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Abstract—This paper considers the secure aggregation problem
for federated learning under an information theoretic crypto-
graphic formulation, where distributed training nodes (referred
to as users) train models based on their own local data and
a server aggregates the trained models without retrieving other
information about users’ local data. Secure aggregation generally
contains two phases, namely key sharing phase and model
aggregation phase. Due to the common effect of user dropouts in
federated learning, the model aggregation phase should contain
two rounds, where in the first round the users transmit masked
models and according to the identity of surviving users, the
surviving users then transmit some further messages to help
the server decrypt the sum of users’ trained models. The
objective of the considered information theoretic formulation is
to characterize the capacity region of the communication rates
from the users to the server in the two rounds of the model
aggregation phase, by assuming that the key sharing have already
been done offline in prior. If the keys shared by the users could be
any random variables, the capacity was fully characterized in the
literature. Recently, an additional constraint on the keys (referred
to as uncoded groupwise keys) was added into the problem, where
there are several independent keys in the system and each key is
shared by exactly S users, where S is a system parameter. In this
paper, we fully characterize the capacity region for this problem
by matching new converse and achievable bounds.

I. INTRODUCTION

Federated learning is a decentralized machine learning ap-
proach that enables multiple devices or users to collaboratively
train a global model without sharing their local raw data to
the central server [1]. Rather than centralizing all data in a
single location, federated learning allows each device training
by using its own local data. After training on local data, the
users send their model updates (weights or gradients) to the
server. Then the central server collects the model updates from
all the users and aggregates the updated models to create an
updated global model.

To deal with the effect of user dropouts (which is common
due to fluctuating connectivity) and strengthen local data
privacy in federated learning, a new cryptographic problem,
referred to as secure aggregation, was originally introduced
in [2]. Except the desired sum of the users’ updated models,
the server should not learn other information about the users’
local data. In order to guarantee the computational or informa-
tion theoretic security, the key-based encryption could be used,
where keys are shared among the users and thus the users’
updated models could be masked by the keys. The keys are

generated and then shared to the users according to some key
generation protocols. If the key generation is independent of
the training data, the key sharing is called offline; otherwise, it
is called online. Model aggregation follows key sharing, where
the users compute, mask, and send their updated models to the
server. The secure aggregation protocol in [2] uses the pairwise
coded key sharing based on Diffie-Hellman key aggrement [3]
and Shamir’s secret sharing [4] in order to deal with user
dropouts. Following the secure aggregation problem with user
dropouts in [2], several works have developed more efficient
and/or more secure schemes for aggregation; the readers can
refer to the survey for more details [5], [6].

In this paper, we follow the (K,U) information theoretic
formulation on secure aggregation with user dropouts and
offline key sharing proposed in [7], where K represents the
number of users in the system and U represents the minimum
number of non-dropped users. The input vector (i.e., updated
model) of each user k is denoted by Wk. It is assumed that
enough keys have been shared among the users in a prior
key sharing phase, and thus each user k has a key Zk, which
can be any random variable independent of W1, . . . ,WK. It
was proved in [7] that to preserve the security of users’
local data with the existence of user dropouts, two-round
transmission in the model aggregation phase is necessary and
also sufficient. In the first round, each user masks its input
vector by the stored key and transmits the masked input
vector to the server. The server receives and then returns a
feedback to the non-dropped users about the identity of the
non-dropped users. In the second round, each non-dropped
user further transmits a coded message as a function of its local
data, key, and the server’s feedback. The users may also drop
in the second round; the secure aggregation scheme should
guarantee that by the two-round transmission the server could
recover the sum of the input vectors of the non-dropped users
in the first round. Except this computation task, the server
should not learn any other information about W1, . . . ,WK. The
objective of this problem is to characterize the region of all
possible achievable rate tuples (R1,R2), where Ri represents
the largest number of transmissions in the i

th transmission
round among all users. The capacity region was proved to
be {(R1,R2) : R1 � 1,R2 � 1/U} in [7] with an achievability
strategy based on Minimum Distance Separable (MDS) codes
in the key generation and one-time pad coding in the model
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User 1

𝑋1

Server

𝑊1
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𝑍{1,3}
𝑍{1,4}
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𝑍{2,3}
𝑍{2,4}

User 3
𝑊3
𝑍{1,3}
𝑍{2,3}
𝑍{3,4}

User 4
𝑊4

𝑍{1,4}
𝑍{2,4}
𝑍{3,4}

𝑋3 𝑋4

The server receives 𝑋1, 𝑋3, 𝑋4.

