫
Ω

�2� (�′ − �′′)

��′′2
�
(

�; ��, �
′′
)

�
(

�
′ − �

)

�
(

��; �, � − �′
)

��′3��′′��′, (20)

where x denotes the point scatterer location and h is the subsurface offset vector. In this study, we set the subsur-
face offset as |hi| < 2λmax(i = x, y, z) (the detailed analysis for this choice is given in Appendix A), where is λmax 
is the maximum wavelength. Yang et al. (2021) derived the analytical expression of the Hessian and verified that 
with good source and receiver coverage, the PSFs are focused in a limited region around their center x. Thus, we 
compute the PSFs in Equation 19 by migrating data dps(xr; x; xs, t) to a small subsurface volume around x. This 
helps to reduce the number of cross-correlations in adjoint migration compared with the Hessian calculation 
using Equation 18 (Valenciano et al., 2006).

2.3. An Efficient Method to Calculate the PSFs

As one of the advanced ray-based method, the Gaussian beams, have stable amplitudes near the caustic surface 
and can easily handle multipath arrivals (Červený et al., 1982; Hill, 1990, 2001). In addition, it can be used to 
efficiently do demigration and remigration for subsurface scatterers independently. Here, we utilize the Gaussian 
beam propagator to compute the Green's function (the details can be found in Appendix B). Then, the PSF in 
Equation 19 can be reformulated as

��� (�, �) =
2

�2
0
(� + �)

∑

�� ,�� ∫
�

0

��∬
������

�
�

��� ∬
������

�
�

���
Re

[

�∗ (��; � + �; ��)

× ���� (��; �; ��, �� (��; � + �; ��) , � + �� (��; � + �; ��))
]

,

 (21)

where * denotes the complex conjugate, px, py, and pz are the components of the ray parameter, superscript s and 
r denote source-side and receiver-side variables, A(xr; x; xs) is the complex-valued two-way amplitude, Tr(xr; x; 
xs) and Ti(xr; x; xs) are the real and imaginary parts of the two-way travel time T. dfps(xr; x; xs, Ti, t) is the filtered 
point-scatterer response

���� (��; ��, � �, �) = ∫
+∞

−∞

�4

4�2
� ∗(�)exp (��� − ���)��� (��; �; ��, �) ��, (22)

where Dps(xr; x; xs, ω) is the spectrum of the data dps(xr; x; xs, t), which can be computed as
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��� (��; �; ��, �) =
2

�2
0
(�) ∬

������
�
�

��� ∬
������

�
�

��� ∫
Ω

��′3�
(

�
′ − �

)

× Re
[

� (��; �; ��) �
′ (�� (��; �; ��) , � − �� (��; �; ��))

]

,

 (23)

with a filtered source wavelet f′(Ti, t) as

� ′(��, �) = ∫
+∞

−∞

�4

4�2
� (�)exp (��� − ���) ��, (24)

and F(ω) is the Fourier transform of a source time function.

The common-source data generated from a subsurface point scatterer is usually one hyperbolic event, or a few 
events because of multipath arrivals in complicated structures. To reduce memory and computation cost, we only 
calculate and store the records dps(xr; x; xs, t) and dfps(xr; x; xs, Ti, t) in a short time window. This enables us to 
simplify the PSF in Equation 21 as

��� (�, �) =
2

�2
0
(� + �)

∑

�� ,��
∫

�0+Δ�

�0−Δ�

��∬
������

�
�

��� ∬
������

�
�

���
Re

[

�∗ (��; � + �; ��)

× ���� (��; �; ��, � � (��; � + �; ��) , � + �� (��; � + �; ��) − �0)
]

,

 (25)

where t0 is the reference travel time and can be precomputed using ray tracing, Δt is the half time window and is 
set to two periods of the wavelet. The localized features in both time (|t − t0| ≤ Δt) and space (|y − x| ≤ hmax) for 
computing the PSFs using Equation 25 enables us to significantly reduce the cost in comparison with directly 
computing the Hessian, where hmax is the maximum subsurface offset. Since the PSFs are calculated independently 
for subsurface locations, the cost is proportional to its number. To save computational cost while capturing the 
PSF variations caused by velocity contrast, we compute PSFs on a coarse grid with a spacing five to eight times 
of the fine image grid increment. In addition, the local plane-wave decomposition in Gaussian beam migration 
proposed by Hill (1990) is adopted to further reduce the number of Green's function calculations. The detailed 
expression can be found in Hill (1990, 2001). In the beam method, the ray tracing results are commonly stored in 
the memory and can be repeatedly used for computing the Green's function. These optimizations make it possible 
to efficiently calculate the Hessian matrix for large-scale problems.

