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Abstract—Elasticity plays an important role in modern cloud

computing systems. Elastic computing allows virtual machines

(i.e., computing nodes) to be preempted when high-priority jobs

arise, and also allows new virtual machines to participate in

the computation. This paper consider the elastic computing with

heterogeneous speeds under uncoded storage. In 2018, Yang et al.

introduced Coded Storage Elastic Computing (CSEC) to address

the elasticity using coding technology, with lower storage and

computation load requirements. However, CSEC is limited to

certain types of computations (e.g., linear) due to the coded data

storage based on linear coding. Then Centralized Uncoded Stor-

age Elastic Computing (CUSEC) with heterogeneous computation

speeds was proposed, which directly copies parts of data into

the virtual machines. In all existing works in elastic computing,

the storage assignment is centralized, meaning that the number

and identity of all virtual machines possible used in the whole

computation process are known during the storage assignment. In

this paper, we consider Decentralized Uncoded Storage Elastic

Computing (DUSEC) with heterogeneous computation speeds,

where any available virtual machine can join the computation

which is not predicted and thus coordination among different

virtual machines’ storage assignments is not allowed. Under a

decentralized storage assignment originally proposed in coded

caching by Maddah-Ali and Niesen, we propose a computing

scheme with closed-form optimal computation time. We also run

experiments over MNIST dataset with Softmax regression model

through the Tencent cloud platform, and the experiment results

demonstrate that the proposed DUSEC system approaches the

state-of-art best storage assignment in the CUSEC system in

computation time.

I. INTRODUCTION

Cloud computing platforms provide elastic computation
service at discount, while the computations are scheduled on
the Virtual Machines (VMs) at a low-priority. It means that
at each time step of the computation process (i) VMs will
be preempted if a high-priority job arrives; (ii) new available
VMs are allowed to join the computation at any time [1]–[3].
To efficiently tolerate the failures brought by preempted VMs,
Yang et al [3] introduced Coded Storage Elastic Computing
(CSEC) to address the elasticity using coding technology, with
lower storage and computation load requirements. Following
the original CSEC work, various works on the extensions
such as elastic computing with heterogeneous storage or/and
speeds, elastic computing against stragglers, optimization on
the transition waste, were proposed in [4]–[8]. Despite the
advantages of CSEC such as less storage overhead, it may be
challenging to be applied to more involved computations (e.g.,

non-linear task, deep learning) due to the coded data storage.
So we may prefer to place the data in an uncoded way by
just assigning the raw data to the VMs. [9] proposed a frame-
work for heterogeneous Uncoded Storage Elastic Computing
(USEC) in matrix-vector computation and [10] considered a
matrix-matrix computation task in uncoded storage systems.

To the best of our knowledge, in all existing works on elastic
computing, the storage assignment is centralized, meaning
that the number and identity of all virtual machines possibly
used in the whole computation process are known in prior
during the storage assignment. In this paper we consider
Decentralized Uncoded Storage Elastic Computing (DUSEC),
where the identity of the VMs participating into the computing
process is not in prior known at the beginning of the whole
computation process. In other words, any available VM can
join the computation and thus coordination among different
VMs’ storage assignments is not allowed. Unlike the cen-
tralized system, there is no limit on the number of available
VMs N at time step t in the DUSEC system; as N increases,
the computation time decreases. For the computation task,
we consider the linearly separable function [11], which is a
function of K datasets (D1, . . . , DK) on a finite field Fq .
The task function can be seen as K(t)

c linear combinations
of K intermediate messages. It was shown in [12] that such
function could cover matrix-matrix multiplication, gradient
descent, linear transform, etc., as special cases. In addition, we
consider that VMs have heterogeneous computation speeds,
and aim to minimize the computation time at time t defined
as the largest computation time among all available VMs at
time step t.

For this new problem, referred to as DUSEC with hetero-
geneous computation speeds, we consider the case K(t)

c = 1,
which covers matrix-vector multiplication and gradient descent
tasks, and our main contribution is summarized as follows:

1) We use the decentralized storage assignment originally
proposed in decentralized coded caching [13], where each
VM randomly selects a fraction of datasets to store when
it joins in the computation. By assuming the number of
datasets is large enough, the storage assignment is sym-
metric (i.e., the number of datasets inclusively stored by
a set of VMs only depends on the cardinality of this set).
Considering the heterogeneous computation speeds of the
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VMs, we formulate the computation assignment into a
linear programming to achieve the minimum computation
time at each time step t. We then solve the minimum
computation time in closed-form, and propose a new
algorithm on assigning the computation assignment while
achieving this minimum computation time. Note that the
algorithm complexity is O(N), linear with the number of
available VMs at time step t, while the classic algorithm
to solve this linear programming has complexity O(2N )
and cannot provide a closed-form solution.

