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Abstract By fitting observed data with predicted seismograms, least-squares migration (LSM) computes
a generalized inverse for a subsurface reflectivity model, which can improve image resolution and reduce
artifacts caused by incomplete acquisition. However, the large computational cost of LSM required for
simulations and migrations limits its wide applications for large-scale imaging problems. Using point-spread
function (PSF) deconvolution, we present an efficient and stable high-resolution imaging method. The PSFs
are first computed on a coarse grid using local ray-based Gaussian beam Born modeling and migration. Then,
we interpolate the PSFs onto a fine-image grid and apply a high-dimensional Gaussian function to attenuate
artifacts far away from the PSF centers. With 2D/3D partition of unity, we decompose the traditional adjoint
migration results into local images with the same window size as the PSFs. Then, these local images are
deconvolved by the PSFs in the wavenumber domain to reduce the effects of the band-limited source function
and compensate for irregular subsurface illumination. The final assembled image is obtained by applying the
inverse of the partitions for the deconvolved local images. Numerical examples for both synthetic and field data
demonstrate that the proposed PSF deconvolution can significantly improve image resolution and amplitudes
for deep structures, while not being sensitive to velocity errors as the data-domain LSM.

Plain Language Summary Seismic imaging is an important tool to detect hydrocarbon resource
and study deep Earth's structure. Traditional ray-based and wave equation imaging methods commonly
extrapolate observed data and apply appropriate imaging condition to construct subsurface impedance
interfaces. Mathematically, these methods can be considered as adjoint operators of seismic modeling, but they
have difficulty to produce high-quality images of complicated subsurface structures. To mitigate this issue,

we present an efficient and stable high-resolution imaging approach, i.e., the point-spread function (PSF)
deconvolution. The locally temporal and spatial limitations are utilized to efficiently compute the PSFs on a
coarse grid using a ray-based Gaussian beam propagator. Then, an on-the-fly interpolation on a fine grid and

a wavenumber-domain deconvolution are applied to improve image resolution. Numerical experiments for
benchmark model and field data demonstrate the feasibility and adaptability of the proposed method for imaging
complicated salt structure and low-signal-to-noise data.

1. Introduction

Seismic imaging plays an important role in hydrocarbon detection and study of deep Earth's structure
(Claerbout, 1985; Freeman et al., 1988; Gray, 2001). It extrapolates observed data in reverse time and applies an
appropriate imaging condition to reconstruct subsurface impedance interfaces. In the past 30 years, with the rapid
development of computing technologies, seismic imaging methods have evolved from early ray-based Kirchhoff
migration (Gray & May, 1994; Hokstad, 2000; Keho & Beydoun, 1988; Wiggins, 1984), through one-way wave
equation migration (Gazdag, 1978; Stoffa et al., 1990; Zhang et al., 2005), and then to current reverse-time
migration (Baysal et al., 1983; McMechan, 1983; Nguyen & McMechan, 2015; Sun & McMechan, 2001; Yan &
Sava, 2008). Although the accuracy of numerical solvers for the wave equation was greatly improved during the
evolution of the algorithms, the basic physical frameworks of these imaging methods is conceptually similar, and
can be considered mathematically as an adjoint operator of seismic forward modeling. It is difficult for them to
produce high-quality images for complicated subsurface structures, because of band-limited sources and receiver
wavefields, incomplete data acquisition, and irregular subsurface illumination.

Tarantola (1984a, 1984b) incorporated seismic imaging into a generalized inversion scheme and proposed to esti-
mate seismic model parameters by fitting observed data with simulated seismograms. The nonlinear inversion, i.e.,
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full-waveform inversion (Pratt et al., 1998; Virieux & Operto, 2009), aims to construct seismic velocity, density,
attenuation, and anisotropy in a broad wavenumber band, while the linearized waveform inversion, which is later
known as least-squares migration (LSM), estimates the high-wavenumber model parameters in a least-squares
sense. Because direct computation of LSM solution is too expensive, the gradient-based methods, such as steepest
descent and conjugate gradient, are usually used to fit observed records with the predicted seismograms (Fomel
et al., 2008; Nemeth et al., 1999; Wang et al., 2013; Wong et al., 2015). Currently, the data-domain LSM has been
implemented using a variety of different ray-based and wave equation migration methods (Dai et al., 2011, 2012;
Xue et al., 2016; Yang & Zhang, 2019; Yang et al., 2018; Zhang & Schuster, 2014), and extended to (an)elastic
and anisotropic media (Dutta & Schuster, 2014; Feng & Schuster, 2017; Ren et al., 2017; Yang et al., 2020).
These developments make LSM a robust imaging method and so has been gradually applied to field data process-
ing (Latter et al., 2018; Lu et al., 2018; Wong et al., 2011; Zhang et al., 2015), which produces superior imaging
results in comparison to traditional adjoint migration. However, many iterations of data-domain LSM require a
large number of forward simulations and adjoint migrations to converge to a good solution, which is still expen-
sive and difficult to be widely used for large-scale models in production under current computational capacity.

To alleviate computational cost, many optimization strategies have been proposed to accelerate the convergence
of LSM. For instance, a true or approximated diagonal Hessian is commonly used as a preconditioner for the
misfit gradient to compensate for limitations in deep illumination (Plessix & Mulder, 2004; Rickett, 2003; Shin
et al., 2001). Guitton (2004) computes a bank of nonstationary matching filters to approximate the Hessian
inverse, and applies them to 3D LSM to speed up the convergence (Guitton, 2017). Aoki and Schuster (2009)
introduce a deblurring filter into LSM and obtain similar results to standard LSM with less than one-third of
the cost. Hou and Symes (2015) derive a Born inversion operator in the subsurface offset domain using the
asymptotic approximation and design a weighted conjugate gradient algorithm to accelerate the convergence of
extended LSM. Recently, Yang et al. (2021) approximate the Gauss-Newton Hessian with a space-wavenumber
filter, which allows LSM to converge to a good solution in four or five iterations.

