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ABSTRACT: A common approach to minimizing the cost of Site
quantum computations is by unitarily transforming a quantum system veo mm -

into a basis that can be optimally truncated. Here, we derive classical Ik = Z A ik Iny

equations of motion subjected to similar unitary transformations and r /

propose their integration into mixed quantum-—classical dynamics, 10

allowing this class of methods to be applied within arbitrary bases for 05 _::’_(: -

both the quantum and classical coordinates. To this end, canonical F3<- =

positions and momenta of the classical degrees of freedom are = °° #
combined into a set of complex-valued coordinates amenable to = —0513<---—---===
unitary transformations. We demonstrate the potential of the resulting 7~ 77~~~ _>'§ -
approach by means of surface hopping calculations of an electronic o=t 10° 10" 10°  10°

. . . . . . t
carrier scattering onto a single impurity in the presence of phonons.

Appropriate basis transformations, capturing both the localization of
the impurity and the delocalization of higher-energy excitations, are shown to faithfully capture the dynamics within a fraction of the
classical and quantum basis sets.

1. INTRODUCTION in a physical basis (also referred to as local basis or “site”

The application of unitary basis transformations is common basis), an arbitrary unitary transformation takes the form

practice in quantum-mechanical computations, derivations, gy = z . In)
= -

and analyses. Computations typically require bases to be - (1)

truncated, and depending on the quantum system at hand, the

effectiveness of such truncations varies with the transformed with 4 € € and u'u = 1, and where n and ¢ label the physical

representation.”” In addition, transformations enable one to and transformed basis states, respectively.

construct perturbative expansions with optimal convergence In classical mechanics, basis transformations take the form of

properties, while also allowing quantum-mechanical equations canonical transformations. For a given set of canonical position

to be cast in their most intuitive form. and momentum coordinates, denoted {g,} and {p,},
This is exemplified by Bloch’s theorem,3 which finds respectively, the transformed canonical coordinates take the

widespread application in the modeling of materials. Bloch’s form g; = ‘15({%» p.}) and Pe= pf({%z p.})- These transformed

theorem invokes a complex Fourier transform of physical basis coordinates serve the role of “position” and “momentum” in

the transformed Hamilton equations of motion, respectively,
although they do not necessarily correspond to a physical
position and momentum. All coordinates are real valued, as is
required for classical trajectories. Canonical transformations

states over a crystal lattice in order to yield a representation in
reciprocal space.* This representation naturally captures the
conservation of lattice momentum, and describes phenomena
in terms of quasiparticle bands that can be included or
excluded in order to modulate the computational cost.'

Another example is provided by Redfield theory,” which is Received:  April 25, 2024
formulated within the eigenbasis of a quantum system, thereby Revised:  June 11, 2024
allowing the nonadiabatic coupling between (adiabatic) Accepted:  June 20, 2024

eigenstates to be captured perturbatively. Here, the computa- Published: July 21, 2024 (
tional cost can be modulated by including or excluding
eigenstates.” More generally, for a quantum system expressed
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offer the same benefits to classical mechanics as unitary
transformations do to quantum mechanics, yet the inter-
connection between canonical and unitary transformations is
somewhat opaque. Solidifying this interconnection is of
particular relevance to mixed quantum-—classical (MQC)
dynamics, where electronic excitations are described quan-
tum-mechanically and nuclear vibrations (phonons) classically.

MQC dynamics (used here and throughout the remainder of
this Article to refer specifically to mixed quantum-—classical
nonadiabatic molecular dynamics) finds widespread applica-
tion to the transient modeling of excited-state phenomena in
molecular systems.””"" Virtually all implementations of MQC
dynamics adopt a physical basis for the nuclear coordinates.
This practice is perhaps motivated by the notion that
molecular excited-state phenomena are commonly localized,
with site-to-site energy transfer being mediated by local
vibrations. Such is indeed captured most efficiently by a
physical basis, as localization allows this basis to be truncated
to only the spatial re§ions of interest.

In a recent work,'” henceforth referred to as Paper I, we
derived a formulation of MQC dynamics fully within reciprocal
space by subjecting both quantum and classical coordinates to
a complex Fourier transform. This work was motivated by a
surge in applications of MQC dynamics to crystalline
materials,~>" for which excited-state phenomena are typically
delocalized and driven by an exchange of lattice momentum
between electronic carriers and Bloch-like phonons.”” Arriving
at the reciprocal-space MQC formalism required us to first
combine classical positions and momenta within a single
complex-valued coordinate, z,, amenable to a complex Fourier
transform. The transformed equations of motion were shown
to yield dynamics formally equivalent to solutions in the
physical basis. At the same time, the reciprocal-space
representation was shown to allow for quantum and classical
basis truncations of band-like dynamics not possible within a
physical basis representation, allowin§ the computational cost
to be optimally reduced. In Paper I,"* reciprocal-space MQC
dynamics was introduced within a mean-field approach
(sometimes referred to as Ehrenfest dynamics). In a follow-
up work, henceforth referred to as Paper IL*’ we have
extended reciprocal-space MQC dynamics for the popular
fewest-switches surface hopping (FSSH) method.** Since then,
reciprocal-space MQC dynamics has been combined with
density-functional theory and density-functional perturbation
theory,” and has found application in the modeling of the
Floquet nonadiabatic dynamics of laser-dressed solid-state
materials*® as well as the modeling of optical line widths in
monolayer transition-metal dichalcogenides.”’