2) We perform experiments through real cloud platform
with heterogeneous computation speeds, and run over the
MINST dataset with a Softmax model. We demonstrate
that in terms of the total processing time, the proposed
algorithms on DUSEC approaches the start-of-the-art
CUSEC scheme in [9], which requires the knowledge on
the identity of the VMs at the beginning of the process.

3) We then extend the proposed DUSEC scheme by using
the distributed gradient coding scheme in [14], such that
the resulting elastic computing scheme can also tolerate
potential stragglers in the computation process.1

Notation Convention: We use | · | to represent the cardi-
nality of a set or the length of a vector and [n]

!
= {1, 2, . . . , n}.

A bold symbol such as a indicates a vector and a[i] denotes
the i-th element of a. Calligraphic symbols such as A presents
a set with numbers as its elements. Bold calligraphic symbols
such as A represents a collection of sets.

II. PROBLEM FORMULATION

A server uses VMs in a cloud to perform linearly separable
computation tasks over multiple time steps. At each time
step t, the computation task is a function of K datasets
D1, . . . , DK , which should be computed collaboratively by
Nt available VMs in Nt with Nt := |Nt|. As in [12], with
the assumption that the function is linearly separable from the
datasets, the computation task can be written as K(t)

c → K
linear combinations of K messages,

f (t)(D1, D2, . . . , DK) = g(t)(f (t)
1 (D1), . . . , f

(t)
K (DK))

= g(t)(W (t)
1 , . . . ,W (t)

K ) = F(t)[W (t)
1 ; . . . ;W (t)

K ], (1)

where the ith message is W (t)
i = f (t)

i (Di), representing the
outcome of the component function f (t)

i (·) applied to dataset
Di, and F(t) represents the demand information matrix with
dimension K(t)

c ↑K, known by all VMs. Each message W (t)
i

contains L uniformly i.i.d. symbols on some finite field Fq .2

In this paper, we mainly consider the case K(t)
c = 1, which

covers matrix-vector multiplication and gradient descent tasks
(by letting f (t)

i (·) be a gradient of loss function). In this case,
we assume without loss of generality that the computation task
at time step t is W (t)

1 + · · ·+W (t)
K .

1The difference between elasticity and straggler is that, for elasticity at the
beginning of each step time we know the identity of the computing nodes
who has joined in or left; but we do not know which nodes will be stragglers.

2The proposed scheme can also work in the field of real numbers.

A. Decentralized Storage Assignment and Heterogeneous
Computation speeds

We consider a decentralized system, where any VM may
join the computation process unpredictably and thus coordina-
tion on storage assignment for different VMs is not allowed.
We use the decentralized storage assignment in [15], where
each VM stores a subset of the datasets independently at
random. Assume that each VM n stores {Di : i ↓ Zn}, with
a equal storage size |Zn| = M . So each dataset is stored by
each VM with probability M

K .
Since there is no coordination among VMs’ storage assign-

ment and the computation tasks at different time steps are
independent, in the rest of this paper we only focus on one time
step t; and to avoid heavy notations, we do not explicitly point
out the time step index t in the notations. For example, we drop
the superscript from W (t)

i and the ith message becomes Wi.
We further assume that the available VMs at the considered
time step is N = [N ].

According to the storage of the VMs in [N ], we can divide
the K datasets into 2N sets, where AV represents the sets of
datasets assigned to all VMs in V , {Vj : j ↓ V}, for each
V ↔ [N ]. By assuming that K is large enough and then by
the law of large numbers, we have

|AV | =

(
M

K

)|V| (
1↗

M

K

)N→|V|
K + o(K), (2)

with probability approaching one when K is sufficiently large.
Note that by the decentralized storage assignment, there

remain some datasets not stored by any VMs in [N ]; thus
we can only compute an approximated version of the original
computation task. So we approximate the computation task to
y =

∑
i↑

⋃
j→[N] Zj

Wi.

