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Abstract. We propose Deep Companion Learning (DCL), a novel train-
ing method for Deep Neural Networks (DNNs) that enhances general-
ization by penalizing inconsistent model predictions compared to its
historical performance. To achieve this, we train a deep-companion model
(DCM), by using previous versions of the model to provide forecasts on
new inputs. This companion model deciphers a meaningful latent se-
mantic structure within the data, thereby providing targeted supervision
that encourages the primary model to address the scenarios it finds most
challenging. We validate our approach through both theoretical analysis
and extensive experimentation, including ablation studies, on a variety of
benchmark datasets (CIFAR-100, Tiny-ImageNet, ImageNet-1K) using
diverse architectural models (ShuffleNetV2, ResNet, Vision Transformer,
etc.), demonstrating state-of-the-art performance.

1 Introduction

Stochastic Gradient Descent (SGD) underpins Deep Neural Networks (DNNs)
training at scale. We propose a novel training method to improve SGD general-
ization in the context of supervised learning. While there are a number of prior
works that have focused on improving SGD generalization, as we point out later,
our perspective is shaped by the view that SGD is inherently stochastic1, and
we posit that controlling the variability of SGD trajectory during training can
improve generalization. There are two sources of variability:

(a) Due to variability across different batches, a model can observe a wide devia-
tion in empirical losses on two different batches, and as such the observed
loss on any batch may not be indicative of the true loss.

(b) Due to the randomness of batches, the SGD model trajectory is stochastic, and
so on a new batch, the model prediction can be widely diverging depending
on which SGD model was realized prior to that round.

Our focus in this paper is on (b) as we believe the solution to (a) can benefit
from more data. While data augmentation can serve as a solution for improving
generalization, we view that effort as complementary to our study. To account
1 Due to random initialization and random choices involved in batch processing [9,33].
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Fig. 1: Method Overview. At iteration t, we optimize the instantaneous model
θt (model eventually deployed upon training) with standard cross entropy loss and
a regularizer enforcing consistency with model ω. Model ω is recursively updated
by approximating predictions from its previous embodiment and the predictions of
current model θt. (Right) Probability of class as the top non-target class is shown. The
companion model helps narrow down the top non-target classes as tiger and lion for
class leopard. In the initial training stage, the top non-target of deployed model logits
are more randomly distributed with some irrelevant classes. The companion model can
help capture a general semantic structure of the dataset.

for (b) we propose to penalize predictions made by model updates that deviate
significantly from our forecast. To achieve this, we train a deep-companion model
(DCM), by using previous versions of the model to provide forecasts on new
inputs. In this context, our goal poses two fundamental challenges:

(i) How to best utilize past history to forecast outputs on new input examples?
(ii) How can we learn to make predictions efficiently?

The challenges in (i) includes: (a) designing a good look-back horizon to balance
recency with historical trends, and how to use these trends to forecast; (b)
what is the latent space where such predictions make most sense. The challenge
in (ii) requires that our method does not significantly expand the storage or
computational footprint of vanilla SGD.
Deep Companion Model. We address (ii) through a companion neural network
that aims to identify a prediction that minimizes the disagreement between itself
and the preceding models. This companion network mirrors the architecture of
the primary model (ablations with smaller networks appear in supplementary)
currently undergoing training. We perform analogous SGD steps to train the
companion model aligning its optimization process with that of the primary
model. We use an exponential smoothing parameter and hyperparameter tune
it to optimize the look-back horizon. We supervise the companion in the logit
space (before softmax) by minimizing the mean-squared error. Intuitively, this
makes sense because we expect well-clustered and linearly separable features in
the logit space.
Enforcing Predictive Consistency. Our proposal is depicted in Fig. 1. We
measure the difference between DCM output, f(ωt,xt) and SGD model, f(θt,xt),
and use this difference as a penalty. Our intuition here is related to the notion
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of cumulative regret, a concept arising in streaming settings [36]. Although our
measure is not a true measure of regret2, the DCM output can be viewed as
a prediction on a new batch without the benefit of hindsight, while the SGD
model output reflects the best achievable with hindsight of the new batch data.
Intuitively, significant deviations are likely a result of SGD overfitting to the
current batch, and performance can be improved by penalizing inconsistency.
A different perspective is depicted in Figure 1 (right). The companion model
consistently outputs the same top non-target class, capturing a generalizable
semantic structure of the dataset. In particular, for the class Leopard, the
companion model has class Tiger or Lion as the top non-targets.
Experimental Results. We run experiments on several benchmark datasets
(CIFAR-100, TinyImageNet, ImageNet-1K) and architectures (ShuffleNetV2,
Resnet-18, Resnet-50, and ViT-Tiny) and show that our proposed input and
model consistency proxies lead to improved SOTA performance. In particular, on
CIFAR-100, our results, obtained without any pre-training, attain performance
gains larger than those that utilize pre-training. In general, pre-training results in
a computational bottleneck while adapting to target data. Our proposed method
suggests that these bottlenecks can be overcome through a better-chosen training
scheme. Our method also scales to ImageNet-1k dataset with transformer based
architecture. Addtionally, DCL demonstrates its potential as a plug-and-play
technique in various applications such as fine-tuning, self-supervised pre-training,
and semi-supervised learning.
Contributions. The main contributions of our paper are:

