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Abstract— We consider a large population of learning agents

noncooperatively selecting strategies from a common set, in-

fluencing the dynamics of an exogenous system (ES) we seek

to stabilize at a desired equilibrium. Our approach is to

design a dynamic payoff mechanism capable of shaping the

population’s strategy profile, thus affecting the ES’s state, by

offering incentives for specific strategies within budget limits.

Employing system-theoretic passivity concepts, we establish

conditions under which a payoff mechanism can be system-

atically constructed to ensure the global asymptotic stability of

the ES’s equilibrium. In comparison to previous approaches

originally studied in the context of the so-called epidemic

population games, the method proposed here allows for more

realistic epidemic models and other types of ESs, such as

predator-prey dynamics. The stability of the equilibrium is

established with the support of a Lyapunov function, which

provides useful bounds on the transient states.

I. INTRODUCTION

Systems whose behavior depends on the strategic choices
of many agents can be studied through the lens of evolu-
tionary game theory, in particular when considering large
populations of nondescript agents that repeatedly revise their
strategies. Examples of systems with such dependency on
the aggregate choice of a large population include models of
traffic congestion [1], optimal power dispatch [2], distributed
task allocation [3], building temperature control [4], and
epidemic mitigation [5].

The coupling between the evolutionary dynamics, which
models the population’s strategic choices, and the exogenous

system (ES) dynamics, which captures the state of the system
affected by the decisions of the population, makes the task of
designing stabilizing policies challenging. This is especially
true when we aim to design policies that not only improve
the behavior of the system, but also provide performance
guarantees that hold at any given time.

In our work, we generalize the design concept from [5]
to a larger class of ESs which, when agents stop revising
their strategies, have a Lyapunov function and satisfy some
mild assumptions. We design incentives that guarantee the
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convergence of the population state to an equilibrium, which
can be selected independently of the payoff mechanism.
While our results require similar assumptions on the behavior
of the population to those of [5], unlike [5], [6] we obtain
a bound on the instantaneous cost of implementing our
incentives.

In addition, we show that the proposed payoff mechanism
is compatible with many ESs, such as the epidemic models
studied by [5], [6], [7] and the Leslie-Gower model for study-
ing the interaction between populations of hosts and parasites
[8]. As an application, we use the proposed framework to
devise incentives for a modified epidemic model studied in
[6], while considering disease transmission rates that depend
nonlinearly on the agents’ choices.

A. Contributions

The goal of our study is to develop a new framework for
designing a dynamic payoff mechanism that guarantees the
convergence of both the population and the ES, whose dy-
namics are influenced by the strategic choices of the agents in
the population, to a desirable equilibrium that can be selected
independently of the payoff. The incentive we design has a
bound on the instantaneous reward offered to the population,
which is not guaranteed in the previous studies that use �-
passivity for designing policies that mitigate epidemics.

The assumptions we introduce on the learning rule em-
ployed by the agents are similar to those of [5]. However,
we relax one of the assumptions on the learning rule, which
is not easy to verify, and replace it with another assumption
that is easier to check. The proposed mechanism works on
previously studied ESs [5], [6], [7], but is not limited to
epidemic models; our framework is more general and can be
applied to any system satisfying the conditions identified in
this paper, even when the learning rule is unknown to the
policy maker. As an illustrative example, we show in §VI-A
that the Leslie-Gower system studied in [8] satisfies these
conditions.

II. RELATED WORKS

Earlier studies showed that, for potential games, bounded-
rational learning rules with the positive correlation (PC)
property, where agents revise their strategies in a way that
increases their payoffs, guarantee the convergence of the
population state to Nash equilibria (NEs) [9]. In addition,
Hofbauer and Sandholm [10] established that, for the class
of contractive games, many evolutionary dynamics lead the
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population state to an NE. A recent study demonstrated
that for certain potential and strictly contractive games, the
population state converges to an NE, even when the revision
rates depend explicitly on the current strategies of the agents
[11], [12]. For a survey of earlier studies and the applications
of population games we refer the reader to [13], [14], and
the references therein.

