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ABSTRACT

Intrinsic brain dynamics play a fundamental role in cognitive function, but their development is

incompletely understood. We investigated pubertal changes in temporal fluctuations of intrinsic

network topologies (focusing on the strongest connections and coordination patterns) and

signals, in an early longitudinal sample from the Adolescent Brain Cognitive Development

(ABCD Q2) study, with resting-state fMRI (n = 4,099 at baseline; n = 3,376 at follow-up [median

age = 10.0 (1.1) and 12.0 (1.1) years; n = 2,116 with both assessments]). Reproducible, inverse

associations between low-frequency signal and topological fluctuations were estimated (p <

0.05, β = −0.20 to −0.02, 95% CI Q3= [−0.23, −0.001]). Signal (but not topological) fluctuations

increased in somatomotor and prefrontal areas with pubertal stage (p < 0.03, β = 0.06–0.07,

95% CI = [0.03, 0.11]), but decreased in orbitofrontal, insular, and cingulate cortices, as well as

cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β = −0.09 to −0.03, 95% CI =

[−0.15, −0.001]). Higher temporal signal and topological variability in spatially distributed

regions were estimated in girls. In racial/ethnic minorities, several associations between signal

and topological fluctuations were in the opposite direction of those in the entire sample,

suggesting potential racial differences. Our findings indicate that during puberty, intrinsic signal

dynamics change significantly in developed and developing brain regions, but their strongest

coordination patterns may already be sufficiently developed and remain temporally consistent.

AUTHOR SUMMARY

We have investigated pubertal changes in intrinsic signal and network dynamics, estimated from

resting-state fMRI in a sample of youth from the Adolescent Brain Cognitive Development (ABCD Q4)

study. We have identified reproducible, inverse associations between low-frequency signal and

topological fluctuations, as well as pubertal changes in intrinsic signal dynamics but not

topological patterns of strongly connected networks. We have also identified sex differences in

these dynamics and negative associations with BMI Q5. Several associations between signal and

topological fluctuations were in the opposite direction in racial/ethnic minorities compared with

those in the entire sample. Our findings indicate that intrinsic signal dynamics change significantly

in developed and developing brain regions during puberty, but their strongest synchronization

patterns may already be sufficiently developed prior to puberty and are dynamically reproducible.
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INTRODUCTION

Even when not actively processing external inputs or responding to cognitive task demands,

the brain is not at rest. Its activity varies dynamically at multiple temporal and spatial scales (as

a function of its physiological and cognitive state). The origin and cognitive correlates of

dynamically varying, intrinsic activity and spontaneous coordination of brain regions have

been studied extensively in the human brain (Allen et al., 2014; Calhoun et al., 2014; Fox

et al., 2006; Fox & Raichle, 2007; Fransson, 2005; Grady et al., 2023; Greicius et al.,

2003; Krishan et al., 2018 Q6; Vidaurre et al., 2017 Q7; Vincent et al., 2007; Wise et al., 2004; Zhang

& Northoff, 2022). Prior work has correlated intrinsic activity with cognitive processing at that

state, including mental imagery, introspection (Gonzalez-Castillo et al., 2021 Q8), and mind wan-

dering (Chou et al., 2017; Christoff et al., 2009; Mason et al., 2007). Studies on spontaneous

network coordination have provided insights into temporal anticorrelations between brain

regions with antagonistic functions (Fox & Raichle, 2007) and/or correlated temporal patterns

that may reflect specialized cognitive function (Smith et al., 2013). Some have also linked

aberrant spontaneous coordination patterns to neuropsychiatric disorders, such as schizophre-

nia (Damaraju et al., 2014; Fu et al., 2018; Northoff & Duncan, 2016), as well as cognitive

decline and impairment (Lin et al., 2018; Meghdadi et al., 2021; Wee et al., 2016).

A number of studies have specifically investigated time-varying functional connectivity (dFC Q9)

using neuroimaging modalities with different spatiotemporal resolutions (e.g., fMRI and EEG), as

well as different computational approaches (Cohen, 2018; Hutchison et al., 2013; Lurie et al.,

2020; Preti et al., 2017). These include sliding window-based methods that calculate dFC in

temporally overlapping windows using pairwise correlation or coherence measures and/or inde-

pendent component analysis (ICA) and related approaches (Allen et al., 2014; Chang & Glover,

2014; Preti et al., 2017). Variants have also used an adaptive window, informed by local brain

dynamics (Xu & Linquist, 2015; Zhuang et al., 2020). Some studies have used instantaneous

phase synchronization for high-resolution temporal estimation of coordination that is not sensi-

tive to the window size (Fransson & Strindberg, 2023; Glerean et al., 2012; Nobukawa et al.,

2019), recurring patterns of voxel or region coordination (Liu et al., 2018), or sequences of recur-

ring states (Vidaurre et al., 2017). ICA has also been used to identify multistate functional

domains and track their spatial variation over time (Iraji, Fu, et al., 2019).

Relatively fewer studies have examined resting-state dynamics and dFC in the developing

brain. They have identified age-related changes in these dynamics (Faghiri et al., 2018; Lei

et al., 2022; López-Vicente et al., 2021) and multiple intrinsic connectivity states with distinct

topological and temporal characteristics (e.g., duration and variability) that may be associated

with introspective processes (Marusak et al., 2017), behavior and cognitive performance (Di

et al., 2023; Ye et al., 2024), trait mindfulness (Marusak et al., 2018; Treves et al., 2024), and

mental health (Fu et al., 2018, 2021, 2025). These, likely metastable, states facilitate the

brain’s recruitment of task-related networks and transitions between patterns of coordination

in response to cognitive demands (Deco et al., 2017 Q10) or from an introspective to an extros-

pective mode (Fransson, 2005). In addition, higher temporal variability of resting-state brain

signals has been associated with better cognitive performance and social emotional health

(Garrett et al., 2011; Grady et al., 2023). Higher dFC similarity (lower temporal and/or

cross-scan variability) has been associated with better cognitive performance in both adults

(Cabral et al., 2017) and children (Fu et al., 2023). Furthermore, mental health disorders, such

as depression and bipolar disorder, have been linked to alterations in dFC variability (Chen

et al., 2020; Demirtas et al., 2016; Zhou et al., 2021). Youth with attention-deficit/hyperac-

tivity disorder (ADHD Q11) and autism spectrum disorders (ASDs Q12) also have differences in dFC

(Ahmadi et al., 2021; de Lacy et al., 2017; de Lacy & Calhoun, 2018; Luo et al., 2023).

Network Neuroscience 2

Intrinsic network dynamics are markers of adolescent brain development

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/n

e
tn

/a
rtic

le
-p

d
f/d

o
i/1

0
.1

1
6
2
/n

e
tn

_
a
_
0
0
4
5
2
/2

5
0
9
3
1
3
/n

e
tn

_
a
_
0
0
4
5
2
.p

d
f b

y
 C

a
th

e
rin

e
 S

ta
m

o
u

lis
 o

n
 2

5
 M

a
rc

h
 2

0
2
5



Beyond dFC, other measures of spontaneous brain activity fluctuations have been estimated

across the lifespan. A recent study has shown that the amplitude of low-frequency BOLD fluc-

tuations and its spatial gradient may be a hallmark characteristic of cortical maturation and

developmental changes in neural plasticity (Sydnor et al., 2023). Also, abnormally high var-

iability in fluctuation amplitude has been correlated with generalized anxiety disorder symp-

toms (Cui et al., 2020 Q13; Shen et al., 2020). A few studies have also examined the temporal

variability of resting-state topological network properties. Higher variability of functional net-

work modularity (i.e., community structure) across the brain has been associated with periods

of statistically unexpected fluctuations (Betzel et al., 2016). Fluctuations in the modularity of

the dorsal attention network have been correlated with higher composite intelligence (Hilger

et al., 2020).