While reciprocal-space MQC dynamics is particularly
effective in describing band-like phenomena, its effectiveness
deteriorates once the periodicity of the crystal lattice becomes
disrupted, and lattice momentum is no longer a good quantum
number. Such disruptions may take the form of defects, such as
impurities, vacancies, and dislocations. In such cases, the
physical basis may not provide an effective representation
either, as electronic carriers and phonons may retain
substantial delocalization lengths. Instead, the optimal
representation will be provided by some other basis. More
generally, for any given system, one should be able to find
optimal basis choices for both the quantum and classical
coordinates that most effectively captures the dynamics.

In this Article, we introduce a formulation of MQC
dynamics within arbitrary basis representations for the
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quantum and classical coordinates, opening the opportunity
to transiently model excited-state phenomena within optimized
bases for any given system. As in Paper L'* we first combine
classical positions and momenta within a complex-valued
coordinate, z, which is subjected to an arbitrary basis
transformation, similarly to the quantum basis states in eq 1.
We then derive the transformed equations of motion, which
are integrated in MQC dynamics. In order to demonstrate the
utility of this framework, we consider a model invoking an
electronic carrier scattering onto a single impurity in an
otherwise pristine lattice under Holstein-type coupling to
phonons. For this model, fewest-switches surface hopping
(FSSH) calculations are presented, showing the excited state
dynamics to be invariant to significant truncations of the
appropriately transformed quantum and classical bases.

This Article is organized as follows. In Sec. 2 we introduce
the transformed classical equations of motion, their integration
in MQC dynamics, and in FSSH in particular. In Sec. 2.3, we
use the resulting formalism to rederive the equations of motion
of reciprocal-space Ehrenfest dynamics and FSSH from Papers
I'* and IL* In Sec. 3 we introduce the single impurity model,
and present FSSH results within transformed quantum and
classical bases, subjected to basis truncations. In Sec. 4, we
present our conclusions and offer an outlook for future
directions.

2. THEORY

Since unitary basis transformations of quantum systems are
trivial and well-established, we instead begin by considering
such transformations for classical systems, before presenting
the integration of the resultant classical equations of motion
within MQC dynamics.

2.1. Transformed Classical Dynamics. The general idea
behind transformed classical dynamics is schematically
depicted in Figure 1. Here, a set of canonical position and
momentum coordinates is introduced, which are described by
a generic Hamiltonian function of the form

Zn+3
o Zn+2

Zn+1

Pn A Zn

Figure 1. Schematic depiction of transformed classical dynamics. The
canonical position and momentum, g, and p,, are combined into a
complex-valued coordinate, z,, following eq 4. The relative scaling of
q, and p, along the real and imaginary axes is modulated by h, (see
text), such that harmonic motion is mapped onto a perfect circle
when h, = @ (red solid curve) while being mapped onto an ellipse
when h, # @ (blue dash). Arbitrary classical trajectories can be
represented within this construction (green solid curve). The
resulting set of complex-valued coordinates can then be subjected
to arbitrary unitary basis transformations, producing transformed
coordinates, z.

https://doi.org/10.1021/acs.jctc.4c00555
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H({q,p}) =D, 221

n n

+V({g,})
(2)

Here, the first term represents kinetic energy, where m,
denotes the mass of coordinate n, and the second term
represents potential energy. The time evolution of the
canonical position and momentum coordinates is governed
by the Hamilton equations of motion,

_OH _ & _OH _

_v
%, ",

g m, ' aq,

©)

As in Paper I'? and as illustrated in Figure 1, we combine the
classical position and momentum within a single complex-
valued coordinate for each n,

“‘ mnhn + . pn
z, = | — i
" \/ 2 1, m h

n-n

(4)

Here, we introduced a variable /, whose magnitude is arbitrary,
and which modulates the scaling of the position and
momentum along the real and imaginary axes in the complex
plane, respectively. Expressed in terms of the complex-valued
coordinates, the generic Hamiltonian function is given by

h
H({z,}) = —Z Z”(zf -2z2" +27%) + V({z,})

©)
The corresponding Hamilton equations take the form
. _ _.OH
M ©

12 . .
In Paper I,” the classical coordinates were assumed to
represent identical harmonic modes, meaning that m, = m and

1
V({g,) = —me’ ) q;
hT zn:q” ()

The harmonic frequency @ then took the place of h, in eq 4.
This choice of h, maps harmonic motion onto a perfect circle
in the complex plane, as shown in Figure 1. As a result, the
Hamiltonian function simplifies to H({z,}) = @) ,z,zF and
the associated time evolution follows as 2z, = —iwz,. In that
case, z, may be interpreted as the eigenvalue associated with
the coherent state of the harmonic oscillator at coordinate n.”*
When h, # ®, harmonic motion is mapped onto an ellipse
instead. In the present analysis, no assumption is made about
the modes, and by leaving h, unspecified we derive equations
of motion applicable under generic potentials, including
anharmonicities.

