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Abstract—In this paper, we introduce a novel framework,
Neural-HATS for inferring causal structures in time series data
using a hybrid method. Neural-HATS uniquely combines condi-
tional independence (CI) testing with continuous optimization-
based learning methods to enhance causal discovery. Specifically,
it leverages an attention-based encoder-decoder architecture
with Kernel Conditional Independence (KCI) testing to enable
direct CI tests between time series. These CI test results are
integrated into continuous optimization algorithms, enhancing
both causal inference accuracy and the effectiveness of continuous
optimization models. Experimental evaluations demonstrate that
Neural-HATS achieves improved causal graph accuracy.

Index Terms—-causal discovery, hybrid method, time series,
attention-based encoder-decoder, continuous optimization

I. INTRODUCTION

The theory of causality is a fundamental part of scientific
research and is essential for advancing solutions in various
fields like earth science, commerce, politics, healthcare, etc.
[4], [7], [15]. Causal discovery, which aims to identify underly-
ing causal structures in data, traditionally relies on randomized
controlled trials (RCTs). However, due to their cost and ethical
concerns, RCTs are often impractical [16]. With the surge in
digital data in recent days, data-driven methods employing
machine learning and artificial intelligence have become vital
tools for advancing causal analysis and uncovering cause-and-
effect relationships.

The causal discovery methods fall into two primary types:
constraint-based and score-based. Constraint-based methods
use conditional independence tests to infer causal directions
but can be computationally intensive [2], [6]. In contrast,
score-based methods optimize a score function to select the
best causal structure. Recent score-based methods employ
continuous optimization and deep learning, but they typically
require large datasets, which may be limiting in practical
applications [12], [16].

Most causal discovery research centers on static data, yet
many real-world datasets are time series, requiring methods
suited to temporal structures [3], [7]. While causal discovery
for time series has advanced, constraint-based methods are
limited due to the challenges of Conditional Independence (CI)
testing in temporal data. Traditional CI tests, including kernel-
based ones like KCI [17], aren’t directly applicable to time-
dependent structures, and adaptations like PCMCI [13] often
rely on assumptions such as stationarity or sparse data points
per time step.
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Fig. 1: Overview of the proposed hybrid temporal causal
discovery architecture.

Granger causality, foundational in time series causal in-
ference, asserts that one series is causally related to an-
other if its past values improve the prediction of the other’s
future values, assuming causality precedes effect and lacks
hidden confounders [5], [14]. While initially linear [8], [9],
Granger causality now extends to non-linear settings through
frameworks like TCDF [11], DYNOTEARS [12], GVAR [10],
NTiCD [1], etc.

In this work, we introduce a framework for CI testing
in time series using an attention-based encoder-decoder ar-
chitecture with LSTMs to generate vector representations
that capture conditional dependencies. These vectors are then
passed through a multilayer perceptron (MLP) to predict
future states. After end-to-end training, the encoder-decoder
produces representations that can be used for CI testing via
KCI. Thus, we propose an algorithm that performs CI testing
through time series prediction. By leveraging low-order CI
tests, we construct a CI matrix, which is then incorporated
as a regularization constraint in the loss function of score-
based optimization methods for causal structure discovery.
This approach efficiently guides the optimization process,
avoiding exhaustive testing. Our experiments demonstrate that
CI tests enhance the performance of state-of-the-art continuous
optimization algorithms. This method combines the strengths
of deep neural networks and Kernel Conditional Independence
(KCI) testing, removing assumptions about lag structures,
stationarity, or linearity. Moreover, it synergizes the efficiency
of CI testing with the flexibility of continuous optimization,
enabling our framework to benefit from ongoing advancements
in both fields.
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II. METHOD

Consider a  multivariate  time series X
(XM x@ XD comprising d variables, each with a
consistent length of n. In this paper, we aim to uncover causal
relationships in multivariate time series X and represent them
in terms of a summary causal graph. Our hybrid approach
involves three main steps:

1) Encode hidden information from the time series into
vector representations using an attention-based encoder-
decoder framework.

Utilize the KCI to test for conditional independence
among variables and form a conditional independence
matrix based on the results.

Integrate this matrix into a continuous optimization causal
discovery method as a regularization term, to derive the
summary causal graph.

2)

3)

An overview of our proposed approach is shown in Fig. 1.
We introduce an algorithm for conditional independence (CI)
testing, called Neural Hybrid Approach for Time Series causal
discovery (Neural-HATS). This algorithm employs a multi-
layer long-short-term memory (LSTM) network with a self-
attention mechanism to capture hidden (vector) representa-
tions within time series through time series prediction. These
representations are then utilized in the kernel conditional
independence (KCI) test to identify the conditional indepen-
dence relationships. Conditional independence between two
time series «, 8 given a subset of time series C is defined as
follows: (3 is conditionally independent of « given C if for
any time point ¢, the past of C until time ¢ gives the same
predictable information about 3 as the past of both o and C
until time ¢, denoted by o # 3 | C. Based on this, we identify
all conditional independence relations for low degrees (1 or 0)
and construct a CI matrix as below:

1 3C eV \{a,B},
0 otherwise

Mo, = o BIC,

ey

In the context of a general continuous optimization-based
causal discovery method, where £ represents the loss func-
tion, we incorporate our CI matrix as a regularization term,
formulated as follows:

mjnﬁzﬁ—i—R(@)—l—/\CIHMOAH% 2

Here o denotes the Hadamard product, and Aoy is the
regularization parameter that balances the impact of the CI
matrix. The term || M o A||2% serves to reduce the influence of
penalized elements in A by M. Solving Eq. (2) via continuous
optimization methods enables inference of a more accurate
summary causal graph A.

III. EXPERIMENTS

In this section, we perform comprehensive experiments
to assess Neural-HATS across two datasets: non-linear syn-
thetic data generated with the Vector Autoregressive model,
and a real-world dataset, Netsim, which simulates Functional
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Fig. 2: The performance of different baselines with and
without the incorporation of Neural-HATS.

Magnetic Resonance Imaging (FMRI). Figure 2 illustrates
Neural-HATS’ performance as a hybrid method for four base-
line methods: DYNOTEARS, NTS-NOTEARS, GVAR, and
NTiCD. The plot shows results from these baseline models
before and after integrating Neural-HATS. Additionally, we
present the performance obtained by converting the CI matrix
directly to the adjacency matrix with red dashed lines. The
results show that Neural-HATS generally outperforms all base
models in terms of accuracy, precision, recall, and fl-score.

IV. CONCLUSION

This paper presents Neural-HATS, a method that merges
conditional independence (CI) tests with continuous optimiza-
tion for temporal causal discovery. We propose an attention-
based encoder-decoder framework that generates vector em-
beddings from time series data, enabling kernel-based con-
ditional independence (KCI) testing. The CI tests on these
embeddings produce a CI matrix, which is incorporated into
a continuous optimization approach yielding more accurate
causal graphs. Our model operates without assumptions of lin-
earity or acyclicity and demonstrates significant performance
enhancements when combined with four state-of-the-art score-
based methods, validated on synthetic and real-world datasets.
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