Motivated by the class of contractive games, Fox and
Shamma [15] showed that certain learning rules, such as im-

partial pairwise comparison and excess-payoff target rules,
exhibit a form of passivity which they named �-passivity.
The concept of �-passivity was generalized in [16] to admit
a large class of dynamical payoff mechanism and in [1] that
introduced �-dissipativity. In [17], the authors determined a
sufficient condition for the interconnections of �-dissipative
dynamical systems to also be �-dissipative.

Adapting tools from robust control, Mabrok and Shamma
[18] studied the passivity properties of higher-order games
and determined necessary conditions for evolutionary dy-
namics to be stable for all higher-order passive games. Their
work also proved that replicator dynamics is lossless [18],
which was later shown to be not �-passive [19].

The population game framework has been used in many
problems. For example, it has been used for distributed
optimization [20] and distributed NE seeking [21]. Obando
et al. [4] studied a temperature control problem, where the
population models the heating power to be distributed in a
building and is coupled to a thermal model of the building.
We refer the reader to a survey [14] for additional examples.

To the best of our knowledge, [5] is the first study that used
�-passivity as a design tool: a dynamic payoff mechanism
was designed to lessen the impact of an epidemic subject to a
limit on the long-term budget available to the decision maker.
This work was extended to cases with nonnegligible disease
mortality rates [6] and to scenarios with noisy payoffs to
agents [22]. The same framework was also used to consider
two-population scenarios [7].

Our work extends the design method in [5] to a larger
class of ESs, which includes epidemic models as examples.
Our assumptions are similar to those of previous studies,
but the proposed dynamic payoff mechanism has a provable
bound on the incentives provided to the agents. We also
determine conditions under which a class of ESs coupled to
a population of learning agents can be stabilized to a desired
equilibrium.

III. POPULATION GAMES AND LEARNING RULES

We consider a population of a large number of nondescript
agents, in which each agent follows a single strategy at any
given time and can repeatedly revise its strategy, based on
the payoffs to available strategies at the revision times. We
assume that the agents have a common set of n strategies
available to them. The instantaneous payoff obtained by
following the i-th strategy at time t is given by pi(t), and the
payoff vector offered to the population at time t is denoted
as p(t) := (pi(t) | i 2 [n]), where [n] := {1, . . . , n}. The
payoff perceived by agents at time t is the difference between

the rewards offered by the policy maker at time t, which is
denoted by r(t), and the vector that contains the intrinsic
costs of the n strategies, which we denote by c. Thus, the
payoff vector at time t is given by

p(t) = r(t)� c. (1)

These assumptions render the tools of population games
well-suited for analyzing the strategic interactions among
the agents. The population state at time t is denoted by
x(t) := (xi(t) | i 2 [n]), with xi(t) being the proportion
of the population following the i-th strategy at time t. The
vector x(t) takes values in the standard simplex

X :=

(
x 2 [0, 1]n

���
nX

i=1

xi = 1

)
.

In the large-population limit, for t � 0, the population state
x evolves according to the Evolutionary Dynamics Model
(EDM)

ẋ(t) = V (x(t), p(t)), (EDM)

where V : X⇥ Rn ! Rn. The i-th element of V (x, p) is

Vi(x, p) :=
nX

j=1

(xj⌧ji(x, p)� xi⌧ij(x, p)) , (2)

with a learning rule (also referred to as a revision protocol) ⌧
that is a Lipschitz continuous map ⌧ : X⇥Rn ! [0, ⌧̄ ]n⇥n,
upper bounded by ⌧̄ > 0.

We consider the EDM coupled to an ES, whose state at
time t is denoted by y(t). The ES state y(t) takes values in
Y ⇢ Rm and evolves according to

ẏ(t) = f(y(t);x(t)), (3)

where f : Rm ⇥ Rn ! Rm is locally Lipschitz continuous
and the population state x(t) acts as time-varying parameters
of the ES. We assume that, for any x 2 X, if x(t) ⌘ x then
(3) has a unique equilibrium denoted as y⇤(x).