An alternative for data-domain LSM is to solve the least-squares inverse problem in the image domain as Hm =1,
where H is the Hessian matrix, m is the expected reflectivity model, and I is the traditional adjoint migration
image. Theoretically, one column of the Hessian can be computed using one pass of Born modeling and adjoint
migration over all sources and receivers. In seismic imaging, even 2D models typically have millions of grid
points and 3D models have tens of billions of grid points, which make it prohibitively expensive to directly
compute the Hessian. Thus, the core of image-domain LSM is how to efficiently calculate the Hessian matrix.
By limiting the imaging region near hydrocarbon reservoirs, Valenciano et al. (2006) proposes a target-oriented
wave-equation inversion and considerably reduces the size of Hessian matrix. Tang (2009) introduces plane-wave
and random phase encoding into the Hessian computation to further reduce the computational cost. Using the
Born modeling and reverse-time migration, Fletcher et al. (2016) calculate point-spread functions (PSFs) on a
sparsely distributed seed grid to approximate the Hessian. Guo and Wang (2019) approximate the Hessian matrix
with nonstationary filters by comparing a reference image with a demigration/remigration image, and develop an
image-domain LSM scheme with a sparsity constraint. However, one common issue in the PSF calculation is the
trade-off between fine-enough sampling to capture their spatial variations associated with heterogeneities, and
the sufficient sparsity to avoid overlapping of PSFs. As analyzed by Fletcher et al. (2016), these two competing
requirements cannot always be reconciled, and additional modeling and migration are needed to generate more
PSFs.

In this study, we propose an efficient method to calculate PSFs and utilize the PSF deconvolution to improve the
image quality for complicated subsurface structures. With the Green's function computed using Gaussian beam
summation, we develop a local Born modeling and migration scheme to compute the PSFs on a coarse grid. The
spacing of the coarse grid is set as five to eight times of the fine image sampling increment in order to capture
fluctuations in illumination and blurring of the image. In addition, the point scattering responses in the Born
modeling are saved only in a short time window, and the cross-correlation used to compute the PSFs is performed
only in a window with a length about one wavelength. These localized features in modeling and migration enable
significantly reduction of computational costs, while avoiding the overlapping, with sufficient PSF sampling.
Then, a multidimensional Gaussian function is applied to the PSFs to attenuate artifacts far away from the PSF
centers. Using the partition of unity, which is a collection of window functions that sum to one everywhere in
the domain of interest, we decompose the traditional adjoint migration results into a series of local images.
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Finally, these local images are deconvolved by the PSFs in the wavenumber domain to alleviate the effects of
geometric spreading and the band-limited source functions. Numerical examples, using both synthetic and field
data, demonstrate that the proposed method can significantly improve image resolution and amplitudes for deep
structures, while not being sensitive to velocity errors as data-domain LSM.

2. Method
2.1. Review of Data-Domain and Image-Domain LSM
Full-waveform seismic modeling can be expressed as

RF(m) = d, (1

where F is a full-wavefield modeling operator, R is a restriction operator associated with receiver distributions,
m contains the model parameters, and d is the synthetic data. Based on the Born approximation for the model
parameters and seismic data as

m~my+m;, d=dy+d, 2

Equation 1 can be simplified to a linear operator (Tarantola, 1984b)
RL (mp)m; = d,, ©)

where m, and m; denote the background and perturbed models (e.g., P wave velocity v and density p), d,
and d, denote the background and first-order scattering data, L(m,) is a linearized modeling operator that only
depends on the background model. In LSM, the first-order scattering data d, is usually used to approximate
primary reflections, and the high-wavenumber perturbation m, is generally defined as the reflectivity model. The
least-squares solution for m; can be calculated by solving a data fitting problem such as

1
J(m,) = zllRLml = dons|, 4)

where d , is the observed data, m, is the high-wavenumber velocity perturbation and is usually considered as
the reflectivity model, and the background model in L(m,) is ignored in Equation 4. The normal equation of the
misfit function J(m,) can be derived by setting dJ/dm, = 0, which yields

L'R'RLm; — L'R'd,; = 0, 5)

which LT is traditional migration operator and can be considered as the adjoint of linearized modeling operator,
and R is the adjoint restriction operator and denotes loading data at receiver locations in migration. By defining
the Hessian matrix as

H=L'R'RL, (6)
the data-domain LSM solution can be written as
m; = H' (L'Rd,) . Q)

With L and L operators, Equations 6 and 7 can be numerically solved using local optimization algorithms, such
as steepest-descent and conjugate gradient methods (Allwright, 1976; Meza, 2010; Scales, 1987). Each iteration
requires a pair of Born modeling and adjoint migration, and commonly dozens to hundreds of iterations are
needed to converge to an accurate solution, which is still too expensive for large-scale problems under current
computational condition.

In image-domain LSM, the forward problem can be expressed by reformulating Equation 5 as
Hm, =1, ®)

where I = L'R'd,,,
image-domain LSM can be written as

is the image computed using traditional adjoint migration. The misfit function for the
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x(my) = [[Hm; —IJ1°. ©
The least-squares solution of Equation 9 is
= (H'H) H'TL, (10)

where superscript T denote the conjugate transpose. By reordering Equation 10, we obtain m, = H™'I, which is
equivalent to the data-domain LSM solution. Once the Hessian matrix is computed, Equation 10 can be computed
using gradient-based methods. One column of the Hessian matrix can be numerically calculated using the Hessian
vector product as

Hv =LLy, an

where v is a point scatterer vector. The right-hand side of Equation 11 reveals that calculating each column of the
Hessian requires one modeling and migration sequence. Thus, it is too expensive to directly compute the entire
Hessian for a model with a large number of grid nodes, and in image-domain LSM, the key step is to efficiently
calculate the Hessian matrix.

