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ABSTRACT

Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is
incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic
network topologies (focusing on the strongest connections and coordination patterns) and
signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development
(ABCD) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median
age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse
associations between low-frequency signal and topological fluctuations were estimated (p <
0.05, B = —0.20 to —0.02, 95% CI = [-0.23, —0.001]). Signal (but not topological) fluctuations
increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, 8 = 0.06-0.07,
95% Cl = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as
cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, 8 = —0.09 to —0.03, 95% Cl =
[-0.15, —0.001]). Higher temporal signal and topological variability in spatially distributed
regions were estimated in girls. In racial/ethnic minorities, several associations between signal
and topological fluctuations were in the opposite direction of those in the entire sample,
suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal
dynamics change significantly in developed and developing brain regions, but their strongest
coordination patterns may already be sufficiently developed and remain temporally consistent.

AUTHOR SUMMARY

We have investigated pubertal changes in intrinsic signal and network dynamics, estimated from
resting-state fMRI in a sample of youth from the Adolescent Brain Cognitive Development (ABCD)
study. We have identified reproducible, inverse associations between low-frequency signal and
topological fluctuations, as well as pubertal changes in intrinsic signal dynamics but not
topological patterns of strongly connected networks. We have also identified sex differences in
these dynamics and negative associations with BMI. Several associations between signal and
topological fluctuations were in the opposite direction in racial/ethnic minorities compared with
those in the entire sample. Our findings indicate that intrinsic signal dynamics change significantly
in developed and developing brain regions during puberty, but their strongest synchronization
patterns may already be sufficiently developed prior to puberty and are dynamically reproducible.
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Intrinsic network dynamics are markers of adolescent brain development

INTRODUCTION

Even when not actively processing external inputs or responding to cognitive task demands,
the brain is not at rest. Its activity varies dynamically at multiple temporal and spatial scales (as
a function of its physiological and cognitive state). The origin and cognitive correlates of
dynamically varying, intrinsic activity and spontaneous coordination of brain regions have
been studied extensively in the human brain ( ; ;
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). Prior work has correlated intrinsic activity with cognitive processing at that 2

state, including mental imagery, introspection ( ), and mind wan- EQS
dering ( ; ; ). Studies on spontaneous g
network coordination have provided insights into temporal anticorrelations between brain 3
regions with antagonistic functions ( ) and/or correlated temporal patterns ;
that may reflect specialized cognitive function ( ). Some have also linked é
aberrant spontaneous coordination patterns to neuropsychiatric disorders, such as schizophre- %
nia ( ; ; ), as well as cognitive §
decline and impairment ( ; : Wee et al., 2016). ;i\;
9]

=}

A number of studies have specifically investigated time-varying functional connectivity (dFC)
using neuroimaging modalities with different spatiotemporal resolutions (e.g., fMRI and EEG), as
well as different computational approaches ( ; ;

; ). These include sliding window-based methods that calculate dFC in
temporally overlapping windows using pairwise correlation or coherence measures and/or inde-
pendent component analysis (ICA) and related approaches ( ; Chang & Glover,
2014; ). Variants have also used an adaptive window, informed by local brain
dynamics (Xu & Linquist, 2015; Zhuang et al., 2020). Some studies have used instantaneous
phase synchronization for high-resolution temporal estimation of coordination that is not sensi-
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tive to the window size ( ; ; Nobukawa et al., |
2019), recurring patterns of voxel or region coordination ( ), or sequences of recur- |
ring states ( ). ICA has also been used to identify multistate functional
domains and track their spatial variation over time ( ).

Relatively fewer studies have examined resting-state dynamics and dFC in the developing
brain. They have identified age-related changes in these dynamics ( ;

; ) and multiple intrinsic connectivity states with distinct
topological and temporal characteristics (e.g., duration and variability) that may be associated
with introspective processes ( ), behavior and cognitive performance (

; ), trait mindfulness ( ; ), and
mental health ( , , ). These, likely metastable, states facilitate the
brain’s recruitment of task-related networks and transitions between patterns of coordination
in response to cognitive demands ( ) or from an introspective to an extros-
pective mode ( ). In addition, higher temporal variability of resting-state brain
signals has been associated with better cognitive performance and social emotional health
( ; ). Higher dFC similarity (lower temporal and/or
cross-scan variability) has been associated with better cognitive performance in both adults
( ) and children ( ). Furthermore, mental health disorders, such
as depression and bipolar disorder, have been linked to alterations in dFC variability (Chen
et al., 2020; Demirtas et al., 2016; Zhou et al., 2021). Youth with attention-deficit/hyperac-
tivity disorder (ADHD) and autism spectrum disorders (ASDs) also have differences in dFCQ11Q12
( ; ; ; ).
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Intrinsic network dynamics are markers of adolescent brain development

Fluctuation amplitude:
Median square root of the BOLD
signals’ frequency content in the
0.01- to 0.1-Hz range.

Network Neuroscience

Beyond dFC, other measures of spontaneous brain activity fluctuations have been estimated
across the lifespan. A recent study has shown that the amplitude of low-frequency BOLD fluc-
tuations and its spatial gradient may be a hallmark characteristic of cortical maturation and
developmental changes in neural plasticity ( ). Also, abnormally high var-
iability in fluctuation amplitude has been correlated with generalized anxiety disorder symp-
toms ( ; ). A few studies have also examined the temporal
variability of resting-state topological network properties. Higher variability of functional net-
work modularity (i.e., community structure) across the brain has been associated with periods
of statistically unexpected fluctuations ( ). Fluctuations in the modularity of
the dorsal attention network have been correlated with higher composite intelligence (

).

Despite invaluable insights provided by prior studies, developmental (including pubertal)
changes in intrinsic brain dynamics—as the brain’s anatomy, morphology, and circuit organi-
zation change extensively during almost 2 decades of life—remain incompletely understood.
In particular, brain dynamics during complex periods of development such as adolescence
(and especially puberty), which are associated with profound physical, biochemical, endo-
crine, and cognitive changes, have not been studied. Robust characterization of
resting-state brain dynamics during this period is challenging, largely because of the high het-
erogeneity of adolescent brain development and unique environmental and experiential fac-
tors that play a critical role in shaping the brain’s unique wiring, and consequently its intrinsic
networks and their organization. In addition, measures of temporal variability are inherently
sensitive to the underlying brain dynamics, which also contributes to their heterogeneity. Thus,
large cohorts are necessary to robustly estimate time-varying, resting-state network topologies
and regional intrinsic activity in youth. Furthermore, longitudinal studies can provide critical
insights into how this variability changes as a function of development, including pubertal
maturation. Finally, studies that go beyond dFC and examine dynamic topological measures
or resting-state networks are also needed, as they may provide important insights into the
spontaneous organization (instead of just strength of connections provided by dFC) of
resting-state networks, including their community structure, topological stability, efficiency,
and resilience.