𝑋2

U1 = 1,3,4

(a) First round.
User 1

𝑌1
{1,3,4}

Server

𝑊1
𝑍{1,2}
𝑍{1,3}
𝑍{1,4}

User 2
𝑊2
𝑍{1,2}
𝑍{2,3}
𝑍{2,4}

User 3
𝑊3
𝑍{1,3}
𝑍{2,3}
𝑍{3,4}

User 4
𝑊4
𝑍{1,4}
𝑍{2,4}
𝑍{3,4}

The server receives 𝑌1
{1,3,4},𝑌4

{1,3,4}, 
and recovers 𝑊1 +𝑊3 +𝑊4 from 

the two rounds.

U1

dropped in 
the first round

𝑌3
{1,3,4}

U1 U1

𝑌4
{1,3,4}

U2 = 1,4

(b) Second round.

Fig. 1: (K,U, S) = (4, 2, 2) information theoretic secure
aggregation problem with uncoded groupwise keys.

aggregation. Another secure aggregation scheme which can
also achieve capacity was proposed in [8], based on a pairwise
coded key generation. Compared to [7], the scheme in [8]
significantly reduces the size of keys stored by each user.1

Recently the authors in [10] considered an additional con-
straint on the keys into the above problem, where the key
sharing among the users is “uncoded” and “groupwise”. As
illustrated in Fig. 1, given a system parameter S, the system
generates

�K
S

�
mutually independent keys, such that each key is

shared exactly by one group of S users and is also independent
of the input vectors.2 When S > K� U, a secure aggregation
scheme with groupwise keys was proposed in [10] which
achieves the same capacity region {(R1,R2) : R1 � 1,R2 �
1/U} as in [7]; thus the key group sharing constraint does not
involve any loss of optimality. When S  K � U, a converse
bound was proposed in [10] showing that the capacity region
in [7] cannot be achieved by secure aggregation schemes
with unocded groupwise keys; the capacity region of secure
aggregation with uncoded groupwise keys still remains open.

Main Contribution: We characterize the capacity re-
gion on the rate tuples for the (K,U, S) information the-
oretic secure aggregation with uncoded groupwise keys,⇢
(R1,R2) : R1 � (K�1

S�1)
(K�1
S�1)�(

K�1�U
S�1 )

,R2 � 1
U

�
. More precisely,

1The secure aggregation schemes in [2], [7], [8] can tolerate up to T < U
users who collude with the server. However, in this paper we do not consider
user collusion; thus we set T = 0. Secure aggregation with uncoded
groupwise keys against user collusion (i.e., T > 0) was considered in another
paper of ours [9] and characterizing the capacity region is an ongoing work.

2The uncoded groupwise keys could be directly generated and shared
among users by some key agreement protocol such as [11]–[18] even if there
do not exist private links among users nor a trusted server, while to share
coded keys among users there should exist private links among users or a
trusted server who assigns keys for the key sharing phase.

our focus is on the open case S  K � U, and we develop
the following results.

• We derive a new converse bound on the rates, which
is strictly tighter than the converse bound in [10], and
propose a new secure aggregation scheme based on in-
terference alignment, which achieves the converse bound.

