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Abstract—In a typical formulation of the private information
retrieval (PIR) problem, a single user wishes to retrieve one out
of K files from N servers without revealing the demanded file
index to any server. This paper formulates an extended model
of PIR, referred to as multi-message private computation (MM-
PC), where instead of retrieving a single file, the user wishes to
retrieve P > 1 linear combinations of files while preserving the
privacy of the demand information. The MM-PC problem is a
generalization of the private computation (PC) problem (where
the user requests one linear combination of the files), and the
multi-message private information retrieval (MM-PIR) problem
(where the user requests P > 1 files). A baseline achievable
scheme repeats the optimal PC scheme by Sun and Jafar P
times, or treats each possible demanded linear combination as
an independent file and then uses the near optimal MM-PIR
scheme by Banawan and Ulukus. In this paper, we propose an
achievable MM-PC scheme that significantly improves upon the
baseline scheme. Doing so, we design the queries inspired from
the structure in the cache-aided scalar linear function retrieval
scheme, where they leverage the dependency between messages to
reduce the amount of communication. To ensure the decodability
of our scheme, we propose a new method to benefit from the
existing dependency, referred to as the sign assignment step. In
the end, we use Maximum Distance Separable matrices to code
the queries, which allows the reduction of download from the
servers, while preserving privacy.

I. INTRODUCTION

In the private information retrieval (PIR) problem [1], a
user wishes to download a file by sending different queries to
a group of N non-colluding servers each storing the same K

files, while keeping the identity of the desired file secret from
the servers. The information-theoretic capacity is defined as
the maximum number of bits of desired information decoded
per one bit of downloaded information. The authors in [1]
show that the capacity of PIR is given by 1→1/N

1→1/NK .
Following the seminal PIR result in [1], a large number of

works have considered extended models of PIR. In particular,
in [2], [3], the problem of private computation (PC) is
proposed. In general, linear and multivariate polynomial oper-
ations are widely used as fundamental primitives for building
the complex queries that support online big-data analysis and
data mining procedures. In these scenarios, it is too resource-
consuming to locally download all input variables in order to
compute the desired output value. Based on this motivation,
the PC problem was considered in [2], [3], where instead of
retrieving a single file, the user requests a (scalar) linear com-
bination of the files among M possible linear combinations,
where each linear combination is called a message. An optimal

PC scheme has been proposed in [2]. It is interesting to note
that the capacity of the PC problem is exactly the same as
that of the PIR problem, which is independent of M . Several
extended models of the PC problem have been considered,
including PC with coded storages at the servers [4]–[6], private
sequential function retrieval [7] (where the user wants to
compute a fixed set of linear combinations while hiding the
computation order), PC with polynomial functions [8], [9],
cache-aided PC [10], single-server PC [11], and more.

Another line of works in PIR is the multi-message PIR
(MM-PIR) proposed in [12]. Instead of retrieving a single
file, in the MM-PIR problem, the user aims to retrieve P > 1
files. A near-optimal MM-PIR scheme was proposed in [12].
It is also interesting to note that, even if the requested files
are independent, designing the MM-PIR scheme by jointly
considering the multi-request (as in [12]) leads to a significant
increase in the retrieval rate compared to simply repeating the
Sun and Jafar PIR scheme P times. Other works related to
MM-PIR include [13], where the problem assuming that the
user has private side information is studied, and [14], [15],
which consider the MM-PIR problem with side information
in the single-server case.

Contributions: In this paper, we formulate a new prob-
lem, referred to as the MM-PC problem, which covers the
PC and MM-PIR problems as special cases. In this setting,
there are N non-colluding servers, each storing a library of
M messages with arbitrary linear dependencies, of which K

are linearly independent. The user wants to retrieve a set of P
linearly independent messages from the servers, while keeping
the identity of the requested messages secret from each server.

An achievable scheme by a direct extending of the optimal
PC scheme in [2] or the near optimal MM-PIR scheme in [12],
is proposed which we refer to as the baseline scheme.