Despite invaluable insights provided by prior studies, developmental (including pubertal)

changes in intrinsic brain dynamics—as the brain’s anatomy, morphology, and circuit organi-

zation change extensively during almost 2 decades of life—remain incompletely understood.

In particular, brain dynamics during complex periods of development such as adolescence

(and especially puberty), which are associated with profound physical, biochemical, endo-

crine, and cognitive changes, have not been studied. Robust characterization of

resting-state brain dynamics during this period is challenging, largely because of the high het-

erogeneity of adolescent brain development and unique environmental and experiential fac-

tors that play a critical role in shaping the brain’s unique wiring, and consequently its intrinsic

networks and their organization. In addition, measures of temporal variability are inherently

sensitive to the underlying brain dynamics, which also contributes to their heterogeneity. Thus,

large cohorts are necessary to robustly estimate time-varying, resting-state network topologies

and regional intrinsic activity in youth. Furthermore, longitudinal studies can provide critical

insights into how this variability changes as a function of development, including pubertal

maturation. Finally, studies that go beyond dFC and examine dynamic topological measures

or resting-state networks are also needed, as they may provide important insights into the

spontaneous organization (instead of just strength of connections provided by dFC) of

resting-state networks, including their community structure, topological stability, efficiency,

and resilience.

Large-scale studies, such as the longitudinal Adolescent Brain Cognitive Development

(ABCD) study (Casey et al., 2018), provide unique opportunities to address this gap in knowl-

edge and robustly characterize spontaneous neural dynamics and topological coordination in

the developing human brain. A recent study investigated cognitive and mental health corre-

lates of dFC states in the ABCD cohort (Fu et al., 2025), but did not specifically focus on

changes in intrinsic signal and network dynamics during puberty. Other studies in independent

cohorts have reported age-related changes over longer periods of development (Faghiri et al.,

2018), but have not focused on adolescence and/or puberty. Also, most of these studies have

not focused on both dynamically varying networks and intrinsic signal fluctuations together

and their relationships.

To address this gap in knowledge, the present leveraged early longitudinal resting-state

fMRI data from the ABCD to investigate pubertal changes in these dynamics. Specifically, in

overlapping samples of over 4,000 youth at the ABCD baseline (ages ~9–10 years) and ~3,000

at the 2-year follow-up (ages ~11–12 years), it aimed to robustly characterize temporal fluc-

tuations of spontaneous network topologies (and their properties) and BOLD signal fluctuation

amplitude as a function of pubertal stage. The study hypothesized that the dynamics of resting-

state networks and amplitude of spontaneous regional activity change significantly during

puberty, largely as a result of accelerated neural maturation (and associated changes in

Fluctuation amplitude:

Median square root of the BOLD

signals’ frequency content in the

0.01- to 0.1-Hz range.

Network Neuroscience 3

Intrinsic network dynamics are markers of adolescent brain development

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/n

e
tn

/a
rtic

le
-p

d
f/d

o
i/1

0
.1

1
6
2
/n

e
tn

_
a
_
0
0
4
5
2
/2

5
0
9
3
1
3
/n

e
tn

_
a
_
0
0
4
5
2
.p

d
f b

y
 C

a
th

e
rin

e
 S

ta
m

o
u

lis
 o

n
 2

5
 M

a
rc

h
 2

0
2
5



anatomical connections and morphometric characteristics) and underlying biochemical

changes. It further hypothesized that the dynamic similarity (decreased variability) of

resting-state network topologies increases as a function of development and likely reflects

the maturation of their underlying anatomical constraints and increased stereotypy of sponta-

neous synchronization patterns.

RESULTS

At baseline, almost half of youth were in prepuberty (n = 1,962 [47.9%]), 924 (22.5%) in early

puberty, and 1,023 (25.0%) in mid-puberty. At follow-up, less than 20% were in prepuberty

(n = 602 [17.8%]), 724 (21.4%) in early puberty, 1,116 (33.0%) in mid-puberty, and ~22.0% in

later stages. The race and ethnicity distribution of the samples reflected the demographic char-

acteristics of the ABCD cohort, which is predominantly White and non-Hispanic. In both the

baseline and follow-up samples, about half of youth were White and non-Hispanic (2,020

[49.3%] and 1,728 [51.2%], respectively); ~15% were Black non-Hispanic, and similarly

for other non-Hispanic racial groups; and less than 25% were Hispanic (932 [22.7%] and

756 [22.4%], respectively). The median participant BMI Q14was 17.4 kg/m2 (interquartile range

[IQR] = 4.6 kg/m2) at baseline and 19.3 kg/m2 (IQR = 5.5 kg/m2) at follow-up. Detailed demo-

graphic and other participant characteristics are provided in Table 1.

Topological and Amplitude Fluctuations in Early Longitudinal Sample

Spatial scale of individual regions. Temporal fluctuations of local clustering (i.e., a region’s

neighborhood connectedness) in parts of the right medial parietal cortex (a key region of

the salience network involved in multiple processes including spatial navigation and aware-

ness, self-processing, and social function) increased with pubertal stage (p < 0.02, β = 0.062,

95% CI Q15= [0.022, 0.102]). In addition, fluctuation amplitude in the bilateral somatomotor cor-

tices and left lateral prefrontal cortex also increased with pubertal stage (p < 0.03, β = 0.06–

0.07, 95% CI = [0.03, 0.11]), but decreased in the left temporal pole, bilateral orbitofrontal

cortex, insula, parahippocampal cortex, left posterior cingulate cortex, and bilateral subcorti-

cal areas including the cerebellum, hippocampus, amygdala, and thalamus (p < 0.05, β =

−0.09 to −0.03, 95% CI = [−0.15, −0.001]), indicating increased temporal consistency of

intrinsic activity in these areas during pubertal development. The spatial distribution of these

associations is shown in Figure 1.

Temporal fluctuations of regional topology were also associated with other participant char-

acteristics. The spatial distribution of statistical differences in temporal topological and signal

variability between boys and girls is shown in Figure 2, with positive associations reflecting

higher temporal parameter variability in girls. Overall, girls had higher variability in local

topologies in distributed brain regions, including the somatomotor regions, prefrontal cortex,

insula, precuneus, superior temporal gyrus, hippocampus, basal ganglia, and thalamus (p <

0.05, β = 0.003–0.016, 95% CI = [0.0002, 0.02]), and higher fluctuation amplitude in several

of the same regions, including the prefrontal cortex, insula, precuneus, basal ganglia, and thal-

amus, as well as bilateral cingulate cortices (p < 0.04, β = 0.04–0.20, 95% CI = [0.003, 0.25]).

In addition, girls had lower topological fluctuations primarily in the cerebellum (p < 0.05, β =

−0.005 to −0.004, 95% CI = [−0.01, −0.001]) and lower fluctuation amplitude in posterior

occipital, parietal, and (left) temporal regions (p < 0.04, β = −0.28 to −0.04, 95% CI =

[−0.34, −0.003]).

