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Learning Nash Equilibria in Large Populations
With Constrained Strategy Switching

Semih Kara

Abstract—We consider a large population of learning
agents that interact noncooperatively by selecting strate-
gies from a common set. Each strategy has a payoff,
assigned by a strictly concave potential game. The agents
repeatedly revise their strategies according to a learning
rule that models how they seek alternatives with higher
payoffs. Our objective is to determine when the population
learns the Nash equilibrium of the game, meaning its
strategy profile asymptotically converges to this equilib-
rium. Unlike previous work assuming unrestricted strategy
switching, here we tackle the case where only certain
strategies are accessible from certain others, character-
ized by a strategy graph that is connected but possibly
incomplete. Through Lyapunov’s method, we prove that
modifications based on KL-divergence to either the payoffs
or the learning rules ensure the strategy profile’s near-
global convergence to the Nash equilibrium. We highlight
the practical significance of our findings and provide a
numerical validation.

Index Terms—Game theory, graphs, nonlinear systems.

|. INTRODUCTION

E CONSIDER a large population of agents that
Winteract by selecting strategies from a common set
V:={l1,...,n}. The agents are nondescript and are char-
acterized by a continuum of unit mass, implying that their
distribution x on V represents the population’s strategy profile.
The strategy profile set is A :={x€[0,1]" | Y1 x =1}
and x;(?) is the proportion of the population selecting strategy i
at time ¢. A memoryless map F : R” — R" specifies a payoff
mechanism, which we call the game, that acts to generate a
payoff vector as F : x(f) — p(f). The payoff for strategy i
at time 7 is p;(r). Each agent follows one strategy at a time,
which the agent can revise and subsequently change—causing
x(t) to vary over time. The revision mechanism is modelled
by a learning rule p:A x R" — RZY" that quantifies the
population’s preferences in terms of the rates of switching
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among strategies, leading to the following dynamics for ¢ > 0
and i e V:

(1) =) x50pix(@), p(0) = Y xi(D)pyi(x(1), p(®)) . (1)

JeTi j€Oi

Inflow to i Outflow from i

Here, O; C V is the set of strategies available to the agents
following i, and Z; := {j € V | i € O}} is the set of strategies
from which the agents can switch to i. Using the edge set
E:={(Gj))eVxV]jeO;} we define the strategy graph
G:=(V,E).

A. From Finite Number of Agents to the Mean Field Limit

We adopt the population game and evolutionary dynamic
approach [1], which derives (1) as the deterministic mean
field approximation of a realistic stochastic model having a
large but finite number of agents. This finite-agent model
accounts for asynchronous strategy updates, and the learning
rules (including those we will propose) are often easy to
implement and do not require knowledge of F. The analysis
in [2], [3] establishes comparisons with error bounds between
the solutions of (1) and realizations of the finite-agent stochas-
tic model. These comparisons justify the practical relevance
of our framework, facilitating its applications in fields such as
traffic management [4], electricity demand regulation [5], [6],
task allocation [7], [8], distributed extremum seeking [9], [10],
and communication networks [11].

In [3], the authors prove that the globally asymptotically
stable equilibria of (1) are accurate predictors of the long-term
strategic profiles for these large but finite populations. Thus,
a common theme in population games research is to assume
a structure on F and identify learning rules that make the
asymptotically stable equilibria of (1) coincide with the Nash
equilibria of F. We share the same goal in this letter.

B. Incomplete Strategy Graphs, Related Work and Gaps

The novelty of our work lies in considering an incomplete
strategy graph G. Unlike most studies, which assume that the
agents can switch between any two strategies (implying that G
is complete), we allow only certain strategies to be accessible
from certain others, effectively eliminating the corresponding
edges in G. Allowing for an incomplete G makes it possible
to impose constraints on the strategic behavior of agents,
as required in many applications. Section IV illustrates an
application in which the strategies are regions that the agents
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can occupy, and an incomplete G represents the available paths
between the regions that the agents can take. Additional exam-
ples include games with spatial/informational constraints [10],
or belief formation [12] in which agents can only switch
between similar beliefs.

There is no existing work ascertaining when Nash equi-
librium learning as discussed in Section [-A is achieved
for an incomplete G. The state of the art! has considered
certain graph structures” [8], studied local stability of Nash
equilibria [10], [15], or established global stability of sets
that may not include Nash equilibria [16], [17]. Specifically,
these articles conclude that common learning rules and payoff
mechanisms, well known for guaranteeing global asymptotic
stability of Nash equilibria for complete G, fail when G is
incomplete. Importantly, [16] illustrates this with an example
in which x converges to a non-Nash point.