Large-scale studies, such as the longitudinal Adolescent Brain Cognitive Development
(ABCD) study ( ), provide unique opportunities to address this gap in knowl-
edge and robustly characterize spontaneous neural dynamics and topological coordination in
the developing human brain. A recent study investigated cognitive and mental health corre-
lates of dFC states in the ABCD cohort ( ), but did not specifically focus on
changes in intrinsic signal and network dynamics during puberty. Other studies in independent
cohorts have reported age-related changes over longer periods of development (

), but have not focused on adolescence and/or puberty. Also, most of these studies have
not focused on both dynamically varying networks and intrinsic signal fluctuations together
and their relationships.

To address this gap in knowledge, the present leveraged early longitudinal resting-state
fMRI data from the ABCD to investigate pubertal changes in these dynamics. Specifically, in
overlapping samples of over 4,000 youth at the ABCD baseline (ages ~9-10 years) and ~3,000
at the 2-year follow-up (ages ~11-12 years), it aimed to robustly characterize temporal fluc-
tuations of spontaneous network topologies (and their properties) and BOLD signal fluctuation
amplitude as a function of pubertal stage. The study hypothesized that the dynamics of resting-
state networks and amplitude of spontaneous regional activity change significantly during
puberty, largely as a result of accelerated neural maturation (and associated changes in

Q13
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anatomical connections and morphometric characteristics) and underlying biochemical
changes. It further hypothesized that the dynamic similarity (decreased variability) of
resting-state network topologies increases as a function of development and likely reflects
the maturation of their underlying anatomical constraints and increased stereotypy of sponta-
neous synchronization patterns.

RESULTS

At baseline, almost half of youth were in prepuberty (n= 1,962 [47.9%]), 924 (22.5%) in early
puberty, and 1,023 (25.0%) in mid-puberty. At follow-up, less than 20% were in prepuberty
(n=602 [17.8%]), 724 (21.4%) in early puberty, 1,116 (33.0%) in mid-puberty, and ~22.0% in
later stages. The race and ethnicity distribution of the samples reflected the demographic char-
acteristics of the ABCD cohort, which is predominantly White and non-Hispanic. In both the
baseline and follow-up samples, about half of youth were White and non-Hispanic (2,020
[49.3%] and 1,728 [51.2%], respectively); ~15% were Black non-Hispanic, and similarly
for other non-Hispanic racial groups; and less than 25% were Hispanic (932 [22.7%] and
756 [22.4%)], respectively). The median participant BMI was 17.4 kg/m? (interquartile range
[IQR] = 4.6 kg/m?) at baseline and 19.3 kg/m? (IQR = 5.5 kg/m?) at follow-up. Detailed demo-
graphic and other participant characteristics are provided in

Topological and Amplitude Fluctuations in Early Longitudinal Sample

Spatial scale of individual regions. Temporal fluctuations of local clustering (i.e., a region’s
neighborhood connectedness) in parts of the right medial parietal cortex (a key region of
the salience network involved in multiple processes including spatial navigation and aware-
ness, self-processing, and social function) increased with pubertal stage (p < 0.02, 8 = 0.062,
95% Cl = [0.022, 0.102]). In addition, fluctuation amplitude in the bilateral somatomotor cor-
tices and left lateral prefrontal cortex also increased with pubertal stage (p < 0.03, 8 = 0.06—
0.07, 95% CI = [0.03, 0.11]), but decreased in the left temporal pole, bilateral orbitofrontal
cortex, insula, parahippocampal cortex, left posterior cingulate cortex, and bilateral subcorti-
cal areas including the cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, 8 =
—-0.09 to —0.03, 95% CI = [-0.15, —0.001]), indicating increased temporal consistency of
intrinsic activity in these areas during pubertal development. The spatial distribution of these
associations is shown in

Temporal fluctuations of regional topology were also associated with other participant char-
acteristics. The spatial distribution of statistical differences in temporal topological and signal
variability between boys and girls is shown in , with positive associations reflecting
higher temporal parameter variability in girls. Overall, girls had higher variability in local
topologies in distributed brain regions, including the somatomotor regions, prefrontal cortex,
insula, precuneus, superior temporal gyrus, hippocampus, basal ganglia, and thalamus (p <
0.05, B =0.003-0.016, 95% Cl = [0.0002, 0.02]), and higher fluctuation amplitude in several
of the same regions, including the prefrontal cortex, insula, precuneus, basal ganglia, and thal-
amus, as well as bilateral cingulate cortices (p < 0.04, 8 =0.04-0.20, 95% Cl = [0.003, 0.25]).
In addition, girls had lower topological fluctuations primarily in the cerebellum (p < 0.05, 8 =
—0.005 to —0.004, 95% Cl = [-0.01, —0.001]) and lower fluctuation amplitude in posterior
occipital, parietal, and (left) temporal regions (p < 0.04, 8 = —0.28 to —0.04, 95% ClI =
[-0.34, —0.003]).

Temporal fluctuations of regional topological properties were not consistently associated
with race/ethnicity. However, higher topological fluctuations (i.e., lower temporal consistency)
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Table 1.  Participant characteristics and demographic information in the baseline and 2-year follow-up samples

Baseline Two-year follow-up

(N =4,099)

(N =3,376)

Sex

Race/ethnicity

Family income

Parental education

BMI (median [IQR])

Pubertal stage

Male

Female

White Non-Hispanic
Black Non-Hispanic
Asian Non-Hispanic
Other (including mixed race) non-Hispanic
Hispanic

Missing

<5,000
5,000-24,999
25,000-49,999
50,000-99,999
100,000-199,999

>= 200,000

Missing

Advanced degree (MS, JD, MD, other professional)

Bachelor’s degree
Associate degree
Some college
High school/GED
Did not graduate high school
Missing

Raw score
z-score

Missing
Prepuberty

Early puberty
Mid-puberty
Late/postpuberty
Missing

1,912 (46.65%)
2,184 (53.28%)
2,020 (49.28%)
609 (14.86%)
100 (2.44%)
416 (10.15%)
932 (22.74%)
22 (0.54%)
124 (3.03%)
367 (8.95%)
541 (13.20%)
1,000 (24.40%)
1,211 (29.54%)
512 (12.49%)
344 (8.39%)
1,125 (27.45%)
1,183 (28.86%)
457 (11.15%)
669 (16.32%)
378 (9.22%)
284 (6.93%)
3 (0.07%)
17.54 (4.59)
—0.31 (1.11)
11 (0.27%)
1,962 (47.87%)
924 (22.54%)
1023 (24.96%)
61 (1.49%)
129 (3.15%)

1,650 (48.87%)
1,724 (51.07%)
1,728 (51.19%)
491 (14.54%)
70 (2.07%)
321 (9.51%)
756 (22.39%)
10 (0.30%)
75 (2.22%)
255 (7.55%)
398 (11.79%)
844 (25.00%)
1,049 (31.07%)
490 (14.51%)
265 (7.84%)
958 (28.38%)
960 (28.44%)
420 (12.44%)
528 (15.64%)
294 (8.71%)
210 (6.22%)
6 (0.18%)
19.34 (5.54)