2.2. The Hessian Matrix and PSF in an Acoustic Medium

In an acoustic medium, the synthetic data can be calculated as
T
d(x,;xs,z)z/ f(t=1)G (xx,,1) dY, (12)
0

where f(¥) is the source wavelet, X, denotes the source location, x, denotes the receiver location, and 7 is the record
duration. G(x,; X, 1) is the Green's function and can be computed by solving the following wave equation:
1 0*G(x,1) 1
— -V | —VGEx,1) | =6)6(x—Xy), 13
OR) o ) (x,1) ®s( ) (13)
where v(x) is the velocity, p(x) is the density, and () is the Kronecker delta function. Because it is difficult to
estimate density accurately using seismic data, we consider only the high-wavenumber velocity perturbations as
the reflectivity model in LSM. Based on the Born approximation (Aki & Richards, 1980), the velocity and data
can be linearized as

v(x) = vo(x) + v1(X),

(14)
d (Xr; Xs, t) =dp (Xﬁ'; Xy, t) + dl (Xr; X, t) 5

where subscripts 0 and 1 denote the background and perturbed arguments. Inserting Equation 14 into Equa-
tion 12, we obtain the perturbed data as

2f (' — '/) mi(X)
dy (Xr; X5, 1) = X;X;, ") ——=G (x,;x,t — t') dx’dt"dt , 15
(X X, 1) = / / / Pl )U(z)(x) ( ) (15)

where Q denotes the subsurface image domain of interest. m,(x) is the reflectivity model and it is defined as the
relative velocity perturbation:

v1(x)

) = vo(x)”

16)

Then, the Hessian can be expressed as the second-order derivative of the misfit function in Equation 4, which
yields

2 i
H(x.y) = aJ*(r) _ [adl(r) od,(r) . a7
Omi(x)0mi(y)  [0mi(x)] omi(y)
Substituting , in Equation 17 with Equation 15, we have
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azf(t t,,) " ! 1" /
H =— | X, XLt —
x.y) o) T / / / ZIE 2006 (%0, 1") G (xsx, 1 — 1) dtdt

0t”7
02 I’ t//
// f(,/z ) G (y:x0.1") G (x3y,1 —1') di"dr' dt,
ot

Equation 18 indicates that the Hessian elements can be calculated in the following two ways. One is to compute

18)

perturbed data d,(x,; x,, ) from point scatterers at x and y over all sources and receivers separately, and then
apply a dot product of these two data sets. The other way is to first compute perturbed data d,(x,; X, t) from a
point scatterer at x, and then migrate these records to location y. Both methods require calculating four Green's
functions in modeling or migration.

The PSF is the migration response of a point scatterer under a given acquisition geometry and background veloc-
ity model. It is equivalent to the image calculated by mapping one column of the Hessian matrix to the image
domain. As analyzed by Tang (2009) and Yang et al. (2021), with a good source and receiver coverage, the PSFs
are spatially local functions with concentrated energy in the vicinity of point scatterers. Therefore, based on the
Hessian in Equation 18, we can write the PSF as

2 //
Pis(x,h) = —2( 2 Zx x,/ / J f(t ) (X+h;xs,z”)dt”

x +h) at”2 (19)

x/ G(x+h,x,.,t—t )d,,_\. (X3 X; X5, 1) dtdt’,
0

for the data generated from a point scatterer at x

2 "
/ / /0 S = > _! ) G (x;x,,1") 6 (X' —X) G (x:x,1 —1') dx"d1"dl’, (20)
t/l

where x denotes the point scatterer location and h is the subsurface offset vector. In this study, we set the subsur-
face offset as |h| < 24, (i = x, y, z) (the detailed analysis for this choice is given in Appendix A), where is 4

max

is the maximum wavelength. Yang et al. (2021) derived the analytical expression of the Hessian and verified that

dps (X3 X; X5, 1) =

25(%)

max

with good source and receiver coverage, the PSFs are focused in a limited region around their center x. Thus, we
compute the PSFs in Equation 19 by migrating data d,(X,; X; X, ) to a small subsurface volume around x. This
helps to reduce the number of cross-correlations in adjoint migration compared with the Hessian calculation
using Equation 18 (Valenciano et al., 2006).

2.3. An Efficient Method to Calculate the PSFs

As one of the advanced ray-based method, the Gaussian beams, have stable amplitudes near the caustic surface
and can easily handle multipath arrivals (éervenff et al., 1982; Hill, 1990, 2001). In addition, it can be used to
efficiently do demigration and remigration for subsurface scatterers independently. Here, we utilize the Gaussian
beam propagator to compute the Green's function (the details can be found in Appendix B). Then, the PSF in
Equation 19 can be reformulated as

dpid dp.d
Py(x.h) = 2(X+h)2x / // g py// PP Re A" (xix + hix,) on

X dpps (X3 X5 %5, Ti (%3 X + X)), 1+ T, (XX + h;XS))] ,

where * denotes the complex conjugate, p,, p,, and p_ are the components of the ray parameter, superscript s and
r denote source-side and receiver-side variables, A(x,; X; X,) is the complex-valued two- way amplitude, 7(x,; X

x,) and T(x,; X; X,) are the real and imaginary parts of the two-way travel time T. d, (X,; X; X, Ti, t) is the filtered

Jps
point-scatterer response

+00

dfp: (xr;xs’ Tl, t) = /

-0

= F (w)exp (iot — oT;) Dys (X3 X; X5, @) dw, (22)

where Dm(xr; X; X, ®) is the spectrum of the data dps(xr; X; X, 1), which can be computed as
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dps (X5 X; X, 1) = // dpxdpy // dpxdpy/ dx"s (x' —x)
25(%) (23)

X Re [A (X% %,) [/ (T} (%3 X %), 1 = T7 (%5 % X,)] 5

with a filtered source wavelet (T, t) as
+oo
(T, b = / yye F(a))exp (iot — oT;) dw, 24)

and F(w) is the Fourier transform of a source time function.