With the positions and momenta combined into a set of
complex coordinates, arbitrary unitary basis transformations
can be applied following

z= D Uz,
n (8)

as depicted in Figure 1. Here, U € C and U'U = 1. Equation 8
is the classical equivalent of eq 1. As can be easily verified, the

Hamilton equations expressed in terms of the transformed
complex-valued coordinates follow as

_OH

——

2 =
¢ *
6Z5

©)
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The transformed Hamiltonian function, on the other hand,
takes the slightly more complicated form

1 ~ -
H({z}) = _ZZ (h;;,zgzg/ - Zh&,zﬁzﬁ*, + hﬁg,zﬁ*z;) + V({z})
&¢
(10)
where he = Y U;;hnUé,n and ﬁéf, =) UhU,,

Equation S provides a generic treatment of any classical
system by appropriate construction of the potential energy in
terms of the complex-valued coordinates, V({z,}). Equation 10
is formally equivalent to eq S, and the associated equations of
motion given by eq 9 allow the system’s time evolution to be
determined within an arbitrary basis. Notably, the transformed
complex-valued coordinates z: can be decomposed into real-
valued canonical coordinates g and p;, for which the Hamilton
equations of motion can be derived straightforwardly. This
establishes the connection between the unitary transformation
applied in eq 8 and canonical transformations of the form g, =
9:({4, p,}) and ps = p:({q,, p,})- In the following, however,
we will minimize such analyses, and instead resort to the
complex-valued coordinates, which provide a simpler and
general framework for describing classical dynamics. This has
the added benefit of putting classical basis transformations on
the same footing as quantum-mechanical basis transformations.

2.2. Mixed Quantum-—Classical Dynamics. We now
proceed to integrate the transformed classical coordinates
within MQC dynamics. This is not intended as a rigorous
introduction into MQC dynamics, for which we refer the
interested reader to excellent sources in the literature.” "’

MQC dynamics relies on the subdivision of a system of
interest into a quantum subsystem and a classical subsystem,
where the quantum subsystem is commonly taken to represent
the electronic states while the classical subsystem is reserved
for nuclear coordinates. Describing the latter in terms of
canonical coordinates within the physical basis, the total
Hamiltonian takes the form

Ho({q, p)) = H + A_({g,)) + H({q, ) 1)

I:Iq is the Hamiltonian operator of the quantum
subsystem, H.({q,, p,}) is the Hamiltonian function of the

Here,

classical subsystem, and I:Iq_c({qn}) is the operator governing

interactions between the quantum and classical subsystems,
which involves a parametric dependence on the physical
position coordinates. Adopting transformed coordinates, this

yields
Ho({z:)) = Hy + H_({z)) + H({z)) (12)

The quantum—classical interaction term contributes to the
evolution of the quantum subsystem, which is governed by the
time-dependent Schrodinger equation,

inl¥) = (A, + H_({z:})¥) (13)

where ¥ is the quantum wave function. It also affects the
evolution of the classical subsystem, since the total
Hamiltonian function to be used in the Hamilton equation
for the classical coordinates (eq 10) receives potential energy
contributions from the quantum—classical interaction as well
as those intrinsic to the classical subsystem. Denoting the latter
as V({z;}), we thus have

V({Zg}) = Vc({zg}) + ‘/q—c({zg}) (14)

https://doi.org/10.1021/acs.jctc.4c00555
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where the quantum—classical contribution is given by some
expectation value of the quantum-—classical Hamiltonian,

Vq—c({zg}) = (Hq—c({zg}»-

Various MQC dynamical methods differ in the way this
expectation value is determined. In case of Ehrenfest dynamics,
where the quantum—classical interaction is treated as a mean-
field problem, the expectation value is taken with respect to the
quantum wave function, yielding
(I:Iq_c({zé})) = (‘I’lﬁq_c({zi})l‘{’). For FSSH, on the other

hand, the expectation value is taken based on an instantaneous
eigenstate @ of the total Hamiltonian operator, satisfying

(H, + H,_)la) = e la) (15)

That is, a single “active surface”, denoted g, is chosen and the
expectation value is determined as
<Hq—c({zéj})> = <a|Hq—c({Z§})la>'

A key ingredient of FSSH is a stochastic switching of the
active surface between instantaneous eigenstates. The switch-
ing from state @ to state /3 is governed by the probability”>***

A
;= 2Re[<a‘%>—ﬂ]At
ot [ A, (16)
Here, At is the time increment for which the switching

probability is evaluated, and A, is the coeflicient of ¥
expanded in the instantaneous eigenbasis, i.e.,

1P) = D" A,la)

P

a:a—

(17)

We note that the switching probability commonly features a
product of the classical momenta and the nonadiabatic
coupling vectors within the physical basis.”* By means of the
chain rule,””* we have replaced this product by an inner
product of & and df/0t in eq 16, yielding a basis-independent
form of the switching probability.