• We implement the proposed secure aggregation scheme
into the Tencent Cloud. Experimental results show that
the proposed secure aggregation scheme reduces the
model aggregation time by up to 67.2% compared to
the original secure aggregation scheme in [2]. Due to
the limitation of pages, readers can refer to the extended
version of this paper [19, Section VI] for the comparison.
Notation Convention: Calligraphic symbols denote sets,

bold symbols denote vectors and matrices, and sans-serif
symbols denote system parameters. [a : b] := {a, a+ 1, . . . , b}
and [n] := [1 : n]; Fq represents a finite field with order q;
en,i represents the vertical n-dimensional unit vector whose
entry in the i

th position is 1 and 0 elsewhere; AT represents
the transpose of matrix A; 0m,n represents all-zero matrix of
dimension m ⇥ n; let

�X
y

�
= {S ✓ X : |S| = y} where

|X | � y > 0. For each set of integers S , S(i) denotes the i
th

smallest element in S . Entropies will be in base q, where q
represents the field size.

II. SYSTEM MODEL

We consider a (K,U, S) information theoretic secure ag-
gregation problem with uncoded groupwise keys in [10], as
illustrated in Fig 1. Note that K,U, S are given system param-
eters, where K represents the number of users in the system,
U represents the minimum number of surviving users, and
S represents the group-sharing parameter, i.e., the size of the
groups uniquely sharing the same key. Each user k 2 [K] holds
one input vector Wk containing L uniform and i.i.d. symbols
on a finite field Fq, where q is a prime power. In addition, for
each set V 2

�[K]
S

�
, the users in V share a common key ZV with

large enough size. Considering that the key sharing is offline,
the keys and the input vectors are assumed to be mutually
independent. We define Zk :=

⇣
ZV : V 2

�[K]
S

�
, k 2 V

⌘
, as

the keys accessible by user k 2 [K]. A server is connected
with the users via dedicated error-free links. The server aims
to aggregates the input vectors computed by the users. In this
paper, we consider the effect of user dropouts, i.e., the system
is designed to tolerate up to K�U > 0 user dropouts; in this
case, it was proved in [7] that two transmission rounds are
required in the model aggregation.

First round. Each user k 2 [K] sends a coded message Xk

to the server without knowing which user will drop in the
future, where Xk is completely determined by Wk and Zk,

H(Xk|Wk,Zk) = 0. (1)

The first round transmission rate is defined as the largest
normalized transmission load among all users,

R1 := max
k2[K]

H (Xk) /L. (2)
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Users may drop during the first round. We denote the set of
surviving users after the first round by U1. Since U represents
the minimum number of surviving users, we have U1 ✓ [K]
and |U1| � U. Hence, the server receives (Xk : k 2 U1).

Second round. The server first sends the list of the surviving
users U1 to the users in U1. According to this information, each
user k 2 U1 sends another coded message Y

U1
k to the server,

H(Y U1
k |Wk,Zk,U1) = 0. (3)

The second round transmission rate is defined as the largest
normalized transmission load among all U1, all users in U1,

R2 := max
U1✓[K]:|U1|�U

max
k2U1

H

⇣
Y

U1
k

⌘
/L. (4)

Users may also drop during the second round transmission,
and the set of surviving users after the second round is denoted
as U2. By definition, we have U2 ✓ U1 and |U2| � U. Thus
the server receives Y

U1
k where k 2 U2.

Decoding. From the two-round transmissions, the server
totally receives (Xk1 : k1 2 U1) and (Y U1

k2
: k2 2 U2), from

which the server should recover the sum of input vectors by
the first round surviving users, i.e.,

P
k2U1

Wk. Thus

H

 
X

k2U1

Wk

���(Xk1 : k1 2 U1), (Y
U1
k2

: k2 2 U2)

!
= 0, (5)

for all U1 ✓ [K] and U2 ✓ U1 where |U1| � |U2| � U.

Security. For the security constraint, we consider the worst-
case, where the users may not be really dropped but be too
slow in the transmission and thus the server may receive
all the possible transmissions by the users. More precisely,
it may receive (Xk1 : k1 2 [K]) from the first round and
(Y U1

k2
: k2 2 U1) from the second transmission. By security,

from the received messages, the server can only obtain the
computation task without retrieving other information about
the input vectors. Thus for all U1 ✓ [K] where |U1| � U,

I
�
W1, . . . ,WK;X1, . . . ,XK, (Y

U1
k : k 2 U1)

��
X

k2U1

Wk

�
= 0.