2.4. PSF Deconvolution

In this section, we apply a multidimensional PSF deconvolution to traditional adjoint migration results in the 
wavenumber domain to reduce Hessian blurring effects and compensate for deep amplitudes. To attenuate arti-
facts far away from the PSF center, we apply a weighting function to the PSFs as

����(�, �) =
1

(√
2��

)3
exp

(
−
1

2

|�|2

�2

)
��� (�, �), (26)

where Psf(x, h) is the PSF calculated using Equation 25, Psfw(x, h) is the weighted PSF, h denotes the subsurface 
offset in the PSF window, σ is the standard deviation of the weighting function and we set it to one-third of the 
maximum subsurface offset in this study.

The multidimensional partitions of unity (Bale et al., 2002) can be expressed as

1 ≡

∑

�

Δ�Δ�Δ�
(√

2��
)3

exp

(
−
1

2

|� − �|2

�2

)
, (27)

where x denotes the PSF center location, y is another spatial variable as in Equation 18, and Δx, Δy, and Δz are 
the spacings between PSF centers along different directions. Using the partition in Equation 27, we decompose 
the migration result into local images as
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������(�, �) = �(�)
Δ�Δ�Δ�
(
√

2��
)3

exp

(

−
1

2

(� − �)
2

�2

)

,
 (28)

where I(y) is the entire image volume computed using traditional adjoint migration. Figure 1 illustrates an exam-

ple for 2D partition of unity. With sufficient sampling for the PSF scenters, the unit can be well approximated 

by the sum of Gaussian functions in the main area, and has some errors near boundaries. Considering extremely 

small amplitudes outside the Gaussian window (|y − x| > hmax), we express y = x + h and rewrite Equation 28 as

������(�, �) = �(� + �)
Δ�Δ�Δ�
(√

2��
)3

exp

(
−
1

2

|�|2

�2

)
,

 (29)

Then, we deconvolve these local images by the weighted PSFs in Equation 26 and assemble the deconvolved 

local images as

������(�) =
∑

�

Δ�Δ�Δ�
(√

2��
)3

exp

(
−
1

2

|�|2

�2

)


−1
�

[
� [������(�,�)]

�

[
����(�, �)

]
+ 
(�)

]
,

 (30)

where � is the multidimensional Fourier transform for subsurface offsets and −1

�
 is the corresponding inverse 

transform. ϵ(x) is a spatially varying function to avoid division by zero, which is computed by first setting it to one 

thousandth of the maximum wavenumber spectrum of Psfw(x, h) and then applying a spatial smoothing function.

According to the above descriptions for the PSF calculation and deconvolution, the proposed imaging scheme 

can be summarized as follows:

1.  Computing the PSFs Psf(x, h) using Equation 25 on a coarse grid, where the grid spacing is set as five to 

eight times of the fine image increment to sufficiently capture the PSF variations associated with model 

heterogeneities.

2.  Calculating the image I(x) using traditional adjoint migration and decomposing it to local images Ilocal(x, h) 

according to Equation 29.

3.  Computing the PSFs on a fine image grid using bilinear interpolation and weighting the PSFs using a multidi-

mensional Gaussian function according to Equation 26 to attenuate artifacts that are far from the PSF centers.

4.  Applying PSF deconvolution and the inverse of multidimensional unit partitions according to Equation 30 to 

reconstruct the deconvolved image Idecon(x).

In numerical implementation, the PSF interpolation on a fine grid is performed on the fly during the multidimen-

sional deconvolution. Thus, it is not necessary to store the PSFs of the fine grids in memory or disk, and thus 

with small storage cost.

Figure 1. An example of 2D partition of unity using Gaussian functions. (a) A Gaussian function with the standard deviation of 100 m, and (b) the approximated unit 

using the Gaussian function summation.
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3. Numerical Examples

In this section, two benchmark models and one field data set from a land survey are used to test the perfor-

mance of the proposed PSF deconvolution approach. Observed data for these benchmark models are calculated 

using full-waveform modeling with a staggered-grid finite-difference algorithm. In the comparison of migration 

results, we also compute adjoint migration and data-domain LSM results, which are all implemented using the 

Gaussian beam propagator. In data-domain LSM, the Tikhonov regularization is applied to reduce the overfitting 

artifacts for noise and improve the inversion stability.