—0.053 (0.153)

22 (0.65%)
602 (17.83%)
724 (21.45%)

1,116 (33.06%)
761 (22.54%)
173 (5.12%)

Network Neuroscience
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Amplitude Fluctuation

Clustering Coefficient
of Dispersion

Figure 1. Spatial distribution of regions in which the pubertal stage is statistically correlated with fluctuations in local clustering (left) and
fluctuation amplitude (right). Colors correspond to standardized regression coefficients (negative: blue to green, positive: yellow to red).

of regional importance in the network (centrality) and lower fluctuations of local clustering
were estimated in racial minorities (including Hispanic participants) across distributed brain
regions (p < 0.04, 8 = 0.004-0.02, 95% Cl = [0.002, 0.01]), and lower centrality and fluctu-
ation amplitude were estimated in prefrontal (including orbitorfrontal) regions, bilateral basal
ganglia, and the cerebellum (p < 0.05, 8. =-0.25 to —0.04, 95% CI = [-0.32, —0.01]).

In prior analyses of static topological characteristics of resting-state networks in ABCD study
samples, BMI has been negatively associated with these characteristics across distributed brain
regions and networks ( ). In the present dynamic analyses, higher BMI was
associated with lower topological fluctuations in not only primary visual areas but also

A. Variability of Topological Properties  B. Fluctuation Amplitude

>
3 R
L
-

Bow =

ftés
¥

o
%%‘J} a

Figure 2. Spatial distribution of significant differences in temporal topological (left panel) and signal variability (fluctuation amplitude; right
panel) between girls and boys. The left panel shows regions in which temporal fluctuations of one or more topological parameters were sta-
tistically associated with biological sex. Colors correspond to regression coefficients in models testing sex differences in these parameters, with
adjustments for other demographic parameters and pubertal stage. Positive values (yellow to red colors) indicate greater variability in girls; and
negative values (blue to green colors), lower variability.
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Intrinsic network dynamics are markers of adolescent brain development

orbitofrontal regions (p < 0.05, 8 = —0.04 to —0.03, 95% Cl = [-0.07, —0.004]), both parts of
the brain where topological fluctuations were not significantly associated with pubertal stage.
Higher BMI was also associated with higher topological fluctuations and, thus, lower temporal
consistency of topologies in distributed regions, including bilateral temporal regions, bilateral
ventral, lateral and superior prefrontal cortices, secondary somatomotor cortex, left precentral
gyrus, bilateral insula, right superior temporal gyrus and bilateral basal ganglia, and thalamus
(p < 0.03, B =0.03-0.06, 95% CI = [0.004, 0.09]). Finally, BMI was also associated with
higher fluctuation amplitude in bilateral dorsolateral and ventrolateral prefrontal cortices,
insula, and bilateral temporal sulci (p < 0.05, 8 = 0.02-0.08, 95% CI = [0.003, 0.10]). Some
of these overlapped with areas of higher topological fluctuation as a function of BMI. Finally,
BMI was negatively associated with fluctuation amplitude in the bilateral parietal lobule (inferior
and superior)—and bilateral posterior visual areas, bilateral precuneus, left somatomotor cortex,
right orbitofrontal cortex, bilateral hippocampus, and bilateral cerebellum (p < 0.03, 8 = —0.12
to —0.03, 95% Cl = [-0.14, —0.003]). Some of these areas, including the orbitofrontal cortex and
the cerebellum, overlapped with regions where fluctuation amplitude decreased as a function of
pubertal stage. The spatial distribution of positive and negative BMI associations with regional
topological and signal variability is shown in

Spatial scales of individual networks and the entire connectome. At the scales of individual net-
works and the connectome, no topological properties were statistically associated with puber-
tal stage. However, later pubertal stages were associated with lower fluctuation amplitude in
bilateral limbic, salience, and social networks, and similarly in the bilateral thalamus, amyg-
dala, hippocampus, cerebellum, and right basal ganglia. Model statistics are provided in

. In addition, girls had lower fluctuations (higher temporal consistency) of robustness,
stability, and fragility in the bilateral reward, right social (and also lower efficiency and global
clustering fluctuations in this network), right frontoparietal control, and right prefrontal net-
works compared with boys (p < 0.05, 8 = —0.01 to —0.001, 95% Cl = [-0.02, —0.001]). Girls
also had higher fluctuation amplitude in bilateral salience, frontoparietal control, default mode
(DM), reward, social, and prefrontal networks, as well as subcortical structures including the
thalamus, hippocampus, and basal ganglia (p < 0.03, 8 = 0.04-0.10, 95% Cl = [0.003, 0.15]),
but lower fluctuation amplitude in bilateral central and peripheral visual and dorsal attention
networks (p < 0.04, 8 =-0.20to —0.04, 95% Cl = [-0.25, —0.001]). Furthermore, racial/ethnic

Figure 3. Spatial distribution of regions in which a sex-adjusted BMI z-score is statistically associated with fluctuations in topological prop-
erties (top) and fluctuation amplitude (bottom). Colors represent standardized regression coefficients, with yellow to red corresponding to
positive association and blue to green to negative ones.

Network Neuroscience
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Table 2.  Statistics of mixed effects models (based on integrated baseline and follow-up sample, with

random intercepts and slopes for participant and ABCD studly site, respectively) that assessed relationships

between pubertal stage and fluctuations of network topological properties or signal amplitude

Networks

Statistic

Summary values
across properties

Temporal variability of network-level topological properties

None

Network-level amplitude fluctuation

Left salience

Right salience

Left limbic

Right limbic

Left social

Right social

Thalamus

Amygdala

Left hippocampus

Standardized
95% ClI
p Value
Standardized B
95% Cl
p Value
Standardized
95% ClI
p Value
Standardized B
95% ClI
p Value
Standardized
95% ClI
p Value
Standardized g
95% ClI
p Value
Standardized
95% ClI
p Value
Standardized g
95% Cl
p Value
Standardized
95% ClI

p Value

—0.0389

[-0.0742, —0.0037]
0.0304

—0.0409

[-0.0775, —0.0042]
0.0288

—0.0488

[-0.0891, —0.0085]
0.0177

—0.0608

[-0.1014, —0.0202]
0.0033

—-0.0364

[-0.0723, —0.0001]
0.0470

—0.0592

[-0.0933, —0.0251]

<0.0001

—0.0340

[-0.0567, —0.0112]
0.0034

—0.0449

[-0.0741, —0.0158]
0.0025

—0.0622

[-0.0887, —0.0357]

<0.001
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Table 2.  (continued)

Summary values

Networks Statistic across properties
Right hippocampus Standardized S —0.052
95% ClI [-0.0829, —0.0215]
p Value p < 0.001
Right basal ganglia Standardized S —0.0340
95% ClI [-0.0639, —0.0042]
p Value 0.0253
Cerebellum Standardized [-0.0895, —0.0710]
95% ClI [-0.1279, —0.0302]
p Value <0.0001

minorities had higher topological fluctuations (and thus lower temporal consistency) across
multiple networks, including prefrontal, social, DM, and reward networks (p < 0.05, 8 =
0.001-0.023, 95% Cl = [0.0002, 0.03]), and lower fluctuation amplitude in some of the same
networks, including frontoparietal control, DM, reward, social, and prefrontal networks (p <
0.03,  =-0.12 to —0.03, 95% Cl = [-0.16, —0.004]). Finally, BMI was associated with lower
topological and higher amplitude fluctuations in salience and social networks (p < 0.05, 8 =
—0.06 to —0.03, 95% CI = [-0.08, —0.01], and p < 0.02, 8 = 0.03-0.06, 95% CI = [0.004,
0.08], respectively).