C. Contributions: Guaranteed Learning of Nash
Equilibria

Our main contribution is a new class of learning rules
that achieve near-global asymptotic stability of the Nash
equilibrium of a strictly concave potential game under any
connected and possibly incomplete G. These rules ensure that
x converges to the Nash equilibrium of F from any interior
initial state. We also allow for G to be directed.

Our approach merges methods from [17] and [18]. The
study by [17] addresses incomplete G, demonstrating that
a modification of the well-known Smith learning rule [4]
results in the asymptotic stability of a Gibbs measure in any
potential game. To stabilize Nash equilibria instead of a Gibbs
measure, we employ a different modification, inspired by the
Kullback-Leibler (KL) regularization idea in [18]. We apply
this regularization to a broad class of learning rules [19] that
includes the Smith rule (used in [17]) as a particular case,
models a wide range of strategic behaviors, and allows for
fully decentralized implementation. We also employ proof
techniques from [18]. Nevertheless, noting that [18] assumes
complete G and uses a different learning rule (called perturbed
best response), we alter these techniques accordingly.

Il. THE FRAMEWORK AND PROBLEM DESCRIPTION
A. The Model

Our aim is to investigate the equilibrium stability of (1). In
this system, we assume that p = F(x) and F is a potential
game with a potential function f, meaning that 7 = Vf.

For a given strategy graph G = (V, E), the presence of an
edge (i,j) in E means that the agents following strategy i can
switch to j if they so choose. Throughout this letter, we assume
that G is connected and, in general, incomplete.

An important concept in game theory is Nash equilibria,
which is defined [1] for F as

NE(WF)={ €A | (E-TFE) >0, V¢ e A}

'We note that there are also articles studying multi-population interactions
over networks [13], [14]. These articles assume complete strategy graphs
within each population, distinguishing their focus from ours.

2[8] extends a standard assumption on the agents’ revision times and shows
that the resulting x can be analyzed via an augmented strategy set with a
specific graph structure. Their results only cover this graph structure.

So, at a Nash equilibrium, a positive share of the popu-
lation plays a strategy only if it offers the highest payoff.
Distinctively, potential games have an additional connection
to Nash equilibria, relevant to distributed optimization [20]:

Remark 1: When F is a potential game, NE(F) coincides
with the points that satisfy the Karush-Kuhn-Tucker conditions
for the problem of maximizing f over A. Hence, if f is
concave, then

NE(F) = argmaxf(§).
EeA

Moreover, if f is strictly concave, then argmaxgcAf(§) is
unique. We will denote this unique maximizer as x'&.

Another crucial element of the framework is the learning
rule? (or rule for short) p. A well-researched class of rules that
is particularly relevant to this letter is the pairwise comparison
(PC) class [19], [21]. We say that p is a PC learning rule if
it is sign-preserving, meaning that for all i,j € V, 7 € R" it
satisfies

wi—m; > 0= p;§,m) >0,
mj— 7 < 0= p;§,m)=0.

Therefore, agents following these learning rules do not switch
to strategies that offer lower payoffs. We will denote an
arbitrary PC rule by ¢ : AxR" — RZ{". A celebrated example
is the Smith rule ¢;;(§, 7) = max{m; — 7;, 0}, which was
introduced by [4] to analyze traffic flow on roadway networks.
In cases where G is complete, PC rules are known to guarantee
the global asymptotic stability of NE(F) (for any potential
game) [19].

Remark 2: We can embed the effects of G into p by
defining p;; = 0 for (i,j) ¢ E. Under this interpretation, p
can be a PC rule only when G is complete. Although earlier
results on PC rules [19] are rather general, they followed this
interpretation, implicitly requiring completeness.

B. Problem Description

In the classical setting, there are learning rules that secure
the global asymptotic stability of NE(F) [1]. Nevertheless,
similar guarantees are lacking when G is incomplete (this
absence holds true for all F, not just potential games). For
instance, even when p is the Smith rule, f is strictly concave,
and G is connected, [16] demonstrates that x can converge to
a point that does not belong to NE(F). So, our goal is to find
learning rules that ensure the near-global asymptotic stability
of NE(F) under any G.