3.1. Marmousi Model

The benchmark Marmousi model (Bourgeois et  al.,  1990) is shown in Figure  2a, which is discretized on a 

351 × 2,101 grid with a 10-m increment. The migration velocity model (Figure 2b) is calculated by applying a 

Gaussian smoother to the true model. Observed data (Figure 3) has 165 sources, which are evenly distributed 

Figure 2. The Marmousi benchmark model. (a) True velocity model, (b) smoothed migration velocity model, (c) wavelet 

(left) and its spectrum (right) used in modeling and migration.
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on the surface. Each source is recorded by 451 receivers within a 4.5-km aperture. The source time function is 

a Ricker wavelet with a dominant frequency of 18 Hz (Figure 2c), and direct waves are muted before migration.

Representative PSFs in Figure 4 are calculated on a coarse grid with a spacing six times that of the fine image 

grid. The complicated structures of the Marmousi model result in spatially varying PSFs. Uniform illumination 

at shallow depths produces focused PSFs with good horizontal and vertical resolution. As the depth increases, 

the PSFs show a vertically elongated pattern. This is because the deep reflectors are mainly resolved by small 

scattering angles due to limited offsets. In the complex fault zone, strong velocity variations and irregular illu-

mination lead to distorted PSFs, which are asymmetric and have long tails. In the bottom anticline, the PSFs 

have weak amplitudes and structure-oriented distortions. An example of the PSF deconvolution at the location of 

x = 7.05 km and z = 2.12 km is illustrated in Figure 5. Compared with the original image, the deconvolved image 

has a more focused peak lobe, reduced side lobes, and broader effective wavenumber range, suggesting improved 

spatial resolution.

Comparisons of the true reflectivity model with three migration results, i.e., traditional adjoint migration, 

data-domain LSM, and the proposed PSF deconvolution, are presented in Figure  6. The true reflectivity 

(Figure 6a) is calculated as � � =
�−�0

�0

 and we use it as a reference in following comparisons, where v denotes the 

true model and v0 denotes the smoothed model. We use the local similarity (Figure 7) between the true reflec-

tivity model with migration results to quantitatively evaluate the imaging quality. Although basic structures have 

been imaged by adjoint migration, the finite-frequency effect and irregular illumination yield relatively low 

Figure 3. Common-shot data of Marmousi model computed using the full-waveform modeling with a time-domain 

staggered-grid finite-difference method.

Figure 4. The point-spread functions (PSFs) for the Marmousi model computed using the propose method. Every 10 PSFs 

are shown in the main panel on the coarse grid. The right insets are three enlarged PSFs plotted at a 1:1 scale in shallow, 

middle, and large depths, respectively.
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Figure 5. An example of the point-spread function (PSF) deconvolution at x = 7.05 km and z = 2.12 km for the Marmousi 

model. (a) True reflectivity, (c) local image, (e) PSF, (g) PSF deconvolution result. Panels (b), (d), (f), and (h) are the 

corresponding wavenumber spectra. The local images and PSF have been applied a Gaussian weighting function.
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Figure 6. Comparison between the true reflectivity model with migration results of the Marmousi model. (a) True 

reflectivity model, (b) traditional adjoint migration, (c) data-domain least-squares migration (LSM) after 10 iterations, and  

(d) the proposed point-spread function (PSF) deconvolution.
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resolution and weak amplitudes at the great depths. Neighboring strong reflectors (the red arrows in Figure 6b) 

are difficult to distinguish, and the reflectors from the bottom anticline are not continuous. By fitting observed 

data with Born modeling data, data-domain LSM incorporates the Hessian effects and significantly improves 

image resolution and structure similarity to true reflectivity model (Figures 6a, 6c, and 7b). The fault planes are 

recovered clearly, and the deep weak reflectors for the pinch-outs, anticline, and angular unconformity are imaged 

well. One drawback of data-domain LSM is that overfitting between observed and synthetic data might introduce 

strong high-wavenumber swing artifacts (the magenta arrows in Figure 6c), especially around fault corners and 

discontinuities. The proposed method computes an approximate Hessian using local PSFs and applies the PSF 

deconvolution, which enables significant improvement of image resolution compared with traditional adjoint 

migration (Figures 6d and 7c), while producing fewer swing artifacts than data-domain LSM.

