
Modeling the role of gap junctions between excitatory neurons
in the developing visual cortex

Jennifer Crodelle 1*,2, David W. McLaughlin 2,3,4,5

1 Middlebury College, Middlebury, Vermont, USA 2 Courant Institute of Mathematical
Sciences, NYU, New York, New York, USA 3 Center for Neural Science, NYU, New
York, New York, USA 4 Neuroscience Institute of NYU Langone Health, New York,
New York, USA 5 New York University Shanghai, Shanghai, China

* jcrodelle@middlebury.edu

Abstract

Recent experiments in the developing mammalian visual cortex have revealed that gap
junctions couple excitatory cells and potentially influence the formation of chemical
synapses. In particular, cells that were coupled by a gap junction during development
tend to share an orientation preference and are preferentially coupled by a chemical
synapse in the adult cortex, a property that is diminished when gap junctions are
blocked. In this work, we construct a simplified model of the developing mouse visual
cortex including spike-timing-dependent plasticity of both the feedforward synaptic
inputs and recurrent cortical synapses. We use this model to show that synchrony
among gap-junction-coupled cells underlies their preference to form strong recurrent
synapses and develop similar orientation preference; this effect decreases with an
increase in coupling density. Additionally, we demonstrate that gap-junction coupling
works, together with the relative timing of synaptic development of the feedforward and
recurrent synapses, to determine the resulting cortical map of orientation preference.

Author summary

Gap junctions, or sites of direct electrical connections between neurons, have a
significant presence in the cortex, both during development and in adulthood. Their
primary function during either of these periods, however, is still poorly understood. In
the adult cortex, gap junctions between local, inhibitory neurons have been shown to
promote synchronous firing, a network characteristic thought to be important for
learning, attention, and memory. During development, gap junctions between excitatory,
pyramidal cells, have been conjectured to play a role in synaptic plasticity and the
formation of cortical circuits. In the visual cortex, where neurons exhibit tuned
responses to properties of visual input such as orientation and direction, recent
experiments show that excitatory cells are coupled by gap junctions during the first
postnatal week and are replaced by chemical synapses during the second week. In this
work, we explore the possible contribution of gap-junction coupling during development
to the formation of chemical synapses between the visual cortex from the thalamus and
between cortical cells within the visual cortex. Specifically, using a mathematical model
of the visual cortex during development, we identify the response properties of
gap-junction-coupled cells and their influence on the formation of the cortical map of
orientation preference.
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Introduction 1

Gap junctions (GJs), or sites of direct electrical coupling between neurons, are present 2

in the primary visual cortex (V1) at many stages of life, from infancy to adulthood. In 3

the adult cortex, gap-junction coupling among local, inhibitory cells has been shown to 4

promote synchrony, a property underlying many cognitive processes such as learning 5

and memory [1, 2]. Though GJs have been measured between excitatory, pyramidal 6

neurons in the adult cortex [3], there are very few experiments and the couplings were 7

found to be very rare; consequently, their function remains unclear [4, 5]. Recent 8

experiments show that pyramidal cells are coupled by GJs during the first postnatal 9

week of development [6, 7], a time at which chemical synapses are highly plastic and are 10

just beginning to develop [8], leading to a question about a potential relationship 11

between GJ coupling and the development of V1 neuron response properties. 12

One example of a response property of cells in V1 is orientation preference (OP), 13

where neurons preferentially respond to the orientation angle of a visual stimulus. In 14

some higher-level mammals such as monkeys and cats, the visual cortex contains an 15

ordered map of the orientation preference of each neuron, where cells preferring similar 16

angles reside close to one another [9, 10]. In rodents, however, the map of orientation 17

preference appears random and disordered, with little correlation between preferred 18

orientation and location in cortical space [11, 12]. Despite the seemingly random lateral 19

(within layer) distribution of OPs in the visual cortex of mice, radially-distributed 20

clonally-related cells show similar stimulus feature selectivity [8], as well as preferential 21

synaptic connectivity with fellow sister cells [13]. Each of these characteristics, 22

measured in the adult cortex, relies on gap-junction coupling between sister cells during 23

the first postnatal week [6, 7]. 24

In particular, despite the lack of synaptic couplings during the first postnatal week 25

(P0-P6), radially-aligned sister cells preferentially form synapses with an average 26

probability of 36% in the second postnatal week [13]. In comparison, neighboring (also 27

radially-aligned) non-sister cells are coupled with an average probability of about 6.3% 28

(averaged over P10 to P17). Additionally, sister cells are preferentially coupled by GJs 29

during the first postnatal week (28.2% for sister cells compared to 2.6% for non-sister 30

cells, averaged over P1 to P6), with the probability of GJ connectivity decreasing 31

steadily over the course of the first week (38.9% at P1 to ⇠10% at P6) [7]. The strength 32

of this GJ, as measured by the coupling coefficient (ratio of the amplitude of the 33

response in the coupled cell to the response in the injected cell) is 5.7% for sister cells 34

and 1.2% for non-sister cells (averaged over P1 to P6). This strength also decreases over 35

the course of the first week (from 7.4% at P1 to 2.3% at P6) [7]. The black circles and 36

blue squares in Fig 1 show the synaptic and GJ coupling percentage of excitatory sister 37

cells, respectively, over the first few postnatal weeks. 38

Among inhibitory cells, GABAergic synapses and GJs form simultaneously 39

beginning at the start of the second postnatal week [14] (in contrast to the pyramidal 40

cells where GJs precede chemical synapses). Specifically, no GABAergic synapses or 41

GJs are detected between FS cells from P3-P5, with the exception that one functional 42

GABAergic synapse (out of 13 tested pairs) was detected at P5 [14]. No recordings were 43

performed before P3. Therefore, we determine that both GJ and synaptic coupling 44

among FS cells are absent during the first postnatal week and grow during the second 45

postnatal week, as shown by the red circles and green squares in Fig 1A for synaptic 46

and GJ coupling, respectively. 47

Blocking the GJ between sister cells during the first postnatal week leads to a 48

reduction in the probability of synaptic coupling among sister cells (from 26% to 9.8% 49

averaged over the second week [7]),demonstrating that GJ coupling during the first 50

postnatal week is critical to the correct circuit formation in adult mice. Additionally, 51

excitatory cells that share a similar OP have an increased likelihood to also be 52
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GJs between sister cells, [7]
Glutamatergic synapses, [13]

GABAergic synapses, [14]
GJs between FS cells, [14]

Fig 1. Different percentages of couplings over the first few postnatal weeks. The coupling

probability for glutamatergic synapses is measured for radially-aligned sister cells only, while

the GJs and GABAergic synapses are measured between fast-spiking (FS) cells. The

experimental data was often reported as an average over several days, represented here as

horizontal lines.