Upon a switch, the conservation of total (quantum plus
classical) energy is reinforced by a rescaling of the physical
momenta of the classical subsystem in the direction of the
nonadiabatic coupling vector. Accordingly,

0 |~
p,=p-v{a |7

9, (18)
where p;, and p, are the new and old momentum, respectively.
Here, the tilde in f refers to the projection of the potentially
complex-valued eigenvector |#) onto a real-valued vector, in
order to ensure that the physical momentum coordinate
remains real-valued, and same for &. Complex values for
eigenvectors may arise due to an arbitrary global phase,
complex basis transformations followed by basis truncations,*
and geometric phase effects.’™** In a recent work, we have
proposed a means to perform this projection onto real-valued
vectors while ensuring gauge-invariance.34

Within the transformed basis, the rescaling takes the form

0 |~

ze = zz — al—|p
¢ ¢ ()z;k

(19)

2.3. Reciprocal Space. In Papers I'* and II,** we derived a
formulation of MQC dynamics fully within reciprocal space,
and applied the resulting method to pristine one-dimensional

6503

lattice models involving a single electronic carrier interacting
with harmonic nuclear vibrations. In the following, we will
show that the generalized equations presented in the current
work recover those from Paper I'> when the unitary
transformation of the classical subsystem is taken to be a
complex Fourier transforms over the lattice, which underlies
Bloch’s theorem.

Accordingly, we replace ¢ by the wavevector k (which
quantifies the lattice momentum), and take

— L i
"IN
where N is the total number of lattice sites. The associated
classical coordinates are taken to represent identical harmonic
modes, such that m, = m and V_({q,}) is given by eq 7, with @
the mode frequency. Setting h, = w, the complex-valued
classical coordinates take the form

i
W e (1)
Subjecting these coordinates to the transformation given in eq
20, we arrive at transformed coordinates z;. These coordinates
are associated with phonons, i.e., nuclear vibrational
quasiparticles with a well-defined lattice momentum.
Expressed in terms of the transformed coordinates, the
purely classical potential energy contribution is given by

V.({z ) = 22 (ziz + 227 + z2%)
4 (22)

As a result, the Hamiltonian to be used in the Hamilton
equations reduces to

H({z}) = o ) 2z + V,_({z})
k

Y (20)

ma

2

zZ, =

(23)
In accordance with eq 9, this yields
A ER))
g = —iwzy — i—————
0z, (24)

12 . .
In Paper I, © canonical coordinates were reconstructed from
z;. following

q, = /iRe{zk}, p, = V2mwIm{z}
maw

(25)
which satisfy
=)
2 maw (26)

Expressed in terms of such canonical coordinates, the
Hamilton equations then follow as

2 Wy
g, = | —Re{z,} = Py Pae
maw m ap, (272)
s Ve
p, = V2mwlIm{z} = —mwq, —
dq, (27b)

which is indeed in agreement with Paper L."*
Notably, from the appearance of gradient contributions to
both g, and p,, it can be clearly seen that while the transformed

canonical coordinates play the role of “position” and
“momentum” within the Hamilton equations, they are not to

https://doi.org/10.1021/acs.jctc.4c00555
J. Chem. Theory Comput. 2024, 20, 6500—6509
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be associated with physical positions and momenta.'* Such is
further reflected by the coordinate rescalings applied upon a
switch in FSSH, affecting not only py, as expected, but also gy,
which would violate locality if the latter represents physical
position. The rescalings are obtained by taking the real and
imaginary parts of eq 19, yielding

’ ~ () o

pk:pk_y aa_ﬂ
9y (28a)

’ ~ a N

qQ =49, 7 aa—ﬂ
Py (28b)

in agreement with Paper >

In Papers I'> and II,”* application of eq 27 in conjunction
with a reciprocal-space description of the quantum subsystem
was shown to yield results in agreement with those obtained
fully within a physical basis. This is a direct consequence of the
formal equivalence between the Hamilton equations expressed
in the physical basis, eq 3, and the reciprocal-space variant, eq
27, much like the formal equivalence between the quantum-
mechanical equations of motion within the physical and
reciprocal-space bases.

For pristine lattices, electronic wavepackets tend to
concentrate in low-energy regions of reciprocal space, allowing
a reciprocal-space quantum basis to be efficiently truncated to
those regions.”>*® Moreover, since phonons act so as to absorb
or emit lattice momentum during electron—phonon scattering
events, a reciprocal-space classical basis can be truncated to
select regions in conjunction with quantum basis trunca-
tions.'»***” Such truncations cannot be performed in the
physical basis, since electronic carriers and phonons are both
delocalized over the entire lattice. Importantly, such
truncations offer radical savings of the computational cost of
simulating the electron—phonon scattering dynamics.

