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Abstract—This paper studies information theoretic secure

aggregation in federated learning, involving K distributed users

and a central server. “Secure” means that the server can only

get aggregated locally trained model updates, with no other

information about the local users’ data being leaked to the server.

In addition, the effect of user dropouts is considered, where

at most K → U users can drop and the identity of these users

cannot be predicted in advance. Users share keys in an offline

way independently of the models, and send the encrypted models

to the server in the model aggregation phase. The objective of this

problem is to minimize the number of transmissions in the model

aggregation phase. A secure aggregation scheme with uncoded

groupwise keys, where any S users share an independent key, was

recently proposed to achieve the same optimal communication

cost as the best scheme with coded keys when S > K → U.

In this paper, we additionally consider the potential impact

of user collusion, where up to T users may collude with the

server. For this setting, we propose a secure aggregation scheme

with uncoded groupwise keys that guarantees secure aggregation

with U non-dropped users and T colluding users provided that

K→U+ 1 ↑ S ↑ K→T, and is proven to achieve the optimality

without any constraint on the keys.

I. INTRODUCTION

The emergence of federated learning [1] allows multiple
participants to train models collaboratively: instead of central-
izing data on a server, models are sent to the users, trained
locally based on the local data of users, and only aggregated
model updates are shared [2]–[4]. It has been shown that their
updated models can still reveal some information about their
private data [5]. Secure aggregation was originally introduced
in [6] by using cryptographic tools, which guarantees that
the server cannot obtain any other information about users’
local data, except the sum of the users’ updated models. The
scheme in [6] is formed by two phases, referred to as key
sharing and model aggregation. During the key sharing phase,
some keys (unknown to the server) are shared among the
users. In the subsequent model aggregation phase, the users
mask their updated models by the keys and then send them to
the server. Following the seminal work in [6], various crypto-
graphic secure aggregation schemes have been proposed based
on different key sharing and model aggregation protocols,

according to different threat scenarios; refer to [7], [8] for
comprehensive reviews on secure aggregation protocols.

The first information theoretic formulation on secure ag-
gregation was introduced in [9] containing one server and
K users, each with some local data. The potential effect of
user dropouts and collusion was also considered in [9].1 The
problem in [9] considers one iteration of the learning process,
and assumes that the key sharing is performed offline, where
the keys could be any random variable independent of the
users’ local data. In order to guarantee secure aggregation
against user dropouts, there should be two-round transmissions
in the model aggregation phase, where in the first round each
user transmits masked updated models, and then in the second
round, according to the identity of the dropped users in the
first round, each non-dropped user further transmits some
messages for the sake of decryption. The security constraint
imposes that, except for the computation task (i.e., the sum
of the updated models from the non-dropped users after the
first round), the server cannot obtain any other information
about the non-colluded users’ local data, even if it knows the
keys and the input vectors from at most T colluding users.
The objective is to characterize the region of all achievable
communication rates (R1,R2), where R1 (resp. R2) is defined
as the largest first round (resp. second round) transmission
load among all users (resp. users in U1). The capacity region
{(R1,R2) : R1 → 1,R2 → 1/(U↑T)} was characterized in [9],
where U is the minimum number of non-dropped users.

The information theoretic secure aggregation schemes [9],
[10] are built on coded keys, where the keys were either
assigned by a trusted third party or shared through private
links among users. Recently in [11], an additional constraint
on the offline keys was considered into the information the-
oretic secure aggregation problem, referred to as “uncoded
groupwise keys”, where “groupwise” means that each key is
shared among S users and “uncoded” means that the keys

1Due to some practical problems such as unstable network connections or
delayed transmissions, the effect of user dropouts is common in federated
learning, and the identity of the dropped users is always unpredictable in
advance. Besides, when the server is an active adversary, it may collude with
some users and be able to obtain the keys and updated models of those users.
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(a) The transmissions in the first round.

(b) The transmissions in the second round.