– Efficient Consistency Predictor. We propose a computationally efficient method
that uses predictions of previous model versions to forecast consistent outputs
on new examples. The companion model infers a meaningful semantic structure.

– Data-Dependent Dynamic Regularization. Our regularizer penalizes deviations
of its predictions from the companion model predictions. Since the companion
model is updated in parallel, the regularization induced is dynamic, and since
it penalizes predictions rather than parameters, it is data-dependent.

– Improved Representation. Our choice of logit space enforces better linearly
separability of different classes resulting in better representations based on
effectively inferring the underlying semantic structure.

– Empirical Results. We demonstrate SOTA performance on diverse benchmark
datasets and architectures. We show that training from scratch achieves similar
accuracies as models with pre-training, thereby overcoming the computational
overhead of adapting pre-training to target data.

2 Related Work

Various regularization techniques have been employed to enhance model gen-
eralization. These include data augmentations [8, 10, 18, 32, 43, 44], dropout
regularization [38], normalization [1, 21,42] and penalty functions [26,30].
2 every input sample in our case has been previously observed
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Parameter Regularization Penalty functions, in particular, are integrated
with the primary loss function and jointly optimized. These functions are carefully
crafted to induce specific properties to the loss function. For example, penal-
izing L2−norm on parameters is traditionally adopted to mitigate overfitting.
Furthermore, modifications to the loss landscape geometry have been proposed,
with some regularizers targeting sharpness [12,13,45]. These regularizers capture
specific local properties of the loss landscape over the parameter space, and
as such are data-agnostic. We propose a method that enforces penalty on the
predicted outputs, and thus inducing a data-dependent regularization.
Data-Dependent Regularization Our method is most closely related to prior
works that explicitly or implicitly induce data-dependent regularization. Variance
reduction methods [9] propose to reduce variance by using a control variate derived
from a previously stored anchor model. While the idea of variance reduction is
related to ours, they are evidently ineffective for deep models [9]. In contrast,
we train a companion model that is continuously updated to provide consistent
forecasts, and as such is more effective. Similar to our approach, [22] aims to
reduce variance by averaging over stochastic gradient models. Other methods, such
as [3, 4, 7, 13, 14, 17, 20, 40], focus on achieving consistency across different model
views. Specifically, Mean Teacher [40] uses an exponential moving average (EMA)
of model parameters as an anchor to interact with the current model. Unlike
our method, which combines predictions, EMA fuses model parameters directly.
Temporal Ensembling [27] uses EMA predictions for each training instance at
each epoch. PS-KD [23] employs a self-distillation approach, utilizing a previous
model as a teacher to provide soft labels for the student model. Unlike us, they
do not update the teacher model. Self-supervised learning methods [3,14] propose
similar penalties in the absence of ground truth. These works manipulate the
loss landscape in parameter space like EMA [22,40], differing from our approach.
DML [46] trains two models simultaneously with different initializations, each
model alternately serving as a teacher with pseudo-labels. In contrast, we start
with a single initialization and learn a companion model to capture the mean
behavior in the logit space, reshaping the feature representation for the deployed
model to be more compactly clustered. Our regularizer adapts to both historical
and recent predictions, creating a surrogate for controlling variability.