However, the direct combination of the PC scheme in
[2] and the MM-PIR scheme in [12] is not possible. We
propose an improved scheme to the baseline scheme, by
incorporating some ideas of these two schemes with additional
novel ideas. More precisely, while each message is divided
into multiple symbols and the queries are essentially linear
combinations of these symbols, to exploit the dependency
between messages, we may need to assign a specific sign
to each symbol involved, referred to as sign assignment. To
ensure decodability, and inspired from [16], we propose a
new sign assignment method which results that some of the
queries become linear combinations of others, and then by
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using Maximum Distance Separable (MDS) coding, we can
reduce the amount of download, while preserving symmetry
and thus privacy. It is essential to mention that the redundancy
appears as a result of the sign assignment and the novel index
assignment introduced. Numerical evaluations show that the
improved scheme provides performance gain with respect to
the baseline scheme for a wide range of system parameters.
Notation: For a → N the notation [a] represents set {1, . . . , a}.
In addition, we denote the difference of two sets A, B as A\B,
that means the set of elements which belong to A but not B.

II. PROBLEM SETTING

Consider N non-colluding servers with K files which are
replicated on all servers. For each i → [K], the i

th file is a
vector of large enough size L, denoted by Wdi → FL

q , whose
symbols take on values over a finite field Fq . Additionally, files
are independently and randomly generated with i.i.d. symbols
such that

H(Wd1) = · · · = H(WdK ) = L, (1a)
H(Wd1 , · · · ,WdK ) = H(Wd1) + · · ·+H(WdK ). (1b)

where H(·) denotes entropy. Note that in this paper, the log
used for information measures in the entropy function is base-
q. A user wants to retrieve P of M possible messages from
the servers, where each message is a linear combination of the
K files. For each m → [M ], the m

th message is defined as,

Wm := vm[Wd1 , . . . ,WdK ]T (2a)
= vm(1)Wd1 + · · ·+ vm(K)WdK , (2b)

where vm(i) is the i
th entry of the coefficient vector vm for

i → [K], and all operations are taken in Fq . Without loss of
generality, we assume that M ↑ K and the first K messages
are replicas of the K independent files, i.e., (W1, . . . ,WK) =
(Wd1 , . . . ,WdK ).

Unlike [2] where the user requires only one message, in
this paper we formulate the multi-message private computation
(MM-PC) problem. In this scenario, the user privately gener-
ates a set of P indices I = {ω1, . . . , ωP }, where I ↓ [M ]
and ωi ↔= ωj for each i, j → [P ] where i ↔= j. The user
wishes to compute WI := (Wω1 , . . . ,WωP ) while keeping I
secret from each server. Without loss of generality, we assume
that Wω1 , . . . ,WωP are linearly independent; otherwise, we
can just reduce P and let the user demand linearly indepen-
dent combinations. To do so, the user generates N queries
Q

I
1 , . . . , Q

I
N and sends each Q

I
n to the corresponding server.

These queries are generated when the user has no knowledge
of the realizations of the messages, so the queries should be
independent of the messages, i.e.,

I(QI
1 , . . . , Q

I
N ;W1, . . . ,WM ) = 0. (3)

where I(·; ·) denotes mutual information. Upon receiving Q
I
n,

each server n → [N ] generates and sends the answer AI
n which

is a function of QI
n and W1, . . . ,WM , i.e.,

H(AI
n|QI

n,W1, . . . ,WM ) = 0, n → [N ]. (4)

Finally, the user must retrieve the desired WI from the servers’
answers A

I
n and the queries Q

I
n with vanishing error1, i.e.,

H(WI |AI
1 , . . . , A

I
N , Q

I
1 , . . . , Q

I
N ) = o(L), (5)

where limL↑↓ o(L)/L = 0.
The MM-PC scheme should be designed to keep the demand

information I secret from all servers; i.e., the following
privacy constraint must be satisfied,

(QI1
n , A

I1
n ,W1, . . . ,WM ) ↗ (QI2

n , A
I2
n ,W1, . . . ,WM ), (6)

for all I1, I2 → ! and all servers n → [N ], where ! is the
set of all possible I, and ↗ indicates that these two random
vectors follow the same distribution.

The MM-PC rate denoted by R is defined as the number
of symbols recovered collectively from all the demanded
messages per one downloaded symbol, R := PL

D , where
D is the expected value over random queries of the total
downloaded symbols from all the servers by the user. The
objective is to find the supremum of all achievable rates,
denoted by R

ε.