Temporal fluctuations of regional topological properties were not consistently associated

with race/ethnicity. However, higher topological fluctuations (i.e., lower temporal consistency)
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Table 1. Participant characteristics and demographic information in the baseline and 2-year follow-up samples

Baseline
(N = 4,099)

Two-year follow-up
(N = 3,376)

Sex Male 1,912 (46.65%) 1,650 (48.87%)

Female 2,184 (53.28%) 1,724 (51.07%)

Race/ethnicity White Non-Hispanic 2,020 (49.28%) 1,728 (51.19%)

Black Non-Hispanic 609 (14.86%) 491 (14.54%)

Asian Non-Hispanic 100 (2.44%) 70 (2.07%)

Other (including mixed race) non-Hispanic 416 (10.15%) 321 (9.51%)

Hispanic 932 (22.74%) 756 (22.39%)

Missing 22 (0.54%) 10 (0.30%)

Family income <5,000 124 (3.03%) 75 (2.22%)

5,000–24,999 367 (8.95%) 255 (7.55%)

25,000–49,999 541 (13.20%) 398 (11.79%)

50,000–99,999 1,000 (24.40%) 844 (25.00%)

100,000–199,999 1,211 (29.54%) 1,049 (31.07%)

>= 200,000 512 (12.49%) 490 (14.51%)

Missing 344 (8.39%) 265 (7.84%)

Parental education Advanced degree (MS, JD, MD, other professional) 1,125 (27.45%) 958 (28.38%)

Bachelor’s degree 1,183 (28.86%) 960 (28.44%)

Associate degree 457 (11.15%) 420 (12.44%)

Some college 669 (16.32%) 528 (15.64%)

High school/GED 378 (9.22%) 294 (8.71%)

Did not graduate high school 284 (6.93%) 210 (6.22%)

Missing 3 (0.07%) 6 (0.18%)

BMI (median [IQR]) Raw score 17.54 (4.59) 19.34 (5.54)

z-score −0.31 (1.11) −0.053 (0.153)

Missing 11 (0.27%) 22 (0.65%)

Pubertal stage Prepuberty 1,962 (47.87%) 602 (17.83%)

Early puberty 924 (22.54%) 724 (21.45%)

Mid-puberty 1023 (24.96%) 1,116 (33.06%)

Late/postpuberty 61 (1.49%) 761 (22.54%)

Missing 129 (3.15%) 173 (5.12%)
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of regional importance in the network (centrality) and lower fluctuations of local clustering

were estimated in racial minorities (including Hispanic participants) across distributed brain

regions (p < 0.04, β = 0.004–0.02, 95% CI = [0.002, 0.01]), and lower centrality and fluctu-

ation amplitude were estimated in prefrontal (including orbitorfrontal) regions, bilateral basal

ganglia, and the cerebellum (p < 0.05, β = −0.25 to −0.04, 95% CI = [−0.32, −0.01]).

In prior analyses of static topological characteristics of resting-state networks in ABCD study

samples, BMI has been negatively associated with these characteristics across distributed brain

regions and networks (Brooks et al., 2023). In the present dynamic analyses, higher BMI was

associated with lower topological fluctuations in not only primary visual areas but also

Figure 1. Spatial distribution of regions in which the pubertal stage is statistically correlated with fluctuations in local clustering (left) and

fluctuation amplitude (right). Colors correspond to standardized regression coefficients (negative: blue to green, positive: yellow to red).

Figure 2. Spatial distribution of significant differences in temporal topological (left panel) and signal variability (fluctuation amplitude; right

panel) between girls and boys. The left panel shows regions in which temporal fluctuations of one or more topological parameters were sta-

tistically associated with biological sex. Colors correspond to regression coefficients in models testing sex differences in these parameters, with

adjustments for other demographic parameters and pubertal stage. Positive values (yellow to red colors) indicate greater variability in girls; and

negative values (blue to green colors), lower variability.
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orbitofrontal regions (p < 0.05, β = −0.04 to −0.03, 95% CI = [−0.07, −0.004]), both parts of

the brain where topological fluctuations were not significantly associated with pubertal stage.

Higher BMI was also associated with higher topological fluctuations and, thus, lower temporal

consistency of topologies in distributed regions, including bilateral temporal regions, bilateral

ventral, lateral and superior prefrontal cortices, secondary somatomotor cortex, left precentral

gyrus, bilateral insula, right superior temporal gyrus and bilateral basal ganglia, and thalamus

(p < 0.03, β = 0.03–0.06, 95% CI = [0.004, 0.09]). Finally, BMI was also associated with

higher fluctuation amplitude in bilateral dorsolateral and ventrolateral prefrontal cortices,

insula, and bilateral temporal sulci (p < 0.05, β = 0.02–0.08, 95% CI = [0.003, 0.10]). Some

of these overlapped with areas of higher topological fluctuation as a function of BMI. Finally,

BMI was negatively associated with fluctuation amplitude in the bilateral parietal lobule (inferior

and superior)—and bilateral posterior visual areas, bilateral precuneus, left somatomotor cortex,

right orbitofrontal cortex, bilateral hippocampus, and bilateral cerebellum (p < 0.03, β = −0.12

to −0.03, 95% CI = [−0.14, −0.003]). Some of these areas, including the orbitofrontal cortex and

the cerebellum, overlapped with regions where fluctuation amplitude decreased as a function of

pubertal stage. The spatial distribution of positive and negative BMI associations with regional

topological and signal variability is shown in Figure 3.

Spatial scales of individual networks and the entire connectome. At the scales of individual net-

works and the connectome, no topological properties were statistically associated with puber-

tal stage. However, later pubertal stages were associated with lower fluctuation amplitude in

bilateral limbic, salience, and social networks, and similarly in the bilateral thalamus, amyg-

dala, hippocampus, cerebellum, and right basal ganglia. Model statistics are provided in

Table 2. In addition, girls had lower fluctuations (higher temporal consistency) of robustness,

stability, and fragility in the bilateral reward, right social (and also lower efficiency and global

clustering fluctuations in this network), right frontoparietal control, and right prefrontal net-

works compared with boys (p < 0.05, β = −0.01 to −0.001, 95% CI = [−0.02, −0.001]). Girls

also had higher fluctuation amplitude in bilateral salience, frontoparietal control, default mode

(DM), reward, social, and prefrontal networks, as well as subcortical structures including the

thalamus, hippocampus, and basal ganglia (p < 0.03, β = 0.04–0.10, 95% CI = [0.003, 0.15]),

but lower fluctuation amplitude in bilateral central and peripheral visual and dorsal attention

networks (p < 0.04, β = −0.20 to −0.04, 95% CI = [−0.25, −0.001]). Furthermore, racial/ethnic

Figure 3. Spatial distribution of regions in which a sex-adjusted BMI z-score is statistically associated with fluctuations in topological prop-

erties (top) and fluctuation amplitude (bottom). Colors represent standardized regression coefficients, with yellow to red corresponding to

positive association and blue to green to negative ones.
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Table 2. Statistics of mixed effects models (based on integrated baseline and follow-up sample, with

random intercepts and slopes for participant and ABCD study site, respectively) that assessed relationships

between pubertal stage and fluctuations of network topological properties or signal amplitude