The following observation is essential to our approach:
If p is a PC rule and x remains in int(A) :=
{£€, D" | Y7 & =1}, then x converges to NE(F).
Thus, our learning rules blend the PC class with an effect that
makes the boundary of A “repellent,” where this effect fades
near NE(F).

In [17], the authors impose a similar effect on the Smith
rule by subtracting the gradient of the entropy of x from the
payoffs. This modification makes the boundary of A repellent,
however it does not disappear near NE(F), leading [17] to

30ften also called strategy revision protocol.
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conclude the asymptotic stability of a Gibbs measure.* In
a different context (i.e., assuming that G is complete), [18]
introduces a KL-divergence regularization model. Specifically,
the idea in [18] is to subtract VD(x(f)||y(¢)) from the payoffs
and find an appropriate update rule for the regularization
parameter y, where D(£]|60) = Z?:l & In(&;/6;) denotes the
KL-divergence for any &, 0 € int(A).

We find that this modification achieves the effect that we
need. Hence, fusing the ideas in [17] and [18], we propose
KL-regularized PC learning rules.

Definition 1: We say that p is a KL-regularized PC rule if
forall i,j €V, & € int(A) and w € R" it satisfies

pij(§, ) = ¢ij(§, 1 —nVD(§0))

in which ¢ is a PC rule, 8 € int(A), and > 0. For notational
convenience, we define #"? := & — nVD(£||0).
The resulting dynamics for x is as follows:

P VG,PC(X’ ]:-w(x)) 2
F(x) == F(x) — nVD(x|ly)

where VOPC:A x R" — R" is given for all i € V, £ € A and
m € R" by

VOPCE ) =) g ) — Y EidyE. ).
jeZ; j€O;

Observe from (2) that we can interpret KL-regularization as
replacing F with the “perturbed” (or KL-regularized) payoff
mechanism F7. This mechanism has the characteristics
below for any fixed value of y as 6 € int(A).

Remark 3: Each point in NE(F"?) is an equilibrium of
x = VOPC(x, F19(x)) and belongs to int(A). Moreover, if f
is concave, then f”’e = f — nD(-||9) is strictly concave and
NE(F"?) = argmaxgeAf”’e(é) is unique. In this case, we
will denote NE(F"-?) as x'NEné . Notice that, xPNEns = xNE
if and only if 6 = x"E,

A pivotal step in the approach of [18] is to determine an
update rule for y that ensures its convergence to the same Nash
equilibrium as x. To find such update rule, we again resort
to [18], which suggests the algorithm below. Essentially, this
algorithm iteratively updates y(¢) as x(¢) at ¢ that satisfy

I;neaf{({ — x(0)" (F(x(0) = nVD(x(@)1x(1))) }

sgDumw@y 3)

in which ¢ is the previous update time. We discuss the under-
lying intuition, existence of the update times, and convergence
properties of y in Section III.

Overall, the payoff mechanism, KL-regularized PC rule
and Algorithm 1 operate within the feedback configuration in
Fig. 1. Hereafter, we prove that if f is strictly concave and
xNE € int(A), then xNF is an asymptotically stable equilibrium
of the resulting dynamics, and the corresponding region of
attraction is the entire set int(A).

Remark 4: 1t is also possible to view KL-regularization
from a mechanism design perspective. Consider that there is a

4In [17], the Gibbs measure & has the

form & =
eFi@/m 5o SFIOM for all ie v,

Algorithm 1: Update Rule for y

Input: n > 0, x(2), t
Output: y(7)
Internal State: 6;
if 1 = 0 then
[ <0

‘ 0; < x(0)
end
if max;ea {(¢ —x(0)T (F(x(1)) — nVD®)16) )

< ID(x(1)|6;) then

> Initialize 6; as x(0)

«~[+1
‘ 6; < x(t) > Remember x(¢)
end
y(t) < 6 > Reset y to 6;

Agents’ Learning Rule

Coordinator

Fig. 2. Coordinator implementation of KL-regularization.

coordinator that has access to x and p. As depicted in Fig. 2,
this coordinator can compute and transmit F7, incorporat-
ing the KL-regularization step into the payoff assignment.
Crucially, this enables the agents to act in a fully decentralized
manner, as they can implement a PC rule using only F",
without needing to know x. Additionally, the agents can
implement certain PC rules (e.g., the Smith rule) using only
the “local” regularized payoffs, given for agents following
strategy i by {]-"j"’y | j € O;}. We demonstrate this concept in
Section IV.