Fig. 1: An example of (K,U, S,T) = (4, 2, 3, 1) information
theoretic secure aggregation with uncoded groupwise keys.

are mutually independent. Different from the generation of
coded keys, uncoded groupwise keys could be generated by
key agreement protocols such as [12]–[15] even in the absence
of a trusted third party or private links. Without user collusion
(i.e., T = 0), the capacity region of secure aggregation with
uncoded groupwise keys was characterized in [11], [16]; note
that, the capacity region coincides with that for unconstrained
keys in [9] only when S > K↑ U. In [17], we proposed two
schemes with uncoded groupwise keys, which can achieve the
same capacity region as in [9] when S = K ↑ U + 1 and
S = K↑ T, respectively.

Main Contribution: When K↑ U+ 1 ↓ S ↓ K↑ T, we
propose a secure aggregation scheme that achieves the same
capacity region as in [9]. When S > K ↑ T, it is proved
that secure aggregation is impossible. The proposed scheme
with additional tolerance against user collusion is not a direct
extension from the scheme in [11], and is built on a new
interference alignment strategy.

Notation Convention: Sets are denoted using calligraphic
symbols. Vectors and matrices are represented in bold. System
parameters are indicated in sans-serif font. The notation [a :
b] defines a range as {a, a + 1, . . . , b}. [n] denotes the set
{1, 2, . . . ,n}. Fq represents a finite field with order q. For a
set S and an integer s ↓ |S|,

(S
s

)
represents the collection

of all subsets of S containing exactly s elements. Entropies
are calculated in base q, where q denotes the field size. For
a set S , we denote the i

th smallest element by S(i). a([b])
represents the vector composed by the first b elements of a.

II. SYSTEM MODEL

We consider the (K,U, S,T) information theoretic secure
aggregation problem with uncoded groupwise keys, as illus-
trated in Fig. 1. The server aims to recover

∑
k→[K] Wk from

K > 1 users, where each input vector Wk can only be
computed by user k and contains L uniformly i.i.d. symbols
over a finite field Fq. Each group of S users share and store
a common key in the key sharing phase. More precisely, for
each V ↔

([K]
S

)
, the users in V share a key denoted by ZV ,

with large enough size. The keys are mutually independent of
each other and independent of the data; denote the set of keys
stored by user k where k ↔ [K] by Zk = {ZV : k ↔ V}. After
the key sharing phase, the model aggregation phase contains
two rounds of transmissions in order to tolerate user dropouts.

First round. Each user k ↔ [K] sends the message Xk to
the server, which is a function of Wk and Zk, i.e.,

H(Xk|Wk,Zk) = 0. (1)

Due to the user dropouts, the server only receives (Xk : k ↔
U1), where U1 ↗ [K] and |U1| → U. The communication rate
in the first round R1 is defined as the maximum transmission
load among all users, where R1 := maxk→[K] H(Xk)/L.

Second round. The server informs the users in U1 of the
set U1. Each user k ↔ U1 then sends the message Y

U1
k to the

server, which is a function of (Zk,Wk,U1), i.e.,

H

(
Y

U1
k |Zk,Wk,U1

)
= 0. (2)

Denote the set of non-dropped users after the second round
by U2, where U2 ↗ U1 and |U2| → U. So the server receives(
Y

U1
k : k ↔ U2

)
from the second round. The communication

rate in the second round R2 is defined as the maximum
transmission load among users over all possible sets of U1,
where R2 := maxU1↑[K]:|U1|↓U maxk→U1 H

(
Y

U1
k

)
/L.