III. MAIN RESULTS

In this section, we present the baseline scheme and the main
results for the proposed MM-PC problem. There are two direct
solutions to the MM-PC problem, from the PC and MM-PIR
schemes in [2], [12], respectively. The first one is to simply
use the PC scheme for each demanded message separately,
while the second one treats each possible demanded linear
combination as an independent message and then uses the
MM-PIR scheme. These construct the baseline scheme.

Theorem 1 (Baseline scheme). For the MM-PC problem, the
following rate is achievable,

R1 = max

{
1↘ 1

N

1↘ ( 1
N )K

+
(P ↘ 1)(N ↘ 1)

NM
(
1↘ ( 1

N )K
) , CM,P

}
, (7)

where CM,P represents the achieved rate of the MM-PIR
scheme in [12] with M files in the library and P requests
from the user.

Theorem 2 (Proposed scheme). For the MM-PC problem, in
case P < K, the following rate is achievable,

R2 =
P
∑M→P+1

i=1 εi

(M→P
i→1

)

∑M→P+1
i=1 εi

((M→P
i

)
↘
(M→K

i

)
+ P

(M→P
i→1

)) , (8)

where εM→P+2=· · ·=εM=0, εM→P+1=(N ↘ 1)M→P, and

εi =
1

N ↘ 1

P∑

m=1

(
P

m

)
εi+m, i → [M ↘ P ]. (9)

Fig. 1 compares the baseline scheme with the proposed
scheme, for the case where K = 7, N = 2, M → {10, 15},
and P → {2, 3, 4, 5, 6}. As shown in Fig. 1, when P = 2, the
baseline scheme is slightly better than the proposed scheme;

1The MM-PC scheme proposed in this paper however, has zero probability
of error.
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Fig. 1: Comparison of rates. The parameters are K = 7, N =
2. P and M change as in the figure.

when P > 2, the improvement over the baseline scheme
becomes more significant as P increases. It can be seen
from Fig. 1 that, the rate of the proposed scheme has very
little dependence on M . This is because when M increases
while K remains the same, more redundancy appears by our
construction and by removing the redundancy, the rate does
not change much. Note that in the optimal PC scheme [2], the
optimal rate does not depend on M , by a similar reason.

IV. THE PROPOSED SCHEME THROUGH AN EXAMPLE

Due to the space limitation and for the sake of clarity, we
illustrate the proposed MM-PC scheme through an example,
for parameters M = 5, K = 3, P = 2, and N = 2.
The general scheme and all the proofs (including decodability
and privacy) can be found in [17]. The proposed scheme is
inspired from the optimal PC scheme in [2] and the near
optimal MM-PIR scheme (for P ≃ M

2 ) in [12]. However,
the direct combination of these two schemes does not work
in the MM-PC problem.2 Instead, we propose a new approach
to incorporate the indexing structure and sign assignment in
order to reduce transmission by removing redundancy.

In this example, the messages are denoted by letters
{a, b, c, d, e}, where {a, b, c} are the independent ones and
{d, e} are any desired linear combinations of {a, b, c} in the
given finite field Fq . The demanded messages are I = {a, b}.
Each message is partitioned into L = 68 symbols and the
i
th symbol of each message is denoted by subscript (index)
i, e.g., ai denotes the i

th symbol of message a. There exists

2This is because in the PC scheme, each possible demanded linear combi-
nation of messages is first treated as a ‘message’ in the PIR problem; then
by applying a smart permutation of indices of ‘message symbols’ and a sign
assignment (↑1 or 1) on each symbol, into the M -‘message’ PIR scheme
by Sun and Jafar, some transmissions are redundant which could be removed
to reduce transmission; after removing the redundant ones, the number of
transmissions by each server is exactly the same as the optimal one for the
K-message PIR problem. However, the MM-PIR scheme is built on another
permutation of message symbols, where a direct combination of these two
schemes will not lead to redundancy to remove.

Round Stage server 1 server 2

round 1
stage 1 a1, b1, c1, d1, e1 a13, b13, c13, d13, e13

...
...

