
Uncoded Storage Coded Transmission Elastic
Computing with Straggler Tolerance in

Heterogeneous Systems
Xi Zhong1, Jörg Kliewer2 and Mingyue Ji1

1
Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA

Email: {xi.zhong, mingyue.ji}@utah.edu
2
Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA

Email: jkliewer@njit.edu

Abstract—In 2018, Yang et al. introduced a novel and effective

approach, using maximum distance separable (MDS) codes, to

mitigate the impact of elasticity in cloud computing systems.

This approach is referred to as coded elastic computing. Some

limitations of this approach include that it assumes all vir-

tual machines have the same computing speeds and storage

capacities, and it cannot tolerate stragglers for matrix-matrix

multiplications. In order to resolve these limitations, in this paper,

we introduce a new combinatorial optimization framework,

named uncoded storage coded transmission elastic computing

(USCTEC), for heterogeneous speeds and storage constraints,

aiming to minimize the expected computation time for matrix-

matrix multiplications, under the consideration of straggler toler-

ance. Within this framework, we propose optimal solutions with

straggler tolerance under relaxed storage constraints. Moreover,

we propose a heuristic algorithm that considers heterogeneous

storage constraints. Our results demonstrate that the proposed

algorithm outperforms baseline solutions utilizing cyclic storage

placements, in terms of both expected computation time and

storage size.

I. INTRODUCTION

Elasticity allows virtual machines in a cloud system to
be preempted or become available during computing rounds,
leading to computation failure or increased computation time.
In [1], the authors proposed a cyclic computation assign-
ment that utilizes maximum distance separable (MDS) coded
storage for homogeneous systems, where all machines have
the same computation speed and storage capacity. For MDS
coded storage elastic computing, the authors in [2] introduced
a combinatorial optimization approach aimed at minimizing
the overall computation time for systems with heterogeneous
computing speeds and storage constraints. They proposed an
optimal solution using a low-complexity iterative algorithm,
called the filling algorithm. Subsequently, in [3], the authors
extended the filling algorithm to address scenarios with both
elasticity and stragglers. In [4], the authors introduced two
hierarchical schemes designed to speed up computing and
tolerate stragglers, by allowing fewer machines to select their
first computation tasks and more machines to select their
last computation tasks. In [5], a new metric named transition
waste was introduced, which quantifies unnecessary changes
in computation tasks caused by elasticity. To mitigate this,

the authors constructed several computation assignments that
achieve zero transition waste, when the number of available
machines varies within a fixed range.

Despite the advantages of MDS coded storage elastic com-
puting, it is limited to certain types of computations, such as
linear computations. To overcome this limitation, the authors
in [6] introduced uncoded storage uncoded transmission elastic
computing for heterogeneous systems. They formulated a com-
binatorial optimization problem and derived optimal solutions
with the goal of minimizing the overall computation time for
a given storage placement.

Most of the existing works in elastic computing, including
[1]–[3], [5], [6], primarily focus on matrix-vector multiplica-
tions and utilize uncoded transmission during the communica-
tion phase. In [7], the authors proposed a coded storage coded
transmission elastic computing scheme for matrix-matrix mul-
tiplications. However, this scheme cannot tolerate stragglers,
as the MDS coded storage placement and transmission fix the
number of machines contributing to the decoding process.

In this paper, we introduce the uncoded storage coded
transmission elastic computing (USCTEC) for systems with
heterogeneous computation speeds and storage constraints. We
formulate a new optimization framework aimed at minimizing
the expected computation time over a random distribution
of computation speeds, using Lagrange codes, introduced in
[8], to design coded transmission and computation. Next, we
design optimal USCTEC schemes with straggler tolerance,
given any computation speed and no storage constraints.
In this design, each machine stores a fraction of dataset.
Furthermore, we propose a heuristic algorithm that considers
storage constraints for general speed distributions. Finally, our
results demonstrate that the proposed algorithm outperforms
baseline algorithms that utilize cyclic storage placements, in
terms of both expected computation time and storage size.

Notation: F denotes a finite field, and R denotes the real
field. We use | · | to represent the cardinality of a set or the
length of a vector, and [n] = {1, 2, . . . , n}. Let a[i] denote
the i-th element of vector a, µ[i, j] denote the entry [i, j] of
matrix µ, and µ[i] denote the i-th row of µ. We use (B)D to
represent the sub-matrix of B with column indices D.