IIl. MAIN RESULTS

We analyze (2) in two steps: We first obtain results under a
fixed value of y, then we include the effects of Algorithm 1.
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A. Analysis Under a Fixed Regularization Parameter

Throughout this section, we assume that y has a fixed
value 6 € int(A). As VD(:||f) is unbounded on A, the first
question is whether x is well-defined for all + > 0. A trivial
modification of [22, Lemma 6] shows that the answer is
affirmative whenever x(0) € int(A).

Lemma 1: For each 6 and x° that belong to int(A), the
initial value problem x = V&PC(x, F19(x)); x(0) = x°
has a unique solution. Moreover, there exists a compact set
K, 6) C int(A) such that x(¢) € K2, 8) for all + > 0.

Proof: 1t suffices to repeat the proof of [22, Lemma 6] with

the €1, ..., €, values below:
1 1 _
€1: = —min{ ——, min{min{@i,x?}} = €l .
2 14y iev 14y

where v* = maxgen i jev{Fi(§) — Fi(©)}, v = 9%/, and
0* = max,-,jev{Q,-/Gj}. |
Having proven existence, we now address stability.
Lemma 2: For any 6 € int(A), if F has a strictly concave
potential, then x*NEné is an asymptotically stable equilibrium
of x = VG-FPC(x, F¥ (x)), with region of attraction int(A).
Proof: We will prove Lemma 2 by showing that £(:) =
—f”’e(-) + f”’e(xPNEﬂv") is a Lyapunov function for x =
VOPC (x, F19(x)) on int(A).
From Remark 3, it trivially follows that £ is positive semi-
definite and £(GENEne) = (. As for the derivative condition,
it holds for all & € int(A) that

(VLENTVIFC (8, F19(&))

== Z j—in’g(%-) Z §j¢ji(é, ]:""9(5))

i=1 JjeL;
+anjf,?”9<s) Xoj s (5. 770 (©))
__ »_;Eﬁﬂ(;)gj:m(g’ Fro )
+ (/ZE F©g¢5 (s, J:'"’Q(E))
=- ZiE(ﬁﬁﬁ(s) —F©)g0i(5 F®). @
e

Recall that ¢ is non-negative and that ¢;;(§, F ’7’9(5 ) > 0if
and only if 7’ (£) > F"’ (£). This, together with & € int(A),
imply that (4) is non-positive. Hence, the final step is to show
that (4) is O only when & = xFPNEn6

Let [i*] denote the set of strategies that offer the k-th highest
payoff. If & # x"NEné  then [%] # @. Therefore, when £ #
xPNEn6 | the connectivity of G guarantees the existence of
nonempty [i'], [/"] with [ > m such that (j*,i*) € E for
some j* € [i'] and i* € [i"]. Also, note that & > 0 because
& € int(A). Consequently, we have

- Y (Fe -7 ®)ge(e 70 @)
(j,i)eE

B —(]};’Q(E) B ]:"j'l’g(é))éj*@*i* (g, ]:“nﬁ(é)) < 0. ]

With Lemma 2, we establish the near-global (convergence
from any x(0) € int(A)) asymptotic stability of the “perturbed
equilibria” x"NEn.¢ . Thus, we would have our target stability
guarantee if x*VEny = XN However, according to Remark 3,
this equivalence holds only if y = x®. This is where
Algorithm 1 comes into play: To ensure that the regularization
parameter y converges to x\°.

B. Updating the Regularization Parameter

In this section, we focus on Algorithm 1. This updating
scheme was originally proposed in [18, Sec. IV.B], based on
the following intuition.

From the definition of Nash equilibria in Section II, observe
that max;ea{(¢ — x())T(F(x(t)) — nVD(x(£)]|6))} is small
if and only if x(¢) is close to NE(]E”’G). So, Algorithm 1
updates y when x is sufficiently close to the perturbed Nash
equilibria. In essence, this causes x to approach to a new
perturbed equilibria in each epoch. Pivotally, under some types
of payoff mechanisms, the perturbation diminishes at each
step, resulting in the convergence of x to a Nash equilibrium.
In [18], the authors prove this fading effect for so-called
contractive games (further details are present in the proof of
the upcoming Theorem 1).