synaptically coupled [15]. GJ coupling may also play a role in stimulus feature 53

selectivity, such as orientation preference, as about 59% of radially-aligned sister cells 54

have similar OPs (difference in preferred angle less than 30�), while neighboring 55

non-sister cells exhibit a difference in OP distribution that was not significantly different 56

from the uniform distribution [6]. When GJs are blocked during the first postnatal week, 57

the effect was destroyed; the distribution of OP difference for sister cells was no longer 58

significantly different from the uniform distribution or the non-sister cell distribution. 59

Our aim in this work is to better understand how the developmental timeline, 60

including GJ-coupling among sister cells, might affect properties of synaptic plasticity 61

such as the formation of random or disordered OP maps. We develop a simple 62

mathematical model as a conceptual realization of a local patch of mouse V1 during the 63

first two postnatal weeks of development. Our model includes spike timing-dependent 64

plasticity (STDP) of the feedforward synapses from LGN to V1 during the first 65

postnatal week, together with STDP plasticity of the cortical-cortical recurrent 66

excitatory synapses within V1 during the second postnatal week. Using this model, we 67

reproduce experimentally-measured properties of GJ-coupled sister cells, such as a 68

shared OP and preferential synaptic connectivity, and demonstrate that, during the first 69

postnatal week, the OP of GJ-coupled cells develops faster than the OP of those cells 70

that were not GJ-coupled. This increased learning rate results in more selectivity of the 71

GJ-coupled sister cells than non-coupled cells at a time when synapses within V1 are 72

beginning to form, proposing a mechanism for the “salt-and-pepper” random OP map 73

observed in mice. We also identify mechanisms by which this OP map can become 74

ordered as observed in higher-level mammals, further supporting our proposed 75

mechanism for the development of disordered OP maps. 76
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Methods and Models 77

For our mathematical model, we utilize existing frameworks for modeling the formation 78

of input preference as in [16], but include more realistic spike-timing-dependent 79

plasticity (STDP) rules for the visual cortex as in [17, 18] together with inhibitory 80

plasticity as in [19]. Parameters for the model were extracted from various sources with 81

the goal to keep the neurons’ behavior and firing rate as biologically relevant as possible, 82

while maintaining stable and competitive plasticity rules. 83

The Mathematical Model 84

We consider 1000 feedforward synapses, representing input from LGN to the visual 85

cortex, coupled to each cell in our model neuronal network of either 400 or 256 cortical 86

cells. Neurons are organized on a square grid with periodic boundary conditions (i.e., 87

neuron 1 is adjacent to neuron 2 and 20, as well as neuron 21 and 381). The cortical 88

neurons are randomly assigned to be excitatory with 80% probability or inhibitory with 89

20% probability. The subthreshold voltage of the ith cortical neuron of type Q = {E, I} 90

is described using the leaky integrate-and-fire equation as follows 91

⌧m
dviQ
dt

= �(viQ � vl)� giQE(t)(v
i
Q � vE)� giQI(t)(v

i
Q � vI)� gc,Q

X

j

(viE � vjE), (1)

where ⌧m = 20 ms, vl = �60 mV, vE = 0 mV, and vI = �80 mV as in [16]. Once the 92

voltage reaches a threshold of �45 mV, the neuron is said to have spiked, the spike time 93

is recorded, and the voltage is reset to �60 mV. Gap junctions are included only among 94

excitatory neurons, such that the conductance term gc,Q takes on a nonzero value gc for 95

Q = E and zero for Q = I, and are incorporated into the model through a direct 96

resistive term where vjE is the voltage of the jth pre-junctional neuron; see the last term 97

in Eq (1). In addition, to model the spikelet induced in the post-junctional cell in 98

response to an action potential in the pre-junctional cell, a 1 mV instantaneous jump in 99

voltage of the post-junctional cell is included, as in previous models [20, 21]. 100

The cortical synaptic conductances are modeled as having instantaneous rise times 101

and exponential decay at each received spike time so that the excitatory and inhibitory 102

conductance traces, respectively, follow the equations 103

�E

dgiQE

dt
= �giQE , where giQE ! giQE + ḡiQE at each excitatory presynaptic spike time

�I

dgiQI

dt
= �giQI , where giQI ! giQI + ḡiQI at each inhibitory presynaptic spike time

where the neuron type of the postsynaptic cell is represented by Q = {E, I}, �E = 11 104

ms and �I = 15 ms. Note that the synaptic conductances have been normalized by the 105

leakage conductance and are thus unit-less. The maximal excitatory conductance 106

strength, ḡiQE , and inhibitory conductance strength, ḡiQI , can each take one of the 107

following values: {ḡiEE , ḡiIE} and {ḡiEI , ḡiII} where the subscript XY denotes the 108

direction of coupling from Y to X. We implement an absolute maximum on all 109

excitatory synapses at gmax
E and on all inhibitory synapses at gmax

I . In this model, the 110

conductances ḡiII = ḡII and ḡiIE = ḡIE are held constant at 0.3gmax
I and 0.1gmax

E , 111

respectively, for all cells, while ḡiEE(t) and ḡiEI(t) are plastic, changing with rules 112

defined in the following subsection. 113
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The external drive to the cortical network has two components: synaptic input from 114

the LGN and a generic background drive to all cells. This external drive affects the 115

excitatory conductance, giQE(t), as follows 116

giQE(t) ! giQE(t)+ḡiLGN(t) at each feedforward LGN synapse spike time

giQE(t) ! giQE(t)+ḡiback at each background spike time,

where ḡiLGN(t) is plastic, but ḡ
i
back is constant at 0.02. The spike times of the 117

background drive are generated from a Poisson process with rate 0.5 Hz. Each 118

feedforward LGN synapse generates spikes using a Poisson spike train with a firing rate 119

that depends on its own label. Specifically, the firing rate of LGN synapse labeled a in 120

response to a stimulus at input location s is given by 121

ra = R0 +R1

⇣
e�(s�a)2/2�2

+ e�(s+1000�a2)/2�2

+ e�(s�1000�a2)/2�2
⌘
,

as in [16], where R0 = 5 Hz, R1 = 20 Hz, and � = 80. Input to these synapses consists 122

of brief presentations of a uniformly randomly-chosen stimulus index (a in above 123

equation) for a period of time that is chosen from an exponential distribution with 124

mean 20 ms. All cortical cells receive input from LGN synapses with a 25% probability. 125