Networks Statistic
Summary values
across properties

Temporal variability of network-level topological properties

None

Network-level amplitude fluctuation

Left salience Standardized β −0.0389

95% CI [−0.0742, −0.0037]

p Value 0.0304

Right salience Standardized β −0.0409

95% CI [−0.0775, −0.0042]

p Value 0.0288

Left limbic Standardized β −0.0488

95% CI [−0.0891, −0.0085]

p Value 0.0177

Right limbic Standardized β −0.0608

95% CI [−0.1014, −0.0202]

p Value 0.0033

Left social Standardized β −0.0364

95% CI [−0.0723, −0.0001]

p Value 0.0470

Right social Standardized β −0.0592

95% CI [−0.0933, −0.0251]

p Value <0.0001

Thalamus Standardized β −0.0340

95% CI [−0.0567, −0.0112]

p Value 0.0034

Amygdala Standardized β −0.0449

95% CI [−0.0741, −0.0158]

p Value 0.0025

Left hippocampus Standardized β −0.0622

95% CI [−0.0887, −0.0357]

p Value <0.001

Network Neuroscience 8

Intrinsic network dynamics are markers of adolescent brain development

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/n

e
tn

/a
rtic

le
-p

d
f/d

o
i/1

0
.1

1
6
2
/n

e
tn

_
a
_
0
0
4
5
2
/2

5
0
9
3
1
3
/n

e
tn

_
a
_
0
0
4
5
2
.p

d
f b

y
 C

a
th

e
rin

e
 S

ta
m

o
u

lis
 o

n
 2

5
 M

a
rc

h
 2

0
2
5



minorities had higher topological fluctuations (and thus lower temporal consistency) across

multiple networks, including prefrontal, social, DM, and reward networks (p < 0.05, β =

0.001–0.023, 95% CI = [0.0002, 0.03]), and lower fluctuation amplitude in some of the same

networks, including frontoparietal control, DM, reward, social, and prefrontal networks (p <

0.03, β = −0.12 to −0.03, 95% CI = [−0.16, −0.004]). Finally, BMI was associated with lower

topological and higher amplitude fluctuations in salience and social networks (p < 0.05, β =

−0.06 to −0.03, 95% CI = [−0.08, −0.01], and p < 0.02, β = 0.03–0.06, 95% CI = [0.004,

0.08], respectively).

At the scale of the entire connectome, few associations were identified. Girls had lower

modularity fluctuations compared with boys (p < 0.01, β = −0.005, 95% CI = [−0.009,

−0.002]), racial/ethnic minorities had lower global efficiency and clustering fluctuations (p <

0.02, β = −0.02 to −0.01, 95% CI = [−0.025, −0.003]), and BMI was negatively associated with

robustness, efficiency, modularity, and stability fluctuations (p < 0.03, β = −0.03 to −0.05, 95%

CI = [−0.08 to −0.006]). Model statistics are provided in Supporting Information Table S2.

Topological and Amplitude Fluctuations in Individual Assessments

Additional analyses were conducted at individual assessments. Across spatial scales, associa-

tions of topological and signal fluctuations within the more limited range of pubertal stages in

individual assessments were not consistent. Within the baseline cohort, the pubertal stage was

associated with lower temporal fluctuations of local clustering in the right superior parietal

lobule (p < 0.04, β = −0.06, 95% CI = [−0.10, −0.02]) and lower fluctuation amplitude in

the left superior temporal gyrus and right cerebellum (p < 0.03, β = −0.05, 95% CI =

[−0.09, −0.01]). Within the 2-year follow-up cohort, the pubertal stage was associated with

lower temporal fluctuations of local clustering in the bilateral orbitofrontal cortex (p < 0.02,

β = −0.09 to −0.07, 95% CI = [−0.14, −0.13]); higher fluctuation amplitude in left dorsolateral

PFC Q16, bilateral somatomotor cortex, and left posterior cingulate (p < 0.02, β = [0.06, 0.09],

95% CI = [0.02, 0.14]); and lower fluctuation amplitude in distributed cortical and subcor-

tical regions (p < 0.04, β = [−0.14, −0.04], 95% CI = [−0.19, −0.001]). Model results are

summarized in Table 3.

Table 2. (continued )

Networks Statistic
Summary values
across properties

Right hippocampus Standardized β −0.052

95% CI [−0.0829, −0.0215]

p Value p < 0.001

Right basal ganglia Standardized β −0.0340

95% CI [−0.0639, −0.0042]

p Value 0.0253

Cerebellum Standardized β [−0.0895, −0.0710]

95% CI [−0.1279, −0.0302]

p Value <0.0001
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Table 3. Statistics of mixed effects regression models (with a random intercept and slope for ABCD study site) used to investigate relationships between pubertal stage

and fluctuations of regional topological properties and amplitude at individual assessments

Baseline Two-year follow-up

Statistic Value Statistic Value

Local clustering

Negative correlations (−β) Right superior parietal lobule Negative correlations (−β) Bilateral orbitofrontal cortex

Standardized β* −0.0577 Standardized β [−0.0897, −0.0735]

95% CI [−0.1001, −0.0153] 95% CI [−0.1397, −0.0208]

p Value 0.0382 p Value <0.019

Regional fluctuation amplitude

Negative correlations (−β) Left superior temporal gyrus
Right cerebellum

Negative Correlations (−β) Bilateral orbitofrontal cortex

Bilateral temporal pole

Bilateral insula

Bilateral retrosplenial cortex

Bilateral parahippocampal area

Bilateral posterior cingulate

Left precuneus

Right posterior medial PFC

Left frontal opercular area

Bilateral hippocampus

Bilateral amygdala

Bilateral thalamus

Standardized β* [−0.0515, −0.0496] Standardized β [−0.1366, −0.0382]

95% CI [−0.0901, −0.0092] 95% CI [−0.1911, −0.8218]

p Value <0.0324 p Value <0.0435

Positive correlations (+β) Bilateral dorsolateral prefrontal cortex
Bilateral somatomotor cortex

Standardized β [0.0603, 0.0901]

95% CI [0.0158, 0.1401]

p Value 0.0249

* When multiple regions are involved, the range of regression coefficients β is provided.
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Associations Between Topological and Amplitude Fluctuations

Associations between adjusted (for pubertal stage and other individual characteristics) median

(over participants) coefficient of dispersion for centrality and amplitude fluctuations, and sim-

ilarly for clustering coefficient, in the 100 analyzed regions are shown in Figure 4. Higher

fluctuations in signal amplitude were associated with lower fluctuations in regional importance

in the network (centrality), and similarly for fluctuations in degree, but higher fluctuations in

local clustering. Thus, a higher fluctuation amplitude was associated with more consistent influ-

ence of a region on the connectome, but less consistent connectivity patterns within the

region’s neighborhood. The detailed spatial distribution of these associations (positive and neg-

ative) is shown in Figure 5 (the left panel shows degree fluctuation [coefficient of dispersion] vs.

fluctuation amplitude, the right panel shows centrality fluctuation vs. fluctuation amplitude).

Figure 4. Adjusted region-specific amplitude fluctuation versus adjusted centrality coefficient of dispersion (left panel) and similarly for clus-

tering coefficient of dispersion (right panel). For each of 100 brain regions, the median (over the sample)-adjusted topological property (x-axis)

is shown as a function of median-adjusted fluctuation amplitude (y-axis).