The common-source data generated from a subsurface point scatterer is usually one hyperbolic event, or a few
events because of multipath arrivals in complicated structures. To reduce memory and computation cost, we only
calculate and store the records dm_(xr; X; X, 1) and fm(xr, X; X, T}, ) in a short time window. This enables us to
simplify the PSF in Equation 21 as

to+At d xd d xd
Py(x,h) = 2( D / // 4 py// P pyRe[A (%X + h; X,)
X+h) x.x Ji-a (25)

X dpps (%1 XX, Ti (XX + 05 X,) 1+ T, (%X + i X,) — 10)]

where 1, is the reference travel time and can be precomputed using ray tracing, At is the half time window and is
) for
computing the PSFs using Equation 25 enables us to significantly reduce the cost in comparison with directly

set to two periods of the wavelet. The localized features in both time (I — 7| < Af) and space (ly — xI < A,
computing the Hessian, where _, is the maximum subsurface offset. Since the PSFs are calculated independently
for subsurface locations, the cost is proportional to its number. To save computational cost while capturing the
PSF variations caused by velocity contrast, we compute PSFs on a coarse grid with a spacing five to eight times
of the fine image grid increment. In addition, the local plane-wave decomposition in Gaussian beam migration
proposed by Hill (1990) is adopted to further reduce the number of Green's function calculations. The detailed
expression can be found in Hill (1990, 2001). In the beam method, the ray tracing results are commonly stored in
the memory and can be repeatedly used for computing the Green's function. These optimizations make it possible
to efficiently calculate the Hessian matrix for large-scale problems.

2.4. PSF Deconvolution

In this section, we apply a multidimensional PSF deconvolution to traditional adjoint migration results in the
wavenumber domain to reduce Hessian blurring effects and compensate for deep amplitudes. To attenuate arti-
facts far away from the PSF center, we apply a weighting function to the PSFs as

2
Pru(x,h) = ——exp <—§|G—|) Py (x,h), 26)

2no

where st(x, h) is the PSF calculated using Equation 25, Pst(x, h) is the weighted PSF, h denotes the subsurface
offset in the PSF window, ¢ is the standard deviation of the weighting function and we set it to one-third of the
maximum subsurface offset in this study.

The multidimensional partitions of unity (Bale et al., 2002) can be expressed as

AxAyAz 1|y —x|?
1= z ————exp (—5 2 ) 27

= (Vi)

where x denotes the PSF center location, y is another spatial variable as in Equation 18, and Ax, Ay, and Az are

the spacings between PSF centers along different directions. Using the partition in Equation 27, we decompose
the migration result into local images as
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Figure 1. An example of 2D partition of unity using Gaussian functions. (a) A Gaussian function with the standard deviation of 100 m, and (b) the approximated unit

using the Gaussian function summation.

AxAyAz 1@y —x)°
Toea(%,y) = 1(y) === exp (7 =)

2o (28)
where I(y) is the entire image volume computed using traditional adjoint migration. Figure 1 illustrates an exam-
ple for 2D partition of unity. With sufficient sampling for the PSF scenters, the unit can be well approximated
by the sum of Gaussian functions in the main area, and has some errors near boundaries. Considering extremely

small amplitudes outside the Gaussian window (ly — x| > k__ ), we express y = X + h and rewrite Equation 28 as

max

AxAyA h|?
Tipear (X, ) = I(x +h)#eXp <_1L> ,

3 2 o2 (29

2o

Then, we deconvolve these local images by the weighted PSFs in Equation 26 and assemble the deconvolved
local images as

AxAyA
Ideczm(x) = Z uex <_

(Vi)

where Fj is the multidimensional Fourier transform for subsurface offsets and 7-’h‘l is the corresponding inverse
transform. e(x) is a spatially varying function to avoid division by zero, which is computed by first setting it to one
thousandth of the maximum wavenumber spectrum of P (x, h) and then applying a spatial smoothing function.

Fh [Ilacal (X7 h)]
(30)

10)
202 ) " | Fu[Porux )] +ex)

According to the above descriptions for the PSF calculation and deconvolution, the proposed imaging scheme
can be summarized as follows:

1. Computing the PSFs P (x, h) using Equation 25 on a coarse grid, where the grid spacing is set as five to
eight times of the fine image increment to sufficiently capture the PSF variations associated with model
heterogeneities.

2. Calculating the image /(x) using traditional adjoint migration and decomposing it to local images I, (X, h)
according to Equation 29.

3. Computing the PSFs on a fine image grid using bilinear interpolation and weighting the PSFs using a multidi-
mensional Gaussian function according to Equation 26 to attenuate artifacts that are far from the PSF centers.

4. Applying PSF deconvolution and the inverse of multidimensional unit partitions according to Equation 30 to
reconstruct the deconvolved image /1, ,.(X).

In numerical implementation, the PSF interpolation on a fine grid is performed on the fly during the multidimen-
sional deconvolution. Thus, it is not necessary to store the PSFs of the fine grids in memory or disk, and thus
with small storage cost.
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Figure 2. The Marmousi benchmark model. (a) True velocity model, (b) smoothed migration velocity model, (c) wavelet
(left) and its spectrum (right) used in modeling and migration.
3. Numerical Examples
In this section, two benchmark models and one field data set from a land survey are used to test the perfor-
mance of the proposed PSF deconvolution approach. Observed data for these benchmark models are calculated
using full-waveform modeling with a staggered-grid finite-difference algorithm. In the comparison of migration
results, we also compute adjoint migration and data-domain LSM results, which are all implemented using the
Gaussian beam propagator. In data-domain LSM, the Tikhonov regularization is applied to reduce the overfitting
artifacts for noise and improve the inversion stability.
3.1. Marmousi Model
The benchmark Marmousi model (Bourgeois et al., 1990) is shown in Figure 2a, which is discretized on a
351 x 2,101 grid with a 10-m increment. The migration velocity model (Figure 2b) is calculated by applying a
Gaussian smoother to the true model. Observed data (Figure 3) has 165 sources, which are evenly distributed
YANG ET AL. 8 of 26
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Figure 3. Common-shot data of Marmousi model computed using the full-waveform modeling with a time-domain
staggered-grid finite-difference method.

on the surface. Each source is recorded by 451 receivers within a 4.5-km aperture. The source time function is
a Ricker wavelet with a dominant frequency of 18 Hz (Figure 2c), and direct waves are muted before migration.