3. APPLICATION TO AN IMPURITY MODEL

While the reciprocal-space treatment of pristine lattices
presented in Papers I'° and II*’ provides a compelling
demonstration of the utility of transformed MQC dynamics,
it is the generalized equations of motion presented in the
present Article that allows optimal basis transformations to be
applied for both the quantum and classical subsystems even
when the lattice is disrupted. In such cases, lattice momentum
is no longer a good quantum number, compromising the
effectiveness of reciprocal-space MQC dynamics and prompt-
ing the need for alternative representations in order to enable
effective basis truncations. To demonstrate this, we proceed to
present results for a lattice involving a single impurity.

3.1. Model. As in Paper L,'* we consider a single electronic
carrier while representing the lattice by a tight-binding model.
The associated purely electronic quantum Hamiltonian is given

by

y AT A ATA ATA
Hq = _]Z (Cn+lcn + C'Icn+1) - AC;CW
n (29)

Here, n runs over the lattice sites, ¢t

, and ¢, represent the

annihilation and creation operators for the electronic carrier,
respectively, associated with site n, and ] is the nearest-
neighbor interaction term. Furthermore, 7 denotes the
impurity site and A is the associated energetic detuning
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relative to the other lattice sites. Periodic boundaries are
imposed, so that n = N corresponds to # = 0. This Hamiltonian
is solved for in order to obtain the purely electronic
eigenstates, obeying

H/¢) = Elgh)

Here and throughout, i is used to label the purely electronic
eigenstates, which are not to be confused with the
instantaneous eigenstates of the total quantum Hamiltonian
(cf. eq 15), which are denoted by a instead. While the
instantaneous eigenstates depend parametrically on the
classical coordinates, thereby attaining a time-dependence,
the purely electronic eigenstates form a time-independent,
diabatic basis. As a convention, i is taken to run with increasing
eigenenergy. The purely electronic eigenstates can be

expanded in the physical basis as
) = B,,In) 31)

Shown in Figure 2 are the purely electronic eigenfunction

amplitudes within the physical basis, B;, for a pristine lattice

(30)

—— Pristine

—— Impurity

Figure 2. Amplitudes of the 8 lowest purely electronic eigenfunctions
of a pristine lattice (blue) and an impurity model (red). The impurity
site is taken to be 7 = N/2, and site n = 0 corresponds to n = N due to
periodic boundaries. Amplitudes are shown with arbitrary (but
constant) scaling and are offset vertically for visual clarity. An
additional X0.5 scaling is applied to the i = 1 amplitude for the
impurity model. Corresponding calculations invoked a total of N =
100 lattice sites.

with J = 1.0 and A = 0 and for an impurity model where the
detuning was adjusted to A = 2.0. Here and throughout, we
take parameter values to be unitless. We note, however, that,
when taking the thermal energy at room temperature (293 K)
as a reference, a unit of energy amounts to 25 meV. As can be
seen in Figure 2, for the pristine lattice, the eigenstates assume
the periodic oscillatory profiles indicative of Bloch states. For
the impurity model, however, the lowest-energy eigenstate
(with i = 1) is largely localized on the impurity site, 7. All other
eigenstates with odd i values (i = 3, S, 7, ...) reproduce the
Bloch-like states (save for a slight and arbitrary phase shift).

https://doi.org/10.1021/acs.jctc.4c00555
J. Chem. Theory Comput. 2024, 20, 6500—6509
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For even i, the eigenstates tend to approach the Bloch-like
states with increasing values of i, although maintaining a
deviation close to 7. In the course of nonadiabatic dynamics,
electronic population is expected to funnel from the
delocalized Bloch-like states toward the localized state at
lowest energy. It is this lowest-energy state that is challenging
to resolve within a reciprocal-space basis, as it involves
contributions from many reciprocal-space basis states due to
the underlying Fourier relationship.

In order to find alternative bases within which to effectively
represent the nonadiabatic dynamics of the impurity model, we
will first restrict ourselves to the electronic degrees of freedom.
It is notable that the previously applied reciprocal-space
representation' »*>’ effectively invokes the purely electronic

eigenstates of the pristine lattice, ie., the eigenstates of I—AIq

shown in Figure 2. It should further be noted that the
eigenstates of the pristine lattice shown in this figure were
solved for through a real-valued eigenvalue decomposition of

the (real-valued) Hamiltonian I:Iq. This yields cosine and sine

solutions rather than the complex exponents commonly
appearing in the Bloch formalism. However, one can trivially
transform between both solutions by taking symmetric and
antisymmetric combinations of degenerate eigenstates. Under
Bloch-like solutions, truncations of the reciprocal-space basis
were previously invoked by introducing a wavevector cutoff,
denoted k;, such that basis states having Ikl > k, were
excluded.'>** For the real-valued solutions shown in Figure 2,
it would be more appropriate to introduce an energy cutoff, E,,
such that basis states are excluded having E; > E_. Importantly,
this would effectively yield identical basis truncations, since the
Bloch-state energies increase monotonically with Ikl (provided
that J > 0).