While the inhibitory cells have a constant LGN feedforward synaptic strength randomly 126

chosen uniformly between [0, 0.18gmax
LGN], the excitatory cells contain a plastic or variable 127

strength, ḡiLGN(t). 128

Plasticity Rules 129

Feedforward LGN synapses to excitatory cortical cells, as well as the recurrent synapses 130

between cortical excitatory cells, are plastic, with the strength of their connection, 131

ḡiLGN(t) and ḡiEE(t), respectively, obeying the minimal triplet rule for the visual 132

cortex [17]. We use the STDP triplet rule rather than the standard pre-post STDP rule 133

that was used in [16] because we wish to reproduce the realistic bi-directional coupling 134

that develops in the visual cortex of mice, a feat which cannot be accomplished with the 135

pair-based STDP rules. In addition, experiments show that the STDP curves exhibited 136

by pyramidal cells in the visual cortex of mice do not follow the typical 137

slightly-asymmetric shape of potentiation and depression as in [22], but rather 138

potentiation only occurs if the post-synaptic neuron had recently fired a spike of its 139

own [17,23] – a property that is captured by the triplet rule. 140

For each pre- and post-synaptic spike, the strength of the synapse from the pre- to 141

post-synaptic cell, ḡ(t), (dropping the EE subscript) is updated via the equations 142

ḡ(t) ! ḡ(t)� o1(t)ALTD(t) if t = tpre, (2)

ḡ(t) ! ḡ(t) + r1(t)o2(t� ✏)ALTP if t = tpost, (3)

where ALTD(t) and ALTP represent the strength of depression and potentiation, 143

respectively. The tracer variables each follow the equation 144

dx(t)

dt
= �x(t)

⌧x
for x = r1, o1, o2, (4)

where r1(t) represents a pre-synaptic tracer, and o1(t) and o2(t) represent post-synaptic 145

tracers. Note that each neuron carries its own tracer variable, but the i index has been 146

dropped here for clarity. The timescales of the tracer variables were measured in [17] for 147

pyramidal cells in the visual cortex and are as follows: ⌧r1 = 16.8 ms, ⌧o1 = 33.7 ms, 148

and ⌧o2 = 114 ms. 149
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To stabilize network activity, we implement a homeostatic mechanism in the form of 150

a rate detector that acts on a fast timescale, known to stabilize the dynamics induced 151

by the minimal triplet rule into recurrent excitatory networks [18]. This homeostatic 152

mechanism works by allowing the amount of depression, ALTD(t), to change as a 153

function of a moving-average of the post-synaptic firing rate, µ̄E : 154

ALTD(t) =
⌧r1 ⌧o2 [µ̄E(t)]2

⇢⌧o1
ALTP, (5)

where the timescales ⌧r1 , ⌧o1 and ⌧o2 , are those from Eq (4), and ⇢ is the target firing 155

rate, chosen to be 8 Hz to replicate the low firing rate of the mouse visual cortex during 156

early development [24]. The moving average of the firing rate, µ̄E(t), is found by taking 157

a low-pass filter of its spike train as follows 158

µ̄E =
1

⌧

X

k

exp

✓
� t� tk

⌧

◆
,

where tk represents the kth spike time that occurred prior to the current time t, and 159

⌧ = 1 s. Note that the synaptic strength ḡ(t) in Eqs (2) and (3) can take on either 160

ḡLGN(t) for synapses from LGN to the cortex, or ḡEE(t) for synapses among excitatory 161

cortical neurons. These synapses have different learning rates, ALGN
LTP and Acort

LTP, for the 162

LGN feedforward synapses and recurrent cortical synapses, respectively. See Table 1 for 163

a comprehensive list of parameter values used in this work. 164

In addition to the plasticity introduced on the feedforward and recurrent excitatory 165

synapses, we include plasticity on the synapses from inhibitory neurons to excitatory 166

neurons in the cortex [19]. The motivation for including this inhibitory plasticity is that 167

the homeostatic rate detector alone was not sufficient in controlling the firing rate of the 168

network and enabling competition among the synapses. In particular, we found that the 169

stability of the learning process (by this we mean the competition of the weights such 170

that some decay and some grow) was highly sensitive to changes in the learning rate 171

when the homeostatic rate detector was acting alone. With the addition of inhibitory 172

plasticity, we found the system to be significantly more stable for a wider range of 173

parameter choices. Using inhibitory plasticity as a stabilizing mechanism has been done 174

previously [19, 25]. Note that we did not investigate whether inhibitory plasticity alone 175

would have been sufficient to stabilize the dynamics. 176

The synapse from a pre-synaptic inhibitory cell to a post-synaptic excitatory cell 177

updates according to the rule 178

ḡEI(t) ! ḡEI(t) + (xE(t)� 2⇢⌧iSTDP)AiSTDP if t = tpre, (6)

ḡEI(t) ! ḡEI(t) + xI(t)AiSTDP if t = tpost, (7)

where AiSTDP is the learning rate and ⇢ = 8 Hz is the target firing rate of the excitatory 179

cells [the same as in Eq (5)]. Each cell has a tracer variable xQ for Q = {E, I} that 180

follows the form of Eq (4), where ⌧xQ = 20 ms for Q = {E, I}. Note the interpretation 181

of these plasticity rules: when the spiking of a pre- and post-synaptic inhibitory and 182

excitatory cell, respectively, occurs within a time window of ⌧xQ , either potentiation or 183

depression occurs at each pre-synaptic (inhibitory) spike [as per Eq (6)], while only 184

potentiation occurs at each post-synaptic (excitatory) spike [as per Eq (7)]. 185

Development is simulated by connecting a subset of the cortical cells by GJs and 186

allowing the LGN synapses onto all excitatory cortical cells to learn for a period of time 187

(which varies in this work), simulating the first postnatal week of development (see S1 188

Fig). Then, once simulation is in the second postnatal week, gap junctions are turned 189

off [by setting gc,E = 0 in Eq (1)], and recurrent synapses are turned on. Specifically, 190

ḡIE and ḡII go from zero to nonzero values; ḡEE(t) updates (and LGN synapses 191
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Table 1. Model parameter values parametrized for the visual cortex. See text for references.