...
stage 12 a12, b12, c12, d12, e12 a24, b24, c24, d24, e24

TABLE I: Round 1 of queries.

a closed formula for the number of symbols, referred to as
subpacketization level L, based on the system parameters as
L = N

∑M→P+1
i=1 εi

(M→P
i→1

)
. We provide the details in the

extended version in [17] and some explanation in remark 1.
Step 1: Permutation on the Symbols. A permutation

function ϑ(·) on the elements in [L] is chosen uniformly
at random over all the L! possiblilities. The symbols of
every message are permuted by this function. For simplic-
ity, the permuted messages are denoted by the same letters
{a, b, c, d, e}, e.g., message a = (a1, a2, ..., a68) turns into a =
(aϑ(1), aϑ(2), ..., aϑ(68)). Furthermore, we define the variables
ϖi → {↘1, 1}, ⇐i → [L], referred to as multiplicative factors,
each chosen uniformly i.i.d. For all messages, the symbol of
position i is multiplied by ϖi. For example, the altered message
a eventually turns into a = (ϖ1aϑ(1),ϖ2aϑ(2), ...,ϖ68aϑ(68)).
For the ease of description, in this example we assume that
the permutation is (1, 2, . . . , 68) and that ϖi = 1, ⇐i → [68].

We also perform a relabeling on the message labels 1, ...,M ,
such that the first P labels of messages (i.e., W1, ...,WP ) are
the demanded messages. Furthermore, we change the set of
independent messages, such that they contain the P demanded
messages. It is proved in [17] that these actions will not hurt
the decodability and privacy of our scheme. In this example,
this is already the case and there is no change needed.

Step 2: Number of Stages. The queries to servers are
linear combinations of symbols from different messages. They
are categorized into multiple rounds, where round i contains
queries summing i different symbols. Each round itself is
also split into multiple stages. Each stage of round i con-
tains all

(M
i

)
choices of i messages from the total M . For

instance for a stage of round 2, the queries are of the form
{a↔+b↔, a↔+c↔, a↔+d↔, a↔+e↔, b↔+c↔, b↔+d↔, b↔+e↔, c↔+
d↔, c↔ + e↔, d↔ + e↔}, which covers all

(5
2

)
= 10 ways of

choosing 2 messages from the total 5. Note that the subscript
⇒ denotes some specific index. The number of stages of round i

denoted by εi, follows (9). The explanation to calculate εi has
appeared is the detailed version of this paper in [17]. For our
example we have ε5 = 0,ε4 = 1,ε3 = 2,ε2 = 5,ε1 = 12.3

Step 3: Initialization. This step corresponds to queries of
round 1 (single symbols). Since ε1 = 12, from each server the
user queries 12 symbols of each message, depicted in Table I.

Step 4: Index Assignment. This is the step to determine
symbol indices in the queries. Consider the first stage of round
2 queries to server 1. The queries of the form {a↔ + c↔, a↔ +
d↔, a↔ + e↔} are used to decode new symbols of message a.

3The number of stages calculated here is completely different from that
of [12]. The main reason is that in the scheme [12], every query containing
symbols of demanded messages contributes to decoding new demanded sym-
bols, while in the proposed scheme because of the special index assignment,
designed in cooperation with the sign assignment, this is not possible.
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Round Stage Server 1 Server 2 Stage Server 1 Server 2

round 2

stage 1

a25 ↑ c13 a28 ↑ c1

stage 4

a43 ↑ c19 a46 ↑ c7
a26 + d13 a29 + d1 a44 + d19 a47 + d7
a27 + e13 a30 + e1 a45 + e19 a48 + e7
b25 ↑ c14 b28 ↑ c2 b43 ↑ c20 b46 ↑ c8
b26 + d14 a29 + d2 b44 + d20 a47 + d8
b27 + e14 b30 + e2 a20 + b19 b48 + e8
a14 ↑ b13 a2 ↑ b1 a6 ↑ b5 a8 ↑ b7
c26 + d25 c29 + d28 c44 + d43 c47 + d46
c27 + e25 c30 + e28 c45 + e43 c48 + e46
d27 ↑ e26 d30 ↑ e29 d45 ↑ e44 d48 ↑ e47

stage 2

a31 ↑ c15 a34 ↑ c3

stage 5

a49 ↑ c21 a52 ↑ c9
a32 + d15 a35 + d3 a50 + d21 a53 + d9
a33 + e15 a36 + e3 a51 + e21 a54 + e9
b31 ↑ c16 b34 ↑ c4 b49 ↑ c22 b52 ↑ c10
b32 + d16 a35 + d4 b50 + d22 a53 + d10
b33 + e16 b36 + e4 b51 + e22 b54 + e10
a16 ↑ b15 a4 ↑ b3 a22 ↑ b21 a10 ↑ b9
c32 + d31 c35 + d34 c50 + d49 c53 + d52
c33 + e31 c36 + e34 c51 + e49 c54 + e52
d33 ↑ e32 d36 ↑ e35 d51 ↑ e50 d54 ↑ e53