Representative PSFs in Figure 4 are calculated on a coarse grid with a spacing six times that of the fine image
grid. The complicated structures of the Marmousi model result in spatially varying PSFs. Uniform illumination
at shallow depths produces focused PSFs with good horizontal and vertical resolution. As the depth increases,
the PSFs show a vertically elongated pattern. This is because the deep reflectors are mainly resolved by small
scattering angles due to limited offsets. In the complex fault zone, strong velocity variations and irregular illu-
mination lead to distorted PSFs, which are asymmetric and have long tails. In the bottom anticline, the PSFs
have weak amplitudes and structure-oriented distortions. An example of the PSF deconvolution at the location of
x="7.05km and z = 2.12 km is illustrated in Figure 5. Compared with the original image, the deconvolved image
has a more focused peak lobe, reduced side lobes, and broader effective wavenumber range, suggesting improved
spatial resolution.

Comparisons of the true reflectivity model with three migration results, i.e., traditional adjoint migration,
data-domain LSM, and the proposed PSF deconvolution, are presented in Figure 6. The true reflectivity
(Figure 6a) is calculated as r = =22 and we use it as a reference in following comparisons, where v denotes the

true model and v, denotes the smoothed model. We use the local similarity (Figure 7) between the true reflec-
tivity model with migration results to quantitatively evaluate the imaging quality. Although basic structures have
been imaged by adjoint migration, the finite-frequency effect and irregular illumination yield relatively low
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Figure 4. The point-spread functions (PSFs) for the Marmousi model computed using the propose method. Every 10 PSFs
are shown in the main panel on the coarse grid. The right insets are three enlarged PSFs plotted at a 1:1 scale in shallow,
middle, and large depths, respectively.
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Figure 5. An example of the point-spread function (PSF) deconvolution at x = 7.05 km and z = 2.12 km for the Marmousi
model. (a) True reflectivity, (c) local image, (¢) PSF, (g) PSF deconvolution result. Panels (b), (d), (f), and (h) are the
corresponding wavenumber spectra. The local images and PSF have been applied a Gaussian weighting function.
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Figure 6. Comparison between the true reflectivity model with migration results of the Marmousi model. (a) True
reflectivity model, (b) traditional adjoint migration, (c) data-domain least-squares migration (LSM) after 10 iterations, and
(d) the proposed point-spread function (PSF) deconvolution.
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Figure 7. Similarity between migration results with the true reflectivity model of the Marmousi model. (a) Traditional
adjoint migration, (b) data-domain least-squares migration (LSM), and (c) the proposed point-spread function (PSF)
deconvolution.
resolution and weak amplitudes at the great depths. Neighboring strong reflectors (the red arrows in Figure 6b)
are difficult to distinguish, and the reflectors from the bottom anticline are not continuous. By fitting observed
data with Born modeling data, data-domain LSM incorporates the Hessian effects and significantly improves
image resolution and structure similarity to true reflectivity model (Figures 6a, 6¢, and 7b). The fault planes are
recovered clearly, and the deep weak reflectors for the pinch-outs, anticline, and angular unconformity are imaged
well. One drawback of data-domain LSM is that overfitting between observed and synthetic data might introduce
strong high-wavenumber swing artifacts (the magenta arrows in Figure 6¢), especially around fault corners and
discontinuities. The proposed method computes an approximate Hessian using local PSFs and applies the PSF
deconvolution, which enables significant improvement of image resolution compared with traditional adjoint
migration (Figures 6d and 7c), while producing fewer swing artifacts than data-domain LSM.
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Figure 8. Comparisons of the wavenumber spectra between the true reflectivity model and migration results for the
Marmousi model. (a) True reflectivity model, (b) traditional migration, (c) data-domain least-squares migration (LSM), and
(d) the proposed point-spread function (PSF) deconvolution result.
Comparisons of wavenumber spectra (Figure 8) between the true reflectivity and the migration results reveal
that because of the finite-frequency effect of the source wavelet, the adjoint migration produces a band-limited
wavenumber spectrum. In contrast, data-domain LSM and PSF deconvolution expand the wavenumber spectrum
to low and high wavenumber ends and produce similar spectral range to that of the true reflectivity model, indi-
cating improved spatial resolution. In addition, the PSF deconvolution incorporate the diagonal Hessian effect,
which helps to compensate for geometric spreading and unbalanced illumination, resulting in deep amplitudes
comparable to the reference image (Figure 9).
3.2. Pluto Model
The benchmark Pluto model (Figure 10a) is built by Stoughton et al. (2001) according to a typical geologi-
cal environment in the Gulf of Mexico, which includes complicated salt bodies, various faults, pinch-outs, and
subsalt gas sand strata. The observed data set (Figure 10b) consists of 129 shots, which are uniformly deployed
on the surface. Each common-source gather has 601 traces with an increment of 10 m. The migration velocity
i
r
n 3
o i
o \
g ; A ‘l A | A A A /! ) ~ A
£ \TLAR 4 . . A
EQ* \, ‘ I \_/, f Y, VAY O
g \ “ /
n v v y 1
=g K
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Depth (km)
Figure 9. Comparisons of depth logs between the true reflectivity model with migration results at x = 10 km for the
Marmousi model. The black solid line denotes the true reflectivity model, the blue dashed line is traditional migration result,
the green dashed line is the data-domain least-squares migration (LSM) result, and (d) the red dashed line is the proposed
point-spread function (PSF) deconvolution result.
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Figure 10. A benchmark Pluto salt model. (a) True velocity model, (b) common-source observed data, (c) smoothed migration velocity model, and (d) true reflectivity

model.

model (Figure 10c) is computed by smoothing the true model with a Gaussian function of 50 m X 100 m. The true
reflectivity model (Figure 10d) is computed as the relative velocity perturbation between the true and migration
velocity models.