Without loss of generality, we assume that the computation
speeds are in an ascending order as s[1] → s[2] → · · · → s[N ].
Denote s = (s[1], . . . , s[N ]).

Next, we define LV as the set of datasets which are only
assigned to {Vj , j ↓ V}; thus

LV =
⋃

r↓V
Ar. (3)

Specially, L[n] can be written as

L[n] = A{1} ↘ · · · ↘A{n} ↘A{1,2} ↘ · · · ↘A{1,2,...,n}. (4)

By (2), we have with high probability that

|L[n]| =

(
K ↗M

K

)N {(
K

K ↗M

)n

↗ 1

}
K + o(K). (5)

To simply the notation, define ω
!
= K

K→M and ε
!
=

(
K→M

K

)N .
Then we have

|AV |/K = ε (ω↗ 1)|V| , |L[n]|/K = ε (ωn
↗ 1) . (6)
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B. USEC under Decentralized Assignment

Each VM Vn where n ↓ [N ] computes∑
V↔[N ]:n↑V

∑
i↑Sn,V

Wi, where Sn,V ↔ AV denotes the set

of datasets in AV which should be computed by VM Vn.
So the computation assignment for all VMs can be exactly
determined by the collection, we have Sn

!
=

⋃
V↓[N ]:n↑V Sn,V

and M = {Sn, ≃n ↓ [N ]} . Then the computed results from
VMs are transmitted to the server to recover y.

Computation Load. We define µ[n], the computation load
by each VM Vn, as the number of computed messages
normalized by K; thus we have

µ[n] =
∑

V↔[N ]:n↑V

|Sn,V |

K
=

∑

V↔[N ]:n↑V

µ[n,V], (7)

where we define µ[n,V] = |Sn,V |/K. Then the computation
load vector for the VMs in [N ] is, µ = (µ[1], · · · , µ[n]). Note
that since the computation load is normalized by K, thus we
can neglect the deviation terms and assume that

Computation Time. The computation time of each VM Vn

where n ↓ [N ] is µ[n]
s[n] . The overall computation time at the

considered time step (or simply called computation time) is
defined as largest computation time among all VMs in [N ],

c(M)
!
= max

n↑[N ]

µ[n]

s[n]
= max

n↑[N ]

∑
V↔[N ]:n↑V µ[n,V]

s[n]
. (8)

For a fixed storage assignment (Z1, . . . , ZN ), we can
formulate the following optimization problem for the DUSEC
system with heterogeneous computation speeds:

minimize
M

c (M) (9a)

subject to:
⋃

n↑V
Sn,V = AV , ≃V ↔ N . (9b)

The optimization problem in (9) is equivalent to the following
linear programming:

minimize
{µ[n,V]:n↑[N ],V↔[N ]}

c (M) = max
n↑[N ]

∑
V↔[N ]:n↑V µ[n,V]

s[n]

(10a)

subject to:
∑

n↑V
µ[n,V] = ε (ω↗ 1)|V| , ≃V ↔ [N ],

(10b)
µ[n,V] ⇐ 0, ≃n ↓ [N ],V ↔ [N ]. (10c)

III. MAIN RESULTS

Instead of directly solving the linear programming in (10) by
Lagrange multipliers or some other standard methods (which is
normally hard to get a closed-form solution), we solve (10) by
first proving a cut-set converse bound on the computation time
and then proposing an algorithm which matches the converse
bound. Thus we can obtain the optimal solution in closed-form
for the problem in (10).
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Fig. 1: Illustration of DUSEC when s = [1, 2, 5, 5] before
rearrangement, c(M) = 0.1

Theorem 1 (Optimal Computation Time): Under the DUSEC
system with heterogeneous computation speeds, the optimal
computation time is

cω = min
M

c(M) = max
n↑

|L[n↑]|/K∑n↑

i=1 s[i]
, (11a)

where
|L[n↑]|/K∑n↑

i=1 s[i]
⇐

|L[n] \ L[n↑]|/K∑n
i=n↑+1 s[i]

, ≃n ↓ [n↗ + 1 : N ],

(10b)

and
|L[n↑]|/K∑n↑

i=1 s[i]
⇐

|L[n]|/K∑n
i=1 s[i]

, ≃n ↓ [n↗
↗ 1]. (10c)

Lemma 1: There exists a n↗ that satisfies the Condi-
tion (10b) and Condition (10c) in Theorem 1.
The proof of Lemma 1 and the converse bound in Theorem 1
are given in the extended version of this paper [16].