Note that, under the assumptions of Lemma 2, there is an
increasing sequence of time instances at which y is updated.
More precisely:

Remark 5: When f is strictly concave and x(0) € int(A),
there is an increasing sequence fp = 0, ()72, satisfying

max{ (¢ = x(t0) 0wt )| < DG (),
®)

where x : [f, t;41) — A is the solution of
% = YG.PC (x7 ]:—n,x(tl))

with initial condition x(#;).

This is a straightforward observation because y gets updated
when x is close enough to the perturbed equilibrium, and
Lemma 2 ensures that x approaches this equilibrium. To
elaborate, Lemma 2 guarantees that the left hand side of (3)
tends to 0 as ¢ increases. Meanwhile, the right hand side
of (3) converges to a positive value, provided x(0) # xE.
Therefore, (3) will hold at some point, triggering an update.
Furthermore, Lemma 1 implies that y remains in int(A).
Repeating these steps for each updated value of y confirms the
validity of Remark 5. We refer to [18] for further details.

Remark 6: Periodic execution of Algorithm 1 at intervals
of any T > 0 maintains the validity of Remark 5. Hence, it is
not necessary for Algorithm 1 to operate at every ¢.

C. Asymptotic Stability of xNE

Up to this point, we analyzed (2) under fixed y. Now, we
consider the feedback interconnection of (2) and Algorithm 1.
The following is our main result.

Theorem 1: Assume that F has a strictly concave potential,
xE € int(A) and y is determined by Algorithm 1. Then, x"F
is an asymptotically stable equilibrium of (2), with the region
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of attraction int(A). Additionally, it holds for any x(0) e
int(A) that

lim [ly(r) — & = 0.
— 00

In other words, if f is strictly concave, xX"* € inf(A) and
the agents follow a KL-regularized PC rule, then x"F is a
near-globally asymptotically stable equilibrium of (2).

Proof: In what follows, we assume that x(0) € inf(A) and
verify three conjectures: (i) y converges to x"'&, (ii) x converges
to xNE and (iii) ™ is stable. Our proofs for (i) and (ii)
draw heavily from the proof of [18, Lemma 4], whereas our
treatment of (iii) (i.e., the stability component) extends beyond
the scope of analysis in [18].

We begin by establishing the convergence of y. In Part I of
the proof of [18, Lemma 4], the authors show the following:
If F is strictly contractive and (tl)fi | satisfies Remark 5, then
lim,— oo |y(t) — xNE|| = 0 for any initial state x(0) € int(A),
where F is said to be strictly contractive if (¢ — ¢)T (F (&) —
F()) <Oforall & ¢ € A with & # ¢. Now, observe that the
strict concavity of f yields

FE —f(©) < FOIE -0,
f@Q) —f©&) <F@®T(¢ -8,

implying that

0>F)'¢—-8-FE -8
= - ONF©) - FE)).

Consequently, every F with a strictly concave potential is
strictly contractive. So, we can leverage Part I of the proof
of [18, Lemma 4] to conclude that lim,_, o [|ly(t) — xNE|| = 0.

Next, we show the convergence of x to x ' from any
x(0) € int(A). As in Algorithm 1, let §; denote the value of
y over [t;, f1+1). We know from the proof of Lemma 2 that
—f(x(@®) + nD(x(1)]|6;) is decreasing over ¢ € [#,t;4+1) for
each [ € N. Note also that —f(6;) + nD(6;]|6;)) = —f(6;) and
limy_s o0 6 = xNE, Combining these findings, we can assert that
for any € > 0, there exists L € N such that the following
inequalities hold for each / > L and 7 € [, t;11):

£ () = o) + DG l6) < () — @) < e.
(©)

Now, let us take L as above and assume, for contradiction,
that x does not converge to ANE Then, for all § > 0, there is
an increasing sequence (sy,);,_; such that [lx(s;) — ANE| > 8
for all m € N. Since (Sm),?le is increasing, there exist m’ € N
and / > L for which s,y € [#;, f;+1). Recall that f is strictly
concave and xNE = arg maxg ¢ Af (). Therefore,

() = Fextsm)) + D) 160
> [f(+%) = retsm)

and we can choose the § above so that f(x"%) — £ (x(s,)) > €.
However, [ > L and s,y € [t;, t;4+1) imply that (6) should hold
with t = s,,, yielding a contradiction.

’

Finally, we prove that xF is stable. So, given any § > 0,
we want to find € > 0 such that ||x(r) — x™E|| < & holds for
all # > 0 whenever ||x(0) — x™E|| < €. Let us define

Bs:={seA||s—x" <)
and take ¢® > 0 such that

= [g € int(A) ‘ Lf(xNE) —f(é)‘ < c5} C Bs.