Neuron Parameters

Membrane time constant, ⌧m 20 ms Leakage reversal potential, vl -60 mV

Excitatory reversal potential, vE 0 mV Inhibitory reversal potential, vI -80 mV

GJ conductance, gc 0.06 Background firing rate, ⌫ 0.5 Hz

Excitatory synaptic time constant, �E 11 ms Inhibitory synaptic time constant, �I 15 ms

background spike strength, ḡback 0.02

Plasticity Parameters

Learning rate for LGN, ALGN
LTP 0.005 LTP time constant, ⌧r1 16.8 ms

Learning rate for V1, Acort
LTP 0.015 LTD time constant, ⌧o1 33.7 ms

Triplet LTD time constant, ⌧o2 114 ms Maximum LGN weight, gmax
LGN 0.02

Maximum I! E weight, gmax
I 0.05 Max E! E weight, gmax

E 0.025

Learning rate for iSTDP, AiSTDP 0.008 Time constant, ⌧iSTDP 20 ms

Target firing rate, ⇢ 8 Hz

continue to update) according to the rules defined in Eqs (2) - (3); and ḡEI(t) updates 192

according to the rules defined in Eqs (6) - (7). We simulate this network for 1200s until 193

the recurrent cortical weights have stabilized and each cortical cell has developed an 194

input preference (called the OP in this work); see S2 Fig for some discussion of the 195

stability of OPs after 1200s. We note that the network operates in an asynchronous 196

regime known to accentuate the performance of STDP [26]. 197

Tuning properties of the cortical cells are determined by taking the final weights 198

from the simulated network and, for each input stimulus preference from 0 to 1000 in 199

increments of 20, we record the firing-rate responses for all neurons averaged over two 200

seconds of simulation time. Tuning curves are calculated for each cortical cell by 201

determining the firing rate of that cell for each input stimulus and normalizing by the 202

maximum firing rate across all cells. The OP of the cortical cell is determined as the 203

stimulus location that gives the greatest response. Selectivity is determined using the 204

orientation-selectivity index (OSI), a measure for selectivity of a cell, 205

OSI =
Rpref �Rperp

Rpref +Rorth
,

where Rpref is the firing rate of the neuron at its preferred orientation and Rorth is the 206

firing rate of the neuron at the orthogonal orientation (in this work, the orthogonal 207

orientation corresponds to the orientation that is 500 units away from Rpref). An OSI 208

value close to 1 indicates high selectivity and a value close to 0 indicates no selectivity. 209

Results 210

We describe simulation results for three realizations of the cortical network, each with 211

progressively more realistic connectivity properties. These realizations of the network 212

are chosen to demonstrate three characteristics of synaptic development in the presence 213

of GJs: (i) The development of feedforward LGN synapses onto cortical cells in the the 214

presence of GJs; (ii) The effect of GJ-coupling on the formation of cortical all-to-all 215

synapses; (iii) The development of an OP map when cortical synapses are spatially 216

restricted. 217
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GJs and receptive field development 218

We begin by studying the development of the feedforward LGN synapses onto the 219

cortical cells. Specifically, we use a 400-neuron cortical network in which 20% of the 220

cells are inhibitory and 80% are excitatory. We allow two excitatory cells to be coupled 221

by a GJ with a 50% probability such that about half of the excitatory population is 222

GJ-coupled in pairs (similarly to the small proof-of-concept model network explored 223

in [21]). Following the experimental timeline (see S1 Fig), we simulate the first 224

postnatal week of development by allowing the feedforward synapses to learn, via the 225

rules discussed in the Methods and Models section, for 600 seconds of simulation time. 226

During this time, excitatory cells are GJ-coupled while the recurrent synaptic 227

connections are set to zero (phase 1 of development). At the end of this phase, we turn 228

off the GJs between cortical cell pairs and allow recurrent cortical synapses to learn 229

together with the feedforward synapses from the LGN (phase 2 of development). 230

A B

D EC

Fig 2. Measurements from a 400-neuron network with pairwise GJ coupling. A: Progression

of the synaptic weights from LGN to one sample excitatory cortical cell. The black curves

highlight three synapses that have potentiated, depressed, and remained around an average

value; B: Tuning curve of this sample cell before (dotted curve) and after (solid curve)

feedforward LGN synaptic learning. Recall that OP is labeled according to LGN input labels 0

- 1000; C: Sample tuning curves. (top) Tuning curves of five GJ-coupled pairs, where matching

colors indicate the GJ-coupled pairs. (bottom) tuning curves of non-GJ-coupled excitatory

cells; D: Distribution of the difference in OP between GJ-coupled pairs (teal) and

non-GJ-coupled cells (gray); E: Probability of a bidirectional synapse (purple), a unidirectional

synapse (black), or no synapse at all (gray) between GJ-coupled cells and non-GJ-coupled cells.

Due to the competitiveness of the STDP learning rule, about half of the LGN 231

synapses onto one cortical cell potentiate to the maximum possible synaptic strength 232

and half are depressed to zero, see Fig 2A. Further, the synapses that become 233

potentiated tend to have a similar labeling (i.e., respond preferentially to a similar input 234

value), resulting in an input preference for the cortical cell at the end of the simulation, 235

see Fig 2B. This input preference is what we refer to as the OP of the cortical cell in 236

this work. The cells that were coupled by a GJ during the first phase of development, 237

i.e., during the time of feedforward learning, develop similar OPs, while cells that did 238

not contain GJ coupling are not likely to share an orientation preference, see Fig 2C 239

and 2D. Finally, the model reproduces the experimentally-observed behavior for 240
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GJ-coupled cells to preferentially form bidirectional synapses, see Fig 2E. Note that the 241

probability of finding bidirectional synapses between GJ-coupled cells is much higher in 242

the model than those observed in real cortex (26% in [7] compared to almost 80% here) 243

since we are directly comparing GJ-coupled cells, while the experiments tested all sister 244

cells (only a fraction of which are coupled by a GJ). 245

Our simulations show that GJ-coupled cells tend to develop an OP much sooner 246

than non-GJ-coupled cells. The feedforward synapses from LGN onto the GJ-coupled 247

cells learn much faster than those synapses onto cells that are not GJ-coupled, see Fig 248

3A. This effect is consistent across all GJ-coupled and non-GJ-coupled pairs; Fig 3B. 249

Notice that the slope of the average synaptic strength is much larger for those cells with 250

GJ coupling during the first phase of development than for those cells without. 251

A B C

Fig 3. Rate of learning properties of GJ- vs. non-GJ-coupled cells. A: Top (bottom):

Progression of the feedforward synaptic weights onto a sample GJ-coupled (non-GJ-coupled)

neuron. The black curves highlight three synapses that have potentiated, depressed, and

remained around an average value; B: The average weight progression (curve) and standard

deviation (shaded region) for all GJ-coupled neurons (teal) and all non-GJ-coupled neurons

(gray) calculated by averaging together all feedforward synapses that potentiated to at least

70% of the maximum synaptic weight over all cells in each population. Inset: Sample tuning

curve for a GJ-coupled neuron (solid) and a non-GJ-coupled neuron (dashed) after 600 seconds

of simulation time, before recurrent connections begin to form. C: Width and height of the

tuning curves measured for all cells in the network, as well as the orientation-selectivity index

(OSI), the average reported as the center of each square, the standard deviation as error bars,

over all cells in each group.