3 Method

In this section, we propose Deep Companion Learning (DCL) that utilizes a
regularizer to enforce prediction consistency during SGD training. First, we
describe our method in Section 3.1 and the algorithm and pseudo-code in Section
3.3. Subsequently, in Section 3.4 we present an intuitive justification for our
method.

3.1 Deep Companion Learning Method

Notation. For simplicity, we will focus on a K−class classification problem with
X and Y being the input and output spaces respectively. A training set of N
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i.i.d. data points D = {xi, yi}Ni=1 sampled from a joint distribution P on X × Y
is provided, where xi ∈ X and yi ∈ Y . Let PN be a distribution of any N -sample
dataset. We parameterize the neural network with parameters θ. Given an data
sample (xi, yi), where xi ∈ X ,yi ∈ Y , f(θ,xi) denotes the network output logits,
and ℓ (f(θ,xi), yi) denotes the loss. We consider the empirical risk minimization
as minθ

1
N

∑
i ℓ (f(θ,xi), yi) := minθ L(θ). We construct another network with

the same architecture, but parameterized differently with ω. Similarly, f(ω,xi)
represents the output logits for input xi under the ω model. We refer to ω as a
companion model. Subscript t represents the step of the iteration.

To build intuition into our method, let us consider a data sample as a triple,
(xi, yi, zi) consisting of the input xi, the ground-truth label yi, and an auxiliary
observation zi, for instance, logits obtained from an auxiliary network on the
input xi. What would be our goal in this case? Naturally, we would like to train
our model θ by including the auxiliary observation as supervision. To this end,
we define a new loss, ∆(f(θ,xi), zi), which denotes the distance between logits
predicted by θ and the auxiliary observation. As such our global objective R(θ)
is to optimize:

R(θ) =
1

N

N∑
i=1

r(θ,xi, yi, zi) ≜
1

N

N∑
i=1

[ℓ(f(θ,xi), yi) + λ∆(f(θ,xi), zi)] (1)

where λ is a hyperparameter.
Let us now describe SGD in this context. In round t nature chooses an

example (xt, yt, zt) uniformly at random from the dataset, and a corresponding
risk function rt(θ) = r(θ,xt, yt, zt). SGD then takes a gradient step on the
observed risk, namely,

θt+1 = θt − η∇θ(ℓ(f(θt,xi), yi) + λ∆(f(θt,xt), zt) (2)

3.2 Companion Model

Let us now discuss training a companion model, ω to predict auxiliary logits,
z = f(ω,x), which serve as supervision for our deployed model update above.At
round t, we have historical information upto round t − 1, and the goal of an
auxiliary model is to offer a forecast for the logits corresponding to the new
input, xt in round t. As such it makes sense for the companion model to provide
supervision that complements the ground truth information yt. A direct choice
is to encourage the companion model to be close to all the historical models
{θt,θt−1, ..., θ1}, we design the companion objective as in Equation 3.

ωt = argmin
ω

(
t∑

i=1

∆(f(ω,xt), f(θi,xt))

)
(3)

The update rule in 3 requires all historical models, which means that the
memory complexity grows linearly as training iterates, and thus impractical. When
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the distance function is MSE, i.e. ∆(f(θ,x), f(ωt,x)) =
1
2∥f(θ,x)− f(ωt,x)∥2,

the well-known orthogonality property leads to the following observation:

1

t

t∑
i=1

∥f(θi,x)− f(ω,x)∥2 =∥f(ω,x)− 1

t

t∑
i=1

f(θi,x)∥2 + Var(f(θi,x))

The term 1
t

∑t
i=1 f(θi,x) can be expressed recursively assuming the companion

model in the previous round is a good approximation:

1

t

t∑
i=1

f(θi,x) =
t− 1

t
f(ωt−1,x) +

1

t
f(θt,x) + noise

Ignoring the noise term, and substituting hyperparameters α in place of t−1
t , 1

t
we can replace Equation 3 with the following objective:

ωt = argmin
ω

1

2
∥f(ω,x), αf(ωt−1,x) + (1− α)f(θt,x)∥2 (4)

The objective then reduces to aligning the logits of the current companion
model with a convex combination of the output of the previous companion model,
and the output of the instantaneous deployed model.