While the reciprocal-space basis may not offer much benefit
to describing the impurity model, the notion of using the
purely electronic eigenbasis, which differs between the pristine
lattice and the impurity model, is an interesting choice to
consider. Indeed, the purely electronic eigensolutions of the
impurity model tend to simultaneously capture the extended-
ness and localization necessary to describe the nonadiabatic
scattering onto the impurity, as shown in Figure 2. For that
reason, we choose the purely electronic eigensolutions to
describe the electronic degrees of freedom, while imposing
basis truncations following the procedure mentioned before, by
introducing an energy cutoff, E..

Similarly to Paper L'* we invoke the Holstein model in
order to account for the nuclear modes driving the non-
adiabatic dynamics. Accordingly, the classical subsystem is
taken to consist of identical harmonic modes, such that
V.({q,}) is given by eq 7, n is associated with the lattice sites,
and z, is given by eq 21. The operator governing the
quantum—classical interactions is then given by

A, =gV20’ ) &leg
n

(32)

As with the electronic states, a reciprocal-space basis would be
problematic for describing the nuclear modes, as “self-
trapping” of the electronic carrier onto the impurity involves
a nuclear vibration localized on the impurity site. In finding a
preferred basis for the nuclei, we note that within the applied
Holstein model, the nuclear degrees of freedom follow the
same lattice structure as the electronic coordinates. Moreover,
within the complex coordinate representation, the associated
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classical subsystem is governed by a Hilbert space that assumes
a structure identical to that of the quantum subsystem. As
such, we can subject both subsystems to identical basis
transformations, including a transformation into the afore-
mentioned electronic eigenbasis. For the classical subsystem,
this transformation would capture the localized nature of the
nuclear vibration responsible for self-trapping at the impurity
site, while simultaneously representing the (approximately)
momentum-carrying phonons throughout the rest of the
lattice. For that reason, in describing the impurity model, we
will resort to the purely electronic eigenbasis to describe not
only the (electronic) quantum subsystem, but also the
(nuclear) classical subsystem, while imposing the same
truncation to both subsystems.

We should stress that the choice of basis adopted in this
work is heuristic, and that superior bases are likely to exist.
Moreover, there is no need to keep with the same basis when
describing the quantum and classical subsystems. Identifying
the theoretically optimal bases is not a trivial task, however,
and we reserve a thorough exploration of this topic for a
follow-up study. It should nonetheless be noted that while
theoretically optimal bases may be out of reach, even
suboptimal bases may already yield vast improvements in
accuracy and efficiency compared to physical basis representa-
tions. In what follows, by adopting the (potentially
suboptimal) purely electronic eigenbasis, we will present a
proof-of-principles of the general applicability of transformed
MQC dynamics, and the possibilities for basis truncations it
affords.

In what follows, we adopt the parameters from Figure 2, and
additionally set @ = 0.2 and g = 1.0, while adjusting the total
number of lattice sites to N = 30. The classical coordinates g,
and p,, are initially and independently drawn from a Boltzmann
distribution'” at a temperature T = 1.0. We reiterate that, when
taking the thermal energy at room temperature (293 K) as a
reference, a unit of energy amounts to 25 meV. By the same
token, a unit of time amounts to 164 fs. As an initial condition
of the quantum subsystem, we consider the single-carrier
excitation with zero lattice momentum, given by

1
W) =lk=0)=——) In
> > Wzn: > (33)

This initial condition may be representative of a tightly bound
electron—hole pair (Frenkel exciton) produced upon impulsive
optical excitation (under the long-wavelength approximation).

3.2. Results. In the following, we will first present FSSH
calculations for a pristine lattice, by setting A = 0. As such, we
will be revisiting a system that was addressed in Papers I'* and
11, but with adjusted parameters. We will then consider the
case of a single impurity model, by setting A = 2.0. In our
calculations, we employed two variants of transformed FSSH.
The first variant represents the quantum and classical
subsystems within the reciprocal-space basis. Accordingly, we
have

Wen = Ukn = Leik”

VN
where u is the unitary transformation of the quantum
subsystem, introduced in eq 1, and where U is the equivalent
for the classical subsystem, cf. eq 20. The second variant

represents both subsystems within the purely electronic
eigenbasis, as discussed in Sec. 3.1, meaning that

(34)
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Uin

= IJin = Bin (35)
with B;, the expansion coefficient from eq 31. For the first
variant, real-valued eigenvector projections (cf. Sec. 2.2),
necessary for momentum rescalings, were obtained following
the procedure outlined in Paper IL™* For the second variant, all
relevant eigenvectors are real-valued by construction, and were
taken as is. Both treatments are fully consistent with our
recently proposed gauge-invariant momentum rescaling
procedure.