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

978-1-7281-9054-9/24/$31.00 ©2024 IEEE 4730

IC
C

 2
0

2
4

 -
 I

E
E

E
 I

n
t
e

r
n

a
t
io

n
a

l
C

o
n

fe
r
e

n
c
e

 o
n

 C
o

m
m

u
n

ic
a

t
io

n
s
 |

 9
7

8
-1

-7
2

8
1

-9
0

5
4

-9
/
2

4
/
$

3
1

.0
0

 ©
2

0
2

4
 I

E
E

E
 |

 D
O

I:
 1

0
.1

1
0

9
/
IC

C
5

1
1

6
6

.2
0

2
4

.1
0

6
2

2
2

4
6

Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a distributed system consisting of a master node
and N virtual machines, denoted by [N]. The computation
speed is represented by a random vector s = (s[1], · · · s[N]),
where s[n] represents the number of row-column multiplica-
tions that machine n can compute per unit of time. The sample
space of the speed distribution is denoted as !s. Given a data
matrix A → Fq→v , in each time step t, with the computation
speed realization s

(t) → !s and the input matrix B
(t) → Fv→r,

a set of Nt available machines, known in the beginning of each
step time and denoted as Nt = {n → [N] : s(t)[n] > 0}, aims
to recover AB

(t) while tolerating up to S stragglers. Define
L as the recovery threshold, which is the minimum number of
machines required for successful decoding. In the following,
we explain how a USCTEC system operates.

A. Storage Placement and Storage Selections

Each machine n → [N] stores a subset of rows of the data
matrix A, denoted by Zn. The storage placement of the system
is denoted by Z = {Zn : n → [N]}. The storage constraint is
presented by a vector e = (e[1], · · · , e[N]), where 0 ↑ e[n]
↑ 1 for n → [N], and e[n] indicates the maximum storage size
of machine n, normalized by the size of A, i.e., |Zn|

q ↑ e[n].
In each time step t, machine n → Nt selects a subset of

its storage I(t)
n ↓ Zn for computation tasks. Let I(t) =

{I(t)
n : n → Nt}. We obtain a specific I(t) by generating

a partitioning vector ω
(t) and a set U (t). Specifically, ω(t) =

(ω(t)[1], · · · , ω
(t)[G(t)]) partitions A into G

(t) disjoint row
blocks, denoted as A = {Ag → Fqω(t)[g]→v : g → [G(t)]}, where∑

g↑[G(t)] ω
(t)[g] = 1 and 0 < ω

(t)[g] ↑ 1 for g → [G(t)].
Next, we generate U (t) = {U (t)

g : g → [G(t)]}. Each U (t)
g is

denoted as the selected machines for Ag , where U (t)
g ↓ Nt,

|U (t)
g | ↔ L + S and each machine in U (t)

g stores Ag . Hence,
the storage selection for machine n is obtained by

I(t)
n = {Ag : n → U (t)

g , g → [G(t)]}. (1)

Note that B(t), I(t), ω(t) and U (t) may change with each
time step, but for simplicity, we omit the reference to the time
step t and denote (·)(t) as (·).

B. Communication Phase

The master partitions matrix B into L blocks of equal size,
denoted as B = {Bl → Fv→ r

L : l → [L]}. Each Bl consists of
r
L columns, indexed by [rL]. As a result, AB consists of G

sets of blocks {AgBl : l → [L]} for g → [G]. Each set will be
recovered by the computation results from selected machines
Ug . To assign computation tasks to Ug for all g → [G], we
define the computation assignment M.

Definition 1: (Computation Assignment) The computation
assignment of the system is M = {(Mg,Pg) : g → [G]},
where the pair (Mg,Pg) is the computation assignment for
machines in Ug . Mg = {Mg,f : f → [Fg]} represents an Fg-
partition of the column indices [rL], i.e.,

⋃
f↑[Fg]

Mg,f = [rL].
Pg = {Pg,f : f → [Fg]} consists of Fg sets of machines,
where Pg,f ↓ Ug and |Pg,f | = L + S. We denote that the

machines in Pg,f are assigned to the indices Mg,f , as they will
be assigned to computation tasks associated with the columns
in Bl with indices Mg,f , for all l → [L].

Based on M, the indices assigned to machine n → [N]
are denoted as Dn,g =

⋃
f↑[Fg]:n↑Pg,f

Mg,f if n → Ug;
otherwise, Dn,g = ↗. The overall assigned indices for machine
n are Dn =

⋃
g↑[G] Dn,g . To generate coded matrices for

transmission, we use Lagrange codes introduced in [8], due
to the low complexity and the capacity of straggler tolerance.
Specifically, the master selects L numbers {εl → F : l → [L]}
and Nt numbers {ϑn → F : n → Nt} such that {ϑn : n →
Nt}↘ {εl : l → [L]} = ↗. The master computes and sends the
following coded matrix to machine n → Nt,

B̃n =
∑

l↑[L]

(Bl)Dn ·
∏

k↑[L]\{l}

ϑn ≃ εk

εl ≃ εk
. (2)

C. Computing Phase and Decoding Phase

For g → [G], machine n → Ug computes and sends the
following matrix to the master,

Hg,n = Ag(B̃n)Dn,g . (3)

For each block AgBl, l → [L], the master decodes sub-block
Ag(Bl)Mg,f , using the computation results from machines in
Pg,f ↓ Ug . To do this, we define Fg polynomials Hg,f (z)
with a degree of L≃ 1 for f → [Fg], where

Hg,f (z) = Ag · Vg,f (z), (4)

Vg,f (z) =
∑

l↑[L]

