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Leveraging iterative alignment search through genomic and metagenome
sequence databases, we report the DeepMSA2 pipeline for uniform protein

single- and multichain multiple-sequence alignment (MSA) construction.
Large-scale benchmarks show that DeepMSA2 MSAs can remarkably
increase the accuracy of protein tertiary and quaternary structure
predictions compared with current state-of-the-art methods. Anintegrated
pipeline with DeepMSA2 participated in the most recent CASP15 experiment
and created complex structural models with considerably higher quality
than the AlphaFold2-Multimer server (v.2.2.0). Detailed data analyses

show that the major advantage of DeepMSA2 lies in its balanced alignment
search and effective model selection, and in the power of integrating huge
metagenomics databases. These results demonstrate anew avenue to
improve deep learning protein structure prediction through advanced MSA
construction and provide additional evidence that optimization of input
information to deep learning-based structure prediction methods must be
considered with as much care as the design of the predictor itself.

Substantial progress in protein structure prediction has been witnessed
intherecent community-wide Critical Assessment of protein Structure
Prediction (CASP) experiments'.In CASP14, for example, the end-to-end
deep learning protocol AlphaFold2? was able to create atomic-level
structure predictions for two-thirds of the single-domain protein
sequences’. AlphaFold2 was later extended to AlphaFold2-Multimer*
formultichain protein complex structure prediction, and proved capa-
ble of generating high-quality complex models in many cases. The
AlphaFold2 framework makes use of coevolutionary features derived
from MSAs as the major input for self-attention networks to train and
create three-dimensional (3D) protein models. The quality of theinput
MSAsistherefore akey factorin determining whether a high-accuracy
model can be produced.

Because of the importance of MSAs for structure prediction, the
development of methods toaccurately detect and alignadiverse set of
homologous sequences represents animportant direction toimprove
predictive accuracy’. The exponentially increasing size of the metagen-
ome sequence databases has made the task of quick and accurate MSA
construction highly nontrivial®. One recent example along this line is
ColabFold’, whichaimed to accelerate the MSA generation pipeline of
AlphaFold2by replacing the MSA search program HHblits® with amore
sensitive and faster tool, MMseqs2’, meanwhile using nonredundant
metagenomic databases. A more ambitious effort to enhance the con-
tribution of sequenceinformationinstructure predictionsis the use of
aprotein language model'’, which utilizes a deep learning transformer
network for learning coevolutionary information by masking parts
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of the input sequences and trains the network to recover them. Once
trained, the language model can be used to perform structure predic-
tions even without an MSA. Protein structure prediction methods that
combine language models with the AlphaFold2 structure module, such
as ESMFold" and OmegaFold®, can generate better models than Alpha-
Fold2 on some orphan sequences for which detectable homologous
sequences do not exist.

Despite ongoing efforts in the field, the above methods do not
substantially improve the overall prediction accuracy for monomer
proteins. In addition, structure prediction for protein complexes
remains an even more substantial challenge. In the CASP14 experiment,
forexample, satisfactory models (those with an Interface Contact Score
(ICS) >0.8) could be built for only 7% of tested protein complexes®.
The situation was considerably improved in CASP15, where the best
performance methods (including the pipelineintroduced in this study)
provided satisfactory models for up to 47% of cases". However, there
is still no evidence that modifications made in the newly introduced
AlphaFold2-based methods (for example, ColabFold) can obviously
improve the performance of protein complex modeling relative to
AlphaFold2. It is also notable that in the CASP15 experiment, osten-
sibly MSA-free language model-based methods such as OmegaFold,
performed poorly on targets with few homologous sequences®, sug-
gesting that the lack of sufficient evolutionary information encoded
inthe proteinlanguage modelsis equivalently problematic to shallow
MSAs for explicitly MSA-based methods.

To systematically explore the potential contributions of optimal
MSAs for protein structure prediction, we present DeepMSA2 (Fig. 1),
a hierarchical approach inspired by our previous iterative monomer
MSA construction method, DeepMSA®. Compared with DeepMSA,
in addition to the protocol extension from monomers to multimers,
DeepMSA2 couples several newly developed MSA generation pipelines
to create multiple MSAs based on huge genomics and metagenom-
ics sequence databases containing a total of 40 billion sequences
and introduces a deep learning-driven MSA scoring strategy for opti-
mal MSA selection. We present careful benchmarks for DeepMSA2
appliedto large-scale datasets containing bothmonomer and multimer
targets fromrecent CASP13-15 experiments, with results demonstrat-
ing substantial advantages of the pipeline forimproving both protein
tertiary and quaternary structure modeling accuracy compared with
contemporary state-of-the-art approaches. We have made DeepMSA2
and associated structural databases freely available to the community,
and the results of this study should have important implications for
future developments of new MSA construction and deep learning
protein structure and function prediction methods.

Results

DeepMSA2 consists of two separate pipelines for monomer and mul-
timer MSA construction, respectively. For monomer MSA construction
(Fig.1a), it utilizes three parallel blocks (AMSA, quadrupole MSA (QMSA)
and mMSA) built on different searching strategies to obtain raw MSAs
from a diverse set of databases, assembled from whole-genome and
metagenome sequence libraries. In each of the three MSA generation
blocks, asimilar logicis followed, in which aninitial queryis searched
against a sequence database, and if a sufficient number of effective
sequences is not achieved, iterative searches into larger databases
areattempted. Up totenraw MSAs gathered from the three blocks are
ranked through a rapid deep learning-guided prediction process to
select the optimal MSA. For multimeric MSA construction (Fig. 1b), mul-
tiple composite sequences are created by linking monomeric sequences
from different component chains that have the same orthologous
origins. Here, aset of Mtop-ranked monomeric MSAs from each chain
are paired with those of other chains, which results in M" hybrid mul-
timeric MSAs with Nbeing the number of distinct monomer chainsin
the complex. The optimal multimer MSAs are then selected based on a
combined score of the depth of the MSAs and folding score (predicted

local Distance Difference Test (pLDDT) score) of the monomer chains
asdefined in equation (3) below. Full details for both MSA construction
procedures are provided in Methods.

Improvements of monomer structure prediction by
DeepMSA2

We first tested the performance of template recognition and deep
learning-based spatial restraint prediction assisted by the mono-
mer MSAs produced by DeepMSA2 and five other commonly used
pipelines: BLAST', HHblits®, HMMER", MMseqs2’ and PSIBLAST'.
Overall, DeepMSA2 performs better than the five control programs
inallthree assessment criteria, including average template modeling
scores (TM-scores) of the structure templates recognized by HHsearch
(Fig. 2a and Supplementary Table 1), the precision of the top L
long-range contacts predicted by DeepPotential” (L is the sequence
length and ‘long-range’ represents the sequence separation |i - j| > 24)
(Fig. 2b and Supplementary Table 2), and the mean absolute distance
error (MAE; equation (6)) of the top 5L long-range distances (Fig. 2c,
Supplementary Fig.1and Supplementary Table 3). The number of effec-
tive sequences (Neff; equation (1)), the average sequenceidentity and
alignment coverage are also compared between those six MSAs (Sup-
plementary Fig.2 and Supplementary Table 4), where DeepMSA2 shows
the ability in collecting homologous sequences with more balanced
alignment coverage and diversity. A detailed discussion on the features
of themonomeric MSAs and the potentialimpact on template recogni-
tion and spatial restraint prediction is summarized in Supplementary
Discussion Text 1.