Representative PSFs calculated using the proposed method are presented in Figure 11. Since the Hessian strongly
depends on the subsurface velocity distributions, the complex salt structure leads to different PSF patterns at
different locations. For instance, above the salt domes, the shallow layers can be illuminated with good cover-
age over small and large scattering angles, which produces symmetrically focused PSFs. Inside the salt bodies,
the high P wave velocity generates relatively wider PSFs than that within the sedimentary strata. In contrast,
beneath the salt, unbalanced illumination, and low-fold zones (Figure 12a) result in weak amplitudes, strong
side lobes, and rotated principal directions for PSFs. These distorted PSFs (the insets in Figure 11) indicate that
subsalt migration results can be severely affected by complicated salt structures. The migration results using three
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Figure 11. The point-spread functions (PSFs) for the Pluto salt model computed using the proposed method. The insets show
the detailed PSFs at four different locations. The green lines denote the outlines of salt bodies.
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(LSM) result, and (d) the proposed point-spread function (PSF) deconvolution result. Blue lines in panel (a) are the contours of the diagonal Hessian.

different methods are shown in Figures 12b—12d, and enlarged views for a local region are presented in Figure 13.
Traditional adjoint migration resolves shallow reflectors and top salt boundaries well, but produces weak ampli-
tudes and low resolution at great depths (Figures 12b and 13b). By iteratively incorporating the Hessian effect,
data-domain LSM significantly improves image quality for deep subsalt layers (Figures 12¢ and 13c). But the
large amplitude differences between salt boundary and subsalt layers lead to unbalanced updates in LSM. With
10 iterations, the salt top reflections are over fitted while subsalt reflections are not well fitted. The data fitting
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Figure 13. Enlarged local migration results for the Pluto model. (a) True reflectivity model, (b) adjoint migration result, (c)
data-domain least-squares migration (LSM) result, and (d) the proposed point-spread function (PSF) deconvolution result.
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Figure 14. Point-spread functions (PSFs) and migration results using lower (left column) and higher (right column) velocity models. (a, b) PSFs, (c, d) adjoint
migration results, (e, f) data-domain least-squares migration (LSM) results, and (g, h) the proposed PSF deconvolution results. The green solid lines denote the

boundaries of salt bodies.

for large-amplitude salt reflections produces strong artifacts near salt flanks, which contaminate neighboring
fine reflectors (the red arrows in Figure 12¢). The proposed PSF deconvolution produces a high-quality image
with good resolution and enhanced deep amplitudes (Figure 12d). Subsalt sedimentary reflectors, pinch-outs,
and faults can be clearly identified. More importantly, it does not generate swing artifacts associated with large
velocity contrasts and produces clear salt boundaries (Figure 13d).

To test the sensitivity of the PSF deconvolution to velocity errors, we design four inaccurate velocity models. The
first two are constructed by multiplying the smoothed model in Figure 10c with 0.9 and 1.1, respectively. The
corresponding PSFs and migration results are shown in Figure 14. Because the inaccurate velocity models are
used in local modeling and migration, higher or lower velocity errors do not have large influences on the shapes
of the PSFs (Figures 14a and 14b). Although subsurface reflectors are not imaged to correct positions by adjoint
migration, basic structures, including salt outlines and subsalt layers, can still be clearly identified (Figures 14c
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Figure 15. Inaccurate velocities with high-wavenumber perturbations for the Pluto salt model. (a) Bandpassed random noise, (b) smoothed velocity perturbations, and
(c, d) migration velocity models with 2% and 10% perturbations.

and 14d). Because data fitting is very sensitive to velocity errors, data-domain LSM produces much worse results
than adjoint migration. Both shallow fine layers and top salt boundaries are contaminated by swing artifacts, and
deep subsalt reflectors are smeared (Figures 14e and 14f). Compared to the adjoint migration result, the proposed
PSF deconvolution improves spatial resolution and enhances deep amplitudes, and does not introduce additional
artifacts (Figures 14g and 14h). This indicates that PSF deconvolution has the same sensitivity as adjoint migra-
tion to velocity errors, but it is not as sensitive as data-domain LSM.

The other two inaccurate velocity models are built as follows. First, we generate a random noise image and apply

a bandpass filter (Figure 15a). Then, a structural smoothing filter is used to generate realistic velocity pertur-

bations v, followed by adding a mask for the water layer (Figure 15b). Finally, we add the high-wavenumber
max(v())

max(tper)

factor and max denotes the maximum value. We choose « as 0.02 and 0.1 to generate two inaccurate velocity

perturbations Vper 10 the smoothed migration velocity model v, as e, = Vo + K Uper , where « is a scaling
models as shown in Figures 15¢ and 15d, and the corresponding migration results are presented in Figure 16. Like
the results in Figure 14, the two different inaccurate velocity models have no significant effects on the overall PSF
patterns (Figures 16a and 16b). Data-domain LSMs appear to be very sensitive to velocity errors, and produce
strong migration noise (Figures 16e and 16f). The PSF deconvolutions (Figures 16g and 16h) have the same
sensitivity, as traditional adjoint migration, to velocity errors. But when the velocity error increases to 10%, none
of three methods can accurately recover deep subsalt structures (see the red arrows in Figure 16).

3.3. A Land Survey

The final example is for a field data from a land survey, which consists of 234 common-source gathers (Figure 17a).
Two hundred and forty receivers are used for recording vertical particle velocities for each shot with an average
40-m spacing. Preprocessing for the field data includes killing of bad traces, surface wave attenuation, and direct
wave muting. The migration velocity model (Figure 17b) is computed using ray-based tomography. The source
wavelet is extracted according to the near-offset direct waves.