stage 3

a37 ↑ c17 a40 ↑ c5
a38 + d17 a41 + d5
a39 + e17 a42 + e5
b37 ↑ c18 b40 ↑ c6
b38 + d18 a41 + d6
b39 + e18 b42 + e6
a18 ↑ b17 a6 ↑ b5
c38 + d37 c41 + d40
c39 + e37 c42 + e40
d39 ↑ e38 d42 ↑ e41

TABLE II: Round 2 of queries.

Thus, the other symbol involved should be downloaded previ-
ously, leading to the queries {a25+ c13, a26+d13, a27+ e13},
where {25, 26, 27} are new indices of message a (the first 24
indices are already used in round 1) and the remaining parts
are symbols with index 13, already received from queries to
server 2 in round 1 and used as side information to decode for
new symbols of message a. Similarly in the same stage, for
message b the queries would be {b25+c14, b26+d14, b27+e14},
which use symbols with index 14 as side information.

Now we determine the indices in the remaining queries
{a↔ + b↔, c↔ + d↔, c↔ + e↔, d↔ + e↔}. To do so, we use the
observation that symbols of a have been added to symbols
with index 13 and symbols of b to symbols with index 14.
Also, symbols of c have been added to symbols with index
25, symbols of d to symbols with index 26, and symbols
of e to symbols with index 27. This structure should be
preserved to keep the symmetry of queries regarding indices.
This forces the remaining queries to be {a14 + b13, c26 +
d25, c27+e25, d27+e26}. For the first stage of round 2 queries
to server 2, the same process repeats with symbols with indices
1 and 2 acting as side information and decoding new symbols
with indices {28, 29, 30} for messages a and b. The other 4
stages of round 2 follow the same procedure. The final queries
appear in Table II. We postpone the explanation of minus signs
in the table to step 5, since here our focus is just the indices.
For now the reader should assume all signs are pluses.

A stage of round 3 contains all
(5
3

)
ways of choosing 3

messages out of 5, i.e., {a↔ + b↔ + c↔, a↔ + b↔ + d↔, a↔ +
b↔ + e↔, a↔ + c↔ + d↔, a↔ + c↔ + e↔, a↔ + d↔ + e↔, b↔ + c↔ +
d↔, b↔ + c↔ + e↔, b↔ + d↔ + e↔, c↔ + d↔ + e↔}. The queries
{a↔+c↔+d↔, a↔+c↔+e↔, a↔+d↔+e↔}, which are combinations
of a with {c, d, e}, are used to decode new symbols of a. So
the remaining parts should be the side information part already
received from round 2 queries. Consider the first stage of round
3 queries to server 1. The new indices for a are {55, 56, 57},

since the first 54 have already appeared in the first two rounds.
The side information part is duplicated from the first stage of
round 2 queries to server 2, i.e., {c29+d28, c30+e28, d30+e29}.
Therefore, these queries would be {a55+c29+d28, a56+c30+
e28, a57 + d30 + e29}. Similarly for decoding new symbols of
b, the queries are {b55+ c35+d34, b56+ c36+e34, b57+d36+
e35}, where the side information parts are duplicated from the
second stage of round 2 queries to server 2. One observes that
when c and d appear in a query, the index of the other symbol
involved is the same, i.e., in {a55 + c29 + d28, b55 + c35 +
d34}, both a and b have index 55. Or when a and d appear,
the other symbol has index 29. One can verify that the same
structure holds for any choice of two messages. To preserve
privacy, we keep this structure for all queries. Using this rule,
all indices would be determined. Among remaining queries
{a↔ + b↔ + c↔, a↔ + b↔ + d↔, a↔ + b↔ + e↔, c↔ + d↔ + e↔}, take
a↔ + b↔ + c↔. To determine the index of a, we search for a
query containing both b and c, e.g., b55 + c35 + d34. Since d

has index 34, a should also have index 34. To determine the
index for b, since in the query a55+c29+d28, containing both
a and c, the index for d is 28, b should also have index 28. To
determine the index for c, since there has no query containing
both a and b already appeared, symbols with index 23 queried
in the first round of queries to server 2 are used. Similarly,
all other indices are determined. Round 4 queries follow the
same logic. Round 3 and 4 queries are depicted in Table III.