Asamoredirecttestof DeepMSA2 ondeep learning 3D structure
prediction, we implement a modified version of AlphaFold2?°, in which
theinput MSA is replaced with the MSA created by DeepMSA2. For brev-
ity, we use ‘DeepMSA2-based protein folding’ (DMFold) to refer to this
hybrid pipeline in the following discussion. In Fig. 3a, we compare the
TM-scores of allmodels predicted by DMFold versus AlphaFold2 onthe
132 free modeling (FM) monomer proteins from the CASP13-15 experi-
ments. To correctly reflect the FM nature of the domains, all templates
released after May 2018, May 2020 and May 2022 have been excluded
for the CASP13, CASP14 and CASP15 domains, respectively, when
running the programs. Itis shown that DMFold generated models with
ahigher TM-score than AlphaFold2in 63% (83 of132) of cases. The aver-
age TM-score of the models generated by DMFold (0.821) is 5% higher
thanthat generated by AlphaFold2 (0.781), witha Pvalue of 1.82 x 10™*in
aone-sided Student’s ¢-test indicating that the difference is statistically
significant. Itis notable that the difference mainly comes from difficult
domains. For the 86 domains where both AlphaFold2 and DMFold
achieved a TM-score >0.8, for example, the average TM-score is very
close (0.925 for DMFold versus 0.922 for AlphaFold2). However, for the
remaining 46 domains, where at least one of the methods performed
poorly, the difference in TM-score is dramatic (0.626 for DMFold ver-
sus 0.517 for AlphaFold2; P=2.86 x 107, one-sided Student’s ¢-test).
Among the 46 difficult domains, DMFold builds models with TM-scores
0.1unithigher than AlphaFold in18 domains, whereas AlphaFold2 does
soonlyin4 domains.

InSupplementary Table 5we further list the statistics of sequences
inthe MSAs by AlphaFold2 and DMFold. Although AlphaFold2 collects
aslightly larger number of homologous sequences than DeepMSA2
(2,724 versus 2,279), the average number of effective sequences in
the DeepMSA2 MSAs (Neff = 93.7) is much higher than that for the
AlphaFold2 MSAs (Neff = 84.5), suggesting that DeepMSA2 manages to
identify more diverse homologous sequences and build a‘deeper’ effec-
tive MSA than AlphaFold2’s default MSA pipeline. One reason for this
improvementis that theinclusion of in-house metagenome sequences
derived from the Tara database (TaraDB)*, MetaSource database
(MetaSourceDB)® and JGlclust database substantially increased the
coverageofbiologicalsequencespace.Inaddition, themultileveliterative
searching performed by DeepMSA2 helpsitto collect more diverse but
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Fig.1|Schematic of the DeepMSA2 pipelines for monomeric and multimeric
MSA constructions. a, DeepMSA2-Monomer contains two steps: an iterative
MSA generation step that combines the dMSA, qMSA and mMSA algorithms,
and a deep learning-based MSA ranking step based on the confidence scores

of predicted structure models. b, DeepMSA2-Multimer contains four steps of
monomeric MSA generation, MSA pairing, sequence linking and concatenated
MSA selection. IMG/M is the metagenomics database sourced from Joint Genome
Institute, see JGlclust in Methods.

relevant homologous sequences. In the bottom row of Supplementary
Table 5, we list the modeling results obtained by using DMFold with-
out the in-house metagenome sequence databases (referred to
‘DMFold-noh’). It shows that DMFold-nohsstill outperforms AlphaFold2
in both Neff and TM-score. However, DMFold-noh clearly underper-
forms the full version DMFold, with a significantly lower TM-score
(P=1.65x%107, one-sided Student’s t-test). This suggests that both the
enhanced sequence databases and searching algorithmsin DeepMSA2
contribute to the quality of MSAs and structural model construction.
InFig.3b, we present a case study of the FM domain T1043-D1from
CASP14, for which AlphaFold2 generates an incorrect model with a
TM-score of 0.20 and a global pLDDT of 0.40. Here, pLDDT is a scale

used by AlphaFold2 to evaluate the residue-level prediction quality,
with pLDDT > 0.7 indicating a correct backbone fold, and pLDDT < 0.7
indicating an expected failure to fold the protein®’. The poor result
observed here is mainly due to insufficient coevolutionary informa-
tion, because the AlphaFold2 default MSA pipeline detects only two
homologous sequences, resulting in a Neff value of 0.16 in the MSA.
Figure 3c shows the number of aligned amino acids per residue (V,) and
the pLDDT score along the protein sequence. Overall, the residue-level
pLDDT scores show a strong correlation with N,, demonstrating again
the importance of MSA information in driving structure prediction.
By contrast, DMFold constructs a model with a TM-score of 0.73 and
a pLDDT of 0.71. The improvement in modeling quality by DMFold is
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Fig.2| Comparisons of MSAs generated by DeepMSA2 and five control
methods for assisting template recognition and deep learning spatial
restraint prediction on 293 CASP13-15 monomer domains. a, Average TM-
score of the first template detected by HHsearch. b, Precision of top L long-range
residue-residue contact prediction with L being the sequence length and
sequence separation |i —j| > 24. ¢, MAE for the top 5L long-range residue-residue

distance predictions by DeepPotential. The height of the histogram indicates
the mean value and the error bar depicts the 95% confidence interval for each
variable using Student’s ¢-distribution. The CASP domains are categorized into
FM and TBM by the accessors. Ina, n = 287,155 and 132 monomer domains for the
columns‘All’,'TBM’ and ‘FM’ respectively, whereasinb and ¢, n=271,146 and 125
for the three columns, respectively.

mainly because DeepMSA2 constructs adeeper MSA with 42 homolo-
gous sequences and a Neff value of 2.2, which offers more helpful
coevolutionary information. The difference is especially dramatic in
the N-terminal portion of the protein, where the DeepMSA2 alignments
have an especially high N,, and the pLDDT scores increase accord-
ingly (Fig. 3d). In Supplementary Fig. 4, we list eight other examples
from CASP13-15 (T0991-D1, T1064-D1, T1125-D1, T1125-D2, T1125-D5,
T1130-D1, T1169-D1 and T1169-D4), in which the TM-score improve-
ments by DMFold are >0.3. In seven of these eight cases, the Neff of
DeepMSA2is higher than that of AlphaFold2. These results again high-
light the capacity of DeepMSA2 to provide more informative MSAs to
astate-of-the-art protein prediction pipeline, thus further improving
proteinmonomer modeling accuracy and rendering many previously
‘unfoldable’ proteins tractable for structure prediction.

Human proteome modeling for difficult proteins with
DeepMSA2

To further examine the practical usefulness of our new developments
forlarge-scale structure modeling, we applied the DeepMSA2/DMFold
pipeline to the human proteome. Considering the availability of the

AlphaFold2 Structure Database (DB), whichwasrecently released by the
DeepMind team?, our focus is on the 5,042 difficult sequences for which
the AlphaFold2 DB models have a confidence score of pLDDT < 0.7.
InFig. 4a, we show the histogram distributions of fold-level pLDDTs
obtained by DMFold and AlphaFold2 DB on these difficult proteins,
where aclear shift is observed for the DMFold models towards higher
pLDDT values. On average, the pLDDT of DMFold models (0.663) is 11%
higher than that of AlphaFold2 DB models (P< 2.2 x107%, one-sided
Student’s t-test), and 94% (4,738 of 5,042) of the DMFold models had a
higher pLDDT than the corresponding AlphaFold2 DB model. Overall,
DMFold creates high-quality global folds with pLDDT > 0.7 for 1,934
proteins that AlphaFold2 failed to model.