3.3 Implementation

Algorithm. The end-to-end pseudo code is displayed in Algorithm 1. Deep
Companion Learning (DCL) algorithm, iteratively trains the (deployed) model as
in Equation 2 and the companion model as in Equation 4, by taking a gradient
step on the batch data.

Algorithm 1 Deep Companion Learning (DCL)

1: Input: Training data D = {(xi, yi)}Ni=1

2: Parameters: Iteration T , batch size B, learning rates ηθ, ηω, companion weight α
3: Initialize: Randomly initialize model θ0, ω0 with the same initialized parameters.
4: for t = 0 to T − 1 do
5: Sample a batch of data {x,y}
6: Update the instantaneous deployed model:

θt+1 = θt − ηθ∇θ(L(θ) +∆(f(θ,x), f(ωt,x)))
7: Update companion model:

ωt+1 = ωt − ηω∇ω [∆(f(ω), αf(ωt) + (1− α)f(θt))]
8: end for
9: Return : θT

Other Learning Settings. In addition to supervised learning, DCL can also
be applied to other settings. For instance, we can employ DCL to fine tune a
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Consistency	vs.	Acc on	CE	Baselines	across	Models DCL	Enhances	Acc by	Improved	Consistency Top	Non-target	Classes	Probability	for	‘Leopard’	

DCL	Train
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CE	Train
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Fig. 2: Higher Top Non-target Consistency Indicates Better Generalization.
We visualize training top non-target consistency and test accuracy with CIFAR-100
across different models. (a) Larger CE models have better generalization while having
larger top non-target consistency. This indicates a positive correlation between top
non-target consistency and test accuracy. (b) Across different architectures we see a
consistent correlation of improved DCL test accuracy with increasing top non-target
consistency. (c) DCL chooses Tiger and Lion most frequently as the top non-target
classes of Leopard during training while CE exhibits inconsistent patterns.

pre-trained model on different downstream tasks. This is possible because the
companion model does not use ground-truth labels for training, and thus can
leverage unlabelled datasets. This naturally leads to a semi-supervised learning
setting. DCL can also be employed for self-supervised pre-training. For example,
we can employ DCL for Masked Autoencoder (MAE) [16] training. Here in lieu
of cross-entropy loss used in classification, we replace the loss ℓ in Equation 1
to reconstruction loss. Similarly for the regularizer, we enforce consistency for
the reconstructed output images. DCL can also be employed for Knowledge
Distillation (KD) by adding an additional regularizer to the student during
training. Intutitively, the student then seeks a consensus with both the teacher
and the companion model.

3.4 Intuitive Justification

Consistency of top non-targets in training is correlated with improved
generalization. We highlight salient aspects of DCL using experiments on
CIFAR-100 across various architectures in Figure 2. The training data consists of
N samples of K classes with Nc data samples for each class c. For data (x, y), we
define the predicted logits from the model θ as f(θ,x) ∈ RK , where the k-th digit
f(θ,x)k is the predicted probability of the k-th class. Then we define the top
non-target class for the specific data as c̄x = argmaxk,k ̸=y f(θ,x)k, namely the
class with the largest logits value among all the non-target classes. For a specific
class c, its top non-target class consistency is defined as maxk,k ̸=c

∑
x,y=c 1(c̄x=k)

Nc
,

the percentage of the most frequent occurring top non-target class. For instance,
Figure 2 (c) demonstrates for the class Leopard, the top non-target class is the
Tiger with around 60% probability while the class Lion is 30% for both training
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Fig. 3: Non-target Perplexity for Different Classes. The most (black text) and
second most (green text) frequent classes as the top non-target class are shown on each
bar. DCL can reduce perplexity over CE baseline.