Observe that such ¢’ exists because f is strictly concave and
ANE = arg maxgcAf (). Without loss of generality, we assume
8 to be small enough that I' C int(A), which is possible
because xNE e inr(A). Now, let us set x(0) = x° for any
M e I'. As we noted earlier, we know from Lemma 2 that
fx@@) — nD(x(t)||x0) is increasing over [ty, t1), where #y is O
and #; is the first update time for y. Therefore,

FG0) = nD(x01°) = £(x0) = nD (1) = £(x°)

for all ¢ € [fy, t1]. This, together with f(xo) > f(xN]E) -,
implies for all ¢ € [ty, #1] that

) = f@x@) =D (x0°) 2 £(x°) = (=) = .

Hence, x(¢) € T for all ¢ € [tg, t1]. To see that x remains in I"
through [#1, 00), observe that the initial state of the system on
the epoch [71, ] is x(¢1), which again belongs to I'. Thus, the
preceding discussion applies with [#g, #1] replaced by [#;, t;11]
for any [ € N. As a result, x(0) € I' guarantees that x(¢) €
I' C Bs for all ¢t > 0. [ |

Remark 7: Theorem 1 not only ensures that x converges to
xNE from any initial state in int(A), but also implies that xNF
is a stable equilibrium. As we outlined in Section I-A, this
enables us to apply the analysis from [3] to obtain convergence
guarantees to x'° when the population size is large but finite.

Remark 8: We remind that, throughout this letter, we
assume G to be connected. Without this assumption, there
always exist x(0) from which x fails to approach xNE, regard-
less of p and the payoff mechanism.

IV. NUMERICAL EXAMPLE

In this section, we illustrate an application of Theorem 1
via a decentralized resource allocation problem. Consider that
there are 6 regions, each associated with a transmitter’s range.
These transmitters assign rewards to their regions based on
how the agents are distributed across them. Suppose that the
agents can only migrate between intersecting regions, i.e., they
must always remain within the range of at least one transmitter.
We assume that the regions have the configuration in Fig. 3.
Our goal is to find a payoff mechanism and a learning rule
that ultimately lead to an equal allocation of agents across all
regions.

Theorem 1 tells that we can achieve our goal with a KL-
regularized PC rule and a potential game with a strictly
concave f that satisfies arg maxg2f(§) = 1/6 (1 denotes the
6-dimensional vector of ones).

Thus, we take f(§) = — Z?:l(& — 1/6)?/2, yielding the
potential game F(£) = Vf(§) = 1/6 — &. As for the learning
rule, we use the KL-regularized Smith rule with n = 0.05,

given by p;(§, ) = max{fro'os’e — ﬁio'os’e, 0}. We plot the

J
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Fig. 3. Transmitter configurations and the resulting G.
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Fig. 4. Time domain plots of x and y.

resulting x and y (from a random x(0)) in Fig. 4, which verifies
that both converge to 1/6.

Remark 9: To implement the KL-regularized Smith rule,
the agents need to access the payoffs from their own and
neighboring regions, along with the corresponding y values.
Therefore, if the transmitgers collectively calculate y and each
transmitter i broadcasts ]-';7’y , then the agents can rely solely
on local information.

Remark 10: Observe in Fig. 4 that y changes instantly
at discrete time points. This demonstrates the discussion in
Section ITI-B: Once (5) holds and y is reset to x, it takes time
for (5) to be satisfied again under the new y value, resulting
in a constant y during this time frame.

Remark 11: Observe how the spatial constraint associated
with the transmitters’ ranges naturally corresponds to an
incomplete G. This highlights the pertinence of constrained
strategy switching in games with spatial and informational
constraints. Another related example can involve multi-agent
path planning, as the discretization of feasible paths can be
modeled by an incomplete G.

V. CONCLUSION

We studied a setting of large-scale multi-agent decision-
making, wherein only certain strategies are reachable from
certain others, as characterized by a strategy graph G. By
combining pairwise comparison rules with a recently intro-
duced KL-regularization concept, we proposed a new class
of learning rules that ensure near-global asymptotic stability

of Nash equilibria for any connected G. We also validated
our results using a decentralized resource allocation problem.
Future avenues for research could involve extensions to time-
varying G and broader payoff structures.
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