Figure 5. Associations between temporal fluctuations in regional connectedness and fluctuation amplitude (left panel), as well as temporal

fluctuations in regional centrality and fluctuation amplitude (right panel), respectively. Values correspond to standardized regression coeffi-

cients for topological fluctuations in models testing their association with fluctuation amplitude. Negative associations are indicated by blue to

green colors, and positive associations indicated by yellow to red colors.
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These results were replicated based on dynamic topological properties estimated using a longer

sliding window and are shown in Supporting Information Figure S1. The identified associations

were robust to the choice of window length used to estimated dynamic topologies. For the

majority of regions (where associations were statistically significant), the degree coefficient of

dispersion was negatively associated with fluctuation amplitude (in distributed posterior, soma-

tomotor, prefrontal, and inferior temporal regions, as well as the bilateral amygdala; p < 0.04,

β = [−0.20, −0.03], 95% CI = [−0.23, −0.002]). In the bilateral orbitofrontal cortex, right supe-

rior temporal gyrus, right basal ganglia, left hippocampus, and left cerebellum, the two mea-

sures were positively associated (p < 0.03, β = 0.03–0.09, 95% CI = [0.005, 0.11]). Similarly, the

centrality coefficient of dispersion was negatively associated with fluctuation amplitude in sev-

eral distributed brain areas (p < 0.05, β = [−0.16, −0.02], 95% CI = [−0.18, −0.001]), but pos-

itively associated with it in the left orbitofrontal cortex, left temporal pole, left precuneus and

posterior cingulate, and right somatomotor area (p < 0.02, β = [0.04, 0.09], 95% CI =

[0.007, 0.12]). These results indicate that across the brain (with few exceptions, especially the

orbitofrontal cortex), higher temporal consistency (lower variability) of its topological character-

istics is associated with higher regional signal variability.

Replication Studies

First, dynamic connectivity matrices and topological measures estimated using the original

~9-s sliding window were re-estimated with a 16-s window (20 frames). Supporting Informa-

tion Figure S2 shows examples of dynamic connectivity matrices (high-resolution and down-

sampled) estimated at multiple windows, and Supporting Information Table S1 provides

statistics on similarity between connectivity matrices of 100 randomly selected participants

estimated using three windows (10, 15, and 20 frames). Similarly, it was high (cosine similarity

in range 0.77–0.95) across window comparisons. Q17Statistical analyses of dynamic topologies

(based on the longer 16-s window) of the entire samples were then repeated, and relationships

between topological and signal fluctuations and pubertal stage were compared between win-

dows. To assess the consistency of topological variability and fluctuation amplitude, these

parameters were compared in independent cohorts within the pubertal stage, focusing on

early and mid-puberty, since independent samples were larger and, thus, captured higher

inherent heterogeneity of the brain and its dynamics. The spatial distributions of these param-

eters were statistically similar (p > 0.10) between samples at each pubertal stage, and are

shown in Figure 6. These findings indicate high reproducibility and group-level consistency

Figure 6. Replication of spatial distributions of topological fluctuations (left panel) and fluctuation amplitude (right panel) in two independent

samples in early puberty (Samples #1 and #2), and mid-puberty (Samples #3 and #4). At each region, the median across the sample topological

or amplitude variability is shown. All values are positive, with the lowest shown in blue to the highest shown in red.
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of estimated parameter dynamics. Finally, in youth with two scans (at baseline and follow-up),

estimated topological and signal variability was first statistically adjusted (to account for age

and pubertal stage differences, as well as differences in time of scan and number of frames

censored for motion) and was then compared between scans. The distributions of estimated

degree and clustering fluctuations and fluctuation amplitude across scans were statistically

similar (p > 0.10) and are shown in Figure 7. Together, these comparisons indicate that

dynamic topological and amplitude variability at rest is highly reproducible across samples

and scans.

DISCUSSION

In a sample of over 4,000 adolescents from the ABCD study (including a subsample of over

2,000 youth with early longitudinal data), spanning from pre/early puberty to late/post puberty,

this study investigated the pubertal changes of dynamic spontaneous regional coordination

patterns and signal fluctuations in the developing brain. It examined fluctuations of resting-

state network topological properties and corresponding fluctuation amplitude. Given the

dFC thresholding approach in the study, fluctuations of strongest inter-regional connections

and their networks were examined (typically top ~10%–20% connections in each frame). Prior

work suggests that higher temporal variability of resting-state activity but lower variability of

dFC may predict better task performance. Thus, there is a critical link between spontaneous

brain dynamics and cognitive function. Studies have correlated both the temporal variability

(and complexity) of BOLD signals, and coupling between this variability and topological char-

acteristics of spontaneously coordinated brain networks, with composite cognitive scores,

fluid intelligence, and processing speed (Cohen, 2018; Di et al., 2023; Liégeois et al., 2019;

Omidvarnia et al., 2021 Q18; Sheng et al., 2021; Ye et al., 2024). In children, dynamic topological

changes have been associated with specific cognitive states and processes (Marusak et al.,

2017). Furthermore, across the adult lifespan, aberrant variability of task-related BOLD activity

has been associated with poorer cognitive performance in domain-specific tasks (Boylan et al.,

2021). Pediatric studies have also linked specific dFC patterns and associated states with men-

tal health (Fu et al., 2018, 2021, 2025). Despite this body of prior work, only few studies in

children have examined age-related changes in dFC (Faghiri et al., 2018; Lei et al., 2022;

López-Vicente et al., 2021), and none has specifically focused on puberty, a period of not only

profound endocrine changes but also heightened neural maturation and reorganization of

Figure 7. Spatial distribution of topological variability (regional degree and local clustering) and fluctuation amplitude in a subsample of n =

2,116 youth with two fMRI scans. Since these scans were on average 2 years apart, variability estimates were adjusted for age, pubertal stage,

time of day of scan, and percent of frames censored for motion at the two scans. Values correspond to medians (across each sample) in each

region. All values are positive, with the lowest shown in blue to the highest shown in red.
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brain circuits that support complex cognitive function and mental health. This study has

sought to address this significant gap in knowledge.

In spatially distributed brain areas, spontaneous regional connectedness (degree) and

importance in the network (which depends on connectedness) were inversely associated with

the amplitude of signal fluctuations. Thus, a higher dynamic consistency of a region’s sponta-

neous coordination with the rest of the brain was associated with higher fluctuations of

regional activity. There were some exceptions, particularly in the orbitofrontal cortex, where

the opposite associations were observed. These findings suggest that associations between

topological and low-frequency signal fluctuations may have a scale and regional dependence.

Thus, higher local signal fluctuations in specific but spatially distributed brain regions may be

associated with higher temporal consistency of regional topological characteristics relating to

not only the large-scale connectome but also the higher variability of local (within community)

coordination.

In several brain areas and networks, intrinsic signal variability (measured by fluctuation

amplitude) changed as a function of pubertal stage. It increased in not only somatomotor

but also lateral prefrontal cortical areas, but decreased in insula, cingulate cortex, orbitofrontal

cortex, amygdala, basal ganglia, and hippocampus.

Given the conservative thresholding of dFC, fluctuations of the strongest instrinsic connec-

tions were investigated and overlap (at least partly) with the default-mode network, which is

active at rest. This network undergoes significant reorganization during development (Fair

et al., 2008), but the lack of statistical changes of the network’s intrinsic topology and regional

activity as a function of puberty suggests not only the sparsest but also strongest intrinsic con-

nections could be in place prior to the onset of puberty and/or may be dynamically consistent.

High reproducibility of these findings suggest that, indeed, these patterns may be invariant to

pubertal stage, samples, and snapshots of brain dynamics captured in short periods of time

during a resting-state fMRI scan. In contrast, fluctuations in local network coordination, for

example, within a regional community, were associated with higher spontaneous fluctuations

in brain activity, indicating a direct mapping between low-frequency activity and local dFC.

However, the amplitude of these fluctuations decreased during puberty, suggesting that

increased dynamic consistency of intrinsic activity and local coordination may be a marker

of neural maturation.