and testing. This metric reflects how consistent the top non-target class is among
the data of the same class. DCL effectively narrows the choices among the top
non-target classes to tiger and lion while CE baseline evidently fails to capture
this fine-grained semantic structure, with the probability of tiger or lion bearing
similarity to other less meaningful classes. Therefore, the training consistency
reveals the underlying semantic structure of the dataset in the logits space, which
generalizes to test data as well. As expected, Figure 2 (a) depicts a positive
correlation between training consistency and testing accuracy and Figure 2 (b)
shows DCL can improve training consistency leading to improved test accuracy
across diverse architectures.
Perplexity of non-targets class is lower for DCL compared with CE. In
addition to examining the top non-target class, we also analyze the behavior of
all non-target classes. We introduce non-target perplexity for each class, which is
the perplexity over the conditional distribution of non-target classes occurring
as the top non-target class, given a target class c. We define this conditional
distribution p(k|c) =

∑
x,y=c 1(c̄x=k)

Nc
, ∀k ∈ {1, ..,K}, k ̸= c. We then define the

perplexity PPc =
∏

∀k∈{1,..,K},k ̸=c p(k|c)−p(k|c). Lower perplexity indicates more
consistency. Figure 3 compares the non-target perplexity between DCL and CE
for 20 randomly selected classes in ResNet18 CIFAR100 experiments. Considering
the class ’forest’ as an example, the two most frequent top non-target classes
identified by CE are ’willow’ and ’road’, whereas for DCL, they are ’willow’ and
’pine’. ’Pine’ is semantically more reasonable than ’road’. As expected, DCL can
reduce perplexity consistently over all classes.

4 Experiment

In this section, we evaluate the proposed DCL method on various datasets and
architectures for different settings, and perform ablative studies.
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Table 1: Performance Comparison on CIFAR-100, Tiny-ImageNet and
ImageNet-1k. We benchmark DCL against CE and pre-trained baselines with various
models. We report Gain as accuracy difference between DCL and CE. It clearly shows
that DCL significantly outperforms CE methods. In addition, it reaches accuracy of
ImageNet pre-trained(PT) baseline without any additional data and requires far less
computation. (Standard errors for experiments on CIFAR-100 are within ±0.26, on
ImageNet variants are within ±0.2).

CIFAR-100 Tiny-ImageNet ImageNet-1K
Model CE PT OursGain Model CE OursGain Model CE OursGain

ResNet18 78.3 80.5 82.4 4.1 ResNet18 61.8 64.6 2.8 ResNet18 69.5 70.5 1.0
ResNet34 80.6 82.6 83.1 2.5 ResNet34 64.0 66.8 2.8 ResNet50 76.0 77.1 1.1
ResNet50 82.1 82.9 83.6 1.5 ResNet50 64.4 67.0 2.6 ViT-T 65.7 66.5 0.8
ShuffeV2 72.8 73.5 74.0 1.2 ShuffeV2 53.9 55.5 1.6 Swin-T 81.3 81.7 0.4

4.1 Experimental Setup

Datasets.We consider publicly available image classification datasets: (a) CIFAR-
100 [25] consists of 50K training and 10K test images from 100 classes with size
32× 32× 3, (b) Tiny-Imagenet [28] contains 100K training and 10K test images
from 200 classes with size 64× 64× 3, and (c) ImageNet-1K [35] consists of 1.2M
training and 100K test images from 1000 classes with size 224 × 224 × 3. (d)
For fine-tunning and and pre-trained downstream task, we also utilize CUB [41],
Oxford-Pet [34], Food-101 [2] and Stanford Car [24] datasets. Same image sizes
are applied for the fine-tunning datasets with the pre-trained dataset.
Settings. We apply DCL to supervised training on classification from scratch.
Later on in the application section, we also utilize DCL for fine-tunning, semi-
supervised learning, self-supervised pre-training and knowledge distillation tasks.
Baselines. We mainly compare DCL with standard cross-entropy baseline (CE).
We also compare DCL with recent works with different optimization and regular-
ization techniques [12,13,45]. Additionally, related baselines for self-distillation
are also included [23,46].
Models. We evaluate ResNet [15], ShuffleNetV2 [31], ViT [11] and Swin Trans-
former [29] architectures on these datasets. In particular, we benchmark ResNet18,
ResNet34, ResNet50, and ShuffleNetV2 models on CIFAR-100 and Tiny-Imagenet
dataset. Due to computing limitations, we only train ResNet18, ResNet50, Vit-t,
Swin-t on ImageNet-1k dataset. For fine-tunning dataset, we benchmark Effi-
cientNet [39] pre-trained on ImageNet. We provide their architectural details in
supplementary.
Hyper-parameters. For the CIFAR-100 and Tiny-Imagenet datasets, we use
the SGD optimizer with a momentum of 0.9 and weight decay of 5e − 4. We
train these models up to 200 epochs with cosine learning rate decay with 0.1
as the initial learning rate and batch size of 128. For ImageNet-1k experiments,
due to hardware limitations, we follow [45] setting using batch size of 256, 0.1
as the initial learning rate with cosine decay. We train ResNet for 90 epochs
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and ViTs for 300 epochs. For ResNet, we use an SGD optimizer with 0.9 as
momentum and for the ViTs experiments, we use AdamW optimizer with β1 = 0.9,
β1 = 0.999. All experiments use base augmentation on data. We provide the
remaining hyper-parameter and experiments with different augmentations in
supplementary.