Decodability. The server should recover
∑

k→U1
Wk from

the two-round transmissions (Xk : k ↔ U1),
(
Y

U1
k : k ↔ U2

)
;

thus for any U2 ↗ U1 ↗ [K], where |U1| → |U2| → U,

H

(
∑

k→U1

Wk

∣∣∣(Xk : k ↔ U1), (Y
U1
k : k ↔ U2)

)
= 0. (3)

Security. For any set T where T ↗ [K] and |T | ↓ T, the
server cannot obtain any other information about the input
vectors of non-colluding users, except for

∑
k→U1

Wk; for any
U1 ↗ [K] where |U1| → U, and any T ↗ [K] where |T | ↓ T,

I
(
(Wk : k ↔ [K]); (Xk : k ↔ [K]), (Y U1

k : k ↔ U1)
∣∣∣
∑

k→U1

Wk,

(Wk,Zk : k ↔ T )
)
= 0. (4)

Objective. If a secure aggregation scheme with uncoded
groupwise keys satisfies the encodability constraints in (1)
and (2), the decodability constraint in (3), and the security
constraint in (4), the rate tuple of the scheme (R1,R2) is
achievable. Our objective is to find the capacity region Rω,
defined as the closure of the set of all achievable rate tuples.
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Existing converse and achievable bounds on the consid-

ered problem. A converse bound for the information theoretic
secure aggregation problem against user dropouts and user
collusion without the uncoded groupwise keys was proposed in
[9], which can be directly applied to our considered problem.

Theorem 1 ( [9]). For the (K,U, S,T) information theoretic
secure aggregation problem with uncoded groupwise keys, if
U > T, each achievable rate tuple (R1,R2) satisfies

R1 → 1, R2 → 1/(U↑ T). (5)

The converse bound in Theorem 1 was shown to be achiev-
able in [9], [10], both with coded keys. It was also proved
in [9] that, secure aggregation is possible only when U > T.
The capacity region for the case T = 0 was characterized
in [11], [16]. So in the rest of this paper, we will only

consider the case U > T > 0.

Theorem 2 ( [17]). For the (K,U, S,T) information theoretic
secure aggregation problem where S = K↑ U+ 1,

Rω = {(R1,R2) : R1 → 1,R2 → 1/(U↑ T)} . (6)

When K↑ U+ 1 ↓ S ↓ K↑ T, (R1,R2) is achievable if

R1 → 1,R2 → 1

S+ U↑ K
. (7)

It can be seen from (7) that, when S = K↑ T, the scheme
in [17] can achieve the capacity region {R1 → 1,R2 → 1

U↔T},
which coincides with the converse in (5).

III. MAIN RESULTS

When S > K ↑ T, we have
(K↔T

S

)
= 0 and thus each key

is known by at least one user colluding with the server. So
the server knows all the keys in the system, and obviously
secure aggregation is not possible. Our main contribution in
this paper is proposing a scheme with uncoded groupwise keys
that achieves the optimal rate when K↑ U+ 1 ↓ S ↓ K↑ T.

Theorem 3. For the (K,U, S,T) information theoretic secure
aggregation problem with uncoded groupwise keys, when K↑
U+ 1 ↓ S ↓ K↑ T, we have

Rω =

{
(R1,R2) : R1 → 1,R2 → 1

U↑ T

}
. (8)

The converse bound for Theorem 3 can be derived from
Theorem 1. For the achievability, we propose a new secure
aggregation scheme with uncoded groupwise keys against user
dropouts and user collusion in Section IV. By Theorem 3, it is
interesting to see that when K↑U+1 ↓ S ↓ K↑T, uncoded
groupwise keys can achieve the general optimality character-
ized in [9]; when S > K ↑ T, as explained before, secure
aggregation with uncoded groupwise keys is not possible.

Note that the proposed scheme is not a direct extension from
the secure aggregation scheme in [11], which works for the
case S → K↑ U+ 1 and T = 0. The reasons are as follows.

• To guarantee the security against user collusion, a
stronger constraint on the security is required. The secu-

rity proof in this paper is based on a genie-aided method,
which is not required for the case T = 0.

• For the case T = 0, since having more users knowing
the same key will not hurt and when S → K ↑ U + 1
the capacity region does not change, it suffices to only
consider the case S = K ↑ U + 1 and propose a secure
aggregation scheme, as in [11]. However, for the case
T > 0, increasing S may lead to a higher threat, since the
server will know more keys by colluding with users. So
we cannot directly state that the scheme for S > K↑U+1
could be directly obtained from that for S = K↑ U+ 1.