We provide an example to illustrate the main idea of the
proposed scheme which achieves the optimal computation time
in Theorem 1 and the general description is shown in [16] .

Example 1: We consider a system with parameters K =
16000, N = 4,ω = 2, s = [1, 2, 5, 5]. There are K = 16000
datasets, and each VM can store M = 8000 datasets.
By the law of the large number, we have |L[1]|/K =
0.0625, |L[2]|/K = 0.1875, |L[3]|/K = 0.4375, |L[4]|/K =
0.9375. From Theorem 1, we can get the nω = 4 and
cω = 0.0721.

There are 4 iterations to get the computation load assign-
ment S = {S1,S2,S3,S4}. In the n-th iteration, we determine
the computation load for Vi, i ↓ [n] with datasets in L[n], and
ti is denoted as the computation time of Vi and tV = ti, i ↓ V

(The above parameters will be updated after each iteration).
In the first iteration, VM V1 computes L{1} = A{1} within

t1 = 0.0625. We update S1 = A{1}.
In the second iteration, by letting S2 = L[2] \L[1], we have

t2 =
|L[2]\L[1]|/K

s[2] = 0.0625 which is equal to t1. Then update
S1 = A{1},S2 = A{2} ↘A{1,2}.

In the third iteration, by letting S3 = L[3] \ L[2], we have
t3 =

|L[3]\L[2]|/K
s[3] = 0.05, where t3 < t2 = t1 satisfies

Condition (10b) in Theorem 1. Then update S1 = A{1},S2 =
A{2} ↘A{1,2},S3 = A{3} ↘A{1,3} ↘A{2,3} ↘A{1,2,3}.

In the fourth iteration, if we let that S4 = L[4] \ L[3], then
t4 =

|L[4]\L[3]|/K
s[4] = 0.1 > cω > t3, which contradicts with
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Fig. 2: Illustration of DUSEC after 4 iterations after rearrang-
ing S3 and S4, when s = [1, 2, 5, 5], c(M) = 0.075

Condition (10b) in Theorem 1.
To reduce c(M) = t4, parts of datasets both stored by VMs

V3 and V4 should be computed by VM V3. With t3 = 0.05
and t4 = 0.1, we compute t{3,4} =

|L[4]\L[2]|/K
s[3]+s[4] = 0.075, and

rearrange S3 and S4. VM V3 needs to compute more datasets
which come from A{3,4}↘A{1,3,4}↘A{2,3,4}↘A{1,2,3,4} with
size ϑ =

(
t{3,4} ↗ t3

)
s[3] = 0.125.

The main non-trivial step is how to select this 0.125
computation load. The original S3 is equal to A{3}↘A{1,3}↘
A{2,3} ↘ A{1,2,3}, which consists of A{3}↘ε,ω ⇒ [2], the
original S4 consists of A{4}↘ε,ω ⇒ [3], and the overlap
consists of A{3,4}↘ε,ω ⇒ [2]. From the size of rearranged
computation load ϑ = 0.125 and µ[3] = 0.25, µ[4] = 0.5, we
can update S3 into3

S3 = A{3} ↘A{1,3} ↘A{2,3} ↘A{1,2,3}

↘ 0.5A{3,4} ↘ 0.5A{1,3,4} ↘ 0.5A{2,3,4} ↘ 0.5A{1,2,3,4},

and update S4 into

S4 = A{4} ↘A{1,4} ↘A{2,4} ↘A{1,2,4}

↘ 0.5A{3,4} ↘ 0.5A{1,3,4} ↘ 0.5A{2,3,4} ↘ 0.5A{1,2,3,4},

where there is no overlap between S3 and S4. As illus-
trated in Fig. 2, after the computation load rearrangement,
c(M) = t3 = t4 = 0.075 > t1 while the maximum time
still contradicts with Condition (10b) in Theorem 1.