Figure 7. Similarity between migration results with the true reflectivity model of the Marmousi model. (a) Traditional 

adjoint migration, (b) data-domain least-squares migration (LSM), and (c) the proposed point-spread function (PSF) 

deconvolution.
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Comparisons of wavenumber spectra (Figure 8) between the true reflectivity and the migration results reveal 

that because of the finite-frequency effect of the source wavelet, the adjoint migration produces a band-limited 

wavenumber spectrum. In contrast, data-domain LSM and PSF deconvolution expand the wavenumber spectrum 

to low and high wavenumber ends and produce similar spectral range to that of the true reflectivity model, indi-

cating improved spatial resolution. In addition, the PSF deconvolution incorporate the diagonal Hessian effect, 

which helps to compensate for geometric spreading and unbalanced illumination, resulting in deep amplitudes 

comparable to the reference image (Figure 9).

3.2. Pluto Model

The benchmark Pluto model (Figure  10a) is built by Stoughton et  al.  (2001) according to a typical geologi-

cal environment in the Gulf of Mexico, which includes complicated salt bodies, various faults, pinch-outs, and 

subsalt gas sand strata. The observed data set (Figure 10b) consists of 129 shots, which are uniformly deployed 

on the surface. Each common-source gather has 601 traces with an increment of 10 m. The migration velocity 

Figure 8. Comparisons of the wavenumber spectra between the true reflectivity model and migration results for the 

Marmousi model. (a) True reflectivity model, (b) traditional migration, (c) data-domain least-squares migration (LSM), and 

(d) the proposed point-spread function (PSF) deconvolution result.

Figure 9. Comparisons of depth logs between the true reflectivity model with migration results at x = 10 km for the 

Marmousi model. The black solid line denotes the true reflectivity model, the blue dashed line is traditional migration result, 

the green dashed line is the data-domain least-squares migration (LSM) result, and (d) the red dashed line is the proposed 

point-spread function (PSF) deconvolution result.
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model (Figure 10c) is computed by smoothing the true model with a Gaussian function of 50 m × 100 m. The true 

reflectivity model (Figure 10d) is computed as the relative velocity perturbation between the true and migration 

velocity models.

Representative PSFs calculated using the proposed method are presented in Figure 11. Since the Hessian strongly 

depends on the subsurface velocity distributions, the complex salt structure leads to different PSF patterns at 

different locations. For instance, above the salt domes, the shallow layers can be illuminated with good cover-

age over small and large scattering angles, which produces symmetrically focused PSFs. Inside the salt bodies, 

the high P wave velocity generates relatively wider PSFs than that within the sedimentary strata. In contrast, 

beneath the salt, unbalanced illumination, and low-fold zones (Figure 12a) result in weak amplitudes, strong 

side lobes, and rotated principal directions for PSFs. These distorted PSFs (the insets in Figure 11) indicate that 

subsalt migration results can be severely affected by complicated salt structures. The migration results using three 

Figure 10. A benchmark Pluto salt model. (a) True velocity model, (b) common-source observed data, (c) smoothed migration velocity model, and (d) true reflectivity 

model.

Figure 11. The point-spread functions (PSFs) for the Pluto salt model computed using the proposed method. The insets show 

the detailed PSFs at four different locations. The green lines denote the outlines of salt bodies.
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different methods are shown in Figures 12b–12d, and enlarged views for a local region are presented in Figure 13. 

Traditional adjoint migration resolves shallow reflectors and top salt boundaries well, but produces weak ampli-

tudes and low resolution at great depths (Figures 12b and 13b). By iteratively incorporating the Hessian effect, 

data-domain LSM significantly improves image quality for deep subsalt layers (Figures 12c and 13c). But the 

large amplitude differences between salt boundary and subsalt layers lead to unbalanced updates in LSM. With 

10 iterations, the salt top reflections are over fitted while subsalt reflections are not well fitted. The data fitting 

Figure 12. The diagonal Hessian and migration results for the Pluto model. (a) Diagonal Hessian, (b) adjoint migration result, (c) data-domain least-squares migration 

(LSM) result, and (d) the proposed point-spread function (PSF) deconvolution result. Blue lines in panel (a) are the contours of the diagonal Hessian.