(6)

Objective. A rate tuple (R1,R2) is achievable if there
exist uncoded groupwise keys

⇣
ZV : V 2

�[K]
S

�⌘
and a secure

aggregation scheme satisfying the decodability and security
constraints in (5) and (6), respectively. Our objective is to
determine the capacity region (i.e., the closure of all achievable
rate tuples), denoted by R?.

Existing results. By removing the uncoded groupwise con-
straint on the keys in our problem, we obtain the problem
in [7]. Hence, the converse bound on the capacity region in [7]
is also a converse bound for our problem.

Theorem 1 ( [7]). For the (K,U, S) information theoretic

secure aggregation problem with uncoded groupwise keys, any

achievable rate tuple (R1,R2) satisfies

R1 � 1, R2 � 1/U. (7)

A secure aggregation scheme with uncoded groupwise keys
was proposed in [10] for the case S > K � U, achieving the
converse bound in Theorem 1; thus the capacity region for the
case S > K� U has been characterized in [10]. An improved
converse bound was given in [10] for the case S  K� U.

Theorem 2 ( [10]). For the (K,U, S) information theoretic

secure aggregation problem with uncoded groupwise keys,

when S = 1, secure aggregation is not possible; when

2  S  K� U, any achievable rate tuple (R1,R2) satisfies

R1 � 1 +
1

�K�1
S�1

�
� 1

,R2 � 1/U. (8)

However, no achievable scheme has been provided for the
case S  K�U, and the capacity region for this case remained
open until this paper.

III. MAIN RESULT

The following theorem fully characterizes the capacity re-
gion for the information theoretic secure aggregation problem
with uncoded groupwise keys.

Theorem 3. For the (K,U, S) information theoretic secure

aggregation problem with uncoded groupwise keys, when S =
1, secure aggregation is not possible; when S � 2, we have

R? =

(
(R1,R2) : R1 �

�K�1
S�1

�
�K�1
S�1

�
�
�K�1�U

S�1

� ,R2 � 1

U

)
. (9)

The achievability proof is given in Section IV. Due to the
limitation of pages, the converse proof could be found in the
extended version [19, Section IV]. The following remarks on
Theorem 3 are in order:

• When S > K � U, we have
�K�1�U

S�1

�
= 0 and thus the

capacity region in (9) reduces to the one in (7), which
is also equal to the capacity region for the information
theoretic secure aggregation problem in [7] (the one with-
out the constraint on the uncoded groupwise keys). When
2  S  K� U, the additional communication rate from
the optimal secure aggregation scheme with uncoded
groupwise keys compared to the generally optimal secure
aggregation scheme in [7] is only at the first round and
is equal to (K�1�U

S�1 )
(K�1
S�1)�(

K�1�U
S�1 )

. Note that, the proposed secure
aggregation scheme in this paper is a new and unified
scheme working for all system parameters when S > 1.

• The converse bound to prove (9) is strictly tighter than
the existing one in (8).

IV. ACHIEVABILITY PROOF OF THEOREM 3
Due to the limitation of pages, we illustrate the main

ideas of the proposed scheme through the following example;
readers can refer to the extended version of this paper [19,
Section V] for the general description.

We consider the (K,U, S) = (5, 2, 3) information theoretic
secure aggregation problem with uncoded groupwise keys.
Note that in this example, for the ease of illustration, we
assume that the field size q is a large enough prime; it is
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proved in [19, Section V] that our proposed scheme works for
arbitrary field size.

By the converse bound in Theorem 3, we have R1 �
(K�1
S�1)

(K�1
S�1)�(

K�1�U
S�1 )

= 6
5 and R2 � 1

U = 1
2 . Inspired by the

converse bound, we divide each input vector Wi where i 2 [K]
into

�K�1
S�1

�
�
�K�1�U

S�1

�
= 5 non-overlapping and equal-length

pieces, Wi = {Wi,1, . . . ,Wi,5}. For each set V 2
�[K]

S

�
, we

generate a key ZV containing SL

(K�1
S�1)�(

K�1�U
S�1 )

= 3L
5 symbols

uniformly i.i.d. over Fq; let ZV be shared by the users in V .
We further divide each key ZV into S = 3 sub-keys (each with
L
5 symbols), ZV = {ZV,k : k 2 V}.