At the scale of the entire connectome, few associations were identified. Girls had lower
modularity fluctuations compared with boys (p < 0.01, g = —0.005, 95% Cl = [-0.009,
—0.002]), racial/ethnic minorities had lower global efficiency and clustering fluctuations (p <
0.02, 8 =-0.02 to —0.01, 95% Cl = [-0.025, —0.003]), and BMI was negatively associated with
robustness, efficiency, modularity, and stability fluctuations (p < 0.03, 8 = —0.03 to —0.05, 95%
Cl = [-0.08 to —0.006]). Model statistics are provided in

Topological and Amplitude Fluctuations in Individual Assessments

Additional analyses were conducted at individual assessments. Across spatial scales, associa-
tions of topological and signal fluctuations within the more limited range of pubertal stages in
individual assessments were not consistent. Within the baseline cohort, the pubertal stage was
associated with lower temporal fluctuations of local clustering in the right superior parietal
lobule (p < 0.04, 8 = —0.06, 95% Cl = [-0.10, —0.02]) and lower fluctuation amplitude in
the left superior temporal gyrus and right cerebellum (p < 0.03, g = —0.05, 95% CIl =
[-0.09, —0.01]). Within the 2-year follow-up cohort, the pubertal stage was associated with
lower temporal fluctuations of local clustering in the bilateral orbitofrontal cortex (p < 0.02,
B=-0.09 to —0.07, 95% Cl = [-0.14, —0.13]); higher fluctuation amplitude in left dorsolateral
PFC, bilateral somatomotor cortex, and left posterior cingulate (p < 0.02, 8 = [0.06, 0.09],
95% Cl = [0.02, 0.14]); and lower fluctuation amplitude in distributed cortical and subcor-
tical regions (p < 0.04, g = [-0.14, —0.04], 95% CIl = [-0.19, —0.001]). Model results are
summarized in
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Table 3.

and fluctuations of regional topological properties and amplitude at individual assessments

Statistics of mixed effects regression models (with a random intercept and slope for ABCD study site) used to investigate relationships between pubertal stage

Baseline

Statistic

Two-year follow-up

Value Statistic

Value

Local clustering

Negative correlations (=)
Standardized g*
95% ClI

p Value

Right superior parietal lobule Negative correlations (=)

-0.0577 Standardized
[-0.1001, —0.0153] 95% ClI
0.0382 p Value

Bilateral orbitofrontal cortex
[-0.0897, —0.0735]
[-0.1397, —0.0208]

<0.019

Regional fluctuation amplitude

Negative correlations (—f3)

Standardized g*
95% ClI

p Value

Left superior temporal gyrus Negative Correlations (=)

Right cerebellum

[-0.0515, —0.0496] Standardized

[-0.0901, —0.0092] 95% Cl
<0.0324 p Value

Positive correlations (+f)

Standardized
95% ClI

p Value

Bilateral orbitofrontal cortex
Bilateral temporal pole
Bilateral insula

Bilateral retrosplenial cortex
Bilateral parahippocampal area
Bilateral posterior cingulate
Left precuneus

Right posterior medial PFC
Left frontal opercular area
Bilateral hippocampus
Bilateral amygdala

Bilateral thalamus
[-0.1366, —0.0382]
[-0.1911, —0.8218]
<0.0435

Bilateral dorsolateral prefrontal cortex
Bilateral somatomotor cortex

[0.0603, 0.0901]
[0.0158, 0.1401]
0.0249

* When multiple regions are involved, the range of regression coefficients B is provided.
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Figure 4. Adjusted region-specific amplitude fluctuation versus adjusted centrality coefficient of dispersion (left panel) and similarly for clus-
tering coefficient of dispersion (right panel). For each of 100 brain regions, the median (over the sample)-adjusted topological property (x-axis)
is shown as a function of median-adjusted fluctuation amplitude (y-axis).

Associations Between Topological and Amplitude Fluctuations

Associations between adjusted (for pubertal stage and other individual characteristics) median
(over participants) coefficient of dispersion for centrality and amplitude fluctuations, and sim-
ilarly for clustering coefficient, in the 100 analyzed regions are shown in . Higher
fluctuations in signal amplitude were associated with lower fluctuations in regional importance
in the network (centrality), and similarly for fluctuations in degree, but higher fluctuations in
local clustering. Thus, a higher fluctuation amplitude was associated with more consistent influ-
ence of a region on the connectome, but less consistent connectivity patterns within the
region’s neighborhood. The detailed spatial distribution of these associations (positive and neg-
ative) is shown in (the left panel shows degree fluctuation [coefficient of dispersion] vs.
fluctuation amplitude, the right panel shows centrality fluctuation vs. fluctuation amplitude).

Degree Coefficient of Dispersion As Centrality Coefficient of Dispersion
A Function of Amplitude Fluctuation As A Function of Amplitude
Fluctuation

& g - “\"\\‘ }"'ﬁra :
‘ ) P

Figure 5. Associations between temporal fluctuations in regional connectedness and fluctuation amplitude (left panel), as well as temporal
fluctuations in regional centrality and fluctuation amplitude (right panel), respectively. Values correspond to standardized regression coeffi-
cients for topological fluctuations in models testing their association with fluctuation amplitude. Negative associations are indicated by blue to
green colors, and positive associations indicated by yellow to red colors.
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Intrinsic network dynamics are markers of adolescent brain development

These results were replicated based on dynamic topological properties estimated using a longer
sliding window and are shown in . The identified associations
were robust to the choice of window length used to estimated dynamic topologies. For the
majority of regions (where associations were statistically significant), the degree coefficient of
dispersion was negatively associated with fluctuation amplitude (in distributed posterior, soma-
tomotor, prefrontal, and inferior temporal regions, as well as the bilateral amygdala; p < 0.04,
B=1-0.20, —0.03], 95% CI = [-0.23, —0.002]). In the bilateral orbitofrontal cortex, right supe-
rior temporal gyrus, right basal ganglia, left hippocampus, and left cerebellum, the two mea-
sures were positively associated (p < 0.03, 8 = 0.03-0.09, 95% Cl = [0.005, 0.11]). Similarly, the
centrality coefficient of dispersion was negatively associated with fluctuation amplitude in sev-
eral distributed brain areas (p < 0.05, 8 = [-0.16, —0.02], 95% CI = [-0.18, —0.001]), but pos-
itively associated with it in the left orbitofrontal cortex, left temporal pole, left precuneus and
posterior cingulate, and right somatomotor area (p < 0.02, 8 = [0.04, 0.09], 95% CI =
[0.007, 0.12]). These results indicate that across the brain (with few exceptions, especially the
orbitofrontal cortex), higher temporal consistency (lower variability) of its topological character-
istics is associated with higher regional signal variability.