4.2 Results

Table 1 compares the performance of our method and standard baseline on
CIFAR-100, Tiny-Imagenet and ImageNet-1k datasets. Table 2 compares the
performance of DCL with recent baselines for different optimization techniques
including self-distillation. We report the accuracy of the final iteration in all the
methods. Below, we highlight the main takeaway points.
DCL Achieves Better Generalization. We note DCL consistent improves
upon CE across different datasets and architectures in Table 1 compared to
baselines. For instance, on CIFAR-100 with ResNet18 architecture, CE achieves
78.3% accuracy while DCL achieves 82.4% accuracy. Experiments on Tiny-
ImageNet shows a similar pattern. Table 2 shows DCL uniformly outperforms
recent state-of-the-art methods across different backbones for the batch size and
basic augmentation in [48] (Supplementary reports other augmentations).
Scalability to Large ImageNet-1k dataset. Table 1 shows that DCL scales
well to large datasets such as Imagenet-1K. In particular, it achieves better
accuracy than the baseline. For instance, with the ResNet50 architecture, the
CE method achieves 76.0% accuracy while DCL achieves 77.1% accuracy.
Scalability to Transformer based architecture. Table 1 shows that DCL
scales well to different tranformer-based backbones such as ViT and Swin trans-
former. For instance, with the ViT-T architecture, the CE method achieves 65.7%
accuracy while DCL achieves 66.5% accuracy.
DCL Trained-from-scratch is Superior to ImageNet Pre-Trained Mod-
els. Table 1 shows the performance of the different models pre-trained on Ima-
geNet and fine-tuned on the CIFAR-100 dataset. It takes CIFAR-100 32× 32× 3
image and scales to 224× 224× 3 image and runs the inference using this input.
In contrast, DCL trained the model with DCL using only CIFAR-100 data with
32× 32× 3 input. DCL achieves better performance than the pre-trained coun-
terpart. This is important because pre-training is expensive. For example when
using a ResNet50 backbone, during inference DCL trained model requires 1298M
MACs which is much lower than the 4198M MACs required by the ImageNet
pre-trained model. In addition, the proposed method requires less data to achieve
this performance, i.e., only 100K CIFAR-100 images compared to 1.2M ImageNet
images. Thus, DCL yields faster inference and requires less sample complexity to
achieve competitive performance as ImageNet pre-trained model.
Small DCL Models Outperform Large CE models. DCL trained on small
models compares favorably with CE-trained large models. For instance, on CIFAR-
100, ResNet18 trained with DCL achieves better accuracy than the much larger
ResNet34 model trained with the cross-entropy method. Similar trend is evident
in the context of ResNet34 vs. ResNet-50 performance. Furthermore, DCL trained
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Table 2: Recent Baselines. DCL outperforms other baselines on various backones and
datasets. Results reported are for the setup of GAM [45], which uses basic augmentations
and 256 batch size for all ImageNet experiments. SAF [12] results on ImageNet use a
batch size of 4096, an important factor for improved performance in ImageNet. Not
reported here are more sophisticated augmentations, such as TrivialAugment(TA) [32].
In supplementary we show TA with CE gets 84.3%, consistent with that reported
in [32]’s while TA with DCL 85.7% on CIFAR100 for WRN28-10. For ImageNet [32]
uses a batch size of 2048, significantly larger than ours.