The electronic populations were evaluated by first
constructing the total electronic density matrix within the
instantaneous eigenbasis of the total Hamiltonian operator,

37-39

I:Iq + I:Iq_c. As is commonly done, the diagonal elements

of this density matrix were based on the active surfaces, while
the offdiagonal elements were based on the electronic wave
function coefficients, i.e.,

*
5/}5,111 + (1 - 5{1/})A(IA/}

Q,

Fap = (36)
where § is the Kronecker delta function. This density matrix
was then transformed””*’ to the physical basis, reciprocal-
space basis, and purely electronic eigenbasis, after which
corresponding populations were obtained through P, = p,,,, P,
= pwo and P; = p;, respectively.

Shown in Figure 3 are results for the pristine lattice. Here,
only reciprocal-space FSSH was applied, recognizing the
formal equivalence with the purely electronic eigenbasis in
this limit (as discussed in Sec. 3.1). Figure 3 (a) presents time-
dependent reciprocal-space electronic populations, P;, ob-
tained without any basis truncation imposed. As seen here, and

Py
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Figure 3. (a) Transient electronic populations P, calculated within
reciprocal-space FSSH for a pristine (A = 0) lattice with N = 30 sites,
and with ] = 1.0, w = 0.2, g = 1.0, and T = 1.0. (b) Dynamics of P,
under varying truncations of the reciprocal-space basis. Percentages of
truncations shown were reached by varying k, (see text).
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as discussed in Papers I'* and II,*” a scattering of the electronic
carrier out of the k = 0 initial state is observed.

Figure 3 (b) depicts the time-dependent zero-momentum
electronic population, P, resulting from untruncated
calculations, together with P_; calculated under increasing
basis truncations. This population is seen to remain invariant
under truncations of up to 50% of the reciprocal-space basis,
which is consistent with the findings of Paper II,** where FSSH
was applied to a pristine lattice under Holstein-type coupling
between the electronic carrier and the nuclear modes. This is
rationalized by the carrier being both initiated and thermally
biased toward k = 0, with high-momentum basis states
providing only small contributions to the nonadiabatic
dynamics.

A similar analysis is presented in Figure 4, but for the
impurity model subjected to reciprocal-space FSSH as well as
FSSH assuming a purely electronic eigenbasis representation
for both quantum and classical subsystems. Shown as a
reference in Figure 4 (a) are time-dependent populations P,
obtained through FSSH formulated entirely in the physical
basis. Here, the k = 0 initial state is seen to be fully delocalized,
as expected from eq 33, while nonadiabatic dynamics funnels
the carrier into the impurity with n = #. A schematic
illustration of this process is depicted in Figure 4 (b). Shown in
Figure 4 (c) and (e) are P, and P, respectively, as obtained
through FSSH within the reciprocal-space basis and within the
purely electronic eigenbasis. While the dynamics of P, appears
to be quite similar to that shown for the pristine lattice in
Figure 3 (a), P; clearly exhibits the gradual trapping of
excitation in the lowest-energy eigenstate with i = 1.

We will proceed to assess to what extent basis truncations
allow both the delocalization of the initial excitation and the
transient localization at the impurity site to be captured, once
FSSH is formulated in the reciprocal space basis or in the
purely electronic eigenbasis. To this end, we evaluate P, as
well as P,. Figure 4 (d) and (f) show both quantities as
obtained through truncated FSSH calculations within the
reciprocal-space basis and within the purely electronic
eigenbasis, respectively. As can be seen here, both variants of
transformed FSSH perform well in describing P;_, under basis
truncations. A markedly worse performance is found for P,
within a reciprocal-space representation. Due to the Fourier
relationship, accounting for the local population at site 7
requires the complete reciprocal-space basis to be included,
and basis truncations yield a proportionate drop in this site
population.

FSSH formulated within the purely electronic eigenbasis,
however, is found to perform remarkably well in describing P,
under truncations of up to 50%. This is the result of the lowest-
energy eigenstate capturing most of the local population at site
7. As such, the truncated purely electronic eigenbasis is shown
to outperform the truncated reciprocal-space basis in
governing the funneling of electronic population into the
impurity, as we anticipated based on Figure 2.