Remark 1 (subpacketization L). By the index assignment, it
is evident how many new symbols for demanded messages
appear in each stage. Summing the numbers for all stages,
determines the subpacketization L required, which in the
example equals 68. The general explanation appears in [17].

The general rule for index assignment is as follows. In
a stage of round i, choose any i ↘ 1 messages from the
total M . Any query containing symbols of these messages
has the same index for the remaining symbol involved. This
indexing structure resembles that of multicast transmissions
with alternate sign assignment in the literature of coded
caching [16]; therefore inspired from the above scheme, we
introduce a new method to leverage the dependency among
messages to reduce the number of queries.

Till now, the only operation used in queries is addition. To
exploit the dependency between messages, we may need to
also use negation, referred to as sign assignment. It is proved
in the detailed version of this paper in [17, Theorem 3], that
after sign assignment, in a stage of round i, out of

(M
i

)
total

queries,
(M→K

i

)
of them are redundant and can be written as

linear combinations of others. We should point out that this
redundancy result is also achieved by the PC scheme in [2],
however, due to the fact that we attempt to retrieve multiple
messages instead of one, it is not possible to utilize the sign
assignment in their scheme. We have designed a completely
new sign assignment method which reaches this redundancy
while keeping the decodability possible.

Step 5: Sign Assignment. First, each query is first
divided into two parts: The first part includes symbols of
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Round Stage server 1 server 2

round 3

stage 1

a55 ↑ c29 ↑ d28 a58 ↑ c26 ↑ d25
a56 ↑ c30 ↑ e28 a59 ↑ c27 ↑ e25
a57 ↑ d30 + e29 a60 ↑ d27 + e26
b55 ↑ c35 ↑ d34 b58 ↑ c32 ↑ d31
b56 ↑ c36 ↑ e34 b59 ↑ c33 ↑ e31
b57 ↑ d36 + e35 b60 ↑ d33 + e32
a34 ↑ b28 + c23 a31 ↑ b25 + c11
a35 ↑ b29 ↑ d23 a32 ↑ b26 ↑ d11
a36 ↑ b30 ↑ e23 a33 ↑ b27 ↑ e11
c57 ↑ d56 + e55 c60 ↑ d59 + e58

stage 2

a61 ↑ c41 ↑ d40 a64 ↑ c38 ↑ d37
a62 ↑ c42 ↑ e40 a65 ↑ c39 ↑ e37
a63 ↑ d42 + e41 a66 ↑ d39 + e38
b61 ↑ c47 ↑ d46 b64 ↑ c44 ↑ d43
b62 ↑ c48 ↑ e46 b65 ↑ c45 ↑ e43
b63 ↑ d48 + e47 b66 ↑ d45 + e44
a46 ↑ b40 + c24 a43 ↑ b37 + c12
a47 ↑ b41 ↑ d24 a44 ↑ b38 ↑ d12
a48 ↑ b42 ↑ e24 a45 ↑ b39 ↑ e12
c63 ↑ d62 + e61 c66 ↑ d65 + e64

round 4 stage 1

a67 ↑ c60 + d59 ↑ e58 a68 ↑ c57 + d56 ↑ e55
b67 ↑ c66 + d65 ↑ e64 b68 ↑ c63 + d62 ↑ e61
a64 ↑ b58 + c53 + d52 a61 ↑ b55 + c50 + d49
a65 ↑ b59 + c54 + e52 a62 ↑ b56 + c51 + e49
a66 ↑ b60 + d54 ↑ e53 a63 ↑ b57 + d51 ↑ e50

TABLE III: Rounds 3 and 4 of queries.

independent messages, and the second part includes symbols
from dependent messages. So each query q is written as

q = (independent symbols)± (dependent symbols), (10)

where in each parenthesis, symbols are ordered based on the
label of the message (ranging from 1 to M ), from lowest to
highest. The signs in each parenthesis are changing alterna-
tively between + and ↘, with the first symbol taking +. When
the plus sign is used in (10), the sign assignment is called
structure plus and when minus sign is used, is called structure
minus. Round 2 queries use structure plus, then round 3 uses
minus, and round 4 again uses plus. After these steps, each
query is solely randomly multiplied by a +1 or ↘1, uniformly
at random. We assume all to be +1 in the example. The tables
are already depicted with the sign assignment enforced.