Methods
CIFAR-100 ImageNet-1k

ResNet18 WRN28-10 ResNet50

CE [45] 78.3± 0.32 81.4± 0.13 76.0± 0.19

DML [46] 79.9± 0.32 82.7± 0.14 75.8± 0.15

SAM [12] 79.3± 0.25 83.4± 0.06 76.5± 0.11

PSKD [23] 80.6± 0.26 81.9± 0.10 76.3± 0.15

SAF [12] 80.8± 0.08 83.8± 0.04 76.4± 0.15

GAM [45] 80.5± 0.24 83.5± 0.09 76.6± 0.19

Ours (MSE) 82.4± 0.26 84.2± 0.10 77.1± 0.15

Table 3: Fine-tuning. Performance comparison with fine-tuning ImageNet pretrained
EfficientNet. DCL outperforms cross-entropy on different downstream tasks.

Fine-tunning Methods Food-101 CUB-200 Oxford Pet Stanford Car
CE 82.5 63.8 90.9 78.2

DCL 85.0 64.7 91.7 79.0

ResNet34 gets better performance than the larger pre-trained ResNet50 model,
showing further benefits of DCL.

4.3 Extended Applications

We extend DCL to different settings. We provide several examples to show the
effectiveness of our method.
Fine-tuning. Table 3 shows the generalization of models when trained on
sufficient labeled data and finetuned on a small dataset. We use ImageNet-1k
pretrained EfficientNet as initial model and fine-tune on different smaller datasets.
We outperform standard cross-entropy loss baselines. For example DCL achieves
91.7% accuracy compared with the baseline 90.9% on Oxford-Pet dataset.
Semi-supervised Learning. DCL can be applied on top of existing semi-
supervised learning. While several methods, such as FixMatch [37], propose a
consistency concept based on various input augmentations, DCL is focused on
achieving consistency across different models realized along the training trajectory.
This unique perspective allows DCL to be seamlessly integrated with existing
semi-supervised learning techniques and leads to performance improvement.
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Fig. 4: Semi-Supervised Learning. DCL
demonstrates superior performance over Fix-
Match, particularly with fewer labels.

We simply add our regularizer to their
loss function and update θ. This is
possible because the companion model
does not require labels. Figure 4 shows
comparison of FixMatch with and
without DCL. With DCL, FixMatch
gains 1% to 3% accuracy on CIFAR-
10 classification with different number
of labels. In particular, scenarios we
gain more for fewer labels. For exam-
ple, with only 40 labeled data, DCL
can improve performance of FixMatch
from 86.2% to 88.7%. All experiments
are conducted with WRN-28-2 back-
bone with the same hyperparameters.
Self-Supervised Pretraining. Instead of standard cross-entropy loss for classi-
fication task, self-supervised learning often focuses on different pretext tasks for
pre-training. For example, the Masked Autoencoder (MAE) [16] is a variant of
self-supervised learning that learns to predict or reconstruct the original images
from partially masked or corrupted images. We replace the loss ℓ in Equation 1
with the reconstruction loss. For the regularizer, we enforce consistency with re-
spect to reconstructed images. Due to computational limitation, we only finetune
the pretrained model on classification tasks on several small datasets. Table 4
shows utilizing DCL to train MAE leads to better representations for downstream
tasks. For example, DCL achieves 80% accuracy on CUB but vanilla MAE gets
79.2%. All experiments are conducted using ViT-Base backbone and we provide
details for the hyperparameters in the supplementary.

Table 4: Self-Supervised Pretraining. Performance of MAE [16] on ViT-B backbone
with and without DCL with fine-tunning downstream classification tasks. We use
ImageNet-1k for pre-training and we use Tiny-ImageNet and other smaller dataset
for fine-tunning. MAE with DCL outperforms plain MAE, showing benefits of DCL
extension on self-supervised pre-training framework.