4. CONCLUSIONS AND OUTLOOK

In summary, we have derived a formulation of MQC dynamics
within arbitrary bases for the classical and quantum
coordinates. This allows any given system to be optimally
treated by finding preferred bases which can be efficiently
truncated while retaining good agreement with untruncated
calculations. Such is demonstrated by our application of FSSH
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Figure 4. (a) Transient electronic populations P, calculated by conventional FSSH formulated within the physical basis for an impurity model.
Parameters are as in Figure 3, except for A = 2.0. (b) Schematic of the population dynamics shown in (a), where an initial k = 0 excitation funnels
toward a state localized at the impurity site, n = 7. (c) P, calculated by reciprocal-space FSSH. (d) Corresponding populations Py, (solid, left axis)
and P, (dashed, right axis) under varying truncations of the reciprocal-space basis. Curve colorings are as in Figure 3 (b), while percentages of
truncations were reached by varying k. (e) P; calculated by FSSH formulated within the purely electronic eigenbasis. (f) Same as (e), but under
varying truncations of the purely electronic eigenbasis. Curve colorings are as in Figure 3 (b), while percentages of truncations were reached by

varying E_ (see text).

to a system involving an electronic carrier scattering onto a
single impurity in an otherwise pristine lattice while interacting
with phonons. The funneling from an initial, delocalized state
toward a low-energy state localized at the impurity site was
faithfully captured when transforming the quantum and
classical coordinates into the purely electronic eigenbasis,
followed by significant basis truncations. A similar level of
truncation within the reciprocal-space basis instead yielded
significant distortions of the impurity population.

The encouraging results obtained for the impurity model
offer promising prospects for the realistic application of MQC
dynamics, and in particular FSSH, to materials involving
disruptions of the crystal lattice. In recent years, FSSH has
found applications to materials involving impurities,*'
defects,”* and wrinkling,43 as well as materials where the
lattice symmetry was disrupted by nearby molecules.'® While
no basis transformations were invoked in these studies, our
present analysis suggest them to offer significant gains in
performance and scalability when combined with eflicient basis
truncations. Challenges arising when realistically applying
transformed MQC dynamics to materials are likely to be
concerned with scalability toward relevant materials dimen-
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sions, although recent work combining reciprocal MQC
dynamics with microscopic modeling of monolayer tran-
sition-metal dichalcogenides®” suggested such challenges to be
surmountable.

Basis transformations of the quantum subsystem have long
found applications within MQC dynamics, and have for
instance enabled efficient FSSH descriptions of spin—orbit
dynamics.44’45 In the present work, efficiency gains are
extended by means of basis transformations for both quantum
and classical subsystems. While normal mode representations
have previously been invoked in MQC methods such as
FSSH,* our work generalizes the underlying principles to
harness the full special unitary group in finding optimal bases.
We re-emphasize that the purely electronic eigenbasis adopted
for the impurity model was chosen based entirely on heuristic
arguments and, in spite of its good performance, may not be
the theoretically optimal choice. Finding the optimal choice for
a given system is nontrivial, as it requires a deep understanding
of how both the quantum and classical subsystems are most
efficiently represented under arbitrary mutual interactions. It is
conceivable that tractable metrics can be identified, taking into
account all relevant interactions, a minimization of which then
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allows the optimal bases to be identified. It should also be re-
emphasized that the bases adopted for the quantum and
classical subsystems need not be the same, as was adopted in
the present Article. Rather, both bases can be independently
optimized, resorting to the full special unitary group for each.®*
It is further possible to adopt time-dependent basis trans-
formations, which may offer advantages for phenomena where
the character of the involved excitations changes repeatedly.
Altogether, these possibilities are worthy of future inquiry.

Importantly, the transformed equations of motion presented
in this Article yield dynamics formally equivalent to the
conventional equations of motion expressed in the physical
basis, and it is only upon the introduction of basis truncations
that one representation may outperform another. As such, the
basis transformations by themselves do not compromise the
accuracy of existing MQC methods, but rather allow one to
reach an optimal balance between accuracy and efficiency for a
given method by means of basis truncations. It is noteworthy
that the transformed equations of motion are applicable to the
full suite of MQC methods, beyond FSSH. An example briefly
mentioned in Sec. 2.2, but not considered further in the
present Article, is Ehrenfest dynamics, which is unrivaled in
terms of simplicity and computational affordability. These
favorable attributes notwithstanding, Ehrenfest dynamics is
known to suffer from overthermalization in the asymptotic
time limit.*”~* In addition to contributing to the method’s
inaccuracy, this deteriorates the effectiveness of basis
truncations, as quantum excitations tend to delocalize over
an excess number of basis states.”> We should emphasize that
the intrinsic accuracy of MQC modeling is not addressed in
the present Article. In Paper IL,”> we found the results
generated by FSSH for a lattice model to show good
agreement with full-quantum reference calculations, yet much
remains to be learned about the performance of FSSH in
materials modeling. In that regard, a recently proposed
coherent generalization of FSSH is noteworthy,*”° which
may offer particular advantages in capturing the coherent
dynamics prevalent in materials.

Lastly, we note that the transformed classical dynamics
derived in Sec. 2.1 is completely general. Its ability to
incorporate mode anharmonicities, although not taken
advantage of in the current work, enables broad application
to molecular dynamics simulations, with or without accom-
panying quantum modeling. Subjecting a given classical system
to unitary basis transformations, the same way quantum-
mechanical systems are treated, may provide a straightforward
route to optimally representing its dynamics by a truncated set
of coordinates.
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