Due to this increased learning rate, GJ-coupled cells are more selective for orientation 252

(have more clearly-defined tuning curves) than non-GJ-coupled cells. To demonstrate 253

this, we measure properties of the tuning curves of the GJ-coupled and non-GJ-coupled 254

neurons at the end of the first phase of development, before cortical synapses learn. Fig 255

3B (inset) shows the tuning curve of a GJ-coupled cell (teal) and non-GJ-coupled cell 256

(gray) at the end of the first phase of development. Notice that the GJ-coupled cell has 257

more selectivity than the non-GJ-coupled cell, as indicated by the tall thin peak. This 258

effect is quantified over all cells in the network by considering the width and height of 259

March 26, 2025 9/23



the tuning curve for all GJ-coupled cells and non-GJ-coupled cells. Fig 3C shows the 260

average over all GJ-coupled (teal) and non-GJ-coupled (gray) neurons for three 261

measures of orientation selectivity. Notice that GJ-coupled neurons clearly have more 262

selectivity than non-GJ-coupled cells at the time that cortical synapses begin to form. 263

Recurrent synapse formation (all-to-all network) 264

Next, we study the effect of GJ coupling on the formation of cortical synapses. We make 265

the model more realistic by including sister-cell groups in the excitatory population and 266

coupling a percentage of them with GJs (rather than simple pair-wise coupling as in the 267

previous section). We also explore varying the time at which the synapses between 268

cortical cells form to investigate how GJ coupling during the first developmental phase 269

affects the resulting OPs of the cortical cells. We also decrease the model network size 270

from 400 to 256 neurons to speed up computation time while ensuring that there are still 271

enough excitatory cells (⇠ 200) to measure GJ properties when the coupling is sparse. 272

To create sister-cell groups, we divide the excitatory population into six groups with 273

equal probability, where each group represents a set of sister cells (i.e., all cells in each 274

group are sister cells to only those cells in that group). The motivation behind choosing 275

six groups of sister cells is that, in mouse V1, sister cells are intermingled with other 276

sister cells and outnumbered in a local volume by a factor of six [27]. We assume that 277

256 neurons corresponds to a small enough volume of the cortex that we can consider 278

only six groups of sister cells that are randomly distributed in the space. Within each 279

sister-cell group, each neuron has a 5% probability of being coupled to a sister cell by a 280

GJ. Fig 4A shows a count of the number of cells in each sister group along with the 281

probability of GJ coupling in each group. Note that this coupling percentage is much 282

sparser than the ⇠ 28% coupling probability measured experimentally for 283

radially-aligned sister cells [7]. We found that is was necessary to require a sparse 284

GJ-coupling during the first postnatal week for the GJ-coupled cells to exhibit the 285

experimentally-measured properties of OP sharing and preferential synaptic coupling. 286

We will discuss this more in a later section. 287

The response properties measured for the pairwise GJ-coupled 400-neuron network 288

remain in this 256-neuron network, including the increased rate of learning for 289

GJ-coupled cells compared to non-GJ-coupled cells, see Fig 4B, and the preference for 290

GJ-coupled cells to share an OP, see Fig 4C. The recurrent synapses between excitatory 291

cells can be all-to-all, as illustrated in Fig 4D by the red boxes being scattered 292

throughout the entire cortical region, but due to the competitive STDP rules, each 293

excitatory cell forms a strong synapse with only about half of the other excitatory cells 294

(the other half decay just as in the feedforward LGN synapses). 295

We now begin to investigate how these effects from GJ coupling during the first 296

phase might affect the OP of each cortical cell. First, we show that if GJ coupling is 297

turned off during the time that feedforward LGN synapses are learning (the first phase 298

of development), the distribution of OPs that forms has more order than the one that 299

forms when GJs are present during the first phase of development. In particular, when 300

cortical recurrent connections form between all cells in the network, all cortical cells 301

develop a similar OP (as seen and discussed in [16]). Fig 5A shows that the OPs in the 302

network without GJ coupling tend to cluster around one value (⇠ 375), indicating that 303

the recurrent connections influence the resulting OP of each cell, while the network with 304

GJ coupling during the first phase of learning has a more uniform distribution of OPs. 305

To quantify this, we calculate the Kullback-Leibler divergence (KLD) between each 306

resulting OP distribution and the uniform distribution; see Fig 5B. Notice that networks 307

without GJ coupling during the first phase of development have a lower KLD value than 308

networks containing GJ coupling, indicating that the inclusion of GJ coupling during 309

the first phase of development results in an OP distribution that is more similar to the 310
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alized 

Fig 4. Measurements from a 256-neuron network with all-to-all potential cortical connectivity.

A: The number of cells (left) and the probability GJ-coupling (right) within each of the six

sister groups. B: The rate of LGN synaptic learning averaged over all GJ-coupled cells (teal)

and non-GJ-coupled cells (gray). C: The distribution of differences in OP for GJ-coupled cells

(teal) and non-GJ-coupled cells (gray). D: The normalized recurrent cortical weights onto one

sample excitatory cell, indicated by a star. Inhibitory weights onto this cell are indicated by

negative values and shown in blue while excitatory ones are positive and shown in red. The

recurrent connections begin at t = 500 seconds and the entire simulation was run for 1200

seconds.

uniform distribution, where each OP has equal likelihood of occurring. 311

Without GJs With GJs 
A

B

Fig 5. Distribution of OPs comparing a network containing GJ coupling to one without. A:

(Top) Plot of each cell’s OP; (Bottom) distribution of OPs, for a network that does not contain

(left) and one that does contain GJ coupling (right) during the first phase of development. The

start time of cortical learning is 100 seconds. B: The average Kullback-Leibler divergence

(KLD) between the uniform distribution and the OP distribution for the networks with (solid

teal) and without (dotted gray) GJ coupling during the first phase. The curves are the average,

and the shaded region the standard deviation, across 5 trials. Smaller values indicate

distributions more similar to the uniform distribution.