The dynamics of rewards r(t) offered to the agents is
described by the following:

q̇(t) = G(y(t), x(t), q(t)), (4)
r(t) = H(y(t), x(t), q(t)),

q(0) = q0,

where G and H form a dynamic payoff mechanism to be
designed by the policy maker.

Definition 1 A learning rule ⌧ is said to satisfy the positive

correlation (PC) condition if the following holds: for all

(x, p) 2 X⇥ Rn
,

V (x, p) 6= 0 ) p>V (x, p) > 0.

Definition 2 A learning rule ⌧ is Nash Stationary (NS) if,

given the best response map M : Rn ! 2X, where

M (p) := argmax
x2X

p>x, p 2 Rn,
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the following holds:

V (x, p) = 0 , x 2 M (p), p 2 Rn.

Definition 3 An EDM is �-passive if there exist (i) a differ-

entiable function S : X ⇥ Rn ! R�0 and (ii) a Lipschitz

continuous function P : X⇥ Rn ! R�0, which satisfy the

following inequality for all x, p and u in X, Rn
and Rn

,

respectively:

@S
@x

(x, p)V (x, p) +
@S
@p

(x, p)u  �P(x, p) + u>V (x, p)

(5)
where S and P must also satisfy the equivalences below:

S(x, p) = 0 , V (x, p) = 0,

P(x, p) = 0 , V (x, p) = 0.

Since the EDM is determined by the learning rule, we say
that the learning rule is �-passive if the resulting EDM is �-
passive. Two well-known classes of learning rules that satisfy
PC and NS conditions and lead to �-passive evolutionary
dynamics are the separable excess payoff target and the
impartial pairwise comparison learning rules.

Example 1 A learning rule ⌧ is said to be of the separable

excess payoff target type [23] if, for each j in [n], there is

some ⇢j : R ! R�0 such that

⌧ij(x, p) = ⇢j(pj � x>p) for all i 2 [n],

and ⇢j satisfies ⇢j(v) = 0 for v  0 and ⇢j(v) > 0 for

v > 0.

Example 2 A learning rule is said to be of the impartial
pairwise comparison type [24] if, for each j in [n], there is

some ⇢ : R ! R�0 such that

⌧ij(x, p) = ⇢j(pj � pi) for all i 2 [n],

and ⇢j satisfies ⇢j(v) = 0 for v  0 and ⇢j(v) > 0 for

v > 0.

Lastly, we introduce a lemma that will be useful for
proving our main result (Theorem 1) in the following section.

Lemma 1 For any fixed q 2 Rn
and x̄ 2 M (q), the only

vector x 2 X that satisfies

x 2 M (x̄� x+ q) (6)

is x = x̄.

Proof: Since x̄ 2 M (q), it is a solution to (6). To see
that no other solution exists, rewrite (6) as

(y � x)> (x� x̄� q) � 0 8y 2 X.
Define f(x) = kx � x̄ � qk22, and note from the inequality
above

(y � x)>rf(x) � 0 8y 2 X.
It then follows from the minimum principle that x 2
argmin f(z) s.t. z 2 X. As this is a convex problem with
strictly convex objective, it has a unique solution. Since x̄ is
a solution as noted above, the lemma follows.

IV. MAIN RESULT

Our goal is to design a dynamic payoff mechanism given
by the maps G and H , which not only guarantees the
convergence of the population state to some x⇤ 2 X selected
by the policy maker, but also gives bounds on the ES state
y(t) and the instantaneous cost r(t) incurred by the policy
maker. Our convergence result assumes that the population
adopts a learning rule that is �-passive, NS and PC, along
with some conditions on the ES in (3). For the incentive
design, we do not need to know the learning rule used by
the agents as long as it satisfies the properties above.

Although our assumptions are similar to those in the
previous works, we do not require the assumption in equation
[5, (13)] on the storage function associated with the learning
rule, but instead assume that the learning rule is PC, which
is simpler to check.

Our approach to designing the dynamic payoff mecha-
nism leverages the �-passivity of the EDM, which yields
a Lyapunov function for the overall system. The Lyapunov
function is used to bound (y, x)(t) based on the initial
condition (y, x)(0). Moreover, the maps G and H , combined
with the bound on (y, x)(t), also enable us to bound the
instantaneous rewards provided to the agents, as discussed
in §V.