IV. PROOF OF THEOREM 3

Recall that when S = K↑T, the scheme in [17] can achieve
the capacity region in (8). In the following, we will propose a
secure aggregation scheme for the case K↑U+1 ↓ S < K↑T,
which can achieve the capacity region in (8).

For each user k ↔ [K], we divide Wk into U ↑ T
non-overlapping and equal-length pieces, defined as Wk =
(Wk,1, . . . ,Wk,U↔T), each containing L/(U ↑ T) uniformly
i.i.d. symbols on Fq. Without loss of generality, we can assume
that q is large enough as shown in [9].

For each V ↔
([K]

S

)
, the users in V share a key ZV with

L/(U ↑ T) uniformly i.i.d. symbols on Fq, next we generate
a U-length vertical coefficient vector aV := [aV,1, . . . , aV,U]T,
where aV,i ↔ Fq for each i ↔ [U]. Note that the selection of
aV is the non-trivial step in the proposed scheme, we adopt a
new coefficient vector design different from that in [17] (which
cannot guarantee the security and decodability for the regime
S > K↑U+1). The selection will be clarified later, which is
based on a new interference alignment method.

First round. In the first round of transmission, each user
k ↔ [K] sends Xk = (Xk,1, . . . ,Xk,U↔T) to the server,

Xk,j = Wk,j +
∑

V→([K]S ):k→V

aV,jZV,k, ↘j ↔ [U↑ T], (9)

where the vector Xk contains L symbols, leading to R1 = 1.
Since S → K ↑ U + 1, all sets V ↔

([K]
S

)
satisfy V ≃ U1 ⇐= ⇒.

Hence, after receiving (Xk : k ↔ U1), the server recovers

∑

k→U1

Xk,j =
∑

k→U1

Wk,j +
∑

V→([K]S ):V↗U1 ↘=≃

(
aV,j

∑

k1→V↗U1

ZV,k1

)

=
∑

k→U1

Wk,j +
∑

V→([K]S )

aV,jZ
U1
V , ↘j ↔ [U↑ T],

where we define a coded key as ZU1
V :=

∑
k1→V↗U1

ZV,k1 , for
each V ↔

([K]
S

)
. Thus to obtain

∑
k→U1

Wk, the server should
further recover

∑
V→([K]S )

aV,jZ
U1
V , ↘j ↔ [U↑T] in the second

round. We denote the sets in
([K]

S

)
by S1, . . . ,S(KS), and for

each k ↔ [K] denote the sets in
([K]\{k}

S

)
by Sk

1 , . . . ,Sk
(K→1

S )
.
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Second round. In the second round, we let the server
recover U-dimensional keys,




F1
...
FU



 =


aS1 , . . . ,aS(KS)






Z
U1
S1

...
Z

U1
S(KS)



 , (10)

where each Fj , j ↔ [U] contains L/(U ↑ T) symbols. We let
each user transmit one linear combination of F1, . . . ,FU; thus
user k ↔ U1 sends

Y
U1
k = sk




F1
...
FU



 = sk


aS1 , . . . ,aS(KS)






Z
U1
S1

...
Z

U1
S(KS)



 , (11)

where sk is a row vector with U elements. sk should be a left

null space vector of


aSk

1
, . . . ,aSk

(K→1
S )


, corresponding to the

coded keys which user k cannot compute. Each Y
U1
k consists

of L/(U↑ T) symbols, which leads to R2 = 1/(U↑ T).
We can treat each coded key which user k cannot compute

as an interference to user k. To guarantee the existence of sk,
the following constraint should be satisfied.

Constraint 1 (Encodability constraint). For each user k ↔ [K],
aSk

1
, . . . ,aSk

(K→1
S )


has rank no more than U↑ 1.

In other words, Constraint 1 imposes that the dimension of
the interferences to user k should be no more than U↑ 1.

For the decodability, we let the server can recover
F1,F2, . . . ,FU from any U users in the second round. So we
have the following constraint.