In Supplementary Fig. 5, we plot a histogram distribution of
TM-scores between DMFold and AlphaFold2 DB models for the 1,934
proteins that could be folded only by DMFold. Eighty percent (1,549 of
1,934) of the DMFold models have a different overall structure relative
tothe corresponding AlphaFold2 DB models (with a TM-score of <0.6
betweenthem),indicating that theimprovementin the DMFold models
is at the topology level. By contrast, for the remaining 385 proteins,
DMFold models have relatively similar structures to AlphaFold2 DB
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displaying the structural models by AlphaFold2 and DMFold (b), and the number
of aligned residues per site (N,; gray) and pLDDT score (red) along the protein
sequence using the MSAs by AlphaFold2 (c) and DeepMSA2 (d), respectively.

models, and thus the improvements in DMFold may come mainly from
local structural corrections. Figure 4b further shows a head-to-head
comparison of the residue-level pLDDTs obtained by DMFold and
AlphaFold2 DB for the 1,934 human proteins, which involve a total of
878,094 residues, where DMFold models have a higher residue-level
pLDDT than the corresponding AlphaFold2 DB models on 93% of
theresidues.

In Fig. 4c, we present one illustrative example from an unchar-
acterized protein, Q6ZQTO, for which AlphaFold2 collects only nine
homologous sequences with Neff = 0.7 in the MSA, compared with
the DeepMSA2 MSA with 122 sequences and Neff = 6.2. Because of
the sparse information from the MSA, a poor structure model with
pLDDT = 0.51is produced by AlphaFold2, showing anirregular second-
ary structure. By contrast, using the improved MSA from DeepMSA2,
DMFold creates amodel with much higher confidence (pLDDT = 0.92),
which has amore stable fold with a well-formed hydrogen-bonding net-
work and secondary structure. Figure 4d further lists the residue-level
pLDDT distributions, where nearly all residues in the DMFold model
have a pLDDT of >0.7; the corresponding residues in the AlphaFold2
DB model all fell below 0.7. For this protein, the DMFold model and
AlphaFold2 DB model have a very low similarity with a TM-score of 0.44,
showing that DMFold improves the quality of the global fold. Figure
4e shows acomplementary example from the putative diacylglycerol
O-acyltransferase 2-like protein (Q6IED9) with an o/ three-layer sand-
wich fold. Although the DMFold and AlphaFold2 models have similar
global folds (TM-score = 0.88), DMFold built the model witha pLDDT
of 0.83, whereas the AlphaFold2 DB model has a pLDDT of 0.68. The
residue-level pLDDT distributions in Fig. 4f show that DMFold created
better local structures with greater pLDDTSs for several regions (marked
inred), correspondingto two better-formed p-sheets in the 3D struc-
tural packing, as highlighted in red in Fig. 4e. These examples show
that DMFold could improve AlphaFold2 modeling at both the global
fold and local structure levels by supplying additional evolutionary
information from more informative MSAs.

Ofthe 5,042 human proteins for which no high-confidence Alpha-
Fold2 structure was available, 48 have experimental structures that
cover >80% of the sequence of the natural protein and were released
in the PDB after the model training date of AlphaFold2 (1 May 2018).
For these 48 proteins, AlphaFold2 DB models achieve an average

TM-score of 0.630, compared with 0.679 for DMFold (P=1.46 x10™*,
one-sided Student’s ¢-test; Supplementary Table 6). Supplementary
Fig. 6 examines the correlation between the TM-score and pLDDT of
DMFold for those 48 proteins. Among all models witha DMFold pLDDT
>0.7, 85% of the predictions could be considered as true positives;
thatis, the modelis predicted as foldable and is actually foldable with
a TM-score >0.5. There is also a quite high false omission rate (76%)
based on the 0.7 pLDDT score cutoff, suggesting that many of the
models with alower pLDDT might also possess correct folds. Overall,
we note that despite the promising results for the small set of recently
crystallized human proteins, the absolute quality of the predicted
human proteome models from DMFold should be further verified
with more proteins when the experimentally solved structures are
availablein the future.

Improvements of protein complex structure prediction

To examine the impact of DeepMSA2-Multimer on protein complex
structure modeling, we collected 54 complex targets from CASP13
and CASP14 each of which contains between two and eight chains;
40 of the targets are homomers and 14 are heteromeric complexes
(Supplementary Table 7). In Supplementary Table 8, we list a sum-
mary of TM-score comparisons for the complex models constructed
by AlphaFold2-Multimer and DMFold-Multimer, which replaces the
default MSA of AlphaFold2-Multimer by the multimer MSA from
DeepMSA2-Multimer (Methods). It is found that DMFold-Multimer
generates models for all, heteromer and homomer complexes with
TM-scores of 0.834, 0.930 and 0.801, which are 12.2%, 3.9% and 16.1%
higher than those of AlphaFold2-Multimer models (0.743,0.895 and
0.690), respectively. The Pvalueinaone-sided Student’s ¢-test is below
0.05inallthe comparisons, indicating that all the differences are sta-
tistically significant. Figure 5a also shows a head-to-head comparison
of the TM-score of the models, where DMFold-Multimer outperforms
AlphaFold2-Multimer in 70% of cases. Again, the improvement
mainly occurs on the difficult complexes. If we consider the 26 easy
targets for which both DMFold-Multimer and AlphaFold2-Multimer
models have TM-scores >0.9, the average TM-scores are very close
(0.961for DMFold-Multimer versus 0.960 for AlphaFold2-Multimer).
For the 28 more difficult targets, however, the average TM-score
of DMFold-Multimer (0.716) is significantly higher than that of
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AlphaFold2-Multimer (0.542), with P=1.05x107* in a one-sided
Student’s t-test.

Compared with the default MSAs in AlphaFold2-Multimer,
two factors may contribute to the quality improvement of Deep-
MSA2-Multimer MSAs. One is the integrated MSA creation, pairing
and selection mechanism of DeepMSA2-Multimer, and the second
is the inclusion of the additional huge in-house metagenomics data-
bases. To assess the relative contributions of these factors, in Fig. Sb we
compare the complex modeling performance of AlphaFold2-Multimer
and DMFold-Multimer using different sequence databases. Even with
the same sequence databases (from genomic sequences, Big Fan-
tastic Database (BFD) and Mgnify), DMFold-Multimer still outper-
forms AlphaFold2-Multimer with the TM-score increasing from 0.743

to 0.784, indicating the usefulness of DeepMSA2-Multimer’s MSA
generating, pairing and selection methods. After using the full version
DMFold-Multimer including our expanded metagenome databases, the
modeling quality canbe furtherincreased by 6.4% from 0.784 t0 0.834,
showing that the large metagenome databases are also beneficial for
protein complex modeling.

Figure Sb alsoindicates that the magnitude of TM-score improve-
ment of DMFold-Multimer over AlphaFold2-Multimer is relatively
small for heteromers compared with that for homomer complexes.
Thisis probably because of the sequence linking mechanism, in which
DeepMSA2-Multimer links two sequences if they come from the same
species based onthe UniProt species annotation to ensure orthologous
pairing of the protein interactions. Because of the limit of species
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Fig. 5| Benchmark results of DMFold-Multimer on protein complex
structure prediction. a, Comparison of TM-scores between DMFold-Multimer
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CASP13 and CASP14. b, Violin plot of TM-scores for the targets from a using
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Multimer models for T09880 superposed with the experimental structure,
where monomers of the predicted models are colored differently. d,e, Residue-
residue distance map (heat map) along with the number of aligned residues

Residue index

per site (N, shown in margins) predicted from AlphaFold2-Multimer (d) and
DMFold-Multimer (e) (above red diagonal line) versus that calculated from the
experimental structure (below red diagonal line) for T0988o0. f, AlphaFold2-
Multimer and DMFold-Multimer models for T10380 superposed with the
experimental structure. g,h, Residue-residue distance map (heat map) along
with the number of aligned residues per site (N, shown in margins) predicted
from AlphaFold2-Multimer (g) and DMFold-Multimer (h) (above red diagonal
line) versus that calculated from the experimental structure (below red diagonal
line) for for T10380.

annotations, only homologous sequences from genomic databasesin
the MSAs of the individual chains can be used for linking, as sequences
from metagenomics databases do not have species annotations from
UniProt. Thus, one major advantage of DeepMSA2, which leverages
information from large metagenomics databases, will be eliminated
because of the absence of species annotations (although the improved

MSAs from monomer MSA generation and complex sequence pairing
and selection still contribute to more accurate structure prediction).
By contrast, for homomer complexes, because the component pro-
teins are identical, all sequences in the monomer MSAs will be linked
with themselves, which results in the complete use of both genom-
ics and metagenomics databases, and substantially larger structure
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improvement of DMFold-Multimer over AlphaFold2-Multimer. We
expect that the performance of DMFold-Multimer on heteromeric
complexes canbe furtherimproved in future using more comprehen-
sive taxonomic annotation databases, or through the development of
new sequence linking algorithms covering metagenomic sequences.