Theorem 1 Consider a payoff vector p⇤ 2 Rn
, a population

state x⇤ 2 M (p⇤), and positive design parameters k1, k2,
and k3. Suppose that the exogenous system (3) satisfies the

following:

(i) There is a nonnegative continuously differentiable func-

tion U : Y⇥X ! R�0 such that, for any x 2 X and y 2 Y,
@U
@y (y;x)f(y;x)  0.

(ii) For any ↵ 2 R�0, {(y, x) 2 Y⇥ X | U(y;x)  ↵} is

compact.

(iii) For every x 2 X, the set {y⇤(x)} is the largest

invariant subset of {y 2 Y|@U@y (y;x)f(y;x) = 0}.

(iv) The function U satisfies
@U
@x (y

⇤(x);x) = 0 for every

x 2 X.

In addition, assume that

(v) the learning rule ⌧ is Nash stationary, �-passive, and

positively correlated.

Then, the dynamic payoff mechanism given by

G(y, x, q) =� k1rxU(y;x)
� k2(x� x⇤)� k3(q � p⇤), (7)

H(y, x, q) = c+ q,

guarantees that, for any initial condition (y, x)(0) 2 Y ⇥ X
and q0 in Rn

, we have (y, x, q)(t)
t!1���! (y⇤(x⇤), x⇤, p⇤).

Proof: Define the following candidate Lyapunov func-
tion for the overall system comprised of (2), (3), and (4).

L(y, x, q) := k1U(y;x) + k3(max
i

(p⇤i )� x>p⇤)

+
k2
2
kx� x⇤k22 + S(x, q), (8)
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where S is the storage function of the EDM. Due to our
selection of H , we have p = q.

We denote by L̇(y, x, q) the directional derivatives of the
function (8) along the vector field defined by (2), (3), and
(4) at the point (y, x, q):

L̇(y, x, q) =k1(ryU(y;x)>f(y;x) +rxU(y;x)>V (x, q))

� k3V (x, q)>p⇤ + k2(x� x⇤)>V (x, q)

+rxS(x, q)>f(y;x) +rpS(x, q)>G(y, x, q)

k1ryU(y;x)>f(y;x) + V (x, q)>G(y, x, q)

+ (k1rxU(y;x) + k2(x� x⇤)� k3p
⇤)>V (x, q)

� P(x, q),

=k1ryU(y;x)>f(y;x)� k3q
>V (x, q)� P(x, q),

where the inequality follows from (5). Conditions (i) and (v)
imply that L̇ is nonpositive, and L is a nonstrict Lyapunov
function.

By condition (ii) and L̇  0, {(y, x)(t)|t � 0} is bounded.
Since (7) is a bounded-input bounded-output linear system
with state p and bounded input �k1rxU(y;x) � k2(x �
x⇤) + k3p⇤, which is a continuous function of the trajectory
{(y, x)(t)|t � 0}, we obtain that {(y, x, q)(t)|t � 0} is
bounded.

Let E denote the largest invariant subset within
{(y, x, q) | L̇(y, x, q) = 0}. From the LaSalle-Krasovskii
invariance principle, (y, x, q)(t) converges to the !-limit set
L+ ⇢ E, which is compact and invariant with respect to (2),
(3), and (4) [25, Lemma 4.1].

For any (y, x, q)(0) 2 E, the trajectory will satisfy that,
for all t � 0, x(t) = x(0) and y(t) = y⇤(x(0)) due to the fact
that L̇(y(t), x(t), q(t)) = 0 for all t � 0 implies ẋ(t) = 0 for
all t � 0, and condition (iii) in Theorem 1. This, together
with condition (iv), leads to

q̇(t) = �k2(x(0)� x⇤)� k3(q(t)� p⇤)

so that q(t) t!1���! k2
k3
(x⇤ � x(0)) + p⇤ and

(y, x, q)(t)
t!1���! (y⇤(x(0)), x(0), k2

k3
(x⇤ � x(0)) + p⇤).