Representative PSFs are shown in Figure 18 and different migration results are presented in Figures 19 and 20.
Because the velocity model has no strong variations, most PSFs appear to be regular and focused (Figure 18a),
except for varying amplitudes associated with nonuniform illumination (Figure 18b). Although the prestack data
have low signal-to-noise ratio (Figure 17a), adjoint migration produces clear reflectors for the shallow sedimen-
tary layers and deeper buried hill structures after multifold stacking (Figures 19a, 20a, and 20b). For comparison,
we apply the data-domain LSM and perform eight iterations. The resulting image has improved deep amplitudes
and thinner reflection events. But the LSM introduces many side lobes near the true reflectors, especially in areas
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Figure 16. Point-spread functions (PSFs) and migration results using inaccurate velocities with 2% (left column) and 10% (right column) errors. (a, b) PSFs, (c, d)
adjoint migration results, (e, f) data-domain least-squares migration (LSM) results, and (g, h) the proposed PSF deconvolution results. The green solid lines denote the
boundaries of the salt bodies.

with depths <2 km (Figures 19b, 20c, and 20d). Detailed analysis for data residuals and misfit gradients reveals
that the data-domain LSM is trapped in a local minimum because of inaccurate migration velocity model, which
leads to many artifacts during data fitting. The proposed method does involve the data fitting and reduces the
Hessian blurring effect using image-domain deconvolution. This enables us to obtain a high-resolution image,
while not introducing data swing noise (Figures 19c, 20e, and 20f). Comparisons of depth logs in Figure 21
demonstrate that the PSF deconvolution can enhance image amplitudes for deep layers compared to the adjoint
migration, and produces similar amplitudes as those in the data-domain LSM.
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In this study, we present an efficient PSF calculation method and utilize
the PSF deconvolution to improve the seismic imaging quality. Numerical
examples for two benchmark models and a land survey verify the feasibility
and adaptability of the proposed method for imaging steeply dipping faults,
complicated salt structures, and field data with low signal-to-noise ratio. The
PSF calculation only depends on acquisition geometry, migration velocity
models, and source signature, and does not involve the data fitting procedure.
Although the migration velocity may differ from the true velocity model,
the PSFs can always be focused while the locations may be inaccurate. In
contrast, data-domain LSM estimates subsurface reflectivity by fitting
observed data with synthetic seismograms. With inaccurate migration veloc-
ity, near-offset data may be fitted well, but far-offset events may not, which
will introduce strong artifacts in the reflectivity image. Therefore, the PSF
deconvolution is less sensitive to velocity errors in comparison to conven-
tional data-domain LSM.

The key step in the calculation is the modeling and migration. We store the
modeling data generated by the scatterers only in a short time window, and
migrate these local waveforms in a limited subsurface-offset domain. The
local features in modeling and migration enable efficient computation of
the PSFs and achieve high-quality images. Numerical experiments (Table 1)
show that the proposed method uses less than half of the computational
times of conventional data-domain LSM. In addition, the grid spacing and
window sizes of the PSFs are independent in the proposed method. This
allows in principle to resolve one of the main issues of the wave-equation

Figure 19. Migration results for the land survey using different methods. image-domain PSF method. A large window may be needed to include the
(a) Traditional adjoint migration, (b) data-domain least-squares migration whole PSF, and a small spacing may be desirable to follow accurately the
(LSM) after eight iterations, and (c) the proposed point-spread function (PSF) - gpatial variation of the PSFs, particularly in complex heterogeneous media.

deconvolution.

Hence, high-performance computing technologies using multicore central
processors and graphics processing units can be used to further accelerate the
computations of PSFs and deconvolution. These strategies provide a great
potential to apply the proposed method for large-scale 3D problems.

We utilize the Gaussian beam summation method to compute the Green's function in this study, in which the
beam tracing results are stored in the memory and repeatably used. The local modeling and migration as well as
PSF deconvolution enable us to avoid the overlapping issue in PSF calculation, while requiring a relatively small
computational cost. The similar strategies can also be extended to the wave equation imaging methods. But in the
wave equation migrations, especially for reverse-time migration scheme, calculating and storing synthetic data
for subsurface scatterers independently requires solving many times of the wave equation. The computational cost
will be significantly increased compared with the beam propagator. How to improves the efficiency of PSF decon-
volution for wave equation imaging methods needs systematic investigations in the future. In addition, the PSF
deconvolution can also be extended to angle-domain migration to produce amplitude-preserved common-image
gathers, which are important in amplitude-versus-angle analysis for fluid detection. In the numerical examples,
we set the window size as 24, . To test the influence of window sizes, we also compute the PSF deconvolution
results using 44 and A for the field data. The resulting images (Figure 22) do not show large differences, indicating
the proposed method is not very sensitive to the selection of window sizes.

We apply the PSF deconvolution only to seismic imaging in acoustic media. It can also be extended to elastic
media, for which four PSFs are needed to compute at each location, i.e., P-P, P-S, S-P, and S-S components
(Feng et al., 2018). Applying elastic PSFs to PP and PS images not only helps to improve spatial resolution and
compensates for irregular illumination, but also corrects crosstalk artifacts between P and S wave modes. Incor-
porating seismic attenuation and anisotropy into the PSF calculation is also important in some specific geological
environments, such as gas reservoir and fractured shales. It can produce more accurate seismic imaging results in
terms of both kinematic and dynamic information.
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Figure 20. Enlarged migration results for the land survey in two regions. Left column is for the region in x = [9.6, 16 km]
and z = [0, 4.8 km], and right column is for the region in x = [14.4, 20.8 km] and z = [1.6, 6.4 km]. (a, b) Traditional adjoint
migration results, (c, d) data-domain least-squares migration (LSM) results, and (e, ) the proposed point-spread function
(PSF) deconvolution results.
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Figure 21. Comparison of depth logs at x = 17.6 km. Black solid line denotes the traditional adjoint migration result, blue
dashed line denotes the data-domain least-squares migration (LSM) result, and red dashed line denotes the point-spread
function (PSF) deconvolution result. Note that the oscillations of the blue dashed line from 1 to 2 km are the faked events in

data-domain LSM.
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Table 1

Comparisons of Computation Cost Between Data-Domain Least-Squares
Migration (LSM) and Point-Spread Function (PSF) Deconvolution for the
Three Numerical Examples

Models Data-domain LSM (hr) PSF deconvolution (hr)
Marmousi 14.72 6.82
Pluto salt 16.08 7.69
Field data 17.35 8.05

Note. All examples are tested on a workstation with Intel(R) Xeon(R) Gold
5220R CPU @ 2.20 GHz.