Figure 13. Enlarged local migration results for the Pluto model. (a) True reflectivity model, (b) adjoint migration result, (c) 

data-domain least-squares migration (LSM) result, and (d) the proposed point-spread function (PSF) deconvolution result.
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for large-amplitude salt reflections produces strong artifacts near salt flanks, which contaminate neighboring 

fine reflectors (the red arrows in Figure 12c). The proposed PSF deconvolution produces a high-quality image 

with good resolution and enhanced deep amplitudes (Figure 12d). Subsalt sedimentary reflectors, pinch-outs, 

and faults can be clearly identified. More importantly, it does not generate swing artifacts associated with large 

velocity contrasts and produces clear salt boundaries (Figure 13d).

To test the sensitivity of the PSF deconvolution to velocity errors, we design four inaccurate velocity models. The 

first two are constructed by multiplying the smoothed model in Figure 10c with 0.9 and 1.1, respectively. The 

corresponding PSFs and migration results are shown in Figure 14. Because the inaccurate velocity models are 

used in local modeling and migration, higher or lower velocity errors do not have large influences on the shapes 

of the PSFs (Figures 14a and 14b). Although subsurface reflectors are not imaged to correct positions by adjoint 

migration, basic structures, including salt outlines and subsalt layers, can still be clearly identified (Figures 14c 

Figure 14. Point-spread functions (PSFs) and migration results using lower (left column) and higher (right column) velocity models. (a, b) PSFs, (c, d) adjoint 

migration results, (e, f) data-domain least-squares migration (LSM) results, and (g, h) the proposed PSF deconvolution results. The green solid lines denote the 

boundaries of salt bodies.
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and 14d). Because data fitting is very sensitive to velocity errors, data-domain LSM produces much worse results 

than adjoint migration. Both shallow fine layers and top salt boundaries are contaminated by swing artifacts, and 

deep subsalt reflectors are smeared (Figures 14e and 14f). Compared to the adjoint migration result, the proposed 

PSF deconvolution improves spatial resolution and enhances deep amplitudes, and does not introduce additional 

artifacts (Figures 14g and 14h). This indicates that PSF deconvolution has the same sensitivity as adjoint migra-

tion to velocity errors, but it is not as sensitive as data-domain LSM.

The other two inaccurate velocity models are built as follows. First, we generate a random noise image and apply 

a bandpass filter (Figure 15a). Then, a structural smoothing filter is used to generate realistic velocity pertur-

bations v
per

, followed by adding a mask for the water layer (Figure 15b). Finally, we add the high-wavenumber 

perturbations v
per

 to the smoothed migration velocity model v0 as � ���� = �0 + �����
max(�0)
max(����)

 , where κ is a scaling 

factor and max denotes the maximum value. We choose κ as 0.02 and 0.1 to generate two inaccurate velocity 

models as shown in Figures 15c and 15d, and the corresponding migration results are presented in Figure 16. Like 

the results in Figure 14, the two different inaccurate velocity models have no significant effects on the overall PSF 

patterns (Figures 16a and 16b). Data-domain LSMs appear to be very sensitive to velocity errors, and produce 

strong migration noise (Figures 16e and 16f). The PSF deconvolutions (Figures 16g and 16h) have the same 

sensitivity, as traditional adjoint migration, to velocity errors. But when the velocity error increases to 10%, none 

of three methods can accurately recover deep subsalt structures (see the red arrows in Figure 16).

3.3. A Land Survey

The final example is for a field data from a land survey, which consists of 234 common-source gathers (Figure 17a). 

Two hundred and forty receivers are used for recording vertical particle velocities for each shot with an average 

40-m spacing. Preprocessing for the field data includes killing of bad traces, surface wave attenuation, and direct 

wave muting. The migration velocity model (Figure 17b) is computed using ray-based tomography. The source 

wavelet is extracted according to the near-offset direct waves.

Representative PSFs are shown in Figure 18 and different migration results are presented in Figures 19 and 20. 