In addition to GJ coupling, the time at which recurrent synapses begin to learn (the 312

start time of the second phase of development) also has an effect on the distribution of 313

OPs. Specifically, the amount of disorder (closeness to a uniform distribution) increases 314
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with the start time of recurrent synaptic learning as shown in Fig 5B. Next, we apply 315

this idea to a cortical network with spatially-restricted synaptic connectivity. 316

Recurrent synapse formation (radius of cortical connectivity) 317

Next, we introduce spatial restrictions on the cortical synaptic connectivity and 318

compare the resulting OP maps across networks that contain GJ-coupling during the 319

first phase of learning and networks that do not. To introduce spatial effects into the 320

model, we draw a fixed radius around each excitatory cortical cell and only allow 321

excitatory synaptic connections from cells within that radius. Note that excitatory to 322

inhibitory, inhibitory to excitatory, and inhibitory to inhibitory synaptic connections 323

still remain all-to-all, with no spatial restrictions. The excitatory to excitatory synaptic 324

strengths are plastic, following the triplet learning rule, while the inhibitory to 325

excitatory synapses are also plastic, following the iSTDP learning rules as described in 326

the Methods and Models section. 327

Fig 6 shows the development of recurrent synapses onto one sample excitatory 328

neuron in the network. In this example, excitatory recurrent connections within a 329

radius of 4 units are turned on at time t=500 seconds, with initial weights chosen 330

randomly from the interval [0.25, 0.35]gmax. As cortical synaptic learning progresses, 331

about half of these excitatory recurrent synapses (within the radius) are potentiated, 332

while half are depressed, as expected and shown in previous sections. Notice that 333

negative weights indicate inhibitory synapses onto this excitatory example neuron, 334

which potentiate as the excitatory weights increase to mediate the firing rate of this cell. 335

Norm
alized weight

Norm
alized weight

Fig 6. Evolution of the strength of the recurrent synapses onto one sample excitatory cortical

cell shown at different time points during the second phase of development. The star indicates

the location of the sample neuron. Inhibitory weights onto this cell are indicated by negative

values and shown in blue while excitatory ones are positive and shown in red.

We investigate the effect of GJ-coupling during the first phase of development by 336

measuring the amount of order in the resulting OP map with and without GJ coupling 337

during this phase; see Fig 7A. The leftmost plot shows the OP map for a network in 338

which the recurrent synapses form at the same time as the LGN synapses. Notice that 339

there are patches of cells with similar OPs, the sizes of which correspond to the radius 340

of connectivity. If we increase the amount of time that the LGN synapses change 341

without recurrent cortical synapses to 500 seconds (the first phase of development), we 342

observe that the degree of disorder increases until we reach a salt-and-pepper map, see 343

rightmost plots of Fig 7A, with the network containing GJ coupling during the first 344

phase of development (top) exhibiting a higher degree of disorder than the network that 345

did not contain GJ coupling during the first phase (bottom). 346

We quantify the degree of disorder in the OP map by calculating the average 347

difference in OP for each cell within the radius of cortical connectivity. For each 348

excitatory cell, we take the difference between the OP of that cell and the OP of the 349

excitatory cells that are within the radius of connectivity (4 units) and then take the 350

average of those differences. Finally, we take the average of this OP difference over all 351
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of the excitatory cells in the network to obtain the measure shown in Fig 7A. Notice 352

that larger values of this measure indicate larger differences in OP, which corresponds to 353

more disorder. We observe that the degree of disorder in the OP map increases as the 354

start time of the cortical synapses (the length of the first phase of development) 355

increases. The networks in which GJ coupling is present during the first phase of 356

development follow this same trend as the start time of cortical synapses increases, but 357

also exhibit overall higher levels of disorder than those networks that did not contain 358

GJ coupling; see solid teal curve as compared to dotted gray curve in Fig 7A. 359

LGN and cortical synapses at 0s Cortical synapses at 500s, with GJs Cortical synapses at 500s, without GJs

A

B

Fig 7. Effect of GJ-coupling and timing of cortical learning on the OP. A: The plots shown

are OP maps for different types of networks where the color indicates the preference of the cell

at that location and the white boxes indicate the inhibitory cells (that do not have a

preference). The leftmost map is for a network in which the recurrent synapses form at the

same time as the feedforward LGN synapses, the top right map is for a network that contains

GJ-coupling during the time that feedforward LGN synapses are forming, and the bottom right

map is for a network that does not. The graph in the middle shows the average difference in

OP (as defined in the text) for cells within a radius of 4 units, where higher values indicate

disorder. The curves are the average, and the shaded region the standard deviation, across 5

trials. The horizontal axis denotes the time at which recurrent synapses within the cortex

begin to learn (start time of the second phase of development). After this time, if there were

GJs in the network, they are turned off. Note that, for the case of cortical synapses beginning

at 0s, there are no GJs in the network by definition since there is no first phase of development.

B: Distribution of OPs for the three networks in A.

We observe that, in these last two realizations of the network model (all-to-all 360

connectivity and radius connectivity), the overall OP distribution is close to uniform; 361

see Fig 5A and 5B. Though each orientation has about equal representation in all 362

example networks, the spatial distribution of the cells with each OP changes drastically 363

across each network depending on GJ-coupling and the timing of recurrent synapses. 364

Effect of GJ-coupling density on synchrony 365

The mechanism underlying the shared OP of GJ-coupled cells is the synchrony (or 366

strongly correlated spike times) induced between the two cells by the GJ. As the 367
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feedforward LGN synapses form, cells that fire synchronously preferentially develop a 368

similar set of strengthened LGN synapses, and thus form a similar OP. In our model, 369

sparsity of GJ coupling between the sister cells is essential for this synchrony to occur, 370

and consequently, for the shared OP of GJ-coupled cells. 371

First, we show that synchrony decreases as a function of the percentage of 372

GJ-coupling among sister cells; see Fig 8A, which shows sample raster plots and average 373

activity plots for GJ-coupled sister cells with different coupling percentages. The 374

intuition for this dependence of synchrony upon density is as follows: When cells are 375

coupled with a probability of 5%, each cell is coupled to an average of 1.5 other cells, 376

leading to isolated pairs or triplets of GJ-coupled cells whose only communication is 377

with their GJ-coupled partners. As the coupling percentage increases, the GJ-coupled 378

cells are no longer isolated; rather, each cell may be coupled to several different groups 379

of GJ-coupled sister cells, leading to an overall desynchronization. 380

To determine the effect across many GJ-coupled sets of sister cells, we include a 381

measure for synchrony that involves counting the number of times the network crosses a 382

threshold (chosen as 0.6 in this work), deemed a Network Synchronous Event (NSE) as 383

has been done in previous work [4, 5]. In this measure, higher values indicate that more 384

GJ-coupled cells are firing within a short timeframe and thus are more synchronized. As 385

was illustrated in the raster and average activity plots, the amount of synchrony 386

between GJ-coupled cells decreases with an increase in coupling percentage. A direct 387

consequence of this desynchronization with coupling percentage is that GJ-coupled cells 388

no longer share an OP after the feedforward synapses have stabilized; see Fig 8B. 389