The positive impact of multimeric MSAs provided by DeepMSA2
manifestsitself mainly in theinterchain orientation/distance map pre-
dictions. Asacase study, in Fig. 5c we present an example from T09880,
which is ahomo-trimer containing three protein chains with 612 resi-
duesin total. AlphaFold2-Multimer creates an incorrect model with a
low TM-score of 0.18. A likely cause is that the AlphaFold2-Multimer
default MSA pipeline only detects eight homologous sequences for
each component protein, leading to a poor prediction of the intra-
chain distance map (MAE =5.93 A) used for protein monomer struc-
ture inference (Fig. 5d), thus resulting in a poor monomer structure
model with a monomer TM-score of 0.20. By contrast, DeepMSA2
detects 71 homologous sequences, which results in a more accurate
distance map (MAE = 0.81 A, Fig. 5e) and a more accurate structure
model (monomer TM-score = 0.95) for each chain. At the complex level,
DMFold-Multimer generates a high-quality complex structure model
for T09880 with a TM-score of 0.96. Figure 5f shows another illustrative
case from T10380, whichis ahomo-dimeric complex with 796 residues
in total. Although AlphaFold2-Multimer generates a good-quality
monomer model with a TM-score of 0.91, the quaternary orienta-
tion of the complex is completely wrong resulting in a poor complex
TM-score of 0.53. This is mainly due to the poor MSA constructed by
the AlphaFold2-Multimer pipeline (with Neff = 0.2), which results
in a very low interchain distance prediction accuracy (MAE = 4.11 A;
Fig.5g).For thisexample, DeepMSA2-Multimer creates adeeper MSA
with Neff =1.4, which results in a high-accuracy prediction for both
intrachain (MAE = 1.11 A) and interchain (MAE = 1.80 A) distance maps
(Fig. 5h). As aresult, DMFold-Multimer creates amuch more accurate
complex structure model with a complex TM-score of 0.91. These
results show that correct construction of multimeric MSAs is critical
to both quaternary restraints and final model predictions.

Blind test of DeepMSA2/DMFold-Multimer in CASP15
experiment

Asablindtest, the DeepMSA2/DMFold-Multimer pipeline participated
in the community-wide CASP15 experiment held in 2022 for complex
structure prediction. This experiment contained 47 complex targets,
each with 2-27 component chains. In Fig. 6a, we show a histogram
of TM-scores for the structural models by DMFold-Multimer for
the 38 complexes that have experimental structure released, where
DMFold-Multimer created models with an average TM-score of 0.83,
and 36 of the 38 complexes have a TM-score above 0.5. Despite the
promising result, the TM-score of the complex models is still con-
siderably lower than that for the corresponding monomer models
(TM-score = 0.89), suggesting that interchain orientation s still a chal-
lenging issue in quaternary protein structure prediction.

InFig. 6b, we present the superposition of the DMFold-Multimer
models on the experimentally solved structures for 27 complex tar-
gets for which the predictions have a TM-score >0.8. These include
seven large-size complexes from H1111, H1114, H1137, T11700, H1171,
H1172 and T1181o, the sequences of which contain 8,460, 7,988, 4,592,
1,908,1,956, 2,004 and 2,064 residues, where DMFold-Multimer con-
structed impressive complex models with TM-scores of 0.98, 0.91,
0.94, 0.93, 0.93, 0.91 and 0.85, respectively. Notably, the three larg-
est targets are all heteromeric complexes with stoichiometry vari-
able of ‘A9B9C9’, ‘A4B8C8’ and ‘A1B1C1D1E1IF1G2HI1IT, respectively,
where DMFold-Multimer constructed high-accuracy models with
TM-score >0.9 for all of them. These results demonstrate the ability of
DMFold-Multimer to model large protein complexes, which has been
along-term challenge for traditional quaternary structure modeling
approaches®.

InFig. 6c and Supplementary Table 9, we also listacomparison of
DMFold-Multimer (named Zheng) with 86 other methods participated
in the CASP15 Multimeric Modeling Section. DMFold-Multimer out-
performed all other groups in terms of the sum of Z-score, which was
calculated by the CASP assessors based on acombination of TM-score,
LDDT, ICS and Interface Patch Score; where TM-score and LDDT meas-
ure the global fold quality and ICS and Interface Patch Score assess
the proteininterface modeling quality of protein complexes. Overall,
DMFold-Multimer achieved a cumulative Z-score of 35.30, which is
nearly three times higher than that of the ‘NBIS-AF2-multimer’ group
(that is, the public March-2022 v.2.2.0 of the AlphaFold2-Multimer
server run by the Elofsson Lab on CASP15 targets, which achieved a
cumulative Z-score 0f12.27) and 21.1% higher than the second-best per-
forming group (29.15). Abreakdown of the component score compari-
sons between DMFold-Multimer and AlphaFold2-Multimeris shownin
Supplementary Table 10.

InSupplementary Fig. 7, we show three illustrative examples from
targets H1140, H1141 and H1144, which are all nanobody-antigen com-
plexes.Nanobodies are single-domain antibodies thatinitiate critical
immune reactions by interacting with antigens*, where these targets
represent three typical interaction modes of nanobodies with the
same mouse 2',3'-Cyclic-nucleotide 3'-phosphodiesterase. As shown
inSupplementary Fig. 7, the complex models by AlphaFold2-Multimer
(the NBIS-AF2-multimer group) have arelatively low TM-scores (<0.7),
whereas DMFold-Multimer created excellent predictions for the three
complexes with TM-scores 0f 0.92,0.95and 0.99, respectively. Accord-
ingly, the ICS F1 scores of the DMFold-Multimer models (0.51, 0.79
and 0.74) are much higher than those for AlphaFold2-Multimer (0.02,
0.06 and 0.09), suggesting that correct construction of the Deep-
MSA2-Multimer MSAs has largely enhanced the modeling of quater-
nary chain interactions in these immune protein-antigen complex
targets. In Supplementary Fig. 8, we investigate the target H1144 to
further examine the difference in the two programs. In this example,
DMFold-Multimer utilizes a multi-MSA pairing strategy to create 25
paired MSAs, with the best model of TM-score (0.99) coming from the
MSA with the highest Neff (16.3). By contrast, AlphaFold2-Multimer
uses a single MSA with Neff = 8.1 which resulted in no models with a
TM-score >0.8. Nevertheless, DMFold-Multimer could not fold all
the nanobody-antigen complexes in CASP15. Supplementary Fig. 9
presents a failed nanobody-antigen case from target H1142 in which
no correct model was created by DMFold-Multimer despite the use
of multiple MSAs. A detailed discussion on the failure and success of
DMFold-Multimer onthe nanobody-antigen complex structure mod-
elingis summarized in Supplementary Discussion Text 2.