Constraint 2 (Decodability constraint). Any U vectors in {sk :
k ↔ [K]]} are linearly independent.

We denote all sets V ↔
([K]\T

S

)
by ST ,1, . . . ,ST ,(K→|T |

S ) and

all sets V ↔
([K]\T

S

)
where k ↔ V by Sk

T ,1
, . . . ,Sk

T ,(K→|T |→1
S→1 )

.
Finally, we generate the following constraint for the informa-
tion theoretic security against user collusion.

Constraint 3 (Security constraint). For each k ↔ [K] and
each T ↗ [K] \ {k} where |T | ↓ T, we have (recall a([b])
represents the vector containing the first b elements of a)


aSk

T ,1
([U↑ |T |]), . . . ,aSk

T ,(K→|T |→1
S→1 )

([U↑ |T |])


(12)

has rank equal to U↑ |T |.

If Constraints 1-3 are satisfied, the resulting secure aggrega-
tion scheme has the property in the following lemma, whose
proof is given in Appendix A of [18].

Lemma 1. If Constraints 1-3 are satisfied, then for any T ↗

[K] where |T | ↓ T, we have

aST ,1

, . . . ,aS
T ,(K→|T |

S )


has rank equal to U↑ |T |. (13)

We provide an intuitive proof on the security if Con-
straints 1-3 are satisfied.

Consider the case |T | = T. For each k ↔ [K] \ T ,

the matrix


aSk

T ,1
([U↑ |T |]), . . . ,aSk

T ,(K→|T |→1
S→1 )

([U↑ |T |])


in (12), which is the coefficient matrix of the keys in
Xk,1, . . . ,Xk,U↔T unknown to the users in T , has rank U↑T.
In addition, the keys are independent of Wk. Hence, from
Xk = (Xk,1, . . . ,Xk,U↔T) and the keys known by the users
in T , the server cannot get any information about Wk. In

addition, the matrix

aST ,1

, . . . ,aS
T ,(K→|T |

S )


in (13) has rank

equal to U ↑ T, thus the server can additionally recover
U↔T
U↔TL = L symbols from the second round transmission. By
the seminal result by Shannon [19], the server can at most
recover L symbols on (Wk : k ↔ [K] \ T ), which is exactly∑

k→U1\T Wk by the decodability.
Consider the case |T | < T. A genie-aided method is

used to prove the security. We consider a genie-aided system,
in the first round each user k ↔ [K] also sends Xk,j =
Wk,j +

∑
V→([K]S ):k→V aV,jZV,k, ↘j ↔ [U ↑ T + 1 : U ↑ |T |],

where Wk,j for j ↔ [U↑T+1 : U↑ |T |] represents the virtual
input vector piece uniformly i.i.d. over F

L
U→T⇐(T↔|T |)
q . Since

the matrix


aSk

T ,1
([U↑ |T |]), . . . ,aSk

T ,(K→|T |→1
S→1 )

([U↑ |T |])


in (12) has rank to U ↑ |T |, from Xk,1, . . . ,Xk,U↔|T | and
the keys known by the users in T the server cannot get
any information about Wk,1, . . . ,Wk,U↔|T |. In addition, the

matrix

aST ,1

, . . . ,aS
T ,(K→|T |

S )


in (13) has rank equal to

U ↑ |T |; thus the server can recover U↔|T |
U↔T L symbols from

the second round transmission, which are {
∑

k→U1\T Wk,j :
j ↔ [U↑|T |]} by the decodability. Moreover, the virtual pieces
of the input vectors are independent of the real pieces; thus
from {

∑
k→U1\T Wk,j : j ↔ [U ↑ |T |]}, the server can only

obtain
∑

k→U1\T Wk about the real pieces.
Hence, the security of the proposed scheme is proved. If we

can select the coefficient vectors aV where V ↔
([K]

S

)
satisfying

Constraints 1-3, the proposed scheme is achievable with R1 =
1 and R2 = 1/(U↑T). Next we introduce our selection on the
U-dimension vectors aV where V ↔

([K]
S

)
through an example

to illustrate the main idea, the general description is given in
Appendix C of [18].