We further rearrange {S1,S2,S3,S4} With t{1,2} =
0.0625, t{3,4} = 0.075, cω = t{1,2,3,4} = 0.0721, ϑ = 0.0288,
the overlap of L[2] and L[4] \ L[2] is

A{1,3} ↘A{1,4} ↘A{1,3,4} ↘A{2,3} ↘A{2,4} ↘A{2,3,4}↘

A{1,2,3} ↘A{1,2,4} ↘A{1,2,3,4},

which consists of A{1}↘ε,A{2}↘ε,A{1,2}↘ε,ω ⊋ {3, 4}, or
A{3}↘ε,A{4}↘ε,A{3,4}↘ε,ω ⊋ [2].

Notice that the original S1,S2 consists of
A{1},A{2},A{1,2} and the original S3,S4 consists of
A{3}↘ε,A{4}↘ε,A{3,4}↘ε, ≃ω ⇒ [2] correspondingly. Denote
the rearranged Sn,V↘Q, n ↓ V ,V ⊋ [2],Q ⊋ {3, 4}
as S

≃
n,V↘Q, with the constraint that the summation of

3With a slight abuse of notation, ωAV represents an ω fraction of datasets
in AV .
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Fig. 3: Illustration of DUSEC when s = [1, 2, 5, 5] after all
rearrangement, cω = c(M) = 0.0721.

|S
≃
n,V↘Q|, n ↓ V, ≃V ⊋ [2],Q ⊋ {3, 4} is equal to ϑ, where

|S
≃
n,V↘Q| is the size of S

≃
n,V↘Q. Our proposed scheme let

|S
≃
n,V↘Q| be proportional to |Sn,V |

|L[2]| and |AQ|
|L{3,4}| , while the

summation of |S
≃
n,V↘Q|, n ↓ V , ≃V ⊋ [2],Q ⊋ {3, 4} is

equal to ϑ. As a result, it can be designed as S
≃
n,V↘Q =

ϑ|AQ||Sn,V |
|L[2]||L{3,4}||AV↓Q|AV↘Q. When n ↓ Q,Q ⊋ {3, 4},V ⊋ [2],

there is S
≃
n,Q↘V = ϑ|AV ||Sn,Q|

|L[2]||L{3,4}|AQ↓V |AQ↘V . The computation
load rearrangement of Sn for each n ↓ [2] is

S
≃
n,V↘Q =

ϑ|AQ||Sn,V |

|L[2]||L{3,4}||AV↘Q|
AV↘Q,

≃V ⊋ [2], n ↓ V,Q ⊋ {3, 4},

and the new computation load of Sn for each n ↓ {3, 4} is

Sn,Q↘V \ S
≃
n,Q

⋃
V = Sn,Q↘V \

ϑ|AV ||Sn,Q|

|L{3,4}||L[2]||AQ↘V |
AQ↘V ,

≃Q ⊋ {3, 4}, n ↓ Q,V ⊋ [2].

For example, when n = 1,V = {1},Q = {3}, there is
S
≃
1,{1,3} =

ϑ|A{3}||S1,{1}|
|L[2]||L{3,4}||A{1,3}|A{1,3} = 0.0513A{1,3} and

when n = 3,Q = {3, 4},V = {1}, there is S3,{1,3,4} \

ϑ|A{1}||S3,{3,4}|
|L[2]||L{3,4}||A{1,3,4}|A{1,3,4} = 0.4744A{1,3,4}.

From the proposed scheme above, we get cω = c(M) =
t1 = t2 = t3 = t4 = 0.0721, which is shown in Fig. 3, and
the optimal computation load assignment {S1,S2,S3,S4} is
presented in TABLE I.

↭

IV. EVALUATIONS ON TENCENT CLOUD

We evaluate the proposed algorithm using Softmax Regres-
sion on Tencent cloud platform. The goal is to compare the
performance difference in terms of accuracy and computation
time under DUSEC and CUSEC system.

Softmax Regression: Softmax regression is a model designed
for solving multi-class classification problems. In Softmax
regression, the model starts with a linear transformation of
the input feature vector x using the weight matrix W and bias
vector b to compute scores for each class, and we train the
model by updating W and b by W := W ↗ ω⇑WJ(W, b),
where J(·) is the loss function.