Replication Studies

First, dynamic connectivity matrices and topological measures estimated using the original
~9-s sliding window were re-estimated with a 16-s window (20 frames).

shows examples of dynamic connectivity matrices (high-resolution and down-
sampled) estimated at multiple windows, and provides
statistics on similarity between connectivity matrices of 100 randomly selected participants
estimated using three windows (10, 15, and 20 frames). Similarly, it was high (cosine similarity
in range 0.77-0.95) across window comparisons. Statistical analyses of dynamic topologies
(based on the longer 16-s window) of the entire samples were then repeated, and relationships
between topological and signal fluctuations and pubertal stage were compared between win-
dows. To assess the consistency of topological variability and fluctuation amplitude, these
parameters were compared in independent cohorts within the pubertal stage, focusing on
early and mid-puberty, since independent samples were larger and, thus, captured higher
inherent heterogeneity of the brain and its dynamics. The spatial distributions of these param-
eters were statistically similar (p > 0.10) between samples at each pubertal stage, and are
shown in . These findings indicate high reproducibility and group-level consistency

Fluctuation Amplitude

Temporal Variability of Clustering Early Puberty Mid Puberty

Early Puberty

SAMPLE #1

.m,

% -

Mid Puberty SAMPLE #1 SAMPLE #3
SAMPLE #3 » 158
{5 A -tﬁ r ‘
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\ o
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Figure 6. Replication of spatial distributions of topological fluctuations (left panel) and fluctuation amplitude (right panel) in two independent
samples in early puberty (Samples #1 and #2), and mid-puberty (Samples #3 and #4). At each region, the median across the sample topological
or amplitude variability is shown. All values are positive, with the lowest shown in blue to the highest shown in red.
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Figure 7. Spatial distribution of topological variability (regional degree and local clustering) and fluctuation amplitude in a subsample of n =
2,116 youth with two fMRI scans. Since these scans were on average 2 years apart, variability estimates were adjusted for age, pubertal stage,
time of day of scan, and percent of frames censored for motion at the two scans. Values correspond to medians (across each sample) in each
region. All values are positive, with the lowest shown in blue to the highest shown in red.

of estimated parameter dynamics. Finally, in youth with two scans (at baseline and follow-up),
estimated topological and signal variability was first statistically adjusted (to account for age
and pubertal stage differences, as well as differences in time of scan and number of frames
censored for motion) and was then compared between scans. The distributions of estimated
degree and clustering fluctuations and fluctuation amplitude across scans were statistically

d-sjo1e/ujeu/Npa )W 10a1Ip//:dnY Wolj papeojumoq

similar (p > 0.10) and are shown in . Together, these comparisons indicate that
dynamic topological and amplitude variability at rest is highly reproducible across samples
and scans. |
DISCUSSION

B UIBU/EL€60G2/2SY00 B UIBU/Z9L L 0L/Iop/Ap

In a sample of over 4,000 adolescents from the ABCD study (including a subsample of over
2,000 youth with early longitudinal data), spanning from pre/early puberty to late/post puberty,
this study investigated the pubertal changes of dynamic spontaneous regional coordination
patterns and signal fluctuations in the developing brain. It examined fluctuations of resting-
state network topological properties and corresponding fluctuation amplitude. Given the
dFC thresholding approach in the study, fluctuations of strongest inter-regional connections
and their networks were examined (typically top ~10%-20% connections in each frame). Prior
work suggests that higher temporal variability of resting-state activity but lower variability of
dFC may predict better task performance. Thus, there is a critical link between spontaneous
brain dynamics and cognitive function. Studies have correlated both the temporal variability
(and complexity) of BOLD signals, and coupling between this variability and topological char-
acteristics of spontaneously coordinated brain networks, with composite cognitive scores,
fluid intelligence, and processing speed ( ; ; ;
; ; ). In children, dynamic topological Q18
changes have been associated with specific cognitive states and processes (
). Furthermore, across the adult lifespan, aberrant variability of task-related BOLD activity
has been associated with poorer cognitive performance in domain-specific tasks (
). Pediatric studies have also linked specific dFC patterns and associated states with men-
tal health ( , , ). Despite this body of prior work, only few studies in
children have examined age-related changes in dFC ( ; ;
), and none has specifically focused on puberty, a period of not only
profound endocrine changes but also heightened neural maturation and reorganization of
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brain circuits that support complex cognitive function and mental health. This study has
sought to address this significant gap in knowledge.

In spatially distributed brain areas, spontaneous regional connectedness (degree) and
importance in the network (which depends on connectedness) were inversely associated with
the amplitude of signal fluctuations. Thus, a higher dynamic consistency of a region’s sponta-
neous coordination with the rest of the brain was associated with higher fluctuations of
regional activity. There were some exceptions, particularly in the orbitofrontal cortex, where
the opposite associations were observed. These findings suggest that associations between
topological and low-frequency signal fluctuations may have a scale and regional dependence.
Thus, higher local signal fluctuations in specific but spatially distributed brain regions may be
associated with higher temporal consistency of regional topological characteristics relating to
not only the large-scale connectome but also the higher variability of local (within community)
coordination.

In several brain areas and networks, intrinsic signal variability (measured by fluctuation
amplitude) changed as a function of pubertal stage. It increased in not only somatomotor
but also lateral prefrontal cortical areas, but decreased in insula, cingulate cortex, orbitofrontal
cortex, amygdala, basal ganglia, and hippocampus.

Given the conservative thresholding of dFC, fluctuations of the strongest instrinsic connec-
tions were investigated and overlap (at least partly) with the default-mode network, which is
active at rest. This network undergoes significant reorganization during development (

), but the lack of statistical changes of the network’s intrinsic topology and regional
activity as a function of puberty suggests not only the sparsest but also strongest intrinsic con-
nections could be in place prior to the onset of puberty and/or may be dynamically consistent.
High reproducibility of these findings suggest that, indeed, these patterns may be invariant to
pubertal stage, samples, and snapshots of brain dynamics captured in short periods of time
during a resting-state fMRI scan. In contrast, fluctuations in local network coordination, for
example, within a regional community, were associated with higher spontaneous fluctuations
in brain activity, indicating a direct mapping between low-frequency activity and local dFC.
However, the amplitude of these fluctuations decreased during puberty, suggesting that
increased dynamic consistency of intrinsic activity and local coordination may be a marker
of neural maturation.