As an example, take the queries in the first stage of round 2
to server 1, and assume d=a+b, e=b+c. It is easily verified that
(d27↘ e26)↘(a27+ e13)↘(b27+ e14)+(b26+d14)+(c26+d25)↘
(a14 ↘ b13)↘(a25 ↘ c13)↘(b25 ↘ c14)=0 holds true, meaning
one query is redundant as claimed in [17, Theorem 3].

Step 6: Remove Redundancy. In the first stage of
round 2 queries to server 1, as we have seen, one query is
redundant. The general statement is that queries containing no
symbols from independent messages can be written as linear
combinations of those which include independent messages.
For example, if we name the 10 queries to server 1 in round 2
from q1 to q10 in the order of appearance, q10 is the query we
consider as redundant. On the other hand q7 = a14 ↘ b13

is also non-useful, since all symbols with indices 13 and
14 have already been queried during round 1. Since directly
deleting these queries would jeopardize privacy, we use an
MDS (Maximum Distance Separable) coding technique. The
final queries in this stage are elements of the vector q as
q = G8↗10⇑ [q1, q2, ..., q10]T , where G8↗10 is a MDS matrix
of size 8 ⇑ 10.4 Having q, all q1, ..., q10 can be decoded

4Since L is large enough, we can represent each of q1, q2, ..., q10 in some
large enough field and then encode them by MDS code, such as Vandermonde
or Cauchy matrix.

server 1 server 2

G
(2,1)
8→10 ↓





a25 ↑ c13
a26 + d13

...
d27 ↑ e26




G

(2,1)
8→10 ↓





a28 ↑ c1
a29 + d1

...
d30 ↑ e29





TABLE IV: Final queries for the first stage of round 2.

and the reason follows. Since q10 can be written as a linear
combination of others, we have

[q1, q2, ..., q10]
T = G↘

10↗9 ⇑ [q1, q2, ..., q9]
T
, (11)

where G↘
10↗9 is a full rank matrix of size 10⇑ 9. Therefore,

q = G↔
8↗9 ⇑ [q1, q2, ..., q9]T , for some full rank matrix

G↔
8↗9 = G8↗10G↘

10↗9. Thus,

q↘ q7 ⇒G↔
8↗9|{7} = G↔

8↗9|[9]\{7} ⇑ [q1, ..., q6, q8, q9]
T
,

where G↔
8↗9|S denotes the restriction of the matrix to columns

in S . Therefore, the values {q1, ..., q6, q8, q9} will be decoded.
Since q7 is already known and q10 is dependent to others, all
{q1, q2, ..., q10} are decoded from the 8 queries in q.

This MDS coding technique is done for all the stages in
rounds 1 and 2. The size of the MDS matrix in each round
is determined by counting the number of redundant queries
and the queries that are already known; which are the queries
having more than one symbol from the demanded messages.
The general explanation of this step appears in [17]. The final
queries for the first stage are depicted in Table IV.

Step 7: Shuffling. The order of queries to each server
and also the order of the symbols appearing in each query are
shuffled, each uniformly at random, to avoid the information
leakage from the query orders and the symbol orders.

Remark 2 (rate calculation). After step 6, there are 3 queries
in each stage of round 1, 8 in each stage of round 2, 7 in each
stage of round 3, and 2 in each stage of round 4, summing to
the total of 184 symbols. Since L = 68, the proposed scheme
achieves the rate R2 = 0.74, while the baseline scheme
achieves R1 = 0.61.

Remark 3 (privacy). Discussing the privacy intuitively, we
note that our design is based on keeping the symmetry of
the queries to each server. In every stage, all possible i-
sums appear, and from the view point of each message, the
index structure is symmetric. Besides, using the multiplicative
variables ϖi, we prove in [17, Appendix C], that the symbols
signs appeared in each query have a one to one mapping for
different sets of demanded messages; keeping the demanded
message indices hidden from the viewpoint of each server.
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