Discussion
With the rapid progress of deep machine-learning techniques, MSAs
have becomeincreasingly essential to modern protein structure predic-
tions. Built oniterative alignment searches through multiple genome
and metagenome sequence databases, we have developed a hierar-
chical pipeline, DeepMSA2, for protein monomer and multimer MSA
construction. Large-scale tests show that DeepMSA2 can be used to
substantially improve the accuracy of protein structure predictions.
Compared with existing MSA construction methods, one of
the major advantages of DeepMSA2 lies in the iterative search and
model-based preselection strategy, which can result in MSAs with
more balanced alignment coverage and homologous diversity. The
iterative searchingstrategy also allows for the exploration of multiple
in-house metagenome sequence databases, which helps increase the
diversity and coverage of the resulting MSA. Detailed benchmark data
show that the evolutionary/coevolutionary information derived from
such MSAs can clearly improve the accuracy of structure template
recognition and deep learning distance/orientation restraint predic-
tions. By integrating DeepMSA2 with the state-of-the-art AlphaFold2
modeling approach, DMFold canimprove the TM-score of AlphaFold2
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models by 5% for FM domains that lack homologous templates in the
PDB. Our application of DMFold on the human proteome hasresulted
inan 11% increase in pLDDT score for the 5,042 difficult proteins for
which AlphaFold2 failed to create confident models, thus substantially
expanding the range of human proteins for which actionable structure
predictions can be provided.

Utilization of DeepMSA2-Multimer MSAs has also resulted in sub-
stantialimprovementsin multichain protein complex structure predic-
tion, wherea12.2%increase in TM-score is obtained by DMFold-Multimer
over the default AlphaFold2-Multimer for the 54 complexes from the
CASP13 and CASP14 experiments. In the most recent community-wide
blind test of CASP15, DMFold-Multimer achieved the highest modeling
accuracy for complex structure prediction, with an average TM-score
15.4% higher and average ICS score 27.5% higher than the public March-
2022v.2.2.0 of the AlphaFold2-Multimer server run by the Elofsson Lab
(registered as NBIS-AF2-multimer), according to the assessor’s criteria.
Notably, DMFold-Multimer constructed high-quality models for mas-
sive oligomer complexes up to 8,460 amino acids with a TM-score of
0.98, highlighting its ability to model large protein complex structures,
addressing a persistent problem that has challenged traditional protein
quaternary structure prediction®.

Despite the impressive improvements in performance, some
challenges remain for DeepMSA2. One key area with likely room for
improvementisinthe modeling of heteromeric complexes, which show
smaller improvements (relative to AlphaFold2) than homomer com-
plexesinourinternal testing. Because current multimer MSAs are built
from monomer MSAs, afundamental challenge to be addressed is how
to effectively link the sequences of different component MSAs to form
optimal multimeric MSAs of interacting homologous sequences. The
currentsequence linking mechanism, whichis based on species annota-
tion, works only on genomic sequences, and thus the highly informative
homologous sequences from metagenomics databases cannot be fully
utilized to guide multichain structural assembly. For homomer com-
plexes, the current approach simply links all sequences of monomer
MSAs to themselves. However, not allhomologous sequences interact
with themselves and an approach correctly linking the interacting
homologs, but not noninteracting homologs (for example, based on
protein-protein interaction predictions), may help further improve
homomer MSA construction. The identification of robust methods
for optimal construction of paired MSAs will likely be of great value to
future efforts to optimize predictions regarding heterologous con-
tacts between proteins, as well as for related tasks such as classifying
arbitrary protein pairs as interacting versus noninteracting. In addi-
tion to MSA pairing, another potential area for growth is to retrain
AlphaFold2-like models making explicit use of the more informative
monomer MSAs; this may help address the sequence pairing issues
directly through anintegrated network learning process.

In addition, stoichiometry information (the number of copies of
each component chain) for the complex s required before implement-
ing the DMFold-Multimer pipeline, which may limit the usefulness of
themethod in practicalapplications. Including adeep learning-based
stoichiometry predictor®?® based on the query sequences and evolu-
tionary signals to DMFold-Multimer pipeline may be part of the solu-
tion to alleviating this limitation. Furthermore, whether the current
DeepMSA2/DMFold approach could be extended to RNA and RNA-
protein complex structure prediction is also a topic to explore in our
ongoingresearch, whereboth limitations on the sparse availability of
RNA sequence and structure databases compared with proteins need
tobe overcome.

More generally, the strong performance that we observe through
the DeepMSA2/DMFold pipeline demonstrates that the protein struc-
ture prediction problemis not ‘solved’. Substantial room forimprove-
ment over the current state-of-the-art still exists, particularly for
proteins with few identifiable sequence homologs, and those involved
inmultiproteincomplexes. The DeepMSA2/DMFold approach provides

substantial advances in the prediction of some such difficult targets,
showing additional evidence that optimization of the information
content of input to deep learning-based protein structure prediction
methods must be considered with as much care as the design of the
predictoritself.

Online content
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Methods

Benchmark dataset preparation

Monomer proteins from CASP. Some 293 domains from monomer
targetsinthe CASP experiments were collected to benchmark the effect
of DeepMSA2 on monomer protein structure prediction. The CASP
experiments often classify the domains as template-based modeling
(TBM)-easy, TBM-hard, TBM/FM and FM. To simplify the data analy-
ses, we merged TBM-easy and TBM-hard domains as TBM domains,
and TBM/FM and FM domains as FM domains in this study. In our
benchmarks, 48 FM domains and 64 TBM domains came from CASP13;
37 FM domains and 50 TBM domains were taken from CASP14; and
47 FM domains and 47 TBM domains were from CASP15 (Supplemen-
tary Table 11).

Multimer protein complexes from CASP. Fifty-four protein complex
targets were collected from CASP13 and CASP14, including 14 heter-
omer and 40 homomer complexes. Here we use the stoichiometry
variable to represent the type of a complex; that is, with the alphabet
representing different protein chains and the number after each let-
terindicating the number of copies of the corresponding component
protein chain in the complex. For example, ‘A3B2C2’ means the com-
plex contains three different protein chains, A, B and C, and there
are three copies of protein A, two copies of protein B and two copies
of proteins C in this complex. For homomers, the dataset contains
twenty-two ‘A2’ (dimer), thirteen ‘A3’ (trimer), four ‘A4’ (tetramer)
and one ‘A8’ (octamer) complexes. For heteromers, nine ‘A1BT’, three
‘A2B2’, one ‘A3B1’ and one ‘A1B1C1D1E1’ complexes are in the dataset
(Supplementary Table 7).

Human proteome. The human proteome dataset contains more than
20,000 proteins or peptides withlengths between2 and 34,350 amino
acids collected from UniProt (https://www.uniprot.org/uniprotkb/?
facets=reviewed%3Atrue&query=proteome%3AUP000005640). In
2021, DeepMind released the AlphaFold2 model database, AlphaFold2
DB*, which contains structure models predicted by AlphaFold2 for
several reference proteomes, including the human proteome. How-
ever, only around 70% (13,838) of human proteins in AlphaFold2 DB
have confident predictions with pLDDT = 0.7. From the remaining
6,757 proteins for which AlphaFold2 failed to create confident folds,
we selected the 5,042 proteins with lengths <800 amino acids for
remodeling by DMFold.

Number of effective sequences in the MSA
To quantify the sequence diversity of an MSA, we define the number
of effective sequences (Neff) as follows:

=

1
N
114 X0 ol [Smn > 08]

Neff = (1

L
VLA

where L is the length of the query sequence, N is the number of
sequences contained in the MSA, S, , is the sequence identity
between the mth and nth sequences, and /[] represents the Iver-
son bracket, which takes the value I[S,,, > 0.8]1=1if S, , 2 0.8, and
0 otherwise.