These findings were robust across spatial scales. Later pubertal stages were associated with
lower fluctuation amplitude in bilateral limbic (including that of the cingulate cortex and the
amygdala, also found to decrease with pubertal stage), salience and social networks, thalamus,
and cerebellum. Overall, these relationships are in agreement with previous findings in adults
( ), including relatively lower dynamic changes in the cerebellum (

). Also, identified regions of increasing fluctuation amplitude during puberty overlapped
with developmental cortical gradients of intrinsic activity previously reported in youth (from 8
to 18 years; ). There were also some differences between our findings and
those in adults, namely, lower amplitude fluctuations in orbitofrontal regions in youth as a
function of pubertal stage and (on average) lower amplitude fluctuations in bilateral limbic
networks. The prefrontal cortex undergoes accelerated maturation in adolescence, a process
that is also highly heterogeneous. Similarly, limbic networks undergo substantial rewiring dur-
ing puberty to support emotional processing and regulation ( ;
). It is, therefore, likely that resting-state amplitude fluctuations have distinct
trends within puberty, compared with adulthood, especially in underdeveloped brain areas.
Furthermore, spatially distributed changes in fluctuation amplitude during puberty may also

14
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reflect the extent of maturation in the adolescent brain. Prior studies in adults have identified
spatially localized regions of differentially high fluctuation amplitude ( ). This
study has only examined youth in puberty, during which neural maturation is spatially distrib-
uted, as brain circuits become progressively more specialized locally (to facilitate domain-
specific computations in segregated communities), and redundant connections are eliminated
while selected connections are strengthened to facilitate integration of domain-specific infor-
mation ( ).

Prior work has shown increased coupling between the structural and functional connec-
tome as a function of development ( ), as well as differential coupling
between the two in distinct brain areas in adults ( ). In adolescence, the prefron-
tal cortex, limbic, and social networks and their constituent areas undergo accelerated matu-
ration. Progressive optimization of their anatomical connections to improve the efficiency of
information processing in the developing brain likely reduces the temporal variability of their
intrinsic activity and coordination patterns. However, already developed and likely strongest
anatomical connections between regions are less likely to change substantially during puberty,
and thus, their intrinsic connection patterns may already be temporally consistent.

Multiple individual factors were associated with pubertal trajectories of dynamic resting-
state network and signal fluctuations. Overall, higher signal and topological temporal vari-
ability was estimated in girls across spatially distributed regions (with the exception of the
cerebellum). These included the prefrontal regions, insula, precuneus, superior temporal
gyrus, cingulate cortex basal ganglia, and thalamus, that is, regions at different stages of neural
maturation in adolescence. At the network level, a lower variability of some of these networks’
topological characteristics and a more consistent topological robustness and stability were
estimated in girls. Multiple studies have reporter developmental differences in white matter
and maturation of brain circuits between girls and boys ( ;

; ) and sex-related differences in the topological organization of
distinct circuits ( ). Our results are not only aligned with these findings
but also indicate that there may be inherent sex differences in brain dynamics that are inde-
pendent of pubertal stage.

Some statistical associations between race-ethnicity and signal and topological fluctuations
were identified, but were less consistent. In multiple brain networks and regions, associations
between topological and signal fluctuations in racial minorities (as a group) were in the oppo-
site direction than those in the entire cohort (which is predominantly White and non-
Hispanic), or specifically in White non-Hispanic youth, with higher topological variability
(and, thus, lower temporal consistency). Specifically, higher topological fluctuations in pre-
frontal, social, DM, and reward networks and lower fluctuation amplitude in several of the
same networks were estimated. Prior work, including recent studies based on the ABCD
cohort, have identified structural and functional differences in brain maturation in racial
minorities and their interactions with other environmental and socioeconomic factors
( ; ). These studies have identified specific morpho-
logical differences (especially in cortical thickness) between White youth and racial minor-
ities, in developing brain areas, including prefrontal cortical regions involved in emotion
regulation. These regions overlap with those identified in the present study, which suggests
potential associations between morphological and dynamic alterations in racial minorities.

Finally, higher BMI was associated with higher topological fluctuations and, thus, lower
temporal consistency of topologies and signal amplitude in distributed regions, including
developing prefrontal regions, the insula, and the superior temporal gyrus, but also parts of
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the somatomotor cortex, the basal ganglia, and the thalamus. Large-scale studies, including
our prior work on the baseline ABCD cohort (i.e., a subset of this study’s sample), have iden-
tified widespread negative associations between BMI and fundamental morphometric and
topological characteristics of developing brain networks in early adolescence, overlapping
with those identified in the present study ( ; ;

). These findings suggest that BMlI-related differences in intrinsic brain dynamics
may be associated with underlying morphological differences.

Despite its many strengths, this study also had some limitations. Although standard for 3.0 T
scanners, the resting-state fMRI (rs-fMRI) sampling rate was relatively low (TR = 0.8 s), which
implies dynamics at shorter temporal scales could not be resolved. This is a common limitation
of most fMRI studies examining BOLD dynamics with widely used scanners. There are ongo-
ing efforts to obtain progressively higher temporal resolution (and robust) rs-fMRI (e.g., TR =
0.5 s in 7 T scanners; ), but these scanners are not being used by the ABCD.
Another limitation is that estimates of temporal signal and/or network fluctuations in subcor-
tical structures that are harder to image, especially in children, may be less reliable than those
in cortical structures. However, the best-quality fMRI run based on multiple criteria was
selected for analysis, all data were harmonized across scanners to eliminate scanner-related
differences, all time-series were carefully preprocessed, and frames were censored for motion
and artifacts using conservative thresholds and were excluded from analysis if they did not
meet these thresholds. Also, dynamic connectivity matrices were estimated using multiple dis-
tinct methodologies to assess similarity of topological patterns as a function of the selected
method. Furthermore, this study used a very conservative dFC threshold, which preserved
the strongest, and likely most developed, intrinsic connections. A future study could examine
topological dynamics using less-conservative thresholds to resolve additional networks with
dynamic topological properties and signal variability that may change substantially with
age. In addition, as the longitudinal data of the ABCD study grow, additional assessments will
facilitate investigations of developmental changes in intrinsic dynamics over longer periods of
time. Finally, we examined puberty trajectories of temporal variability measures as a function
of demographic parameters and BMI. Although a wide range of environmental, behavioral,
and other individual factors may impact these trajectories, an exhaustive investigation of their
impact on these trajectories was beyond the scope of the study and could be the focus of future
work.