These findings were robust across spatial scales. Later pubertal stages were associated with

lower fluctuation amplitude in bilateral limbic (including that of the cingulate cortex and the

amygdala, also found to decrease with pubertal stage), salience and social networks, thalamus,

and cerebellum. Overall, these relationships are in agreement with previous findings in adults

(Fu et al., 2017), including relatively lower dynamic changes in the cerebellum (Zalesky et al.,

2014). Also, identified regions of increasing fluctuation amplitude during puberty overlapped

with developmental cortical gradients of intrinsic activity previously reported in youth (from 8

to 18 years; Sydnor et al., 2023). There were also some differences between our findings and

those in adults, namely, lower amplitude fluctuations in orbitofrontal regions in youth as a

function of pubertal stage and (on average) lower amplitude fluctuations in bilateral limbic

networks. The prefrontal cortex undergoes accelerated maturation in adolescence, a process

that is also highly heterogeneous. Similarly, limbic networks undergo substantial rewiring dur-

ing puberty to support emotional processing and regulation (Arain et al., 2013; Sturman &

Moghaddam, 2011 Q19). It is, therefore, likely that resting-state amplitude fluctuations have distinct

trends within puberty, compared with adulthood, especially in underdeveloped brain areas.

Furthermore, spatially distributed changes in fluctuation amplitude during puberty may also
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reflect the extent of maturation in the adolescent brain. Prior studies in adults have identified

spatially localized regions of differentially high fluctuation amplitude (Fransson, 2005). This

study has only examined youth in puberty, during which neural maturation is spatially distrib-

uted, as brain circuits become progressively more specialized locally (to facilitate domain-

specific computations in segregated communities), and redundant connections are eliminated

while selected connections are strengthened to facilitate integration of domain-specific infor-

mation (Fair et al., 2007).

Prior work has shown increased coupling between the structural and functional connec-

tome as a function of development (Baum et al., 2020), as well as differential coupling

between the two in distinct brain areas in adults (Liu et al., 2022). In adolescence, the prefron-

tal cortex, limbic, and social networks and their constituent areas undergo accelerated matu-

ration. Progressive optimization of their anatomical connections to improve the efficiency of

information processing in the developing brain likely reduces the temporal variability of their

intrinsic activity and coordination patterns. However, already developed and likely strongest

anatomical connections between regions are less likely to change substantially during puberty,

and thus, their intrinsic connection patterns may already be temporally consistent.

Multiple individual factors were associated with pubertal trajectories of dynamic resting-

state network and signal fluctuations. Overall, higher signal and topological temporal vari-

ability was estimated in girls across spatially distributed regions (with the exception of the

cerebellum). These included the prefrontal regions, insula, precuneus, superior temporal

gyrus, cingulate cortex basal ganglia, and thalamus, that is, regions at different stages of neural

maturation in adolescence. At the network level, a lower variability of some of these networks’

topological characteristics and a more consistent topological robustness and stability were

estimated in girls. Multiple studies have reporter developmental differences in white matter

and maturation of brain circuits between girls and boys (Koolschijn & Crone, 2013 Q20; Lenroot

& Giedd, 2010; Lim et al., 2015) and sex-related differences in the topological organization of

distinct circuits (Ingalhalikar et al., 2014). Our results are not only aligned with these findings

but also indicate that there may be inherent sex differences in brain dynamics that are inde-

pendent of pubertal stage.

Some statistical associations between race-ethnicity and signal and topological fluctuations

were identified, but were less consistent. In multiple brain networks and regions, associations

between topological and signal fluctuations in racial minorities (as a group) were in the oppo-

site direction than those in the entire cohort (which is predominantly White and non-

Hispanic), or specifically in White non-Hispanic youth, with higher topological variability

(and, thus, lower temporal consistency). Specifically, higher topological fluctuations in pre-

frontal, social, DM, and reward networks and lower fluctuation amplitude in several of the

same networks were estimated. Prior work, including recent studies based on the ABCD

cohort, have identified structural and functional differences in brain maturation in racial

minorities and their interactions with other environmental and socioeconomic factors

(Dumornay et al., 2023; Harnett et al., 2024). These studies have identified specific morpho-

logical differences (especially in cortical thickness) between White youth and racial minor-

ities, in developing brain areas, including prefrontal cortical regions involved in emotion

regulation. These regions overlap with those identified in the present study, which suggests

potential associations between morphological and dynamic alterations in racial minorities.

Finally, higher BMI was associated with higher topological fluctuations and, thus, lower

temporal consistency of topologies and signal amplitude in distributed regions, including

developing prefrontal regions, the insula, and the superior temporal gyrus, but also parts of
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the somatomotor cortex, the basal ganglia, and the thalamus. Large-scale studies, including

our prior work on the baseline ABCD cohort (i.e., a subset of this study’s sample), have iden-

tified widespread negative associations between BMI and fundamental morphometric and

topological characteristics of developing brain networks in early adolescence, overlapping

with those identified in the present study (Brooks et al., 2023; Dennis et al., 2022; Laurent

et al., 2020). These findings suggest that BMI-related differences in intrinsic brain dynamics

may be associated with underlying morphological differences.

Despite its many strengths, this study also had some limitations. Although standard for 3.0 T

scanners, the resting-state fMRI (rs-fMRI) sampling rate was relatively low (TR = 0.8 s), which

implies dynamics at shorter temporal scales could not be resolved. This is a common limitation

of most fMRI studies examining BOLD dynamics with widely used scanners. There are ongo-

ing efforts to obtain progressively higher temporal resolution (and robust) rs-fMRI (e.g., TR =

0.5 s in 7 T scanners; Yoo et al., 2018), but these scanners are not being used by the ABCD.

Another limitation is that estimates of temporal signal and/or network fluctuations in subcor-

tical structures that are harder to image, especially in children, may be less reliable than those

in cortical structures. However, the best-quality fMRI run based on multiple criteria was

selected for analysis, all data were harmonized across scanners to eliminate scanner-related

differences, all time-series were carefully preprocessed, and frames were censored for motion

and artifacts using conservative thresholds and were excluded from analysis if they did not

meet these thresholds. Also, dynamic connectivity matrices were estimated using multiple dis-

tinct methodologies to assess similarity of topological patterns as a function of the selected

method. Furthermore, this study used a very conservative dFC threshold, which preserved

the strongest, and likely most developed, intrinsic connections. A future study could examine

topological dynamics using less-conservative thresholds to resolve additional networks with

dynamic topological properties and signal variability that may change substantially with

age. In addition, as the longitudinal data of the ABCD study grow, additional assessments will

facilitate investigations of developmental changes in intrinsic dynamics over longer periods of

time. Finally, we examined puberty trajectories of temporal variability measures as a function

of demographic parameters and BMI. Although a wide range of environmental, behavioral,

and other individual factors may impact these trajectories, an exhaustive investigation of their

impact on these trajectories was beyond the scope of the study and could be the focus of future

work.

Despite a few limitations, this study makes a significant scientific contribution toward our

incomplete understanding of developmental changes in the dynamics of spontaneous activity

and coordination in the adolescent brain. It has identified primarily inversely related fluctua-

tions in topological properties and low-frequency signals across the brain and has shown that

neural maturation during puberty may be associated with increased consistency of spontane-

ous activity in select but spatially distributed brain regions, including those that undergo

significant reorganization during adolescent development. These regions overlap with brain

networks that support cognitive functions that change significantly in adolescence, including

emotional processing and regulation (supported by limbic and salience networks and the

amygdala), reward processing, and social function (supported by the social brain—a set of

distributed regions and networks with overlapping roles). Prior work has characterized these

fluctuations as a fundamental property of multiscale brain organization (Baracchini et al.,

2023) and has correlated them with cognitive performance across domains. Findings from

our study also suggest that maturation (including myelination) of the underlying anatomical

connections, and thus the structural constraints of functional networks, may be driving these

changes (Wang et al., 2021). The study has also identified sex differences in these changes,
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which are aligned with prior work showing faster maturation of brain circuits in girls during

puberty, and also racial/ethnic differences, suggesting potential maturation disparities in

racial/ethnic minorities. Finally, findings also suggest that excess BMI may have detrimental

effects on the trajectories of resting-state signal and network dynamics. As the ABCD study

continues to collect longitudinal data, these two markers of brain development can be tracked

over time in the same participants to assess their trajectories into late adolescence and poten-

tial modulation by individual and environmental factors.