5% GJ-coupling

20% GJ-coupling

A B

10% GJ-coupling

5% GJ-coupling

10% GJ-coupling

20% GJ-coupling

11 NSEs/sec

9 NSEs/sec

5 NSEs/sec

Fig 8. A: Sample raster plots (left) and average activity (right) of sets of GJ-coupled sister

cells for different GJ coupling percentages. Each color-coded set of spike times in the raster

plots indicate a set of GJ-coupled sister cells. The activity plots shown to the right corresponds

to the GJ-coupled set shown in red in each raster plot. The average activity plots were created

by adding an exponential tail of 20 ms to each spike for each cell in the GJ group, adding them

together, and dividing by the number of cells in each group.The average number of network

synchronous events (NSEs) per second, a measure for the amount of synchrony, for each

coupling percentage, is shown in text on the average voltage plots in A. The threshold for

determining an NSE was chosen as 0.6, as illustrated by the red dashed line, though small

changes in this threshold do not significantly affect the results. B: The difference in OP for

GJ-coupled cells (teal) and non-GJ-coupled cells (grey) in a network with 5%, 10%, and 20%

GJ coupling among sister cells (top to bottom).

Though the preference for GJ-coupled cells to share an OP is diminished with 390

increasing GJ-coupling probability, all other properties of OP-map development, such as 391

March 26, 2025 14/23



the discussion of order vs. disorder, do not rely on this assumption; see Fig 9. In 392

addition, though experiments measure the GJ-coupling percentage between sister cells 393

during the first postnatal week as about 28%, this was specifically measured for isolated 394

pairs of radially-aligned sister cells [7]. In this work, we are interested in sister cells that 395

are GJ-coupled laterally (within the layer), which hasn’t explicitly been measured. 396

Fig 9. The mean difference in OP for varying start times of the cortical synaptic learning

comparing different percentages of GJ-coupling between sister cells. Note that we only show

results for greater than 250 seconds of cortical learning to ensure the GJ-coupling has time to

affect the dynamics.

Discussion 397

We have created a simple mathematical model to further understand how GJ coupling 398

among sister cells early in development might affect the formation of the receptive fields 399

of V1 cells, as well as seed the cortical maps that develop later. The model uses 400

spike-timing dependent plasticity (STDP) rules explicitly parametrized for the visual 401

cortex to explore potential mechanisms underlying the formation of ordered or 402

disordered orientation preference (OP) maps. Predictions from our model include a 403

faster rate of learning for GJ-coupled cells than for non GJ-coupled cells; an increase in 404

disorder in the OP maps for networks with GJ-coupling (dependent on sparsity of such 405

coupling); and a relationship between the relative timing of plasticity of the feedforward 406

LGN synapses and recurrent cortical synapses. 407

There is a vast literature on the role of Hebbian plasticity in forming circuits and 408

OP map development, see for example [28–32] and [33–37]. Our model aligns most 409

closely with the work in [16,17,38], with the inclusion of GJs as in [21], but with a focus 410

on the effect of GJ coupling during development on OP map formation. When 411

compared with previous work on the effects of GJs on development of the visual cortex, 412

our model includes a larger network, more realistic plasticity rules for the visual cortex, 413

and two phases of development (plasticity of feedforward LGN synapses before recurrent 414

synapses and plasticity of recurrent synapses together with feedforward LGN synapses) 415

to propose a mechanism underlying disordered OP maps in mice. 416

Specifically, our model shows that GJ-coupled cells exhibit higher firing rates and 417

faster rates of learning for their feedforward LGN synapses than their unconnected 418

counterparts, leading to higher selectivity of GJ-coupled cells at the time recurrent 419
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synapses begin to form, a result that has not, to our knowledge, been shown before. 420

The implication of GJ-coupled cells having more selectivity than non-GJ-coupled cells is 421

that their tuning properties are less likely to be influenced or changed by the recurrent 422

cortical synapses when they begin to form during the second phase of development. If 423

we consider sparsely-coupled GJs during the first phase of development, and expect that 424

GJ-coupled cells will preferentially develop similar OPs while different sets of 425

GJ-coupled cells develop different OPs, then we expect to see pairs of cells with similar 426

OPs scattered throughout the cortex. Assuming that the GJ-coupled cells are 427

sufficiently selective at the initiation of recurrent cortical learning such that their OP 428

does not change during this second phase, one would expect that the final OP map in 429

this case would be salt-and-pepper, as demonstrated in the left schematic of Fig 10. On 430

the other hand, if GJs did not exist during the first phase of development while LGN 431

synapses were forming, then the cortical cells would not be sufficiently selective by the 432

time that recurrent synapses formed, and the development of the cortical recurrent 433

synaptic connections would influence the final OP of each cell. This might result in an 434

OP map that has order, as demonstrated in the right schematic of Fig 10. We have 435

shown in Fig 7 that indeed the inclusion of GJs during the first phase of development 436

leads to maps that are more disordered than their non-GJ-coupled counterparts. 437

Birth

developmental time

Cortical synapse

formation

Eye opening

LGN synapse

formation

Birth

Cortical synapse

formation

Eye opening

LGN synapse

formation

Disordered OP map Ordered OP map

developmental time

Fig 10. A schematic representing how GJs during the first week might lead to a disordered

(i.e., salt-and-pepper) OP map. Each stage drawn here represents: (i) The first postnatal week

as labeled by “Birth” and “LGN synapse formation”, (ii) the second postnatal week while

chemical synapses are forming, and (iii) the resulting cortical recurrent synapses and OP as

indicated by the color of the cell. Transparency represents selectivity, where opaque colors

indicate a higher amount of selectivity or sharp tuning.