From the converse bound we see that in the first round
each user k 2 [5] should send more than L symbols, while
input vector Wk contains L symbols. Thus, unlike the secure
aggregation scheme in [10] which has R1 = 1, in the first
round besides the encrypted input vector, we also need to
transmit some coded messages composed of keys, to cope with
the fact that some keys cannot be transmitted in the second
round due to user dropouts. For each key ZV , we select a
6-length vector aV = [aV,1, . . . , aV,6]T which will serve as
the coefficient vector of its sub-keys during the first round.
The selection of these coefficient vectors to guarantee the
encodability, decodability and security, is the most important
step in the proposed secure aggregation scheme. We denote
the sets V 2

�[K]
S

�
where k 2 V by Sk,1, . . . ,Sk,(K�1

S�1)
; denote

the sets in
�[K]\{k}

S

�
by Sk,1, . . . ,Sk,(K�1

S ). For the security and
encodability, it will be explained later that the selection has
the following two properties respectively: for each k 2 [K],


aSk,1 , . . . ,aS

k,(K�1
S�1)

�
has rank

✓
K� 1

S� 1

◆
= 6; (10)


aSk,1

, . . . ,aS
k,(K�1

S )

�
has rank

✓
K� 2

S� 1

◆
= 3. (11)

In order to guarantee (10) and (11), we select the coefficient
vectors by the following two steps:

• We first select each vector aV for each V 2
�[K]

S

�
where

1 2 V . More precisely, we choose each element in aV
uniformly i.i.d. over Fq, as illustrated in Table I.

• Then we fix each of the remaining vectors by a linear
combination of the selected vectors in the first step.
More precisely, to fix a{2,3,4}, we let a{2,3,4} be a linear
combination of a{1,3,4}, a{1,2,4}, and a{1,2,3}, where the
coefficients are either +1 or �1 and alternated,

a{2,3,4} = a{1,3,4} � a{1,2,4} + a{1,2,3}. (12)

Similarly, for each V 2
�[2:K]

S

�
, we let aV be the following

linear combination of aV\{k}[{1} where k 2 V , (recall
that V(i) represents the i

th smallest element in V)

aV =
X

i2[3]

(�1)i�1aV\{V(i)}[{1}. (13)

The detailed section on the coefficient vectors is given in
Table I. It can be checked that this selection has the two
properties in (10) and (11). The first property could be directly

checked. For the second property, we have

a{3,4,5} = a{2,4,5} � a{2,3,5} + a{2,3,4}; (14)

thus the rank of [a{2,3,4},a{2,3,5},a{2,4,5},a{3,4,5}] is equal
to the rank of [a{2,3,4},a{2,3,5},a{2,4,5}] which is equal to 3.
In addition, since

a{3,4,5} = a{1,4,5} � a{1,3,5} + a{1,3,4}; (15)

thus the rank of [a{1,3,4},a{1,3,5},a{1,4,5},a{3,4,5}] is equal
to the rank of [a{1,3,4},a{1,3,5},a{1,4,5}] which is equal
to 3. Similarly, we can also check that the rank of
[a{1,2,4},a{1,2,5},a{1,4,5},a{2,4,5}] is equal to the rank of
[a{1,2,4},a{1,2,5},a{1,4,5}] which is equal to 3; the rank of
[a{1,2,3},a{1,2,5},a{1,3,5},a{2,3,5}] is equal to the rank of
[a{1,2,3},a{1,2,5},a{1,3,5}] which is equal to 3; the rank of
[a{1,2,3},a{1,2,4},a{1,3,4},a{2,3,4}] is equal to the rank of
[a{1,2,3},a{1,2,4},a{1,3,4}] which is equal to 3. Thus the
property is satisfied. We will show later that this selection
guarantees the encodability, decodability and security.