Methods ImageNet Food-101 CUB-200 Oxford Pet Stanford Car
MAE [16] 82.8 87.8 79.2 91.5 82.5

MAE+DCL 83.4 88.8 80.0 92.0 87.2

Knowledge Distillation (KD). Knowledge Distillation similarly employs the
concept of aligning the output distribution of two models, but alignment is
achieved by the interaction between a smaller student network and a larger
pre-trained teacher network. We apply DCL in addition to different KD methods
in Table 5. DCL with student get 74.5% better than basic KD [19] without even
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Fig. 5: Comparison of Model Variation and Test Accuracy along Training
Trajectory on CIFAR-100 with ResNet18. The left section displays t-SNE visual-
izations of output logits for 50 test data samples, illustrating reduced variation in logits
output across various training stages using DCL. In the plot, d is the average distance
over data representation in the logit space. The right section presents the progression
of test accuracy during training, DCL predictions show smaller variation and attain
better generalization.

employing the large teacher model. DCL can also assist other SOTA methods
[5, 6, 47] achieving enhanced performance.

Table 5: Knowledge Distillation. We shows results of ResNet8×4 as student and
trained ResNet32×4 teacher model. DCL without trained teacher network outperforms
KD [19]. DCL can improve other SOTA knowledge distillation methods [5, 6, 47].

Teacher Student KD [19] ReviewKD [6] SimKD [5] DKD [47]
w/o DCL 79.4 72.5 74.0 75.6 77.8 75.9
w/ DCL - 74.5 75.2 76.2 78.0 76.5

DCL Reduces Model Variation and Improves Generalization. Figure 5
shows t-SNE visualization of logit space for test data to compare model variation
and test accuracy along training ResNet18 on CIFAR-100 dataset. The figures
shows changes of each data logits between neighboring epochs. At different stages
of training, DCL consistently demonstrates reduced fluctuation in the logit space.
This pattern is mirrored in a smoother accuracy trajectory during training, with
DCL exhibiting superior performance compared to the CE baseline.

4.4 Ablations

DCL Generates Better Logit Space Representation. Figure 6 shows t-SNE
visualization of logit space for 10 random classes of CIFAR-100 test data. DCL
induced logit space enforces better linear separability of different classes.
Different Distance Functions. Instead of Mean Square Error as the distance
function ∆, we can also use other forms of distance. Table 6 shows the benefit
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Fig. 6: Logits Visualization. t-SNE visualization of logit space from trained ResNet18
on CIFAR-100 using test data from 10 random classes.

Table 6: Ablative Study on Different Distance Functions. On ResNet-18 CIFAR-
100 experiments, all variants of DCL are better than baseline while DCL with MSE as
distance function gains the most.

Baseline KL-Divergence InfoNCE L1 MSE
79.6 81.5 80.5 80.5 82.4

of DCL over all forms of distance functions ∆ while MSE distance outperforms
others reaching 82.4% on classification of CIFAR-100 with ResNet18 backbone.

5 Conclusion

We presented Deep Companion Learning (DCL), a novel DNN training approach
that not only penalizes inconsistencies in model predictions but also leverages
historical data to enhance generalization. Our strategy, centered around a deep-
companion model (DCM), makes use of past predictions to enforce consistency
and infer a meaningful semantic structure from the data. This novel mechanism
introduces a dynamic, data-dependent regularization, optimizing both model
consistency and the quality of representation in the logit space for improved class
separability. Intuitively, DCL improves generalization during training by inferring
a semantic structure for each class, and presenting the consistently reinforcing the
confusing cases to the model. Our contributions include an Efficient Consistency
Predictor that utilizes the companion model to dynamically adapt to new data,
effectively minimizing prediction deviations. The empirical validation of DCL
across various datasets and architectures demonstrates its capability to achieve
state-of-the-art performance. Notably, it achieves comparable accuracy to models
trained with pre-training while reducing computational demands. This highlights
DCL’s efficiency in training deep learning models from scratch. Furthermore, DCL
is complementary to other settings including masked auto-encoders, fine-tuning,
semi-supervised learning as well other methods using different augmentations.
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