(Bl)Mg,f ·
∏

k↑[L]\{l}

z ≃ εk

εl ≃ εk
. (5)

For each Hg,f (z), f → [Fg], we have two observations. First,
from (5), we have Vg,f (εl) = (Bl)Mg,f for l → [L]. From
(4), we have Hg,f (εl) = Ag(Bl)Mg,f , i.e., the sub-block is
the evaluation of the polynomial Hg,f (z) at εl. Second, due
to Mg,f ↓ Dn,g ↓ Dn, from (2) and (5), we have

(B̃n)Mg,f = Vg,f (ϑn) (6)

for all n → Pg,f . Then, Hg,f (ϑn)
(a)
= AgVg,f (ϑn)

(b)
=

Ag(B̃n)Mg,f

(c)
= (Hg,n)Mg,f , where (a) is due to (4), (b) is

due to (6) and (c) is due to (3). In other words, the sub-matrix
of computation result, i.e., (Hg,n)Mg,f , is the evaluation of the
polynomial Hg,f (z) at ϑn. Therefore, decoding Ag(Bl)Mg,f

for l → [L] and f → [Fg] means interpolating the polynomial
Hg,f (z) using the computation results (Hg,n)Mg,f from any
L machines in Pg,f , denoted by Lg,f , and evaluating Hg,f (εl).
Using Lagrange interpolation, the master computes

Hg,f (εl)=
∑

n↑Lg,f

(Hg,n)Mg,f ·
∏

n→↑Lg,f\{n}

εl ≃ ϑn→

ϑn ≃ ϑn→
=Ag(Bl)Mg,f .

By combining Ag(Bl)Mg,f for all l → [L] and f → [Fg],
the master can recover the set of blocks {AgBl : l → [L]}.
By executing the processes above for all g → [G], the master
can recover all sets of blocks and outputs AB. Notably,
Lagrange codes ensure that USCTEC schemes tolerate up to

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

4731
Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

S stragglers, since L + S machines in Pg,f are assigned to
compute L+S distinct evaluations of the polynomial Hg,f (z),
while successful decoding requires any L machines.

It can be seen that in each time step both storage selection
and computation assignment, which are determined by ω and
M, need to be designed. In each time step, the system adjust
to a corresponding USCTEC scheme, denoted by (ω,M).

D. USCTEC with Straggler Tolerance Problem Formulation

For a USCTEC system with a random computation speed
s, the goal is to minimize the expected computation time (see
Definitions 4 and 5). To formulate the problem, we introduce
the following four definitions.

Definition 2: (Load Division Matrix) For a USCTEC
scheme (ω,M), the load division matrix is denoted as µ →
RG→N . Each entry µ[g, n] represents the normalized number
of columns multiplied by machine n for row block Ag , i.e.,

µ[g, n] =

{
|Dn,g|
r/L if n → Ug,

0 otherwise,
(7)

where 0 ↑ µ[g, n] ↑ 1 for all g → [G] and n → [N].
Using µ, we can represent Ug = {n → [N] : µ[g, n] > 0}

for g → [G]. Hence, from (1), the storage selection I = {In :
n → Nt} can be represented by the pair (ω,µ), where

In = {Ag : µ[g, n] > 0, g → [G]}. (8)

Definition 3: (Computation Load) For a USCTEC scheme
(ω,M) with a load division matrix µ, the computation load
vector is defined as ε = (ϖ[1], · · · , ϖ[N]), where ϖ[n] =∑

g↑[G] ω[g] · µ[g, n] for n → [N], i.e., ε = ω · µ.
The computation load vector represents the normalized num-
ber of row-column multiplications computed by each machine.

Definition 4: (Computation Time) Given a time step with a
computation speed realization s → !s and a USCTEC scheme
(ω,M), the computation time is defined as c(ω,M) ↭
maxn↑Nt

ε[n]
s[n] = maxn↑Nt

∑
g↑[G] ω[g]·µ[g,n]

s[n] .
Definition 5: (Expected Computation Time) Given a

USCTEC system with a speed distribution s and a stor-
age placement Z that supports a set of USCTEC schemes
T!s

= {(ω,M)}, the expected computation time is defined
as C(Z, T!s

) = Es[c(ω,M)].
Our goal is to minimize the expected computation time in

Definition 5 by jointly designing a set of schemes T!s
and

the storage placement Z . We can formulate the following
combinatorial optimization problem,

argmin
Z,T!s

C(Z, T!s
) (9a)

s.t. 0 ↑ |Zn|
q

↑ e[n] ↑ 1, ⇐n → [N], (9b)

⇐(ω,M) → T!s
:

∑

g↑[G]

ω[g] = 1, 0 ↑ ω[g] ↑ 1, ⇐g → [G], (9c)

⋃

f↑[Fg]

Mg,f =
[
r

L

]
, ⇐g → [G], (9d)