After the selection of the above coefficient vectors, the
transmission in the first round by each user k 2 [K] can be
divided into two parts (as explained before):

• The first part contains
�K�1
S�1

�
�
�K�1�U

S�1

�
= 5 linear

combinations of pieces and sub-keys, where each linear
combination contains L/5 symbols. For each j 2 [5], let
user k transmit Xk,j = Wk,j +

P
V2([5]3 ):k2V aV,jZV,k.

• The second part contains
�K�1�U

S�1

�
= 1 linear combina-

tion of sub-keys with L/5 symbols; let user k transmit
Xk,6 =

P
V2([5]3 ):k2V aV,6ZV,k.

Hence, user k transmits Xk = (Xk,1, . . . ,Xk,6), totally 6L/5
symbols in the first round. Since the selection of the coefficient
vectors has the property in (10), the rank of the sub-keys in Xk

is equal to the dimension of Xk and thus from Xk the server
cannot get any information about Wk (see [10, Appendix C]
for the formal proof).

Now we consider the case U1 = [5], i.e., no user drops in
the first round. From the first round, the server can recover

X

k12[5]

Xk1,j =
X

k22[5]

Wk2,j +
X

V2([5]3 )

aV,j

X

k32V
ZV,k3

| {z }
:=Z[5]

V

(16)

for each j 2 [5], and can also recover
X

k12[5]

Xk1,6 =
X

V2([5]3 )

aV,6Z
[5]
V . (17)

The server should further recover the second term on the RHS
of (16),

P
V2([5]3 )

aV,jZ
[5]
V for j 2 [5], in the second round.

In the second round, to achieve R2 = 1/2, we di-
vide each Z

[5]
V where V 2

�[5]
3

�
into 2 non-overlapping

and equal-length coded keys, Z
[5]
V =

n
Z

[5]
V,1,Z

[5]
V,2

o
, where

each coded key contains L
10 symbols. Hence, we can

write the recovery task of the second round in the ma-
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TABLE I: Choice of 6-dimensional vectors aV in the (K,U, S)) = (5, 2, 3) information theoretic secure aggregation problem.

aV Value aV Value
a{1,2,3} [0, 1, 0, 0, 1, 1]T a{1,4,5} [1, 0, 0, 0, 0, 1]T

a{1,2,4} [1, 0, 1, 1, 1, 1]T a{2,3,4} a{1,3,4} � a{1,2,4} + a{1,2,3} = [�1, 2, 0, 0, 0, 1]T

a{1,2,5} [0, 0, 0, 1, 0, 1]T a{2,3,5} a{1,3,5} � a{1,2,5} + a{1,2,3} = [1, 2, 0, 0, 1, 1]T

a{1,3,4} [0, 1, 1, 1, 0, 1]T a{2,4,5} a{1,4,5} � a{1,2,5} + a{1,2,4} = [2, 0, 1, 0, 1, 1]T

a{1,3,5} [1, 1, 0, 1, 0, 1]T a{3,4,5} a{1,4,5} � a{1,3,5} + a{1,3,4} = [0, 0, 1, 0, 0, 1]T

trix form
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Z
[5]
{1,2,3},1

...
Z

[5]
{3,4,5},1

Z
[5]
{1,2,3},2

...
Z

[5]
{3,4,5},2

3

77777777775

where F =


a{1,2,3}, . . . ,a{3,4,5} 06⇥10

06⇥10 a{1,2,3}, . . . ,a{3,4,5}

�
. Note that

F6 and F12 have been already recovered by the server from
the first round.

We focus on each user k 2 [5], who should transmit�K�1
S�1

�
�
�K�1�U

S�1

�
= 5 linear combinations of F1, . . . ,F12

in the second round; in the matrix form these 5 linear
combinations are Sk[F1; . . . ,F12], where Sk is a matrix with
dimension 5 ⇥ 12. Note that for the encodability, user k can
only compute the coded keys Z

[5]
V,j where k 2 V; thus in the

transmitted linear combinations the coefficients of the coded
keys which user k cannot compute should be equal to 0.