Based on the definitionin equation (1), MSAs with amore diverse
set of sequence pairs with sequence identity <0.8 have the term

Z’,V,,=1,m¢,,’[5m,n > 0.8]closer to 0, and thus result in a higher Neff value

given the same number of sequences (N). In case that all Nsequences
in an MSA are diverse (pairwise sequence identity <0.8), the term

Y tmzal [Sma > 0.8] = 0, and then Neff will be N/VL. In other words,

given a Neff cutoff Neff,,., the minimal number of diverse sequences
needed for modeling can be roughly estimated by

Ninin = Neff oy xVL )

Itis generally believed that MSAs with more diverse sequences
and higher alignment coverages can provide more evolutionary and
coevolutionary information and thus better assist deep learning pro-
tein structure prediction. To quantitatively evaluate that beliefbased
onourdata,inSupplementary Fig.10awe plot the TM-score of DMFold
models versus Neff values for the 62 monomer FM domains in CASP13-
CASP15. Although higher Neff values tend to correspond to models
with higher TM-scores, there is no clear quantitative threshold of Neff
correspondingto the absolute success of structure modeling. Follow-
ing the general trend, we can provide two approximate thresholds,
Neff =2° and Neff =2*, which are roughly associated with three
TM-scoreterritories; that is, the average TM-scores with Neffin [0, 2°],
(2° 2*Tand (2%, =) are roughly <0.70, ~0.85 and >0.90, respectively.
Thus, following equation (2), approximately atleast 10 (= 2°x1/100) or
160 (= 2*x1/100) diverse sequences are required for good- or
high-accuracy modeling of a100-residue protein, respectively.

In Supplementary Fig. 10b, we also present a comparison of
TM-score versus alignment coverage, which is defined as the average
rate of aligned residues onthe query sequence across allhomologous
sequences in the MSA, for the same set of recent CASP targets. The
data show no obvious correlation between TM-score and coverage of
the MSA. Itis obvious that an MSA with coverage that is too short (for
example, with the alignment focused only on the N-terminal tail) is
useless for deducing the coevolutionary signal of the entire protein
sequence. Our data suggest, however, that the final performance of
structure prediction does not depend on the alignment coverage as
long asthe alignment covers areasonable region of the query sequence
(forexample, more than~60% in our case).

Genome database collection

Three genomic sequence databases, Uniclust30%, UniRef30* and
Uniref90?, which are allbased on UniProtKB*, are utilized in the Deep-
MSAZ2 pipeline (details are given in Supplementary Table 12).

Uniclust30/UniRef30. The Uniclust30/UniRef30 database is an
HHblits-style® hidden Markov model (HMM) database that clusters
UniProtKB* sequences at the level of 30% pairwise sequence identity
by MMseqs2’. For each cluster, an ‘A3M’ formatted MSA generated by
Clustal Omega® and the corresponding HMM are provided for HHblits.
Whereas Uniclust30 is the version of the database generated before
2019, UniRef30 is the one generated after 2019. In total, Uniclust30
contains 124 million sequences in 15 million clusters, and UniRef30
provides 231 million sequences in 25 million clusters.

Uniref90. Uniref90 provides sequences from the UniProtKB clustered
at 90% pairwise sequence identity by MMseqs2. Unlike Uniclust30 and
UniRef30 (whichare HMM databases), Uniref90is a flat sequence data-
base. For each cluster, only the representative sequence of the cluster
iskeptinthe database. Thus, there are109 million protein sequences/
clustersin the Uniref90 database.

Metagenomics genome database collection

Six metagenomics sequence databases are utilizedin DeepMSA2. These
include three third-party databases (Metaclust®, BFD*' and Mgnify??)
and three in-house databases (TaraDB*, MetaSourceDB® andJGIclust).
The three in-house databases, which were built using data collected
fromthe European Bioinformatics Institute (EBI) Metagenomics pro-
ject**and theJoint Genome Institute (JGI)**, containin total 35.6 billion
nonredundant sequences, which are approximately 11 times as large
asthethree third-party metagenomics databases used (-3.2 billion).

Metaclust. Metaclust was created by clustering and assembling
1.59 billion protein sequence fragments predicted by Prodigal® in
~2,200 metagenomics and meta-transcriptomic datasets that came
fromtheJGI**. The 1.59 billion metagenomics sequences were clustered

Nature Methods


http://www.nature.com/naturemethods
https://www.uniprot.org/uniprot/A3B2C2
https://www.uniprot.org/uniprotkb/?facets=reviewed%3Atrue&query=proteome%3AUP000005640
https://www.uniprot.org/uniprotkb/?facets=reviewed%3Atrue&query=proteome%3AUP000005640

Article

https://doi.org/10.1038/s41592-023-02130-4

with 50% sequence identity at 90% coverage, yielding 712 million
clusters and the corresponding nonredundant sequences.

BFD. The BFD is an HHblits-style HMM database that was created by
clustering 2.5 billion protein sequences from UniProtkKB*, Metaclust™,
soil reference catalog and marine eukaryotic reference catalog assem-
bled by Plass*. BFD was clustered by MMseqs2’ with 30% pairwise
sequence identity, and only the clusters that have more than three
sequence members were keptinthe database. Intotal, 66 million clus-
ters and 2.2 billion genomics/metagenomics sequences are collected
inthe BFD database.

Mgnify. The Mgnify metagenomics database was collected by the
EBI Metagenomics project®>* and was clustered by MMseqs2 using
coverage and sequence identity threshold set at 90%. Similar to
Uniref90, for each cluster, only the representative sequence was kept
in Mgnify database, leading to 305 million metagenomics sequences.

TaraDB. We obtained 245 metagenomics sequencing runs from the
‘Tara Oceans’ project hosted on EBI Metagenomics (https://www.
ebi.ac.uk/metagenomics/studies/ERP001736). To obtain protein
sequences for Tara metagenome database, a pipeline combining raw
reads assembly, openreading frames (ORFs) identification and redun-
dant sequence trimming approaches were implemented®. The raw
read sequences were assembled by MEGAHIT v.1.0 to contigs and only
contigs with>500 nucleotides are selected. Next, Prodigal (v.2.6) was
used with parameters ‘-c -m p meta’ toidentify ORFs from metagenome
data and translate the gene to protein productions. Finally, CD-HIT
(v.4.6)” was utilized to cluster protein sequences in each sample, and
the sequenceidentity threshold was set to 95% to remove the identical
sequence. Intotal, the Tarametagenome database contains 121 million
protein sequences.

MetaSourceDB. MetaSourceDB was used in our previous MetaSource
research®, which collects metagenome datafromfour large environmen-
talbiomes ofthe EBl database (https://www.ebi.ac.uk/metagenomics/).
Those four biomes, including ‘fermentor’, ‘soil’, ‘lake” and ‘gut’, cover all
typical biomes of the EBI database. In total, 1,705 high-quality samples
were selected, assembled and clustered by the similar pipeline used in
TaraDB. In addition to Prodigal, FragGeneScan®® (v.1.20) was also used
to predict ORFs from assembled contigs to avoid missing the short
sequences. Overall,805,4,170,1,290 and 12,811 million protein sequences
are collected for the ‘fermentor’, ‘soil’, ‘lake’ and ‘gut’ biomes, respec-
tively, resulting in 19.1billion proteins contained in MetaSourceDB.

JGlclust. We collected ~25,000 metagenomics and meta
-transcriptomic samples from the JGI**. For each project, the assembled
proteinsequences (‘*.assembled.faa’) were downloaded and clustered
with 90% sequence identity at 90% coverage by MMseqs2. For each
cluster of one project, only the representative sequence was kept in
thein-house)Glclust database. A total of 16.4 billion metagenomics and
meta-transcriptomic sequences are contained inthe JGlclust database.