Example 1 ((K,U, S,T) = (6, 4, 4, 1)). For each V ↔([6]
4

)
, we aim to choose a coefficient vector aV =

[aV,1, aV,2, aV,3, aV,4]T, satisfying Constraints 1-3.
We generate a 4 ⇑ 4 matrix [m1,m2,m3,m4] =



1 2 3 2
3 2 3 3
1 4 1 3
1 4 1 4



 , whose elements are uniformly i.i.d. over Fq.
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Recall S(i) represents the i
th smallest element in S . For each

V ↔
([6]
4

)
we define

MV = {MV(1), . . . ,MV(|MV |)} := V ≃ [3 : 6].

Our main strategy is to let aV be a vector in the linear space
spanned by mMV(1)↔2,mMV(2)↔2, . . . ,mMV(|MV |)↔2,

aV = [mMV(1)↔2,mMV(2)↔2, . . . ,mMV(|MV |)↔2]bV

= bV,1mMV(1)↔2 + · · ·+ bV,|MV | mMV(|MV |)↔2, (14)

where bV := [bV,1, . . . , bV,|MV |]
T is a column vector to be

designed. For example, a{2,3,4,6} is in the linear space spanned
by m1,m2,m4.

After determining the composition of each vector aV in (14),
we next select the vector bV . We generate two 4-dimensional
row vectors s1 and s2, whose elements are uniformly i.i.d. over
Fq. For example, let s1 = (2, 2, 3, 1) and s2 = (1, 3, 2, 1).
Recall that s1 and s2 represent the second-round coding
vectors for users 1 and 2, respectively, as defined in (11).

For all sets V ↔
([6]
4

)
, we divide them into three classes:

|V ≃ [K↑U]| = |V ≃ [2]| = 2, |V ≃ [2]| = 1, and |V ≃ [2]| = 0.
First class. For each V ↔

([6]
4

)
where |V ≃ [2]| = 2, by

definition we have bV = [bV,1, bV,2]T. We choose each of
bV,1, bV,2 uniformly i.i.d. over Fq. For example, we let

a{1,2,3,4} = 4m1 +m2, a{1,2,3,5} = 4m1 + 3m3, (15a)
a{1,2,3,6} = 2m1 + 4m4, a{1,2,4,5} = 4m2 + 3m3, (15b)
a{1,2,4,6} = m2 + 3m4, a{1,2,5,6} = m3 + 2m4. (15c)

Second class. For each V ↔
([6]
4

)
where |V ≃ [2]| = 1,

by definition we have bV = [bV,1, bV,2, bV,3]T. We fix bV by
solving a linear equation. More precisely,

• if V≃[2] = {1}, the set V does not contain 2; thus for the
encodability of the second-round transmission by user 2,
we should have s2aV = 0, satisfying which we choose
the value of bV . For example, when V = {1, 3, 4, 5},
we choose b{1,3,4,5} satisfying s2a{1,3,4,5} = 0. We first
randomly choose b{1,3,4,5},1 = 4 and b{1,3,4,5},2 = 3,
which leads a{1,3,4,5} = 4m1 + 3m2 + b{1,3,4,5},3 m3;
and then solve b{1,3,4,5},3 = ↑ 112

15 by s2a{1,3,4,5} = 0;
• if V≃[2] = {2}, the set V does not contain 1; thus for the

encodability of the second-round transmission by user 1,
we should have s1aV = 0, satisfying which we choose
the value of bV .