Pg,f ↓ Ug, ⇐f → [Fg], g → [G], (9e)
|Pg,f | = L+ S, ⇐f → [Fg], g → [G], (9f)

where (9b) represents storage constraints. Each USCTEC
scheme (ω,M) corresponding to a speed realization satisfies
constraints (9c)-(9f). (9c) ensures that each row in matrix A

is computed by available machines. (9d) ensures that each
column in Bl, l → [L], is assigned to be computed by available
machines. (9e) ensures that the assigned machines have stored
Ag . (9f) ensures that each column is assigned to L + S

available machines, providing the straggler tolerance of S.
The optimization problem presented in (9) is inherently

combinatorial, making it challenging to find the optimal solu-
tions. In the following sections, we will propose sub-optimal
solutions in two steps. 1) We will relax the storage constraint
(9b) by setting e[n] = 1 for all n → [N], and find optimal
solutions for a given speed realization. 2) We will develop a
heuristic algorithm for general speed distributions, considering
the storage constraint (9b). This algorithm will be based on
the approach developed in Step 1).

III. OPTIMAL USCTEC SCHEMES WITHOUT STORAGE
CONSTRAINTS FOR A GIVEN SPEED REALIZATION

A. Problem Analysis and An Illustrative Example

With the relaxed storage constraint e = 1, where 1 is an
all-1 vector, and given a speed realization s, we let machines
utilize their entire storage, i.e., In = Zn for n → Nt. Problem
(9) is reformulated as the following optimization problem,

argmin
ω,M

c(ω,M) (10a)

s.t.
∑

g↑[G]

ω[g] = 1, 0 ↑ ω[g] ↑ 1, ⇐g → [G], (10b)

⋃

f↑[Fg]

Mg,f =
[
r

L

]
, ⇐g → [G], (10c)

Pg,f ↓ Ug, ⇐f → [Fg], g → [G], (10d)
|Pg,f | = L+ S, ⇐f → [Fg], g → [G]. (10e)

Based on Definition 4, the computation time c(ω,M) is
fixed when the computation load vector ε is fixed. This
insight prompts us to decompose problem (10) into three sub-
problems. First, we solve the optimal computation load vector
ε
↓ that minimizes the computation time. Next, we show the

existence of a storage placement Z↓, induced by a partitioning
vector ω

↓ and a load division matrix µ
↓ as shown in (8),

where ω
↓ · µ↓ = ε

↓. Finally, we prove the existence of a
computation assignment M↓ that satisfies µ

↓. Therefore, an
optimal USCTEC scheme (ω↓

,M↓) is obtained.
Example 1: When N = 6, L = 2, S = 1 and s = (3, 3, 4,

4, 5, 5), the optimal computation load vector is ε↓ = (38 , 3
8 , 1

2 ,
1
2 , 5

8 , 5
8), which ensures that all machines complete computing

at the same time, resulting in a minimum computation time of
c
↓ = 1

8 . Let ω↓ = (38 , 1
4 , 1

8 , 1
8 , 1

8) and

µ→ =





1 0 0 0 1 1
0 0 1 1 1 0
0 1 1 0 0 1
0 1 1 1 0 0
0 1 0 1 0 1




, (11)

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

4732
Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

such that ε
↓ = ω

↓ · µ↓. Using ω
↓, the matrix A is divided

into G = 5 row blocks. Using µ
↓, the storage placement from

(8) is as follows. Z↓
1 = {A1}, Z↓

2 = {A3,A4,A5}, Z↓
3 =

{A2,A3,A4}, Z↓
4 = {A2,A4,A5}, Z↓

5 = {A1,A2} and
Z↓

6 = {A1,A3,A5}. The sets of selected machines are U↓
1 =

{1, 5, 6}, U↓
2 = {3, 4, 5}, U↓

3 = {2, 3, 6}, U↓
4 = {2, 3, 4} and

U↓
5 = {2, 4, 6}. Next, we provide a computation assignment

M↓. Since µ
↓[g, n] = 1 for n → U↓

g , the indices assigned to
each machine n are Dn,g = [r2] from (7). Since |U↓

g | = 3 and
the requirement of |Pg,f | = 3 for f → [Fg], we let Fg = 1 for
all g → [5], i.e., M↓

g = {[r2]} and P↓
g = {U↓

g }. Therefore, we
obtain the optimal USCTEC scheme (ω↓

,M↓).
We will describe the detailed solution as follows.

B. Optimal Computation Load Problem

In this section, we find the optimal computation load.
We introduce the (l, s,ϑ)-Load Problem, where ϑ is a load
constraint vector of length N , and ϱ[n] is the maximum load
that machine n → [N] can be assigned. This problem is used
not only for a given speed realization but also for general
speed distributions with storage constraints in Section IV.