Despite a few limitations, this study makes a significant scientific contribution toward our
incomplete understanding of developmental changes in the dynamics of spontaneous activity
and coordination in the adolescent brain. It has identified primarily inversely related fluctua-
tions in topological properties and low-frequency signals across the brain and has shown that
neural maturation during puberty may be associated with increased consistency of spontane-
ous activity in select but spatially distributed brain regions, including those that undergo
significant reorganization during adolescent development. These regions overlap with brain
networks that support cognitive functions that change significantly in adolescence, including
emotional processing and regulation (supported by limbic and salience networks and the
amygdala), reward processing, and social function (supported by the social brain—a set of
distributed regions and networks with overlapping roles). Prior work has characterized these
fluctuations as a fundamental property of multiscale brain organization (

) and has correlated them with cognitive performance across domains. Findings from
our study also suggest that maturation (including myelination) of the underlying anatomical
connections, and thus the structural constraints of functional networks, may be driving these
changes ( ). The study has also identified sex differences in these changes,
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which are aligned with prior work showing faster maturation of brain circuits in girls during
puberty, and also racial/ethnic differences, suggesting potential maturation disparities in
racial/ethnic minorities. Finally, findings also suggest that excess BMI may have detrimental
effects on the trajectories of resting-state signal and network dynamics. As the ABCD study
continues to collect longitudinal data, these two markers of brain development can be tracked
over time in the same participants to assess their trajectories into late adolescence and poten-
tial modulation by individual and environmental factors.

MATERIALS AND METHODS
Participants

The analytic sample included n = 4,099 youth from the baseline assessment (53.3% female,
median age = 120.0 months, IQR = 13.0 months) and n = 3,376 youth from the 2-year follow-
up (51.1% female, median age = 144 months, IQR of 13 months). A subsample (n=2,116) had
early longitudinal fMRI data, that is, at both baseline and follow-up. Details on participant/data
exclusion to minimize confounding effects of factors that may impact intrinsic network activity
are provided in . Briefly, youth with diagnosed neurodevelopmental disor-
ders, schizophrenia, bipolar disorder, and/or clinical findings in their structural MRl were
excluded to minimize the potential confounding effects of these disorders and/or structural
anomalies on topological and dynamic brain measures of interest. In addition, information
provided by the ABCD study on quality control of the neuroimaging data and exclusion cri-
teria set by our laboratory on data contamination by movement in the scanner were used to
further exclude participants.

fMRI Data Processing

The study analyzed rs-fMRI from the ABCD longitudinal study cohort, Release 4.0. These data
had been minimally preprocessed by the Data Analysis, Informatics & Resource Center
(DAIRC) of the ABCD study ( ) and were further processed using tools from
the custom Next-Generation Neural Data Analysis (NGNDA) pipeline. All neuroimaging data
had been collected across 21 sites, in 3.0 T GE, Siemens, or Philips scanners. The TR for fMRI
(2.4 mm isotropic) was 0.8 s. Processing using the NGNDA included coregistration to structural
MRI, normalization to MNI152 space, motion correction, frame removal and interpolation to
exclude artifact-contaminated frames, signal denoising, and signal amplitude harmonization
across scanners ( ). Voxel-level signals were downsampled to 1,088 parcels
using high-resolution cortical (1,000 parcels), subcortical, and cerebellar atlases (

; ; ). The resting-state fMRI protocol of the
ABCD study includes up to four 5-min long runs (almost all participants had 5-min runs, with
<0.5% having shorter or longer runs). The NGNDA pipeline excludes runs with more than
10% of frames censored for motion (assuming a displacement cutoff of 0.3 mm). Thus, partic-
ipants who do not have at least one run with less than 10% censored frames are excluded from
further analysis. In this study, for each participant, their best-quality fMRI was selected for anal-
ysis. This run typically had the lowest number of frames censored for motion (median = 1.9%
at baseline and 1.3% at follow-up) and lowest median resting-state connectivity, estimated
from the time-compressed data, assuming that the brain at rest is overall weakly correlated.
The latter criterion was imposed to further reduce the likelihood of including runs with spu-
riously high correlations between brain regions. At baseline, participants were scanned from
8 am to 8 pm, with median time of scan (IQR in hr) = 14:00 (4). At follow-up, they were
scanned from 8 am to 9 pm, median = 13:00 (4).
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Figure 8. Flow chart of methodology used to estimate the topological property and amplitude fluctuations.

Network Neuroscience

Dynamic Functional Network Estimation

Dynamic fluctuations of the connectome’s topological properties and signal amplitude were
estimated from parcellated rs-fMRI time-series, with each parcel corresponding to a network
node. Analyses were conducted at three spatial scales: individual regions (nodes), large
resting-state networks, and the entire connectome (brain-wide).

The analytic approach used in the estimation of dynamic topologies and signal fluctuations
is summarized in . Using an 8.8-s (11 frames) sliding window with a one time point
(frame) increment, dynamic covariance matrices were estimated and transformed to correla-
tion matrices (size 1,088 x 1,088 at each time point). The window size was selected after cor-
relation matrices estimated with several windows (5, 15, and 20 frames long; see examples in

) were compared, based on assumptions of statistical station-
arity. For replication purposes, a longer sliding window (20 frames, 16.0 s) was also used, and
dynamic topological properties and their variability were re-estimated and analyzed as a func-
tion of pubertal stage for replication purposes. A number of other approaches have been pre-
viously used to estimate dynamic connectivity: Some are based on an assumption of locality,
using statistical modeling in windows with longer time scales (40 s or more) and tapered
shapes, while other approaches are window independent ( ;

; ). To assess method dependence, a second method was used to
estimate these matrices, based on an instantaneous phase. Each fMRI time-series was trans-
formed to a complex-valued signal via the Hilbert transform, from which an instantaneous
phase of each time point was estimated. The absolute difference in the instantaneous phase
between pairs of signals, scaled to a range of [-1, 1], was used as another measure of time-
dependent connectivity. Prior work has reported statistical similarities between connectivity
matrices estimated using this approach and window-based methods (Pederson et al., 2018).
In this sample, moderate topological similarity between connectivity matrices calculated
by the two methods was estimated (median Baroni-Urbani [ ]
index = 0.67). Results in this study are based on the covariance-based approach. Dynamic
topological property estimation in large samples is computationally expensive. To facilitate
tractable analyses at multiple spatial scales, higher resolution dynamic connectivity matrices
(1,088 x 1,088 per frame) were downsampled to a lower resolution (100 x 100 per frame)
based on anatomical considerations and spatial locations of 89 cortical regions and 11 sub-
cortical (amygdala, thalamus, basal ganglia, and hippocampus) and cerebellar regions.
Examples of high-resolution and downsampled connectivity matrices are shown in

. The 17 cortical networks identified in , and additional
reward network (including the medial prefrontal cortex, ventral striatum, orbitofrontal cortex,
anterior cingulate, and amygdala [ 1), social network (which supports
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social function and includes the medial prefrontal cortex, temporoparietal junction, inferior
frontal gyrus, interparietal sulcus, anterior cingulate cortex, anterior insula, and the amygdala
[ 1), and prefrontal networks were then analyzed. The prefrontal cortex,
reward network, and social network undergo heightened maturation in adolescence, but their
dynamic topological properties have not been systematically investigated. Thus, it was impor-
tant to analyze their dynamics as a function of pubertal stage. These networks are composed of
distributed regions, some of which overlap across these three networks and the 17 cortical
networks.