1364Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:26:53 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: The computation load assignment for s = [1, 2, 5, 5]
system

S1 S2 S3 S4

A{1} 1 0 0 0
A{2} 0 1 0 0
A{3} 0 0 1 0
A{4} 0 0 0 1
A{1,2} 0 1 0 0
A{1,3} 0.0513 0 0.9487 0
A{1,4} 0.0513 0 0 0.9487
A{2,3} 0 0.0513 0.9487 0
A{2,4} 0 0.0513 0 0.9487
A{3,4} 0 0 0.5 0.5
A{1,2,3} 0 0.0513 0.9487 0
A{1,2,4} 0 0.0513 0 0.9487
A{1,3,4} 0.0513 0 0.4744 0.4744
A{2,3,4} 0 0.0513 0.4744 0.4744
A{1,2,3,4} 0 0.0513 0.4744 0.4744
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Fig. 4: Results using DUSEC and CUSEC designs on Tencent
cloud platform. The y-axis represents the normalized mean
square error between the true dominant eigenvector and the
estimated eigenvector.

The network has one S5.2XLARGE16 master machine
with 8 vCPUs and 16 GiB of memory. The worker VMs
consist of 2 S5.LARGE8 instances, each with 4 vCPUs and 8
GiB of memory, and 2 S5.2XLARGE16 instances, each with
8 vCPUs and 16 GiB of memory. We specified the number
of cores that each worker node participates in computation
to simulate different speeds, normalized as {s[1] = 1, s[2] =
2, s[3] = 5, s[4] = 5}. We consider the case when K = 60000
during the experiments.

In our experiment, we conduct a comparison between
DUSEC and CUSEC considering the presence of preemp-
tion. For the CUSEC system, we opt for repetition, cyclic,
MAN [17] assignment. The results demonstrate that the pro-
posed DUSEC system approaches the state-of-art assignment
in the CUSEC system in computation time (refer to Fig. 4).
The DUSEC performs even better because of the less compu-
tation load under the decentralized assignment.

V. EXTENSION TO STRAGGLER MITIGATION

In this section, we encode the transmission by each VM of
the proposed scheme in Theorem 1 in order to mitigate up to

s unpredictable stragglers in the computation process.
Note that without elasticity, coded distributed computing

against stragglers was well studied in the literature [14], [18]–
[20] to compute the linearly separable function described in
Section II with Kc = 1. In the proposed schemes [14],
[18]–[20], various coding techniques were used to encode
the messages computed by each VM n (i.e, the messages
Wj where j ↓ Zn), who then sends the coded messages to
the server. As a result, after receiving the transmissions by a
fix number of VMs, the server can recover the computation
task, while the communication cost is reduced compared
to the uncoded transmission. In particular, a unified coding
scheme was proposed in [14] which works for any computation
assignment M if each message is computed by at least s+1
VMs, in order to tolerate s stragglers.

Next we provide an example to illustrate how to combine
the proposed elastic scheme with the scheme in [14], in order
to tolerate s straggler, while the general description could be
found in [16] .

Example 2 (N = 3, s = 1): We consider the system,
where the system should tolerate up to s = 1 straggler. For
the simplicity, we assume that the computation speeds of the
three VMs are s[1] ⇓ s[2] = s[3]. Note that the identity of
the straggler is not known before the transmission. Hence,
each dateset which is assigned to only one VM in [3] will not
be considered into the transmission. In other words, we only
consider the datesets in AV where V ↔ [3] and |V| > 1.
Denote WV as the sum of the messages in AV . For each
V ↔ [3] and |V| = 2, to tolerate 1 straggler, WV should
be completely computed by the VMs in V . For V ↔ [3]
and |V| = 3, i.e., V = {1, 2, 3}, we should determine the
computation assignment by solving an optimization problem
(see the optimization problem in [16]). Different from the
orignal optimization problem in (10), the main difference
of the optimization problem is that each dataset should be
computed totally s + 1 times, instead of 1. In this example,
since s[1] ⇓ s[2] = s[3], we let W{1,2,3} completely computed
by the workers in {2, 3}.

Then based on the computation assignment, we apply the
coding technique in [14], to let VMs V1, V2, V3 transmit

T1 =
1

2
W{1,2} +W{1,3},

T2 =
1

2
W{1,2} +W{2,3} +W{1,2,3},

T3 = W{1,3} ↗W{2,3} ↗W{1,2,3},

respectively. It can be seen that, from any 2 coded messages of
T1, T2, T3, the server can recover W{1,2}+W{1,3}+W{2,3}+
W{1,2,3}. ↭
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