Since the learning rule is assumed NS, we must have

x(0) 2 M
⇣
x⇤ � x(0)+ k3

k2
p⇤
⌘
,

and by Lemma 1 we have x(0) = x⇤ and L+ =
{(y⇤(x⇤), x⇤, p⇤)}.

V. BOUNDS

As proven in Theorem 1, if the ES in (3) satisfies (i)-
(iv) and the learning rule satisfies (v), the payoff mechanism
described in (7) can be used to stabilize the ES and the
population to a desired equilibrium. Also, we are able to
determine bounds for the state and the rewards r(t) offered
to the population.

If p(t) = 0 at some t, the storage function of the EDM
is equal to zero at t, as any x(t) 2 X is a best response.

In particular, if p(0) = p⇤ = 0, both S(x(0), p(0)) and
max(p⇤)� x(0)>p⇤ are equal to zero, and we have

L0 := L(y(0), x(0),0)

= k1U(y(0);x(0)) +
k2
2
kx(0)� x⇤k22.

Furthermore, because L is decreasing along trajectories and
S(x,0) = 0 for any x 2 X, we obtain that, for any t � 0,

L(y(t), x(t),0)  L(y(t), x(t), p(t))  L(y(0), x(0),0). (9)

This in turn can be used to bound not only y(t) and x(t) but
also the policy maker’s instantaneous cost c̄(t) := x(t)>r(t):
for any t � 0,

c̄(t)  max{g(y, x)|x 2 X, y 2 Y,L(y, x,0)  L0}, (10)
g(y, x) := kc+G(y, x,0)/k3k1 ,

where the terms G(y, x,0), L(y, x,0) and L0 are affected
by the choice of the parameters k1, k2, and k3.

VI. EXAMPLES

In §VI-A and §VI-B we present two systems that fit our
framework as the ES in (3). They meet conditions (i)-(iv) of
Theorem 1, and when coupled to a population that employs
a learning rule satisfying condition (v), the dynamic payoff
mechanism described in Theorem 1 stabilizes the overall
system to a desired equilibrium y⇤(x). In §VI-C we consider
a modification of [6] to exemplify how our theorem can
be leveraged for design: We first select a target equilibrium
population state x⇤ that minimizes the disease transmission
rate subject to a budget constraint, and choose the parameters
k1, k2, and k3 so that the peak size of the infected population
is guaranteed to be below a given threshold. We then present
simulation results using several different learning rules.

Our examples focus on systems that are naturally coupled
to a population of agents and are affected by the strategic
choices of the agents. The system considered in [5], [6] is a
compartmental model of an epidemic disease, and the popu-
lation state affects the transmission rate of the disease. Sim-
ilarly, [7] considers an epidemic model with two interacting
populations, with the transmission rates of each population
being affected by its agents’ current strategies. Korobeinikov
[8] studied a Host-Parasite model, and by finding a nonstrict
Lyapunov function he proved the convergence to the unique
equilibrium of the model. We modify this model so that
some of its parameters change according to the population
state. We choose a desirable equilibrium (y⇤(x⇤), x⇤) of this
modified model to reduce the number of parasites at the
equilibrium, and then use (7) to stabilize the equilibrium.

A. Leslie-Gower predator-prey model

Korobeinikov [8] studies the Leslie-Gower model that
captures the interaction of populations of hosts and parasites.
Let O(t) and P (t) denote the number of hosts and parasites,
respectively, at time t. The population sizes evolve according
to the following differential equations:

Ȯ(t) = (z1 � a1P (t)� b1O(t))O(t), (11a)
Ṗ (t) = (z2 � a2P (t)/O(t))P (t), (11b)
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where z1, z2, a1, and a2 are positive, and b1 is nonnegative.
The intrinsic population growth rates of the hosts and para-
sites are z1 and z2, respectively. The parameter b1 relates to a
growth limit on the hosts without parasites, while a1 relates
to a decrease of hosts due the parasites, and a2 relates to a
population limit on the parasites due to the number of hosts.
The unique co-existing equilibrium, where O⇤, P ⇤ > 0, is

O⇤ =
z1

a1z2 + a2b1
and P ⇤ =

z1z2
a1z2 + a2b1

.