Because the velocity model has no strong variations, most PSFs appear to be regular and focused (Figure 18a), 

except for varying amplitudes associated with nonuniform illumination (Figure 18b). Although the prestack data 

have low signal-to-noise ratio (Figure 17a), adjoint migration produces clear reflectors for the shallow sedimen-

tary layers and deeper buried hill structures after multifold stacking (Figures 19a, 20a, and 20b). For comparison, 

we apply the data-domain LSM and perform eight iterations. The resulting image has improved deep amplitudes 

and thinner reflection events. But the LSM introduces many side lobes near the true reflectors, especially in areas 

Figure 15. Inaccurate velocities with high-wavenumber perturbations for the Pluto salt model. (a) Bandpassed random noise, (b) smoothed velocity perturbations, and 

(c, d) migration velocity models with 2% and 10% perturbations.
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with depths <2 km (Figures 19b, 20c, and 20d). Detailed analysis for data residuals and misfit gradients reveals 

that the data-domain LSM is trapped in a local minimum because of inaccurate migration velocity model, which 

leads to many artifacts during data fitting. The proposed method does involve the data fitting and reduces the 

Hessian blurring effect using image-domain deconvolution. This enables us to obtain a high-resolution image, 

while not introducing data swing noise (Figures 19c, 20e, and 20f). Comparisons of depth logs in Figure 21 

demonstrate that the PSF deconvolution can enhance image amplitudes for deep layers compared to the adjoint 

migration, and produces similar amplitudes as those in the data-domain LSM.

Figure 16. Point-spread functions (PSFs) and migration results using inaccurate velocities with 2% (left column) and 10% (right column) errors. (a, b) PSFs, (c, d) 

adjoint migration results, (e, f) data-domain least-squares migration (LSM) results, and (g, h) the proposed PSF deconvolution results. The green solid lines denote the 

boundaries of the salt bodies.
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Figure 17. Common-source data (a) and migration velocity model (b) for a land survey.

Figure 18. The point-spread functions (PSFs) (a) for the land survey computed using the proposed method and the extracted 

diagonal Hessian (b). The green lines in panel (b) are the contours of the diagonal Hessian.
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4. Discussion

In this study, we present an efficient PSF calculation method and utilize 

the PSF deconvolution to improve the seismic imaging quality. Numerical 

examples for two benchmark models and a land survey verify the feasibility 

and adaptability of the proposed method for imaging steeply dipping faults, 

complicated salt structures, and field data with low signal-to-noise ratio. The 

PSF calculation only depends on acquisition geometry, migration velocity 

models, and source signature, and does not involve the data fitting procedure. 

Although the migration velocity may differ from the true velocity model, 

the PSFs can always be focused while the locations may be inaccurate. In 

contrast, data-domain LSM estimates subsurface reflectivity by fitting 

observed data with synthetic seismograms. With inaccurate migration veloc-

ity, near-offset data may be fitted well, but far-offset events may not, which 

will introduce strong artifacts in the reflectivity image. Therefore, the PSF 

deconvolution is less sensitive to velocity errors in comparison to conven-

tional data-domain LSM.

The key step in the calculation is the modeling and migration. We store the 

modeling data generated by the scatterers only in a short time window, and 

migrate these local waveforms in a limited subsurface-offset domain. The 

local features in modeling and migration enable efficient computation of 

the PSFs and achieve high-quality images. Numerical experiments (Table 1) 

show that the proposed method uses less than half of the computational 

times of conventional data-domain LSM. In addition, the grid spacing and 

window sizes of the PSFs are independent in the proposed method. This 

allows in principle to resolve one of the main issues of the wave-equation 

image-domain PSF method. A large window may be needed to include the 

whole PSF, and a small spacing may be desirable to follow accurately the 

spatial variation of the PSFs, particularly in complex heterogeneous media. 

Hence, high-performance computing technologies using multicore central 

processors and graphics processing units can be used to further accelerate the 

computations of PSFs and deconvolution. These strategies provide a great 

potential to apply the proposed method for large-scale 3D problems.

We utilize the Gaussian beam summation method to compute the Green's function in this study, in which the 

beam tracing results are stored in the memory and repeatably used. The local modeling and migration as well as 

PSF deconvolution enable us to avoid the overlapping issue in PSF calculation, while requiring a relatively small 

computational cost. The similar strategies can also be extended to the wave equation imaging methods. But in the 

wave equation migrations, especially for reverse-time migration scheme, calculating and storing synthetic data 

for subsurface scatterers independently requires solving many times of the wave equation. The computational cost 

will be significantly increased compared with the beam propagator. How to improves the efficiency of PSF decon-

volution for wave equation imaging methods needs systematic investigations in the future. In addition, the PSF 

deconvolution can also be extended to angle-domain migration to produce amplitude-preserved common-image 

gathers, which are important in amplitude-versus-angle analysis for fluid detection. In the numerical examples, 

we set the window size as 2λ
max. To test the influence of window sizes, we also compute the PSF deconvolution 

results using 4λ and λ for the field data. The resulting images (Figure 22) do not show large differences, indicating 

the proposed method is not very sensitive to the selection of window sizes.