Third class. Finally, for each set V ↔
([6]
4

)
where

|V ≃ [2]| = 0; in this example, only {3, 4, 5, 6}
is in the third class. By (14), a{3,4,5,6} is a lin-
ear combination of m1, . . . ,m4, and thus we have
b{3,4,5,6} := [b{3,4,5,6},1, b{3,4,5,6},2, b{3,4,5,6},3, b{3,4,5,6},4]

T.
Since {3, 4, 5, 6} does not contain 1 nor 2, for the encodability
of the second-round transmission by users 1 and 2, we should
have s1a{3,4,5,6} = 0 and s2a{3,4,5,6} = 0, satisfying which
we choose b{3,4,5,6}. We can first choose two elements of
b{3,4,5,6} uniformly and i.i.d. over Fq, and then solve the
remaining two elements by s1a{3,4,5,6} = 0 and s2a{3,4,5,6} =
0; for example we choose b{3,4,5,6} = [1, 23

11 , 5,↑
68
11 ]

T.

In conclusion, the selection on aV where V ↔
([6]
4

)
is given

in Table I of [18], which can be found in Appendix B of [18].
Next, we show that this selection satisfies Constraints 1-3.

Constraint 1. For user 1, Constraint 1 imposes that
the matrix [a{2,3,4,5},a{2,3,4,6},a{2,3,5,6},a{2,4,5,6},a{3,4,5,6}]
has rank no more than U ↑ 1 = 3. This constraint is
satisfied because by construction the matrix has a non-zero
left null vector s1 while the dimension of this matrix is
4 ⇑ 5. Similarly, Constraint 1 is satisfied for user 2. Then
for user 3, Constraint 1 imposes that [a{1,2,4,5},a{1,2,4,6},
a{1,2,5,6},a{1,4,5,6},a{2,4,5,6}] has rank no more than U↑1 =
3. This constraint is satisfied because by construction each
column of the matrix is a linear combination of m2,m3,m4.
Similarly, Constraint 1 is also satisfied for users 4, 5, 6.

Constraint 2. By our construction, we can check that
s1 = (2, 2, 3, 1), s2 = (1, 3, 2, 1), s3 = (1,↑1,↑1, 1),
s4 = (0, 1,↑9, 6), s5 = (↑5, 1, 1, 1), s6 = (0, 0,↑1, 1),
where any U = 4 of them are linearly independent.

Constraint 3. Consider the case |T | = 0. For each user
k ↔ [6], we can pick 4 vectors aV where k ↔ V such
that these vectors are linearly independent. For users 1, 2,
a{1,2,3,4},a{1,2,3,6},a{1,2,4,5},a{1,2,5,6} are linearly indepen-
dent. For user 3, a{1,2,3,4},a{1,3,4,5},a{1,3,4,6},a{1,3,5,6} are
linearly independent; similarly for user 4, 5, 6.

Consider the case |T | = 1. For each user k ↔ [2], for
example for user 1, if T = {2}, a{1,3,4,5}([3]), a{1,3,4,6}([3]),
a{1,3,5,6}([3]) are linearly independent; if T = {i} where
i ↔ [3 : 6], for example i = 3, a{1,2,4,5}([3]), a{1,2,4,6}([3]),
a{1,2,5,6}([3]) are linearly independent. For each user k ↔ [3 :
6], for example for user 3, if T = {i} where i ↔ [2], for
example i = 1, a{2,3,4,5}([3]), a{2,3,4,6}([3]), a{2,3,5,6}([3])
are linearly independent; if T = {i} where i ↔ [4 : 6], for
example i = 4, a{1,2,3,5}([3]), a{1,2,3,6}([3]), a{1,3,5,6}([3])
are linearly independent. Hence, Constraint 3 is satisfied. ↭
Remark 1. To design a secure aggregation scheme against
user collusion, the construction structure on the coefficient
vectors aV where V ↔

([K]
S

)
satisfying Constraints 1-3 was

originally proposed in [17]. Under this structure, a selection
on the coefficient vectors was proposed in [17] for the case
S = K ↑ U + 1, which heavily depends on the fact that each
coded key is unknown to exactly K ↑ S = U ↑ 1 users. In
this paper, the selection on the coefficient vectors are more
flexible in terms of the system parameters; that is, by the new
proposed strategy on the generation of the coefficient vectors
in (14), we can cancel the interference of each coded key in
the transmissions by less than U↑ 1 users.
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