The following is a nonstrict Lyapunov function of (11) on
(0,1)2:

U(O,P ) := Ũ((O,P ); (O⇤, P ⇤)), (12)

where

Ũ(v;w) := log

✓
v1
w1

◆
+

w1

v1
+

a1w1

a2

✓
log

✓
v2
w2

◆
+

w2

v2

◆
,

with v, w 2 R2
>0. The directional derivatives of (12) along

the vector field defined by (11) is

U̇(O,P ) = �a1
P
(P � P ⇤)2 � b1

O
(O �O⇤)2

with positive a1 and nonnegative b1. This confirms that (12)
is a Lyapunov function of (11).

Suppose that z1 and z2 are functions of the population
state, i.e., z1, z2 : X ! R>0, and b1 : X ! R�0. Such
scenarios could arise when the agents are the farmers who
breed and raise livestock, which are the hosts affected by
parasites. The strategic choices of the agents could include,
for example, how many animals to breed or which measures
to take to reduce the spread of parasites, e.g., diagnosing,
isolating, and treating infected hosts. In this case, the Leslie-
Gower model as the ES in (3) is described by

f(y;x) :=


(z1(x)� a1y2 � b1(x)y1)y1

(z2(x)� a2y2/y1)y2

�

with the equilibrium

y⇤(x) :=

"
z1(x)

a1z2(x)+a2b1(x)
z1(x)z2(x)

a1z2(x)+a2b1(x)

#
2 Y = (0,1)2.

Suppose z1, z2, and b1 are continuously differentiable so that
the equilibrium map y⇤ is also continuously differentiable.

Define

U(y;x) := Ũ(y; y⇤(x))� a1
a2

y⇤1(x) .

Note that (a) U(y;x) > 0 for any y 6= y⇤(x), and (b) for
any x 2 X, if x(t) ⌘ x, then U̇(y(t);x(t)) = U̇(y1(t), y2(t)).
Thus, it satisfies conditions (i) and (iii). As a continuous
function, the sublevel sets of U are closed, and we can verify
that they are also bounded so that condition (ii) is satisfied.
Lastly, U satisfies (iv):

@U
@x

(y⇤(x);x)

=

 
@Ũ
@w

(y⇤(x); y⇤(x))� a1
a2


1
0

�>! @y⇤

@x
(x) = 0,

because

@Ũ
@w

(y⇤(x); y⇤(x)) =
a1
a2


1
0

�>
.

B. Epidemic Population Games (EPG)

Previous studies on EPG [5], [6], [7] examined epidemic
compartmental models coupled to a population, with the
epidemic model being the ES. Here we show that the model
used in [6] satisfies the conditions in Theorem 1, even for
a more general dependency of the transmission rates on the
agents’ strategies than that considered in [6]. The epidemic
model satisfies conditions (i)-(iv) and, when coupled to a
population employing a learning rule that satisfies (v), we
can use Theorem 1 to drive them to a desirable equilibrium.
A similar analysis shows that the epidemic models in [5],
[7] also satisfy conditions (i)-(iv).

We first briefly describe the normalized susceptible-
infectious-recovered-susceptible (SIRS) model, which is the
ES we aim to stabilize. Let I(t), and R(t) denote the propor-
tions of infected agents and recovered agents, respectively, in
the population at time t. Suppose that N (t) is the population
size at time t. The population size changes according to
Ṅ (t) = (g � �I(t))N (t), where g := ✓ � ⇣ is the difference
between the birth rate ✓ and the natural death rate ⇣, and
� > 0 is the disease death rate. The disease recovery rate and
the rate at which a recovered individual becomes susceptible
again due to waning immunity are denoted by � and  ,
respectively.