We apply the PSF deconvolution only to seismic imaging in acoustic media. It can also be extended to elastic 

media, for which four PSFs are needed to compute at each location, i.e., P-P, P-S, S-P, and S-S components 

(Feng et al., 2018). Applying elastic PSFs to PP and PS images not only helps to improve spatial resolution and 

compensates for irregular illumination, but also corrects crosstalk artifacts between P and S wave modes. Incor-

porating seismic attenuation and anisotropy into the PSF calculation is also important in some specific geological 

environments, such as gas reservoir and fractured shales. It can produce more accurate seismic imaging results in 

terms of both kinematic and dynamic information.

Figure 19. Migration results for the land survey using different methods. 

(a) Traditional adjoint migration, (b) data-domain least-squares migration 

(LSM) after eight iterations, and (c) the proposed point-spread function (PSF) 

deconvolution.
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Figure 20. Enlarged migration results for the land survey in two regions. Left column is for the region in x = [ 9.6, 16 km ] 
and z = [ 0, 4.8 km ], and right column is for the region in x = [ 14.4, 20.8 km ] and z = [ 1.6, 6.4 km ]. (a, b) Traditional adjoint 
migration results, (c, d) data-domain least-squares migration (LSM) results, and (e, f) the proposed point-spread function 
(PSF) deconvolution results.

Figure 21. Comparison of depth logs at x = 17.6 km. Black solid line denotes the traditional adjoint migration result, blue 
dashed line denotes the data-domain least-squares migration (LSM) result, and red dashed line denotes the point-spread 
function (PSF) deconvolution result. Note that the oscillations of the blue dashed line from 1 to 2 km are the faked events in 
data-domain LSM.
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5. Conclusions

To avoid the large cost of conventional data-domain LSM, we present an 
efficient and stable PSF deconvolution method using a Gaussian Beam 
propagator. The grid spacing and window size of the PSFs are independent, 
which alleviates the limitation of wave-equation image-domain PSF method 
on the choice of these two parameters. The PSFs on a coarse grid are first 
computed using local modeling and migration, and are then interpolated onto 
a fine image grid on the fly. Next, partition of unity is used to decompose 
the adjoint migration result into local images that have the same window 
size as the PSFs. Finally, we deconvolve these local images by the PSFs in 
the wavenumber domain to compensate for deep amplitudes and alleviate 
the Hessian blurring effect. Numerical examples for both synthetic and field 
data demonstrate that the proposed PSF deconvolution can significantly 

improve image resolution and enhance amplitudes for deep reflectors, while not producing artifacts associated 
with large-amplitude events as the data-domain LSM. In addition, the PSF deconvolution has the same sensitivity 
to velocity errors, as traditional adjoint migration, and it is not as sensitive as data-domain LSM.

Appendix A

In a homogeneous medium with P wave velocity v, the Green's function for the outgoing wavefield can be 
expressed as

� (�, �0, �) =
� (� − � (�, �0)∕�)

4��(�, �0)
, (A1)

where δ(t) is the Kronecker delta function and r(x, x0) is the distance from x0 to x. Inserting Equation A1 into 
Equation 19, we have

��� (�, �) =
∑

�� ,��

4

�4
∫

⎡
⎢⎢⎢⎣

�2

��2
� (� − � (��, �)∕� − � (�, ��)∕�)

16�2� (��, �) � (�, ��)

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

�2

��2
� (� − � (��, � + �)∕� − � (� + �, ��)∕�)

16�2� (��, � + �) � (� + �, ��)

⎤
⎥⎥⎥⎦
��

, (A2)

By defining

� (��, �, ��) = � (��, �) + � (�, ��) ,

� (��, �, ��) = � (��, �) � (�, ��) ,
 (A3)

Equation A2 can be simplified as

��� (�, �) =
∑

�� ,��

1

64�4�4 ∫
[

�2
�
� (� − (� (��, � + �, ��) − � (��, �, ��))∕�) �

2
�
� (�)