Entropy-based thresholding. Multiple strategies have been previously proposed for thresholding
connectivity matrices, including dynamic ones, based on cohort or brain-specific statistics, such
as absolute or proportional thresholds ( ; ;
), data-driven thresholds derived using minimal spanning trees (
), or other approaches, such as incorporating spatial fluidity to accommodate network
variation in space and time ( ).

At rest, the brain is typically weakly correlated, with the exception of epochs of spontane-
ous coordination. These shifts in functional connectivity may be associated with shifts in
entropy (which can be used to quantify signal/image complexity). In the prior work, regional
signal complexity at low frequencies (<0.1 Hz) has been associated with higher functional
connectivity ( ; ). In this study, entropy of regional correlations
was estimated in order to derive brain-specific thresholds for dynamic connectivity matrices.
Specifically, at each time point, the approximate entropy of each region’s correlation with all
others was estimated, resulting in 100 entropy values. Their dimension across time and space
(100 x 375 values for a 5-min rs-fMRI run) was then reduced using a principal component
analysis. Sensitivity analyses were conducted to assess differences in resulting thresholds as
a function of the number of selected principal components. Differences in the thresholds
depending on the number of principal components used was very small (median difference
was 0.2% of the threshold [IQR = 0.5%]). Thus, 10 components were selected (which
explained on average ~60% of the variability of time-dependent entropy values). Then,
k-means clustering of the lower dimension data was used to identify clusters of entropy values
across time. A minimum k = 3 was set, assuming that there are at least three distinct dynamic
connectivity clusters: one corresponding to a state of weakly correlated brain regions at rest
(background), one associated with spontaneous brain coordination, and a high correlation
cluster corresponding to spuriously correlated regions, likely due to movement in the scanner
or other artifacts. The elbow method was then used to determine the optimum number of clus-
ters. In both baseline and follow-up samples, median (IQR) optimal kwas 3 (2) (maximum = 12
clusters). Examples of the number of clusters as a function of the within-cluster sum of squared
distances of data points from the cluster centroid are shown in

. Given the overall weak inter-regional correlations at rest, it was assumed that the cluster
with the highest membership included entropy values related to this state. Corresponding
correlation values in that cluster were then used to estimate a brain-specific threshold. A
conservative brain-specific threshold was calculated as the moderate outlier of the absolute
correlation values in the background cluster. If this value was >0.9 (suggesting implausibly
high background connectivity), the 75th percentile of the absolute correlation values was
instead used as the threshold.

Estimation of temporal variability of topological properties. Time-varying topological properties
were calculated from adjacency matrices at each time point. These properties includes median
connectivity, community structure (modularity), global, network-wide and local clustering,
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Mixed effects regression model:
Model that contains both fixed and
random effects (a random intercept
and slope) to account for
stratification according to specific
grouping and/or repeated data.

Network Neuroscience

topological efficiency ( ), network fragility ( ),
network robustness and resilience ( ), and regional importance in the network
(centrality) and connectedness (degree). Together, these properties describe the instantaneous
organization of the connectome.

For each brain and time-dependent topological property, values corresponding to frames
censored for motion and time points where the density of the adjacency matrix density was
higher than the extreme outlier of all densities across time were excluded from further calcu-
lations, as they were likely contaminated by artifacts and/or spurious correlations introduced
by excessive motion in the scanner. The temporal fluctuation of each property across the
remaining time points was calculated as the quartile coefficient of dispersion—the IQR divided
by the sum of the first and third quartiles, given the non-normal distribution of time-dependent
topologies.

Estimation of Resting-State Signal Fluctuation Amplitude

Developmental changes in the temporal variability of low-frequency (<0.1 Hz) rs-fMRI signal
amplitude have recently been reported (Synder et al., 2023). Following a similar approach, the
spectrum of each fMRI parcel signal was calculated, and the median square root of the fre-
quency content in the range 0.01-0.10 Hz was estimated as the fluctuation in signal ampli-
tude. Parcel-level (node) vectors were downsampled to 100 region-level vectors, by taking the
median of fluctuation amplitude over parcels within each region. In addition, the median over
nodes in each of the analyzed networks was also calculated to assess network-level dynamic
amplitude fluctuations.

Statistical Analysis

Regression models were developed to investigate topological property and amplitude fluctua-
tions at the regional, network, and whole-brain spatial scales, as a function of development, that
is, pubertal stage (provided on a scale 1-5, with 1 = prepuberty and 5 = postpuberty). The ABCD
uses the Pubertal Development Scale (Peterson, 1988), for this purpose. Pubertal stage is calcu-
lated based on parent responses to questions on their child’s height spurt, skin changes, body
hair, breast development, menstruation, deepening voice, and facial hair, which are summed
and then categorized. Since <1% of youth were in postpuberty, for modeling purposes they were
combined with those in late puberty in a single category. In addition to separate models used to
examine developmental changes within assessments, a set of mixed effects models were also
developed, to include data from both assessments and a random intercept and slope for partic-
ipant, to account for their repeated data (baseline and follow-up). For n = 45 participants (0.84%
of the sample), pubertal stage at follow-up was earlier than baseline, which is biologically
implausible. These participants were excluded from final analyses.

All analyses were adjusted for sampling differences across sites, using propensity weights
provided by the ABCD. All developed models were linear mixed effects regression models that
included the following covariates: age at scan, sex assigned at birth, race-ethnicity, family
income, BMI z-score (stratified by sex), scan hour (prior work has shown correlations between
resting-state topological characteristics and time of scan ( ), and percent of fMRI
frames (relative to scan length) censored for motion and ABCD site (models included a random
intercept and slope for site). The significance level was set at 0.05, and all p values were
corrected for the false discovery rate (FDR), using established approaches (

). At the whole-brain and network scales, FDR corrections were done across
topological properties. At the scale of individual regions, FDR corrections were done across
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regions within an individual network. When appropriate, regression coefficients were stan-
dardized. All analyses were performed in the Harvard Medical School High Performance
Cluster, using MATLAB (release R2023a).

Replication Analyses

Three types of replication analyses were conducted. In the first analysis, a longer sliding window
(12 s long [20 frames]) was used to re-estimate dynamic connectivity matrices and their topo-
logical properties at the three spatial scales of interest, in the entire baseline and follow-up sam-
ples. Statistical analyses examining associations with pubertal stage were then replicated. Also,
in a smaller cohort of n = 100 participants, the topologies of high-resolution and downsampled
dynamic connectivity matrices estimated using sliding windows of three different sizes (10, 15,
and 20) were compared. Examples and similarity statistics are provided in

( and ). The second analysis identified two independent subsamples in
early puberty (n = 826 and 626, respectively) and similarly for mid-puberty (n = 838 and
931, respectively), and compared the spatial distribution of topological fluctuations and signal
fluctuation amplitude in these samples within each pubertal stage, to assess their similarity. The
third analysis was based on the sample of n = 2,116 with longitudinal data. Age and pubertal
stage effects were regressed out, and the distributions of topological fluctuation and signal fluc-
tuation amplitude of the same set of participants with two scans were then compared.
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