Definition 6: ((l, s,ϑ)-Load Problem (LP)) Given 0 ↑ l ↑
L+S, a speed realization s and a vector ϑ = (ϱ[1], · · · , ϱ[N]),
where l ↑

∑
n↑Nt

ϱ[n] and 0 ↑ ϱ[n] ↑ 1 for all n → [N], the
goal is to find the solution to

min
ε

max
n↑Nt

ϖ[n]

s[n]
(12a)

s.t.
∑

n↑Nt

ϖ[n] = l, (12b)

0 ↑ ϖ[n] ↑ ϱ[n] ↑ 1, ⇐n → Nt, (12c)
ϖ[n] = 0, ⇐n → [N] \ Nt. (12d)

The (l, s,ϑ)-LP is a convex optimization problem. In fact, its
analytical solution can be obtained using Theorem 1 in [2].

Theorem 1: When l = L + S and ϑ = e = 1, the optimal
computation load vector, induced by the solution to problem
(10), is the solution to (L + S, s,1)-LP, without considering
an explicit storage placement and computation assignment.

Proof: Given the optimal solution to problem (10),
(12c) is satisfied, due to ϖ[n] =

∑
g↑[G] ω[g] · µ[g, n] =

∑
g↑[G]:µ[g,n]>0 ω[g] · µ[g, n]

(a)
↑

∑
g↑[G]:µ[g,n]>0 ω[g]

(b)
= |Zn|

q
↑ e[n] = 1, where (a) is due to µ[g, n] ↑ 1 from (7), and
(b) is due to (8). To show (12b), we first claim the following
constraint of the load division matrix,

∑

n↑[N]

µ[g, n] = L+ S (13)

for g → [G]. This is due to
∑

n↑[N] µ[g, n]
(a)
=

∑
n↑Ug

|Dn,g|
r/L =

∑
n↑Ug

∑
f↑[Fg]:n↑Pg,f

|Mg,f |
r/L

(b)
=

∑
f↑[Fg]

∑
n↑Pg,f

|Mg,f |
r/L

(c)
=

∑
f↑[Fg](L+S)·|Mg,f |

r/L

(d)
= L + S, where (a) is due to (7), (b)

is due to (10d), (c) is due to (10e) and (d) is due to (10c).
Hence,

∑
n↑Nt

ϖ[n] =
∑

n↑[N]

∑
g↑[G] ω[g]µ[g, n] =

∑
g↑[G](

ω[g] ·
∑

n↑[N] µ[g, n]
)
=

∑
g↑[G] ω[g] · (L+S) = L+S.

C. Storage Placement Problem

To obtain a partitioning vector ω and a load division matrix
µ, given a load vector ε, we introduce the (ε, ς)-Division
Problem, where ς is the sum of ω and represents a fraction
of the data matrix A to be partitioned. In problem (10), we
consider ς = 1, while ς ⇒= 1 will be used in Section IV.

Definition 7: ((ε, ς)-Division Problem (DP)) Given a com-
putation load vector ε → RN and 0 ↑ ς ↑ 1, where∑

n↑[N] ϖ[n] = (L + S)ς and 0 ↑ ϖ[n] ↑ ς, the goal is
to find a vector ω → RG and a matrix µ → RG→N such that

ε = ω · µ, (14a)
∑

g↑[G]

ω[g] = ς, 0 ↑ ω[g] ↑ 1, ⇐g → [G], (14b)

∑

n↑[N]

µ[g, n] = L+ S, ⇐g → [G], (14c)

0 ↑ µ[g, n] ↑ 1, ⇐n → Nt, g → [G], (14d)
µ[g, n] = 0, ⇐n → [N] \ Nt. (14e)

Theorem 2: The solution to (ε↓
, 1)-DP consists of the

partitioning vector and load division matrix induced by the
optimal solution to problem (10), without considering an
explicit computation assignment M, where ε

↓ is the optimal
computation load obtained from (L+ S, s,1)-LP.

Proof: For any solution to (ε↓
, 1)-DP, i.e., ω↓ and µ

↓,
we let ω

↓ be the partitioning vector in problem (10), as
(10b) is satisfied from (14b). Let µ

↓ be the load division
matrix induced by the solution to problem (10), as (13) is
satisfied from (14c). From (14a), any computation assignment
satisfying µ

↓ achieves the optimal computation time.
To derive a solution to (ε, ς)-DP, we specify (14d) as

µ[g, n] = 1 or 0, such that the desired binary matrix µ contains
L+ S “1”s in each row. We denote the specified problem as
Binary-(ε, ς)-DP, which is a Filling Problem introduced in [9].
Lemma 1 provides the necessary and sufficient conditions for
a solution exist in Binary-(ε, ς)-DP.

Lemma 1: ([9]) The solution to Binary-(ε, ς)-DP exists if
and only if ϖ[n] ↑

∑
i↑[N] ε[i]

L+S for all n → [N].
From Lemma 1, there always exist solutions to Binary-(ε, ς)-
DP, due to ϖ[n] ↑ ς =

∑
i↑[N] ε[i]

L+S for n → [N].
Solution 1: For Binary-(ε, ς)-DP, we present (ε, ς)-Division

Algorithm, by generalizing the algorithm in [9] using a scalar
0 ↑ ς ↑ 1, which originally considers ς = 1. With the input
ε and ς, we obtain outputs ω and µ as shown in Algorithm 1,
which are the solution to Binary-(ε, ς)-DP.