MATERIALS AND METHODS

Participants

The analytic sample included n = 4,099 youth from the baseline assessment (53.3% female,

median age = 120.0 months, IQR = 13.0 months) and n = 3,376 youth from the 2-year follow-

up (51.1% female, median age = 144 months, IQR of 13 months). A subsample (n = 2,116) had

early longitudinal fMRI data, that is, at both baseline and follow-up. Details on participant/data

exclusion to minimize confounding effects of factors that may impact intrinsic network activity

are provided in Brooks et al. (2021). Briefly, youth with diagnosed neurodevelopmental disor-

ders, schizophrenia, bipolar disorder, and/or clinical findings in their structural MRI were

excluded to minimize the potential confounding effects of these disorders and/or structural

anomalies on topological and dynamic brain measures of interest. In addition, information

provided by the ABCD study on quality control of the neuroimaging data and exclusion cri-

teria set by our laboratory on data contamination by movement in the scanner were used to

further exclude participants.

fMRI Data Processing

The study analyzed rs-fMRI from the ABCD longitudinal study cohort, Release 4.0. These data

had been minimally preprocessed by the Data Analysis, Informatics & Resource Center

(DAIRC Q21) of the ABCD study (Hagler et al., 2019) and were further processed using tools from

the custom Next-Generation Neural Data Analysis (NGNDA) pipeline. All neuroimaging data

had been collected across 21 sites, in 3.0 T GE, Siemens, or Philips scanners. The TR for fMRI

(2.4 mm isotropic) was 0.8 s. Processing using the NGNDA included coregistration to structural

MRI, normalization to MNI152 space, motion correction, frame removal and interpolation to

exclude artifact-contaminated frames, signal denoising, and signal amplitude harmonization

across scanners (Brooks et al., 2021). Voxel-level signals were downsampled to 1,088 parcels

using high-resolution cortical (1,000 parcels), subcortical, and cerebellar atlases (Diedrichsen

et al., 2009 Q22; Schaefer et al., 2018; Tian et al., 2020
Q23

). The resting-state fMRI protocol of the

ABCD study includes up to four 5-min long runs (almost all participants had 5-min runs, with

<0.5% having shorter or longer runs). The NGNDA pipeline excludes runs with more than

10% of frames censored for motion (assuming a displacement cutoff of 0.3 mm). Thus, partic-

ipants who do not have at least one run with less than 10% censored frames are excluded from

further analysis. In this study, for each participant, their best-quality fMRI was selected for anal-

ysis. This run typically had the lowest number of frames censored for motion (median = 1.9%

at baseline and 1.3% at follow-up) and lowest median resting-state connectivity, estimated

from the time-compressed data, assuming that the brain at rest is overall weakly correlated.

The latter criterion was imposed to further reduce the likelihood of including runs with spu-

riously high correlations between brain regions. At baseline, participants were scanned from

8 am to 8 pm, with median time of scan (IQR in hr) = 14:00 (4). At follow-up, they were

scanned from 8 am to 9 pm, median = 13:00 (4).
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Dynamic Functional Network Estimation

Dynamic fluctuations of the connectome’s topological properties and signal amplitude were

estimated from parcellated rs-fMRI time-series, with each parcel corresponding to a network

node. Analyses were conducted at three spatial scales: individual regions (nodes), large

resting-state networks, and the entire connectome (brain-wide).

The analytic approach used in the estimation of dynamic topologies and signal fluctuations

is summarized in Figure 8. Using an 8.8-s (11 frames) sliding window with a one time point

(frame) increment, dynamic covariance matrices were estimated and transformed to correla-

tion matrices (size 1,088 × 1,088 at each time point). The window size was selected after cor-

relation matrices estimated with several windows (5, 15, and 20 frames long; see examples in

Supporting Information Figure S2) were compared, based on assumptions of statistical station-

arity. For replication purposes, a longer sliding window (20 frames, 16.0 s) was also used, and

dynamic topological properties and their variability were re-estimated and analyzed as a func-

tion of pubertal stage for replication purposes. A number of other approaches have been pre-

viously used to estimate dynamic connectivity: Some are based on an assumption of locality,

using statistical modeling in windows with longer time scales (40 s or more) and tapered

shapes, while other approaches are window independent (Allen et al., 2014; Fu et al.,

2021; Yaesoubi et al., 2018). To assess method dependence, a second method was used to

estimate these matrices, based on an instantaneous phase. Each fMRI time-series was trans-

formed to a complex-valued signal via the Hilbert transform, from which an instantaneous

phase of each time point was estimated. The absolute difference in the instantaneous phase

between pairs of signals, scaled to a range of [−1, 1], was used as another measure of time-

dependent connectivity. Prior work has reported statistical similarities between connectivity

matrices estimated using this approach and window-based methods (Pederson et al., 2018).

In this sample, moderate topological similarity between connectivity matrices calculated

by the two methods was estimated (median Baroni-Urbani [Baroni-Urbani & Buser, 1976 Q24]

index = 0.67). Results in this study are based on the covariance-based approach. Dynamic

topological property estimation in large samples is computationally expensive. To facilitate

tractable analyses at multiple spatial scales, higher resolution dynamic connectivity matrices

(1,088 × 1,088 per frame) were downsampled to a lower resolution (100 × 100 per frame)

based on anatomical considerations and spatial locations of 89 cortical regions and 11 sub-

cortical (amygdala, thalamus, basal ganglia, and hippocampus) and cerebellar regions.

Examples of high-resolution and downsampled connectivity matrices are shown in Supporting

Information Figure S3. The 17 cortical networks identified in Yeo et al. (2011), and additional

reward network (including the medial prefrontal cortex, ventral striatum, orbitofrontal cortex,

anterior cingulate, and amygdala [Haber & Knutson, 2010]), social network (which supports

Figure 8. Flow chart of methodology used to estimate the topological property and amplitude fluctuations.

Network Neuroscience 18

Intrinsic network dynamics are markers of adolescent brain development

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ire
c
t.m

it.e
d
u
/n

e
tn

/a
rtic

le
-p

d
f/d

o
i/1

0
.1

1
6
2
/n

e
tn

_
a
_
0
0
4
5
2
/2

5
0
9
3
1
3
/n

e
tn

_
a
_
0
0
4
5
2
.p

d
f b

y
 C

a
th

e
rin

e
 S

ta
m

o
u

lis
 o

n
 2

5
 M

a
rc

h
 2

0
2
5



social function and includes the medial prefrontal cortex, temporoparietal junction, inferior

frontal gyrus, interparietal sulcus, anterior cingulate cortex, anterior insula, and the amygdala

[Blakemore, 2008 Q25]), and prefrontal networks were then analyzed. The prefrontal cortex,

reward network, and social network undergo heightened maturation in adolescence, but their

dynamic topological properties have not been systematically investigated. Thus, it was impor-

tant to analyze their dynamics as a function of pubertal stage. These networks are composed of

distributed regions, some of which overlap across these three networks and the 17 cortical

networks.