Since the model is normalized, I(t) 2 [0, 1] and R(t) 2
[0, 1 � I(t)] at any time t. The ES state y(t) is given by
(I(t), R(t)) and evolves according to

İ(t) = (B(t)S(t)+ �I(t)� �)I(t), (13a)
Ṙ(t) = �I(t)� !R(t)+ �R(t)I(t), (13b)

where B(t) is the average transmission rate at time t, �̄ :=
� + ⇣ + �, � := g + �̄, !̄ :=  + ⇣, � := g + !̄, and
�̄�1 is the mean infectious period for an affected individual
(till recovery or death). The adopted time unit is one day,
and newborns are assumed susceptible. As in [6], we assume
� > 0 but moderate such that � < min{!, �}. Also, B(t) > �
for all t � 0 so that there is a unique endemic equilibrium.

For fixed B(t) ⌘ B > �, the endemic equilibrium of (13)
is given by the differentiable functions of B:

I⇤B :=
bB �

p
�

2�(B � �)
, and

R⇤
B :=(1� �/B)� (1� �/B)I⇤B ,

where bB := �B+!(B��)+�(B��), and the discriminant
is � := b2BB � 4�!(B � �)(B � �).

Now, suppose B(t) ⌘ B(x(t)), where B : X ! (�,1) is
a continuously differentiable function, and let Y := (0, 1]⇥
[0, 1] and y⇤(x) := (I⇤B(x), R

⇤
B(x)). For a fixed x(t) ⌘ x, the

following is a strict Lyapunov function for (13) on Y:

U(I, R;x) := Ũ(I, R;B(x)), (15)
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where

eU(I, R;B) :=(I � I⇤B) + I⇤B ln
I⇤B
I

+
aB
2
(R�R⇤

B)
2,

and aB := B/(� + �R⇤
B). The derivative of (15) along

trajectories is

d

dt
eU(I(t), R(t);B) = � (B � �)(I(t)� I⇤B)

2

� aB(! � �I(t))(R(t)�R⇤
B)

2,

and it is negative for any (I(t), R(t)) 2 Y \ {y⇤(x)}.
Since (15) is a strict Lyapunov function when x(t) is

constant, it satisfies conditions (i) and (iii). As U is a
continuous function, its sublevel sets are closed. Moreover,
because the sublevel sets are also contained in Y⇥X, which
is a bounded set, they are also bounded and, hence, condition
(ii) holds. Lastly, we can verify condition (iv) as follows.

@U
@x

(I⇤B(x), R
⇤
B(x);x) =

@ eU
@B

(I⇤B(x), R
⇤
B(x);B(x))

@B

@x
(x) = 0,

where the second equality follows from
@ eU
@B (I⇤B(x), R

⇤
B(x);B(x)) = 0.

C. Designing an Intervention Policy for Epidemics with

Nonlinear Infection Rate

We consider a modification of the EPG studied in [6],
which was described in §VI-B, as an application of Theorem
1 to a dynamic payoff design problem. We aim to mitigate an
epidemic outbreak and reduce the endemic level of infected
agents while guaranteeing that the long-term cost of the
policy maker does not exceed some available budget c⇤.

The study in [6] considers the average transmission rate
that depends linearly on the population state, with B(t) ⌘
�>x(t), where � 2 Rn

>0. Such dependency on x(t) is consis-
tent with the choices of the susceptible agents determining
the likelihood of contracting the disease when exposed,
e.g., choosing to wear masks or getting vaccinated. In their
model, the proportion of susceptible agents following the i-
th strategy at time t is xi(t)S(t), and for those agents the rate
of new infections is equal to �ixi(t)S(t)I(t).

Suppose that we allow the average transmission rate
to depend on both the choices of the susceptible agents
and those of the infected agents. For example, an infected
agent that takes no preventive measures is more likely to
transmit the disease than another infected agent that does
take preventive measures. In this case, the rate of new
infections among susceptible agents following strategy i due
to the exposure to infected agents adopting strategy j would
be �ijxi(t)S(t)xj(t)I(t). Therefore, the average transmission
rate is given by

B(t) ⌘ B(x(t)) := x(t)>Qx(t), t � 0,

with Q 2 Rn⇥n being a positive matrix with the elements
Qij = �ij . We assume that the disease is too infectious to
be eradicated so that B(x) � � for all x 2 X.