D. Computation Assignment Problem

Given any load division matrix µ of size G⇑N , designing a
computation assignment (Mg,Pg) for g → [G] is equivalent
to solving a Binary-(µ[g], 1)-DP, by two steps as follows. For
clarity, we denote the desired vector and matrix in Binary-
(µ[g], 1)-DP as ω↔ and µ

↔, respectively. First, we let Fg = |ω↔|
and partition the indices [rL] into Fg disjoint sets Mg,1, · · · ,

Mg,Fg of size ω→
1·r
L , · · · ,

ω→
Fg

·r
L respectively. Second, we let

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

4733
Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 (ε, ς)-Division Algorithm
Input: ε, ς

1: g ⇓ 0
2: while ε contains a non-zero element do

3: g ⇓ g + 1
4: L

↔ ⇓
∑N

i=1 ϖ[i]
5: N

↔ ⇓ number of non-zero elements in m

6: o ⇓ indices that sort the non-zero elements of ε in
ascending order

7: Ug ⇓ {o[1], o[N ↔ ≃ (L+ S) + 2], · · · , o[N ↔]}
8: bg ⇓ a {0, 1}-vector where bg[i] = 1 if i → Ug

9: if N
↔ ↔ L+ S + 1 then

10: ωg⇓1
ϑ min

(
L→

L+S ≃ ϖ[o[N ↔ ≃(L+ S)+1]], ϖ[o[1]]
)

11: else

12: ωg ⇓ ϖ[o[1]] · 1
ϑ

13: end if

14: for n → Ug do

15: ϖ[n] ⇓ ϖ[n]≃ ωgς

16: end for

17: end while

18: G ⇓ g

19: ω ⇓ a vector of length N , where ω[g] = ωg ·ς for g → [G]
20: µ ⇓ a matrix of size G⇑N , where µ[g] = bg for g → [G]
Output : ω, µ

Pg,f = {n : µ
↔[f, n] = 1} for f → [Fg]. From (14a), the

obtained (Mg,Pg) satisfies vector µ[g], i.e., ω↔ · µ↔ = µ[g].
Moreover, there always exist solutions to Binary-(µ[g], 1)-DP,
as µ[g, n] ↑ 1 =

∑
i↑[N] µ[g,i]

L+S for all n → [N], satisfying the
condition in Lemma 1. Therefore, we obtain (Mg,Pg) for
g → [G] by solving the Binary-(µ[g], 1)-DP using Solution 1,
and using two steps as discussed.

IV. GENERAL SOLUTIONS FOR USCTEC WITH STORAGE
CONSTRAINTS

Algorithm 2 provides a general solution for USCTEC
systems with storage constraints, by generating a storage
placement Z and storage selections for a general speed
distribution. A detailed illustration is provided in Example 2.
The idea is to unionize the storage selections for all speed
realizations. However, if the combined storage exceeds the
storage constraint of any machine, it results in a storage

overflow. In such cases, the machines with storage overflow
will fill their storage capacity, and the storage placement will
be adjusted for the remaining machines in a similar fashion.

Example 2: Consider a system with N = 6, L = 2, S = 1,
e = (0.6, 0.6, 0.8, 0.8, 1, 1), two speed realizations s1 = (3, 3,
4, 4, 5, 5) and s2 = (3, 1, 2, 2, 3, 5) with equal probabilities.
The locations of rows in data matrix A are represented by
real numbers in the range [0, 1]. Specifically, the aq-th row is
located at a. We simplify all notations (·)si in Algorithm 2 as
(·)i for i → [2]. For example, we simplify ωsi as ωi.

Optimal USCTEC Schemes without Storage Constraints

(Lines 6-9) : For si, i → [2], we obtain the partitioning vector

Algorithm 2 Storage Placement and Storage Selections
Input: !s, N , L, S

1: ς̂ ⇓ 0
2: ω̂s ⇓ 0 of length 1, µ̂s ⇓ 0 of size 1 ⇑N , ϑs ⇓ 1 of

length N , and ls ⇓ L+ S for all s → !s

3: while
∑

s↑!s
ls > 0 do

4: Zn ⇓ ↗ for n → [N]
5: for s → !s do

6: ε̄s ⇓ solution to the (ls, s,ϑs)-LP
7: (ω̄s, µ̄s) ⇓ solution to the (ε̄s, 1≃ ς̂)-DP

8: (ωs,µs) ⇓
(
[ω̂s, ω̄s],

[
µ̂s

µ̄s

])

9: Is ⇓ the storage selection based on (ωs,µs)
10: Zn ⇓ Zn

⋃
Is,n for n → [N]