For user 1, the columns of S1F with indices in [7 : 10][[17 :
20] should be 05⇥1, since these columns correspond to
Z{2,3,4},1,Z{2,3,5},1,Z{2,4,5},1,Z{3,4,5},1,Z{2,3,4},2,Z{2,3,5},2,
Z{2,4,5},2,Z{3,4,5},2, which cannot be computed by user 1.
Assume that the column-wise sub-matrix of F including
the columns with indices in [7 : 10] [ [17 : 20] is F1 with
dimension 12 ⇥ 8. We need to find 5 linearly independent
left null vectors of F1, and let S1 be the matrix of these
5 vectors. Note that if F1 is full rank, the left null space
of F1 only contains 12 � 8 = 4 linearly independent
vectors. However, by our construction, it has been shown
in (14) that a{3,4,5} = a{2,4,5} � a{2,3,5} + a{2,3,4}; in
other words, the coefficient vectors corresponding to the
unknown coded keys of user 1 are aligned. Thus by
this interference alignment-like construction leading to (11),
the rank of F1 is 6, and thus the left null space of F1

contains 12 � 6 = 6 linearly independent vectors. More
precisely, the left null space of [a{2,3,4},a{2,3,5},a{2,4,5}] is
the linear space spanned by s1,1 = (0,�1,�2, 0, 0, 2), s1,2 =
(�2,�1, 0, 0, 4, 0), s1,3 = (0, 0, 0, 1, 0, 0). Hence, the
left null space of F1 is the linear space spanned by
(s1,1, 01⇥6), (s1,2, 01⇥6), (s1,3, 01⇥6), (01⇥6, s1,1), (01⇥6, s1,2),
(01⇥6, s1,3). We let each row of S1 be a random vector in
the the null space of F1.

For user 2, the columns of S2F with indices in
{4, 5, 6, 10, 14, 15, 16, 20} should be 05⇥1. Assume

that the column-wise sub-matrix of F including the
columns with indices in {4, 5, 6, 10, 14, 15, 16, 20} is
F2 with dimension 12 ⇥ 8. By construction we have
a{3,4,5} = a{1,4,5} � a{1,3,5} + a{1,3,4} as shown in (15).
The left null space of [a{2,3,4},a{2,3,5},a{2,4,5}] is the linear
space spanned by s2,1 = (�1, 0,�1, 0, 0, 1), s2,2 =
(0, 0, 0, 0, 1, 0), s2,3 = (0,�1, 0, 1, 0, 0). Hence, the
left null space of F2 is the linear space spanned by
(s2,1, 01⇥6), (s2,2, 01⇥6), (s2,3, 01⇥6), (01⇥6, s2,1), (01⇥6, s2,2),
(01⇥6, s2,3). We let each row of S2 be a random vector in
the the null space of F2.

Similarly, we can select S3, . . . ,S5. Note that the detailed
selection on S1, . . . ,S5 is given in [19, Example 1]. As a
summary, the constraint (11) is satisfied by the interference
alignment-like construction, while satisfying this constraint
leads to the successful encoding of each user.

Then we check the decodability. Note that F6 and F12 have
been recovered by the server from the first round. Recall
that en,i represents the vertical n-dimensional standard unit
vector whose i

th element is 1. For any set of two users
U2 = {u1,u2} ✓ [K] where |U2| = 2, one can check that

that the matrix

2

664

Su1

Su2

eT
12,6

eT
12,12

3

775 whose dimension is 12 ⇥ 12, is

full rank; thus the server can recover F1, . . . ,F12 and then
recover W1 + · · ·+W5.

For the security, from the first round the server cannot obtain
any information about W1, . . . ,W5. In the second round, all
the transmissions by all users are linear combinations of
F1, . . . ,F12, where F6 and F12 can be recovered from the
first round. Since each Fi, where i 2 [12] \ {6, 12} contains
L/10 symbols, by [20] the server can only obtain additional
10L/10 = L symbols about W1, . . . ,W5 from the second
round, which are exactly the symbols in W1+· · ·+W5. Hence,
the proposed secure aggregation scheme is secure.

The above scheme could be directly extended to other U1 ✓
[5] where |U1| � 2. So it achieves R1 = 6/5 and R2 = 1/2,
coinciding with the proposed converse bound.
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