� (��, �, ��)� (��, � + �, ��)

]

��. (A4)

Equation A4 shows that the main energy of PSF focus in a region with the travel time difference less than a period 
of the source wavelet, and thus we have the following inequality as:

Δ� =
� (��, � + �, ��) − � (��, �, ��)

�
<

1

�min

, (A5)

where fmin is the minimum effective frequency of seismic data. Considering the far field approximation

|� (��, � + �, ��) − � (��, �, ��) | ≈ |�ℎ ⋅ (�� + ��) ||�| ≤ 2|�|, (A6)

Models Data-domain LSM (hr) PSF deconvolution (hr)

Marmousi 14.72 6.82

Pluto salt 16.08 7.69

Field data 17.35 8.05

Note. All examples are tested on a workstation with Intel(R) Xeon(R) Gold 
5220R CPU @ 2.20 GHz.

Table 1 

Comparisons of Computation Cost Between Data-Domain Least-Squares 

Migration (LSM) and Point-Spread Function (PSF) Deconvolution for the 

Three Numerical Examples
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Equation A5 can be simplified as

|�ℎ ⋅ (�� + ��) ‖�| = Δ�� <
�

�min

= �max, (A7)

where es, er, and eh are the unit vectors of source ray, receiver ray, and subsurface offset, respectively, and λmax is 
the maximum wavelength. Equations A5 and A7 demonstrate that the displacement normal to the effective illumi-
nation vector �� =

1

2
(�� + ��) for a pair of source-receiver ray path can be large (Figure A1a). But with increasing 

angle illumination from different sources and receivers, the PSFs become focused in a small region (Figures A1b 
and A1c). This is because many stackings over different incident angles results in 

∑

��

(�ℎ ⋅ ��) approximating a 

constant. In heterogeneous media, the wavelength depends on subsurface velocities and is spatially varying. To 

Figure 22. Comparisons of the point-spread function (PSF) deconvolution results of the field data using the window size as 
(a) 4λmax, (b) 2λmax, and (c) λmax.
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avoid damaging the effective energy of PSFs, we choose the half width of PSF window as 2λmax and thus the 
subsurface offset satisfies

|�| < 2�max, (A8)

Figure A1. The typical point-spread functions (PSFs) in a homogeneous medium with three different source-receiver 
configurations.

In addition, it should be noted that when the range of incident angle is limited due to strong lateral velocity 
variations, e.g., subsalt or beneath/near regions of strong heterogeneous attenuation, the PSFs will be sprayed in 
a large subsurface region and the truncated PSFs using local Gaussian windows may limit the ability to restore 
some wavenumbers and introduce artifacts.

Appendix B

In the frequency domain, the Green's functions can be calculated using the Gaussian beam summation as

� (�; �0, �) =
��

2� ∬
������

��

√

�0(�)det� (�0)

�0 (�0) det�(�)
exp

[

��

(

�(�) +
1

2
�� (�)�(�)�−1(�)�(�)

)]

, (B1)

where x0 is the starting location, ω is the angular frequency, px, py, and pz are the components of the ray param-
eter, P and Q are 2 × 2 complex-valued matrices and can be computed using dynamic ray tracing (Červený 
et al., 1982; Popov, 2002), det denotes the determinant of a matrix, τ is the travel time along a central ray, and q 
denotes a 2D orthogonal coordinate perpendicular to the central rays and it constructs a ray-centered coordinate 
system combined with the arc length. By denoting

� (�; �0) =

√

�0(�)det� (�0)

�0 (�0) det�(�)
,

� (�; �0) = �(�) +
1

2
�� (�)�(�)�−1(�)�(�),

 (B2)

and applying the reciprocity for receiver-side wavefield, the complex-valued two-way amplitude and travel 
time starting from source location xs, through subsurface scatterer x, and arriving at receiver location xr can be 
expressed as

� (��; �; ��) = � (�; ��)� (�; ��) ,

� (��; �; ��) = � (�; ��) + � (�; ��) ,
 (B3)

where subscripts s and r denote the source-side and receiver-side variables. Inserting Equations  B1–B3 into 
Equation 19 and applying the inverse Fourier transform yield the PSFs as in Equation 21.
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Data Availability Statement

The data sets used in this paper can be download from Harvard Dataverse (https://doi.org/10.7910/DVN/
GT0TBT).
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