DeepMSA2-Monomer pipeline for monomeric MSA
construction

Given the complexity and huge size of the protein sequence data-
bases, thereis no single MSA construction tool that can quickly search
through all sequence databases and create reliable MSAs for different
targets. Toaddress thisissue, DeepMSA2 utilizes a multi-MSA genera-
tion step to create a diverse set of MSAs using the dMSA, qMSA and
mMSA programs, followed by aMSA ranking step based on rapid deep
learning structure prediction (Fig. 1a).

dMSA. The dMSA algorithm used in DeepMSA2 is modified from our
previous MSA generationtool, DeepMSA. Here, AMSA generates up to

three MSAs by a three-stage procedure that uses HHblits®, Jackhmmer®
and HMMsearch™® toiteratively search the genomic and metagenomics
sequence databases. In stage 1, HHblits is used to search Uniclust30
with the parameters ‘-diffinf-id 99 -cov 50 -n 3. In stage 2, Jackhmmer
isused to search against Uniref90 with parameters‘-N3-E10 --incE 1e-3’
to pick up potentially homologous sequences. Instead of directly using
the alignment generated by Jackhmmer, the full-length sequences
according to the Jackhmmer raw hits are collected from Uniref90.
These full-length sequences are clustered by kClust into sequence
clusters by 30% sequence identity cutoff. Next, Clustal Omega® is used
torealign sequences within each cluster into aligned sequence profiles.
Those sequence profiles are then converted to a custom HHblits-style
database using the ‘hhblitdb.pl’ script from the HH-suite package.
HHblits isagainapplied to search this custom database using the same
search parameter as in stage 1 but starting from the stage 1 sequence
MSA as input. In stage 3, the MSA from stage 2 is converted to a HMM
by HMMbuild from the HMMER package. This HMM is searched against
the Metaclust metagenome database by HMMsearch, using parameters
“E10--incE 1e-3’. Similar to stage 2, sequence hits from HMMsearch are
builtintoacustom HHblits database. The MSA from the previous stage
is used to search against this new custom HHblits database to derive the
stage 3 MSA. In addition, to speed up the custom database construc-
tionand filter out the noisy raw sequences picked up by Jackmmer and
HHMsearchin stages 2 and 3, respectively, a BLAST filter is applied to
the raw sequences obtained from Uniref90 before kClust clustering.
Here, PSIBLAST" is used to rank the homologous relation between
the raw hits and the query sequence by e-value, and up to 30,000
top-ranked raw hits will be used in the kClust clustering step. Based on
our benchmark, by adding this BLAST filter, the AlphaFold2 modeling
accuracy canbeslightly increased compared with that without the filter
inthe CASP14 monomer dataset (Supplementary Table13). The dMSA
construction will be stopped at any searching stage whenever the Neff
valueis >128. Thus, at most three MSAs will be generated by dMSA.

gMSA. gMSA is composed of four stages that perform HHblits (v.2),
Jackhmmer, HHblits (v.3) and HMMsearch searches against Uniref30,
Uniref90, BFD and Mgnify databases, respectively. In the BFD
database-searching step, HHblits (v.3) is utilized with parameters - diff
inf-id 99 -cov40-n3-el.Similar to dMSA stages 2 and 3, the sequence
hits from Jackhmmer, HHblits (v.3) and HMMsearch in stages 2, 3 and
4 of qMSA are converted to HHblits (v.2) formatted databases, against
which the HHblits (v.2) search based on the MSA input from the previ-
ousstageis performed. As with dMSA, the searching will stop when the
MSA from the current stage of QMSA has Neff > 128, resulting in up to
four MSAs created by the qMSA method.

mMSA. In mMSA, the qMSA stage 3 alignment is used as a probe by
HMMsearch using parameters ‘-E 10 --incE 1e-3’ to search through
a metagenomics database combining JGlclust, TaraDB and Meta-
SourceDB, with the resulting sequence hits converted toaraw sequence
database. This mMSA database is then used as the target database,
which is searched by HHblits (v.2) with three seed MSAs (MSAs from
dMSA stage 2 and qMSA stages 2 and 3) to derive three new MSAs.
The mMSA program will not be used if both dAMSA and QMSA stopped
at stage 1, which means that the number of detected homologous
sequences is sufficiently reliable from genomic sequence databases.

Final MSA selection. A simplified version of AlphaFold2 is applied
here torank the MSAs generated by dMSA, qMSA and mMSA, where the
template detectionmoduleis turned off and the embedding parameter
issettoonein AlphaFold2 for rapid model generation. Up to ten MSAs
are collected from the MSA generation step, where each of the MSAs
is fed into the modified AlphaFold2 program to create five structure
models. Foragiven MSA, the highest pLDDT score among the five pre-
dicted models is assigned as the rank score of the MSA. The MSA with
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the highest rank score among all created MSAs is returned as the final
selected MSA, reflecting an optimization of the information content
contributing to protein structure prediction.

DeepMSA2-Multimer pipeline for multimeric MSA
construction

DeepMSA2 for multimeric MSA construction contains four steps:
(1) monomeric MSA generation, (2) monomeric MSA pairing, (3) joint
MSA creation by sequence linking, and (4) multimeric MSA ranking
and selection (Fig. 1b).

Monomeric MSA generation. The abovementioned Deep-
MSA2-Monomer pipeline is used to create monomeric MSAs for each
of the component chains. However, instead of returning only one
top-ranking MSA, up to ten MSAs are kept for each chain, to facili-
tate the modeling of quaternary orientations of between different
component chains.

MSA pairing. Two types of complexes are considered in DeepMSA2.
Forhomomeric complexes in which allcomponent chains areidentical,
allofthe monomer MSAs are utilized and the multimeric MSAs are cre-
ated by concatenating each ofthe monomer MSAs n times side-by-side,
where nisthe number of monomer chains (Supplementary Fig.11). For
heteromeric complexes, the top M MSAs are selected for each mono-
mer chainso that M" distinct paired MSAs can be created for the com-
plex, where Nis the number of distinct chainsin the complex. To avoid
an impractically long MSA construction time, M is set as the maximal
value to satisfy M" <100. For example, for acomplex containing three
different protein chains (A2B2C1, N=3), M will be set to 4 (4><100)
(Supplementary Fig. 12a). In other words, for each component chain
in this complex, we select four top-ranked monomer MSAs and build
paired MSAs for the complex with 64 different combinations of those
monomer MSAs. Normally, M" ranges from 50 to 100 for different kinds
of heteromer complexes.

Sequence linking. For a given set of M" paired monomeric MSAs, for
example (MSA —1;, MSA - 2;,, ..., MSA — N, ) with 1 < iy, iy, ..., iy < M, the
sequences from the monomeric MSAs are concatenated into a multi-
meric MSA as follows (Supplementary Fig. 12b). First, the sequences
ineachmonomeric MSA are grouped based on the UniProt annotated
species. The sequences in each group are then ordered based on the
sequenceidentity to the query sequence. To properly capture ortholo-
gous signals of interchain coevolution, the top sequences of different
monomeric MSAs belonging to the same species group are linked
together side-by-side to forma composite sequence in the multimeric
MSA. In cases where one of the monomeric MSAs is missing for a spe-
cificspecies, whichappearin more than one other chains, the compo-
nent chainis padded with gaps in the composite sequence with other
linked chains having that species. Finally, the unlinked sequences in
the monomeric MSAs are padded below the linked sequences. This
composite linking step is applied only to heteromeric complexes, as
the MSAs for homomeric complexes are constructed by simply con-
catenating the same monomer MSA multiple times as shown in Sup-
plementary Fig.11.

MSA selection. Of the M" concatenated MSAs formed from the
MSA paring procedure, 25 top MSAs are returned from the Deep-
MSA2-Multimer pipeline based on the M-score:

3)

N

M-score = Neff(
izt

N
Ei_ln,-xpLDDTl.)

where Neff is the depth of the concatenated MSA calculated based
on equation (1). n; is the copy number of ith component chain in the

complex where pLDDT; is the pLDDT score of chain-i taken from the
monomeric MSA generations. Again, this step is designed for hetero-
meric complexes, whereas for homomeric complexes, all ten MSAs
from self-concatenation are returned.