11: end for

12: if there exists storage overflow on Zn, n → [N] then

13: ς̂ ⇓ the location of the first row that overflows
14: for s → !s do

15: (ω̂s, µ̂s) ⇓
(
ωs↗ϑ̂,µs↗ϑ̂



16: ls ⇓ (L+ S)(1≃ ς̂)
17: s[n] ⇓ 0 for n that has storage overflow on ς̂

18: ϑs ⇓ (1≃ ς̂, · · · , 1≃ ς̂) of length N

19: end for

20: else

21: Is ⇓ the storage selection for s → !s

22: end if

23: end while

Output: Z , {Is : s → !s}

ω̄i, load division matrix µ̄i by solving problems shown in lines

6 and 7. In line 8, we have ωi = [0, ω̄i] and µi =

[
0
µ̄i

]
. We

simplify them as ωi = ω̄i and µi = µ̄i. Specifically, ω1 = (38 ,
1
4 , 1

8 , 1
8 , 1

8), ω2 = (3
16 , 3

8 , 1
16 , 1

16 , 1
16 , 1

4), µ1 is shown in (11).
In line 9, we obtain the storage selection Ii = {Ii,n : n → [6]},
where Ii,n (Isi,n), is the storage selection of machine n.

Storage Overflow (Lines 10-13): If we use I1,n
⋃
I2,n as

the storage placement for machine n → [6], a storage overflow
occurs with machine 1 at the row located at 3

5 . In this case,
we first define the storage placement and storage selections
for rows in [0, 3

5), and then reassign rows in [35 , 1].
Assign Rows in [0, 3

5) (Lines 14-19): Each machine n

→ [6] stores rows in I1,n
⋃

I2,n subsequently, until they reach
the row located at 3

5 . Correspondingly, we modify partitioning
vectors and load division matrices, as shown in line 15. For
each si, i → [2], we truncate ωi to obtain a shorter vector
with a sum of ς̂ = 3

5 , denoted by ωi↓ω̂ . We then obtain
ω1↓ω̂ = (38 ,

9
40) and ω2↓ω̂ = (3

16 ,
3
8 ,

3
80) with length of 2 and 3,

respectively. We truncate µ1 to µ1↓ω̂ with 2 rows, and truncate
µ2 to µ2↓ω̂ with 3 rows, where

µ1↓ω̂ =

[
1 0 0 0 1 1
0 0 1 1 1 0

]
,µ2↓ω̂ =




0 1 0 0 1 1
1 0 1 0 0 1
1 0 0 0 1 1



.

For si, i → [2], the remaining load is (L + S)(1 ≃ ς̂) = 6
5 .

We update si to s
↔
i, where s

↔
i[n] = 0 if n = 1, otherwise

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

4734
Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Storage Placement and Storage Selections in Example 2: The x-axis
represents machine labels. The y-axis represents the location of rows in A.
The union of red and purple bars represents the storage selection for s1. The
union of blue and purple bars represents the storage selection for s2. The
purple bars represent the common storage selection for both s1 and s2. The
red line at y = 3

5 indicates a storage overflow that occurred on machine 1.

s
↔
i[n] = si[n], and update ϑi to ϑ

↔
i = (1≃ ς̂, · · · , 1≃ ς̂).

Reassign the Rows in [35 , 1] (Lines 5-11): For each si,
i → [2], we solve the (65 , s

↔
i,ϑ

↔
i)-LP to obtain load vector ε̄

↔
i,

where ε̄
↔
1 = (0, 6

35 , 8
35 , 8

35 , 2
7 , 2

7) and ε̄
↔
2 = (0, 1

10 , 1
5 , 1

5 , 3
10 ,

2
5). We solve the Binary-(ε̄↔

i, 1≃ ς̂)-DP to obtain a vector ω̄↔
i

and a matrix µ̄
↔
i. The setting of load constrains ϑ↔

i is to ensure
that the obtained ε̄

↔
i satisfies the condition in Lemma 1, such

that Binary-(ε̄↔
i, 1 ≃ ς̂)-DP has solutions. Specifically, ω̄

↔
1 =

(43
250 , 57

500 , 57
500), ω̄

↔
2 = (1

10 , 1
10 , 1

10 , 1
10),

µ̄↑
1 =




0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1



 and µ̄↑
2 =





0 1 0 0 1 1
0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1



.

As shown in line 8, we consider the combined partitioning
vectors and load division matrices, i.e., ω↔

1 = [ω1↓ω̂ , ω̄↔
1]= (38 ,

9
40 , 43

250 , 57
500 , 57

500), ω
↔
2 = [ω2↓ω̂ , ω̄↔

2] = (3
16 , 3

8 , 3
80 , 1

10 , 1
10 , 1

10 ,
1
10), µ

↔
1 =

[
µ1↓ω̂

µ̄
↔
1

]
and µ

↔
2 =

[
µ2↓ω̂

µ̄
↔
2

]
. From (8), we obtain

the storage selection Ii for si, using (ω↔
i,µ

↔
i), where i → [2].

Storage Placement and Storage Selections (Line 21):

It can be seen that there is no storage overflow, by letting
the storage placement for machine n be Zn = I1,n

⋃
I2,n.

Therefore, the storage placement Z = {Zn : n → [6]}, storage
selections I1 and I2 for the system are obtained, which are
visualized in Fig. 1.