We aim to select a target population equilibrium x⇤

that minimizes the transmission rate subject to a budget
constraint. In order to find x⇤ we solve

x⇤ 2 argmin
z2X

B(z) s.t. c>z �min
i

ci  c⇤,

where c is the vector of intrinsic costs of the strategies, and
c⇤ is the long-term budget available to the policy maker.

After determining x⇤, we select k1, k2, k3 > 0 and use
the payoff mechanism described in Theorem 1 to lead the
population and epidemic states to the selected equilibrium.

Example 3 Consider a disease with parameters: � = 0.005,

⇣ = 0, ✓ = 0.0002, � = 0.1 (mean recovery period ⇠ 10

days) and !̄ = 0.011 (mean immunity period ⇠ 91 days).

Agents have three available strategies with

Q =

2

4
0.13 0.18 0.2
0.16 0.22 0.23
0.17 0.28 0.5

3

5 , and c =

2

4
0.2
0.1
0

3

5 .

The initial conditions are I(0) = 0.019 and R(0) = 0.172
for the epidemic, x(0) = (1 0 0)> for the EDM, and q(0) =
(0 0 0)> for the payoff dynamics. The long-term budget of

the policy maker is c⇤ = 0.1, and we select p⇤ = 0, which

yields x⇤ ⇡ (1 10 1)/12 and y⇤(x⇤) ⇡ (5.1%, 46.9%). Our

goal is to design G and H so that I(t)  10% for all t � 0.

For simplicity, we select q0 = �c and p⇤ = p(0) = 0 and
k3 = 1, as k3 does not affect the bound on I(t) if p⇤ = 0.
Based on (9), we look for values of k1 and k2 that meet our
requirement that I(t)  10% for all t � 0, by solving

Imax(k1, k2) := max
I,R,x

I

s.t. x 2 X,
I, R � 0,

I +R  1,

L(y, x, 0)  L(y(0), x(0), 0), (16)

where k1 and k2 affect constraint (16).
We solve numerically the optimization above for several

values of k1 and k2, and show the results in Fig. 1. The
requirement that I(t)  10% is met for k1, k2 in the region
on the bottom right of the plot, and we select k1 = 2 and
k2 = 0.022. We then use the reward mechanism given by
Theorem 1 to guide the population to the desired equilibrium.

The simulation results for several different learning rules
that satisfy condition (iv) in Theorem 1 are shown in Fig. 2.1
It is clear that they all converge and satisfy the requirement
that I(t)  10% for all t � 0. Had we not used the bound,
Imax(k1, k2), to determine the parameters of the reward
mechanism, the bound on the peak of infections may have
been violated, as shown in Fig. 3. In both figures we observe
that the instantaneous cost, c̄(t), converges to c⇤, which is
represented as a dashed black line in the plots.

1See the simulation code at github/jcert/incentive-design-coupled-
dynamics for more details on the learning rules that were used.
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Fig. 1. Bound Imax(k1, k2), for the conditions in Example 3, when varying
k1 and k2.

Fig. 2. Simulation of Example 3, for many different learning rules, using
k1 = 2, k2 = 0.022, k3 = 1.

Fig. 3. Simulation of Example 3, for many different learning rules, using
k1 = k2 = k3 = 1.

VII. CONCLUSION

We studied a large population of learning agents whose
strategic choices influence the dynamics of an ES we seek
to stabilize at a desired equilibrium. Our framework can be
used to design a dynamic payoff mechanism that guarantees
the convergence of both the population and the ES (Theorem
1). When the conditions on the ES stated in the theorem
are met, the designed incentives can stabilize more general
systems than previously considered.

We also presented example systems that satisfy the condi-
tions of our main result (§VI-A and §VI-B) and applied our
framework to design incentives that mitigate an epidemic
with nonlinear infection rates subject to long-time budget
constraints (§VI-C). Unlike the incentives designed in the
previous studies of EPG, our payoff mechanism is guaranteed
to have a bound on the instantaneous reward offered to the
population.

In future research we plan to extend the results by relaxing
the assumptions on the ES to be only local and to allow the
EDM to depend on the ES states. Another direction we are
interested in pursuing is to examine design problems where
the payoff of certain strategies can only be partially designed.
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