We also explore the effect of timing of the recurrent cortical synapses on OP map 438

development. Specifically, we show that order in the OP map increases with earlier 439

formation of recurrent synapses, independent of the existence of GJs during the first 440

phase of learning. This leads us to conclude that GJ coupling during the first phase of 441

development indeed promotes a disordered OP map, but works together with the 442

relative timing of synaptic development from LGN and within the cortex. 443

In our work, synchrony of the spike times between GJ-coupled sister cells underlies 444

the formation of similar OPs for those coupled cells, while the sparsity of GJ coupling 445

among sister cells underlies the enhancement of disorder in the OP map. In particular, 446

we show that as the density of GJs among sister cells increases, synchrony decreases, 447

leading to a decrease in the preference for coupled cells to share an OP. The sparse 448

coupling among sister cells is an assumption of the model, but is reflected in 449
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experiments. In particular, sister cells are derived from radial glial cells and migrate to 450

their end location by traveling down the axon of the glial cell. While traveling, these 451

sister cells begin dispersing laterally such that by the end of the second postnatal week, 452

they are dispersed up to 500 µm in radius [13]. Then, sister cells become sparsely 453

intermingled in the mouse visual cortex, with sister cells outnumbered by non-sister 454

cells in a local volume (100-500 µm in diameter) by a factor of six [39, 40], a property 455

that seems to be essential for proper synaptic development [41]. Currently, GJs have 456

only been measured between nearby radially-aligned sister cells (within a radius of 457

100-120 µm [8]) and the coupling percentage was found to be about 28% for cells 458

distributed throughout several layers [7]. Therefore, it is not unreasonable to assume 459

that sister cells are sparsely coupled laterally at about 5%, though more experiments 460

would be necessary to justify this assumption. 461

We note also that the model developed in this work is highly simplified, especially in 462

its size, spatial structure, and LGN input organization. In particular, our model lacks 463

non-visually stimulated neurons, and so its idealized LGN feedforward input doesn’t 464

reflect changes in network stimulation after eye-opening (i.e., spontaneous activity to 465

visually-driven input). As the goal of our study was to understand the formation of OP 466

maps due to GJ connectivity during the first postnatal week, we did not address the 467

refinement of recurrent synapses after eye-opening that is observed in [21] and modeled 468

in [38]. Another limitation of the model is the simplicity of the patches of similar OP in 469

our model. Ideally, the ordered map would include the pinwheels of OP observed in the 470

cortices of cats and ferrets, but the formation of ordered pinwheels would require a 471

much larger network than the current model (on the order of thousands of neurons [36]). 472

In this work, network size does not affect the mechanism of disorder (neither does the 473

radius used to measure disorder; see S3 Fig); rather, the density of GJ-coupling among 474

sister cells is one main contributor to the observed dynamics. 475

Experiments show that visual input is not necessary for cortical cells to develop an 476

OP [42,43]. Instead, spontaneous activity in the cortex is generated from intra-cortical 477

circuits, as well as input from spontaneous retinal waves [44], and drives synaptic 478

plasticity during the first two postnatal weeks [21]. By the end of the second postnatal 479

week, a weak OP map has already developed and then becomes further stabilized by 480

visual input through the newly-opened eyes. Our model predicts that GJs between 481

sister cells during the first postnatal week produce synchronous coupling between pairs 482

of cells that seeds the functional selectivity that forms later in development, one 483

consequence of which is a disordered “salt-and-pepper” OP map. At eye-opening, 484

experimental data [21] does not confirm the presence of functional selectivity. Rather, 485

at best, there may be only a weak functional selectivity at eye-opening – more prevalent 486

when measured with natural images than oriented gradings – with this functional 487

selectivity increasing significantly over the following postnatal week as visual input is 488

received through the eyes [21]. In the first part of the second postnatal week, very 489

shortly after eye-opening, other experimental measurements [7, 8] show a significant 490

presence of cells, previously GJ-connected sister cells, preferentially sharing OPs and 491

being synaptically coupled. Our model does have a higher level of functional selectivity 492

at eye-opening than observed in the data of [21], but the model’s level is consistent with 493

receptive fields developing prior to recurrent synaptic plasticity and with GJs aiding in 494

the development of those receptive fields. 495

To summarize, our results are consistent with the assertion that GJs during the first 496

postnatal week seed functional selectivity, leading to disordered OP maps. Specifically, 497

our model reproduces the preference for cells that were GJ coupled in the first phase of 498

development to share an OP and preferentially develop a bidirectional synapse later in 499

development, and goes further to suggest how the observed disordered OP map may 500

develop with GJ-coupling between sister cells early in development. The model 501
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reproduces experimentally-measured properties of GJ-coupled cells and uses these 502

properties to propose two mechanisms affecting the formation of salt-and-pepper OP 503

maps in the mouse V1: the presence of GJs during the first postnatal week and the 504

relative timing of cortical synapse formation to the timing of feedforward LGN synapse 505

formation. Additional computational studies of networks including realistic LGN input 506

and spatial organization of the cortex, together with the inclusion of plastic GJs between 507

FS inhibitory cells [14] during the second phase of development, are necessary to further 508

extend our understanding of potential roles for GJs in V1 during development. 509
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Supporting information

Week 1
Week 3

LGN

LGN

GJ coupling between 
sister cells

Synapses from LGN to 
cortex begin to 

strengthen 

No cortico-cortical 
synapses detected

GJs between sister 
cells disappear

Synapses from LGN 
continue to strengthen

Glutamatergic and 
GABAergic synapses 
begin to form in the 

cortex
Pyramidal cells have 

clear selectivity

Glutamatergic and 
GABAergic synapses 

begin to stabilize

eye opening

LGN

Week 2

S1 Fig. Timeline of biological connectivity in the primary visual cortex of

mice and schematic of the model connectivity for the first three postnatal

weeks.

S2 Fig. Orientation preference has stabilized by 1200s of simulation time.

A: Plot of the change in feedforward weights to two sample cortical cells,

one with GJs during the first phase of development (left, teal) and one

without (right, gray), for 3000s of simulated time. The black curves

highlight one weight that increased and one that decreased. Notice that by

1200s, we see a clear split of the weights and this cell has developed an OP.

B: The resulting OP map for a simulation run for 1200s (left) and 3000s

(middle) together with the difference in the OP between the two (right).

The white squares indicate inhibitory neurons, which are not selective. The

mostly-red plot shows that the OP for each neuron does not change much

with longer simulation time.

S3 Fig. The effect of changing the measurement radius on the average

difference in OP. The panels show different start times of the recurrent

cortical synapses increasing from left to right. The solid colored lines in each

panel indicate those networks that contain GJ coupling during the first

phase of development, while the dotted lines indicate those networks that do

not. The black curve is for the case when cortical recurrent synapses and

LGN feedforward synapses begin at the same time (independent of GJs).

Notice that the measure is low (there is order in the OP map) for small

radii, and increases with increasing radius, implying that cells share an OP
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at small distances, but not at large distances. Importantly, for the networks

containing GJ coupling during the first phase of development, and for cases

in which the feedforward synapses were allowed to learn for a sufficient

amount of time while the GJs are present (300s and 500s), there seems to

be little order for any value of the radius, see blue and orange solid lines in

the first and third panels. For the same amount of feedforward learning,

there is significantly more order in networks that did not contain GJ

coupling, see dotted curves in all panels.
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