Protein tertiary and quaternary structure prediction
AlphaFold2 and AlphaFold2-Multimer programs. In the standard
AlphaFold2 program®, an end-to-end network architecture is imple-
mented onpredicting 3D structure of monomeric proteins fromanMSA
and homologous templates. AlphaFold2-Multimer* was extended from
AlphaFold2 protocol for quaternary structure prediction by training
the networks on protein complex structures.

DMFold. DMFold-Monomer (or DMFold) is designed for modeling
structure of monomer proteins by combing the DeepMSA2 and Alpha-
Fold2 pipelines. The major difference between DMFold and AlphaFold2
isthatthe MSAsin AlphaFold2 are regenerated by DeepMSA2.

DMFold-Multimer. The DMFold-Multimer pipeline utilizes Alpha-
Fold2-Multimer to generate complex structure models, but with k
multimer MSAs from DeepMSA2-Multimer as the input matrix, where
k=25 for heteromer and k=10 for homomer complexes. For each
multimer MSA, 25 models are generated. Finally, the resulting 625
(or 250 for homomer) complex models are ranked by the predicted
TM-scores**°, and the top five complex models are selected as the
final set of models.

We note that we did not retrain the AlphaFold2 or AlphaFold2-
Multimer network models with DeepMSA2 MSAs in the DMFold or
DMFold-Multimer pipeline, because one focus of this study is on com-
paring the impact of the MSAs on protein structure prediction and
making a fair comparison with AlphaFold2 and AlphaFold2-Multimer.
Meanwhile, because the original AlphaFold2 training sets contain
proteins with various MSA qualities—for example, with Neff ranging
from low to high values—it is expected that the retraining of Alpha-
Fold2 models on aset ofimproved MSAs should have a minimal impact
(if any) on the final model quality. Thus, for the calculations shown
here, we simply used the DeepMind pretrained AlphaFold2 and Alpha-
Fold2-Multimer models and parameters whenimplementing DMFold
and DMFold-Multimer programs.

DeepPotential for residue-residue restraint prediction
DeepPotential” is a deep learning algorithm predicting distance
and geometry restraints of proteins based on MSAs (Supplemen-
tary Fig. 13). Given an MSA, two major pair features are extracted,
including raw coupling parameters from the pseudo likelihood
maximized (PLM) 22-state (the 20 standard amino acids, the non-
standard amino acid type and the gap state) Potts model and the raw
mutual information (MI) matrix. The PLM feature minimizes a loss
function defined by

LN
Zpm=-2 2 1In

i=ln=1

eXp(h"("?)’f i P !,/'(”iv”r}i)> L 5
=1 )
- J "#L - +Asingle Z ||h, (O“n)Hz
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where L is the length of the protein and N is the number of aligned
sequencesinthe MSA, ¢/, indicates the amino acid type of nth sequence
and ith positioninthe MSA; and hand Pare field and coupling param-
etersrespectively. Q =22, representing 20 types of regular amino acids,
plus the unknown residue type state and the gap state. Additional L2
regularization termsare also added to avoid possible overfitting, where
Asingie =1and A, = 0.2 x (L — 1) are the regularization coefficients. The
Ml feature of residue pairiandjis defined by:
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wheref; (k) is the frequency of aresidue type k at position i of the MSA,
[ (kD) is the co-occurrence of two residue types k and [ at positions i
andj. Complementary information—that s, conditional and marginal
relationships between residues—can be extracted from the MSAs by
PLM and Ml features, respectively.

Inaddition, sequential features, such as self-mutual information
feature, field parameter of the Potts model, one-hot sequence feature
and HMM profiles, are also considered as the inputs of DeepPotential.
The sequential features and pair features are fed into deep convo-
lutional neural networks separately, where each of them is passed
through a set of 10 one-dimensional and 10 two-dimensional residual
blocks, whichare thentiled together. The feature representations are
used as the inputs of another fully residual neural network containing
40two-dimensional residual blocks which outputinterresidue distance
terms (Supplementary Fig.13).

Toassess theaccuracy of the distances predicted by DeepPotential
relative to experimental results, the MAE of the top 5L (L is the protein
length, in amino acids) long-range (|i —j|>24) predicted distances is
considered:

1 & pred Xp
MAE = - % |dbre — (6)
where df;p isthe CB-Cp distance between residue i andjin the experi-
mental structure, and d:?fed is the predicted CB-Cp distance between
residue iandjfrom DeepPotential; the latter is estimated as the middle
value of the bin with the highest probability.

Model quality assessment

TM-score® is used in the work to assess the model quality for both
monomer and complex structures of proteins. For calculating
TM-score, US-align* is utilized here, with the commands ‘US-align
monomer-model.pdb native.pdb’ for protein monomer and ‘US-align
complex-model.pdb native.pdb -ter O -TMscore 6’ for protein com-
plexes. All data statistical analyses are done by R (v.4.1.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The third-party databases used in this work, Uniclust30 (UniRef30),
BFD, Uniref90, Metaclust and MGnify, are available at https:/gwdulll.
gwdg.de/-compbiol/uniclust/, https://bfd.mmseqs.com/, https://
ftp.uniprot.org/pub/databases/uniprot/current_release/uniref/
uniref90/, https://metaclust.mmseqs.org/ and http://ftp.ebi.ac.uk/
pub/databases/metagenomics/peptide_database/, respectively. All
CASPbenchmark dataused inthis work are available at https://zhang-
group.org/DMFold/ (or https://zenodo.org/record/8371924). The
structure modeling results on 5,042 human proteome proteins are
freely available at https://zhanggroup.org/DMFold/human (or https://
zenodo.org/records/10099696) for academic use. Source data are
provided with this paper.

Code availability

The online servers of DeepMSA2/DeepMSA2-Multimer and DMFold/
DMFold-Multimer are freely available at https://zhanggroup.org/
DeepMSA/ and https://zhanggroup.org/DMFold, respectively. The
standalone packages of DeepMSA2/DeepMSA2-Multimer and DMFold/
DMFold-Multimer are freely available at https://zhanggroup.org/
DeepMSA/download (or https://zenodo.org/record/10092418) and

https://zhanggroup.org/DMFold/download (or https://zenodo.org/
records/10092882), respectively, for academic use.
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Data analysis The MSAs and structure models were generated by DeepMSA?2 (2.0) server (https://zhanggroup.org/DeepMSA2/) and DMFold server (https://
zhanggroup.org/DMFold/), and all statistical analyses were done by R (4.1.2) software. AlphaFold2 (2.2.0) was used as control method for
checking the modeling quality of protein monomer and multimer. DeepPotential (1.0) was used to generate contact and distance restraints
for CASP13-15 protein monomers. HHblits (2.0.15 and 3.1.0), HMMER (3.1b2), BLAST (2.2.26), kClust (1.0), Clustal Omega (1.2.4), and
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Sample size The manuscript includes an evaluation of structure predictions for 293 protein monomer targets from CASP13, CASP14 and CASP15, and 54
protein complex targets from CASP13 and CASP14. 38 protein complex targets from the CASP15 blind test are also used in the manuscript.
5,042 human proteins where AlphaFold2 has bad-quality models are modeled by DMFold, and the query sequences are taken from UniProt.
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Data exclusions  The proteins homologous (based on the release date) to the benchmark dataset were excluded from the template library to avoid
homologous contamination. Six CASP domains are excluded from threading benchmark test because HHsearch failed to generate results with
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DeepPotential restraint prediction benchmark test because DeepPotential failed to generate results with some MSAs from third-party control
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study since the CASP benchmark dataset is the blind and golden standard benchmark dataset in benchmarking protein structure prediction,
and most of the 'FM' targets in CASP datasets do not have homologous structure in PDB, and thus are not redundant with others.
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were not available to the authors during the CASP15 season; thus, results from CASP15 represent a community-wide standard blind
experiment.
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