V. DISCUSSIONS

We compare Algorithm 2 with USCTEC systems based on
cyclic storage strategy presented in [6]. We use the following
example to compare the storage size and expected computation
time obtained by two USCTEC systems. Consider a system
with N = 12, L = 2, S = 1, and two speed realizations s1

and s2 with equal probabilities, where s1 = (1, 1, 2, 2, 2,
3, 8, 8, 8, 8, 9, 9) and s2 = (8, 8, 2, 3, 9, 9, 2, 1, 8, 5, 2,
8). We define the storage constraints as e = (Q

12 , · · · ,
Q
12) of

length 12, where Q → {6, 7, 8, 9, 10, 11, 12}. The USCTEC
system based on cyclic storage placement [6] operates as
follows. First, each machine utilizes the full storage capacity

by defining ω = (1
12 , · · · ,

1
12) of length 12, and letting the n-

th machine store Q blocks An%N , · · · , A(n+Q↘1)%N , where
we define a%N ↭ a≃⇔a↘1

N ↖N . Second, it can be shown that,
given the storage placement, the system achieves the minimum
computation time. Specifically, For g → [12], Ug is the set of
all machines that store block Ag , and µ[g] is the solution
to (L + S, sUg ,1)-LP, where sUg is a vector containing the
computation speeds of machines in Ug . By varying storage
constraints, we have comparisons as shown in Table I.

TABLE I
COMPARISONS TO CYCLIC STORAGE PLACEMENT

Cyclic Storage Placement Algorithm 2
Q
N Storage Size C(Z, T!s

) Storage Size C(Z, T!s
)

6
12 6 0.07235 5.16591 0.09164
7
12 7 0.06072 5.23310 0.04812
8
12 8 0.05371 5.23480 0.04766
9
12 9 0.05101 5.23480 0.04766
10
12 10 0.04927 5.23480 0.04766
11
12 11 0.04812 5.23480 0.04766
12
12 12 0.04766 5.23480 0.04766

From Table I, it can be seen that the proposed algorithm
achieves a smaller storage size compared to the baseline
algorithm. In addition, except the case when the storage
constraint is 1

2 , the achieved expected computation time of
the proposed algorithm is always smaller than or equal to
the baseline algorithm. In particular, as the storage constraint
increases to 2

3 and larger, we can show that the systems using
Algorithm 2 achieve the optimal expected computation time
of 0.04766 and a storage size of 5.23480.

ACKNOWLEDGEMENT

This research was sponsored by the National Science Foun-
dation (NSF) CAREER Award 2145835.

REFERENCES

[1] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,
“Coded elastic computing,” in 2019 IEEE International Symposium on

Information Theory (ISIT), 2019, pp. 2654–2658.
[2] N. Woolsey, R.-R. Chen, and M. Ji, “Coded elastic computing on

machines with heterogeneous storage and computation speed,” IEEE

Transactions on Communications, vol. 69, no. 5, pp. 2894–2908, 2021.
[3] N. Woolsey, J. Kliewer, R.-R. Chen, and M. Ji, “A practical algorithm de-

sign and evaluation for heterogeneous elastic computing with stragglers,”
in 2021 IEEE Global Commun. Conf. (GLOBECOM), 2021, pp. 1–6.

[4] S. Kiani, T. Adikari, and S. C. Draper, “Hierarchical coded elastic
computing,” in IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2021, pp. 4045–4049.
[5] S. H. Dau, R. Gabrys, Y.-C. Huang, C. Feng, Q.-H. Luu, E. J. Alzahrani,

and Z. Tari, “Transition waste optimization for coded elastic computing,”
IEEE Trans. Inf. Theory, vol. 69, no. 7, pp. 4442–4465, 2023.

[6] M. Ji, X. Zhang, and K. Wan, “A new design framework for heterogeneous
uncoded storage elastic computing,” in 2022 20th International Sympo-

sium on Modeling and Optimization in Mobile, Ad hoc, and Wireless

Networks (WiOpt), 2022, pp. 269–275.
[7] Y. Yang, M. Interlandi, P. Grover, S. Kar, S. Amizadeh, and M. Weimer,

“Coded elastic computing,” arXiv:1812.06411v3, 2018.
[8] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A.

Avestimehr, “Lagrange coded computing: Optimal design for resiliency,
security, and privacy,” in Proc. IEEE Int. Conf. on Artificial Intelligence

and Statistics (AISTATS), 2019, pp. 1215–1225.
[9] N. Woolsey, R.-R. Chen, and M. Ji, “An optimal iterative placement

algorithm for pir from heterogeneous storage-constrained databases,” in
2019 IEEE Global Communications Conference (GLOBECOM), 2019,
pp. 1–6.

2024 IEEE International Conference on Communications (ICC): Communication Theory Symposium

4735
Authorized licensed use limited to: University of Florida. Downloaded on March 26,2025 at 16:29:19 UTC from IEEE Xplore. Restrictions apply.