5. Conclusions

To avoid the large cost of conventional data-domain LSM, we present an
efficient and stable PSF deconvolution method using a Gaussian Beam
propagator. The grid spacing and window size of the PSFs are independent,
which alleviates the limitation of wave-equation image-domain PSF method
on the choice of these two parameters. The PSFs on a coarse grid are first
computed using local modeling and migration, and are then interpolated onto
a fine image grid on the fly. Next, partition of unity is used to decompose
the adjoint migration result into local images that have the same window
size as the PSFs. Finally, we deconvolve these local images by the PSFs in
the wavenumber domain to compensate for deep amplitudes and alleviate
the Hessian blurring effect. Numerical examples for both synthetic and field
data demonstrate that the proposed PSF deconvolution can significantly

improve image resolution and enhance amplitudes for deep reflectors, while not producing artifacts associated

with large-amplitude events as the data-domain LSM. In addition, the PSF deconvolution has the same sensitivity

to velocity errors, as traditional adjoint migration, and it is not as sensitive as data-domain LSM.

Appendix A

In a homogeneous medium with P wave velocity v, the Green's function for the outgoing wavefield can be

expressed as

6(t—r(x,X0)/v)

G (X,Xo,1) =
(x, o, 1) 4rr(X,Xo)

(AL

where 6(¢) is the Kronecker delta function and r(x, X,) is the distance from x,, to x. Inserting Equation Al into

Equation 19, we have

By defining

Equation A2 can be simplified as

4 aa_:zf (t - I‘(X,.,X)/U - r(x’ xs)/U)
Por () = ZX»‘"‘f vt f 1672r (Xr, X) F (X, X5)
> : (A2)
—f@—-rx,x+h)/v—rx+hx,)/v)
or?
X dt
1672r (X,,X + h) r (x + h, x;)
rX,X,X;) =rX,X)+r(xXx;),
(A3)
A (X, X, Xy) =1 (X, X) 7 (X, Xy),
dt. (A4)

1 O2f (t — (r (%, X + h, X)) — r (X, X, X,)) /0) 07 f (1)
PyCel) = D) i / [

A (X, X, X5) A (X, X + h, X;)

Equation A4 shows that the main energy of PSF focus in a region with the travel time difference less than a period
of the source wavelet, and thus we have the following inequality as:

r (X, X +h,x;) — r (X, X, X;) < 1

At = —_—,
T > o (AS)
where f, . is the minimum effective frequency of seismic data. Considering the far field approximation
r (%, X +h,X) = r (X, X, X) | ~ |en - (s +e) | |h] < 2[h], (A6)
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Figure 22. Comparisons of the point-spread function (PSF) deconvolution results of the field data using the window size as
() 4,0 (0) 22, s and (€) A,
Equation A5 can be simplified as
len - (es+e)|h| =Arv < — = Amax, (A7)
where e, e,, and e, are the unit vectors of source ray, receiver ray, and subsurface offset, respectively, and 4, is
the maximum wavelength. Equations A5 and A7 demonstrate that the displacement normal to the effective illumi-
nation vector e; = % (es + e,) for a pair of source-receiver ray path can be large (Figure Ala). But with increasing
angle illumination from different sources and receivers, the PSFs become focused in a small region (Figures Alb
and Alc). This is because many stackings over different incident angles results in ) (e - €;) approximating a
constant. In heterogeneous media, the wavelength depends on subsurface velocities and is spatially varying. To
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avoid damaging the effective energy of PSFs, we choose the half width of PSF window as 24, and thus the
subsurface offset satisfies
[h| < 2Amaxs (A8)
(@) 0.00 (b)
0.25
0.50
§, 0.75
< 100
-
@ 1.25
]
1.50
1.75
2.00
0.0 0.5 1.0 1.5 2.0 0.0 05 10 1.5 20 00 05 1.0 1.5 2.0
Distance (km) Distance (km) Distance (km)
Figure Al. The typical point-spread functions (PSFs) in a homogeneous medium with three different source-receiver
configurations.
In addition, it should be noted that when the range of incident angle is limited due to strong lateral velocity
variations, e.g., subsalt or beneath/near regions of strong heterogeneous attenuation, the PSFs will be sprayed in
a large subsurface region and the truncated PSFs using local Gaussian windows may limit the ability to restore
some wavenumbers and introduce artifacts.
Appendix B
In the frequency domain, the Green's functions can be calculated using the Gaussian beam summation as
iw dpdp. [ vo(x)det Q (xo) [ 1 »
G (X;X0,w) = — ( + = P )] , Bl
(X; X0, @) o // . V 20 (xoy det Q(x) P [/ 7(x) 54 PE)Q™ (x)q(x) B1)
where x,, is the starting location,  is the angular frequency, p,, p,, and p, are the components of the ray param-
eter, P and Q are 2 X 2 complex-valued matrices and can be computed using dynamic ray tracing (Cerveny
et al., 1982; Popov, 2002), det denotes the determinant of a matrix,  is the travel time along a central ray, and q
denotes a 2D orthogonal coordinate perpendicular to the central rays and it constructs a ray-centered coordinate
system combined with the arc length. By denoting
det
Axx0) = [vo(x)det Q (x0) ,
Uo (Xi)) det Q(x) (B2)
T (x:%0) = 7(%) + 7¢" (OPROQ™ ()q(x),
and applying the reciprocity for receiver-side wavefield, the complex-valued two-way amplitude and travel
time starting from source location x, through subsurface scatterer X, and arriving at receiver location x, can be
expressed as
A XX %) = A(XX) A5 X)),
(B3)
T X x:X) =T (X3X6) + T (X5X,) s
where subscripts s and » denote the source-side and receiver-side variables. Inserting Equations B1-B3 into
Equation 19 and applying the inverse Fourier transform yield the PSFs as in Equation 21.
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