Entropy-based thresholding. Multiple strategies have been previously proposed for thresholding

connectivity matrices, including dynamic ones, based on cohort or brain-specific statistics, such

as absolute or proportional thresholds (Garrison et al., 2015; van den Heuvel et al., 2017; Xia

et al., 2019), data-driven thresholds derived using minimal spanning trees (Dimitriadis et al.,

2017), or other approaches, such as incorporating spatial fluidity to accommodate network

variation in space and time (Iraji, Deramus, et al., 2019).

At rest, the brain is typically weakly correlated, with the exception of epochs of spontane-

ous coordination. These shifts in functional connectivity may be associated with shifts in

entropy (which can be used to quantify signal/image complexity). In the prior work, regional

signal complexity at low frequencies (<0.1 Hz) has been associated with higher functional

connectivity (Liu et al., 2019; Wang et al., 2018). In this study, entropy of regional correlations

was estimated in order to derive brain-specific thresholds for dynamic connectivity matrices.

Specifically, at each time point, the approximate entropy of each region’s correlation with all

others was estimated, resulting in 100 entropy values. Their dimension across time and space

(100 × 375 values for a 5-min rs-fMRI run) was then reduced using a principal component

analysis. Sensitivity analyses were conducted to assess differences in resulting thresholds as

a function of the number of selected principal components. Differences in the thresholds

depending on the number of principal components used was very small (median difference

was 0.2% of the threshold [IQR = 0.5%]). Thus, 10 components were selected (which

explained on average ~60% of the variability of time-dependent entropy values). Then,

k-means clustering of the lower dimension data was used to identify clusters of entropy values

across time. A minimum k = 3 was set, assuming that there are at least three distinct dynamic

connectivity clusters: one corresponding to a state of weakly correlated brain regions at rest

(background), one associated with spontaneous brain coordination, and a high correlation

cluster corresponding to spuriously correlated regions, likely due to movement in the scanner

or other artifacts. The elbow method was then used to determine the optimum number of clus-

ters. In both baseline and follow-up samples, median (IQR) optimal k was 3 (2) (maximum = 12

clusters). Examples of the number of clusters as a function of the within-cluster sum of squared

distances of data points from the cluster centroid are shown in Supporting Information Figure

S4. Given the overall weak inter-regional correlations at rest, it was assumed that the cluster

with the highest membership included entropy values related to this state. Corresponding

correlation values in that cluster were then used to estimate a brain-specific threshold. A

conservative brain-specific threshold was calculated as the moderate outlier of the absolute

correlation values in the background cluster. If this value was >0.9 (suggesting implausibly

high background connectivity), the 75th percentile of the absolute correlation values was

instead used as the threshold.

Estimation of temporal variability of topological properties. Time-varying topological properties

were calculated from adjacency matrices at each time point. These properties includes median

connectivity, community structure (modularity), global, network-wide and local clustering,
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topological efficiency (Rubinov & Sporns, 2010), network fragility (Pasqualetti et al., 2020),

network robustness and resilience (Wu et al., 2011 Q26), and regional importance in the network

(centrality) and connectedness (degree). Together, these properties describe the instantaneous

organization of the connectome.

For each brain and time-dependent topological property, values corresponding to frames

censored for motion and time points where the density of the adjacency matrix density was

higher than the extreme outlier of all densities across time were excluded from further calcu-

lations, as they were likely contaminated by artifacts and/or spurious correlations introduced

by excessive motion in the scanner. The temporal fluctuation of each property across the

remaining time points was calculated as the quartile coefficient of dispersion—the IQR divided

by the sum of the first and third quartiles, given the non-normal distribution of time-dependent

topologies.

Estimation of Resting-State Signal Fluctuation Amplitude

Developmental changes in the temporal variability of low-frequency (≤0.1 Hz) rs-fMRI signal

amplitude have recently been reported (Synder Q27et al., 2023). Following a similar approach, the

spectrum of each fMRI parcel signal was calculated, and the median square root of the fre-

quency content in the range 0.01–0.10 Hz was estimated as the fluctuation in signal ampli-

tude. Parcel-level (node) vectors were downsampled to 100 region-level vectors, by taking the

median of fluctuation amplitude over parcels within each region. In addition, the median over

nodes in each of the analyzed networks was also calculated to assess network-level dynamic

amplitude fluctuations.

Statistical Analysis

Regression models were developed to investigate topological property and amplitude fluctua-

tions at the regional, network, and whole-brain spatial scales, as a function of development, that

is, pubertal stage (provided on a scale 1–5, with 1 = prepuberty and 5 = postpuberty). The ABCD

uses the Pubertal Development Scale (Peterson, 1988), for this purpose. Pubertal stage is calcu-

lated based on parent responses to questions on their child’s height spurt, skin changes, body

hair, breast development, menstruation, deepening voice, and facial hair, which are summed

and then categorized. Since <1% of youth were in postpuberty, for modeling purposes they were

combined with those in late puberty in a single category. In addition to separate models used to

examine developmental changes within assessments, a set of mixed effects models were also

developed, to include data from both assessments and a random intercept and slope for partic-

ipant, to account for their repeated data (baseline and follow-up). For n = 45 participants (0.84%

of the sample), pubertal stage at follow-up was earlier than baseline, which is biologically

implausible. These participants were excluded from final analyses.

All analyses were adjusted for sampling differences across sites, using propensity weights

provided by the ABCD. All developed models were linear mixed effects regression models that

included the following covariates: age at scan, sex assigned at birth, race-ethnicity, family

income, BMI z-score (stratified by sex), scan hour (prior work has shown correlations between

resting-state topological characteristics and time of scan (Hu et al., 2023)), and percent of fMRI

frames (relative to scan length) censored for motion and ABCD site (models included a random

intercept and slope for site). The significance level was set at 0.05, and all p values were

corrected for the false discovery rate (FDR), using established approaches (Benjamini &

Hochberg, 1995). At the whole-brain and network scales, FDR corrections were done across

topological properties. At the scale of individual regions, FDR corrections were done across

Mixed effects regression model:

Model that contains both fixed and

random effects (a random intercept

and slope) to account for

stratification according to specific

grouping and/or repeated data.
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regions within an individual network. When appropriate, regression coefficients were stan-

dardized. All analyses were performed in the Harvard Medical School High Performance

Cluster, using MATLAB (release R2023a).

Replication Analyses

Three types of replication analyses were conducted. In the first analysis, a longer sliding window

(12 s long [20 frames]) was used to re-estimate dynamic connectivity matrices and their topo-

logical properties at the three spatial scales of interest, in the entire baseline and follow-up sam-

ples. Statistical analyses examining associations with pubertal stage were then replicated. Also,

in a smaller cohort of n = 100 participants, the topologies of high-resolution and downsampled

dynamic connectivity matrices estimated using sliding windows of three different sizes (10, 15,

and 20) were compared. Examples and similarity statistics are provided in Supporting Informa-

tion (Figure S2 and Table S1). The second analysis identified two independent subsamples in

early puberty (n = 826 and 626, respectively) and similarly for mid-puberty (n = 838 and

931, respectively), and compared the spatial distribution of topological fluctuations and signal

fluctuation amplitude in these samples within each pubertal stage, to assess their similarity. The

third analysis was based on the sample of n = 2,116 with longitudinal data. Age and pubertal

stage effects were regressed out, and the distributions of topological fluctuation and signal fluc-

tuation amplitude of the same set of participants with two scans were then compared.
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